
An improved algorithm for CIOQ switches ∗

Yossi Azar † Yossi Richter ‡

Abstract

The problem of maximizing the weighted throughput in various switching settings has been
intensively studied recently through competitive analysis. To date, the most general model
that has been investigated is the standard CIOQ (Combined Input and Output Queued) switch
architecture with internal fabric speedup S ≥ 1. CIOQ switches, that comprise the backbone of
packet routing networks, are N ×N switches controlled by a switching policy that incorporates
two components: Admission control and scheduling. An admission control strategy is essential to
determine the packets stored in the FIFO queues in input and output ports, while the scheduling
policy conducts the transfer of packets through the internal fabric, from input ports to output
ports. The online problem of maximizing the total weighted throughput of CIOQ switches
was recently investigated by Kesselman and Rosén in [15]. They presented two different online
algorithms for the general problem that achieve non-constant competitive ratios (linear in either
the speedup or the number of distinct values, or logarithmic in the value range). We introduce
the first constant-competitive algorithm for the general case of the problem, with arbitrary
speedup and packet values. Specifically, our algorithm is 8-competitive, and is also simple and
easy to implement.

1 Introduction

Overview: Recently, packet routing networks have become the dominant platform for data trans-
fer. The backbone of such networks is composed of N × N switches, that accept packets through
multiple incoming connections and route them through multiple outgoing connections. As network
traffic continuously increases and traffic patterns constantly change, switches routinely have to ef-
ficiently cope with overloaded traffic, and are forced to discard packets due to insufficient buffer
space, while attempting to forward the more valuable packets to their destinations.

Traditionally, the performance of queuing systems has been studied within the stability analysis
framework, either by a probabilistic model for packet injection (queuing theory, see e.g. [9, 17])

∗A preliminary version of this paper appears in the proceedings of the 12th Annual European Symposium on
Algorithms (ESA), 2004, pp. 65–76.

†Corresponding author. Phone: +972-3-6406354, Fax:+972-3-6409357, azar@tau.ac.il. School of Computer
Science, Tel Aviv University, Tel Aviv, 69978, Israel. Research supported in part by the Israeli Ministry of industry
and trade and by the Israel Science Foundation.

‡
yo@tau.ac.il. School of Computer Science, Tel Aviv University, Tel Aviv, 69978, Israel. Research supported in

part by the Israeli Ministry of industry and trade.

1

or an adversarial model (adversarial queuing theory, see e.g. [4, 10]). In stability analysis packets
are assumed to be identical, and the goal is to determine queue sizes such that no packet is ever
dropped. However, real-world networks do not usually conform with the above assumptions, and it
seems inevitable to drop packets in order to maintain efficiency. As a result, the competitive analysis
framework, which avoids any assumptions on the input sequence and compares the performance
of online algorithms to the optimal solution, has been adopted recently for studying throughput
maximization problems. Initially, online algorithms for single-queue switches were studied in various
settings [1, 3, 8, 12, 13, 14, 16]. Later on, switches with multiple input queues were investigated [2,
5, 6, 7], as well as CIOQ switches with multiple input and output queues [15].

To date, the most general switching model that has been studied using competitive analysis is
CIOQ (Combined Input and Output Queued) switching architecture. A CIOQ switch with speedup
S ≥ 1 is an N×N switch, with N input ports and N output ports. The internal fabric that connects
the input and output FIFO queues is S times faster than the queues. A switching policy for a CIOQ
switch consists of two components. First, an admission control policy to determine the packets
stored in the bounded-capacity queues. Second, a scheduling strategy to decide which packets are
transferred from input ports to output ports through the intermediate fabric at each time step.
The goal is to maximize the total value of packets transmitted from the switch. The online problem
of maximizing the total throughput of a CIOQ switch was studied by Kesselman and Rosén in [15].
For the special case of unit-value packets (all packets have the same value) they presented a greedy
algorithm that is 2-competitive for a speedup of 1 and 3-competitive for any speedup. For the
general case of packets with arbitrary values two different algorithms were presented, by using
techniques similar to those introduced in [6]. The first algorithm is 4S-competitive and the second
one is (8min{k, 2⌈log α⌉})-competitive, where k is the number of distinct packet values and α is
the ratio between the largest and smallest values.

Our results: We present the first constant-competitive algorithm for the general case of the
problem with arbitrary packet values and any speedup. Specifically, our algorithm is 8-competitive
and is also simple and easy to implement. Our analysis includes a new scheme to map discarded
packets to transmitted packets with the aid of generating dummy packets.

Other related results: The online problem of throughput maximization in switches has been
explored extensively during recent years. Initially, single-queue switches were investigated, for both
arbitrary packet sequences, and 2-value sequences. The preemptive model, in which packets stored
in the queue can be discarded, was studied in [8, 12, 13, 14, 16]. The non-preemptive model, in
which a packet can be discarded only upon arrival, was initially studied by Aiello et al. [1], followed
by Andelman et al. [3] who showed tight bounds. The results for a single queue were generalized
for switches with an arbitrary number of input queues in [6], by a general reduction from the
multi-queue model to the single-queue model. Specifically, a 4-competitive algorithm is presented
in [6] for the weighted multi-queue switch problem. An improved 3-competitive algorithm was later
shown in [7]. The multi-queue switch model has been also investigated for the special case of unit-
value packets, which corresponds to IP networks. Albers and Schmidt [2] introduced a deterministic
1.89-competitive algorithm for the unit-value problem, followed by Azar and Litichevskey [5] that
showed a 1.58-competitive algorithm for switches with large buffers. A randomized 1.58-competitive
algorithm was previously presented in [6]. An alternative model to the multiple input queues model
is the shared memory switch, in which memory is shared among all queues. Hahne et al. [11] studied

2

Figure 1: CIOQ switch - an example

buffer management policies in this model while focusing on deriving upper and lower bounds for
the natural Longest Queue Drop policy.

2 Problem definition and notations

In the online CIOQ (Combined Input and Output Queued) switch problem, originally introduced
in [15], we are given an N × N switch with N input ports and N output ports (see figure 1).
Input port i (i = 1, . . . , N) contains N virtual output FIFO queues (referred to as input queues
henceforth), denoted {V Oij}

N
j=1, with bounded capacities, where queue V Oij is used to buffer the

packets arriving at input port i and destined to output port j. Output port j (j = 1, . . . , N)
contains a bounded capacity FIFO queue (referred to as output queue), denoted Oj , to buffer the
packets waiting to be transmitted through output port j. For each queue Q in the system, we
denote by B(Q) the capacity of the queue, and by Q(t) the ordered set of packets stored in the
queue at time step t. We denote by h(Q(t)) and min(Q(t)) the packet at the head of queue Q, and
the minimal value among packets in the queue, respectively.

Time proceeds in discrete time steps. We divide each time step into three phases. The first
phase is the arrival phase, during which packets arrive online at the input ports. All packets have
equal size, and each packet is labelled with a value, an input port, through which it enters the
switch, and a destination output port, through which is has to leave the switch. We denote the
finite sequence of online arriving packets by σ. For every packet p ∈ σ we denote by v(p), in(p) and
out(p) its value, input port and output port, respectively. Online arriving packets can be enqueued
in the input queues that correspond to their destination ports, without exceeding their capacities.
Remaining packets must be discarded. We allow preemption, i.e. packets previously stored in the
queues may be discarded in order to free space for newly arrived packets. The second phase at
each time step is the scheduling phase during which packets are transferred from the input queues
to the output queues. For a switch with speedup S ≥ 1 at most S packets can be removed from
each input port and at most S packets can be enqueued into the queue of each output port. This
is done in S consecutive rounds, during each we compute a matching between input and output
ports. We denote round s (s = 1, . . . , S) at time step t by ts. During the scheduling phase the
capacity of the output queues may not be exceeded, and again preemption is allowed. The third
phase at each time step is the transmission phase. During this phase a packet may be transmitted
from the head of each output queue.

3

A switching algorithm A for the CIOQ switch problem is composed of two components, not
necessarily independent. The first component is admission control; Algorithm A has to exercise
an admission control strategy in all queues (input and output), that decides which packets are
admitted into the queues and which packets are preempted. The second component is a scheduling
strategy; During scheduling round ts algorithm A first decides the set of eligible packets for transfer
EA(ts) ⊆ {h(V Oij(ts)) : (i, j) ∈ [N]2}, i.e. a subset of the packets currently located at the
head of the input queues. The set EA(ts) can be translated into the bipartite weighted graph
GA(ts) = ([N], [N], E) such that E = {(in(p), out(p)) : p ∈ EA(ts)}, where the weights on the
edges correspond to the packet values, namely w(e) = v(p) for e = (in(p), out(p)) ∈ E. Throughout
the paper we refer to the edges in E and their corresponding packets interchangeably. Algorithm
A then constructs a matching MA(ts) ⊆ GA(ts) that corresponds of the set of packets that are
transferred from input queues to output queues at round ts. Given a finite sequence σ we denote
by A(σ) the set of packets algorithm A transmitted from the switch. The goal is to maximize
the total value of transmitted packets, denoted V (A(σ)), i.e. maximize V (A(σ)) =

∑
p∈A(σ) v(p).

An online algorithm A is said to be c-competitive if and only if for every packet sequence σ,
V (Opt(σ)) ≤ c · V (A(σ)) holds, where Opt denotes the optimal off-line algorithm for the problem.

3 A constant-competitive algorithm

In this section we define and analyze our algorithm for the CIOQ switch problem. We begin with a
definition of a parameterized preemptive admission control policy GRβ for a single queue (figure 2).
This policy is a generalization of the ordinary greedy policy from [12], that is obtained by setting
β = 1. The latter will be denoted by GR. We then present our parameterized algorithm SG(β)
(abbreviation for Semi-Greedy(β)) for the problem (figure 3). For simplicity of notation, we
drop the parameter β for the remainder of this section, and use the abbreviated notation SG for
the algorithm. The value of the parameter β will be determined later.

Algorithm GRβ [Single-Queue]

Enqueue a new packet p if:

• |Q(t)| < B(Q) (the queue is not full).

• Or v(p) > β ·min(Q(t)). In this case the smallest packet is discarded and p is enqueued.

Figure 2: Algorithm GRβ.

Algorithm SG exercises the greedy preemptive admission control policy GR on all input queues,
and the modified admission control policy GRβ on all output queues. At each scheduling round SG

considers only those packets that would be admitted to their destined output queue if transferred,
namely packets whose destined output queue is either not full, or they have a value greater than
β times the currently smallest packet in this queue. Algorithm SG then computes a maximum
weighted matching in the corresponding bipartite graph. Note that according to SG operation,
each packet that is transferred to an output queue is always accepted, and may preempt another
packet. We now proceed to prove the competitive ratio of SG.

4

Algorithm SG(β) [CIOQ switch]

1. Admission control:

(a) Input queues: Use algorithm GR.

(b) Output queues: Use algorithm GRβ.

2. Scheduling: at scheduling round ts do:

(a) Set ESG(ts) = {h(V Oij(ts)) : |Oj(ts)| < B(Oj) or v(h(V Oij(ts))) > β ·min(Oj(ts))}

(b) Compute a maximum weighted matching MSG(ts) ⊆ GSG(ts).

Figure 3: Algorithm SG(β).

Theorem 3.1 Algorithm SG achieves constant competitive ratio. Specifically, for an optimal choice
of the parameter β, algorithm SG is 8-competitive.

Proof: The outline of the proof is as follows. Given an input sequence σ, we wish to construct a
global weight function wσ : SG(σ) → R

+, that maps each packet transmitted by SG from the switch
to a real value. In order to achieve a (c + 1)-competitive ratio it is sufficient to prove the following:

1.
∑

p∈Opt(σ)\SG(σ) v(p) ≤
∑

p∈SG(σ) wσ(p).

2. wσ(p) ≤ c · v(p), for each packet p ∈ SG(σ), and for some global constant c.

Note that by the first condition the total weight that is mapped to packets which were transmitted
by SG covers the total value lost by SG compared with Opt. By the second condition this is done
by charging each packet with a weight that exceeds its own by no more than a constant factor. In
the following we show how to construct wσ.

The main obstacle of the proof is to handle the different transmission timing at input queues of
SG compared with Opt, as well as the different packet sequences seen at output queues. The proof
consists of several parts. In the first part we prove a main lemma concerning the operation of a
single queue when transmission timing is the same. In the second part we apply this lemma to the
input queues, after adjusting the transmission timing by creating dummy packets. Output queues
are handled in the third part. Our construction is then concluded in the forth part, when we show
how the dummy packets, which were added for the analysis, can be absorbed in the system.

Step 1: The basic mapping scheme (for a single queue in the system). We begin by
introducing some additional notations. Consider the single-queue admission control policy GRβ,
and let A denote any single-queue admission control policy that is exercised by Opt. Assume
that GRβ and A do not operate under the same conditions, specifically, let σ1 and σ2 be the input
packet sequences given to A and GRβ, and let T1 and T2 denote the time steps at which A and GRβ,
respectively, transmit from the queue. We denote by σA−GRβ = {p ∈ σ1∩σ2 : p ∈ A(σ1)\GRβ(σ2)}
the set of packets in the intersection of the sequences that were transmitted by A and not by
GRβ. The following online-constructed local mapping will serve as the basic building block in the
construction of our global weight function wσ.

5

Lemma 3.2 Let A be any admission control policy for a single queue exercised by Opt. Let σ1,
σ2 be input packet sequences, and T1, T2 be transmission times that correspond to A and GRβ (for
β ≥ 1), respectively. If T1 ⊆ T2 then there exists a mapping ML : σA−GRβ → GRβ(σ2) such that the
following properties hold:

1. v(p) ≤ β · v(ML(p)), for every packet p ∈ σA−GRβ .

2. Every packet in GRβ(σ2)\A(σ1) is mapped to at most twice.

3. Every packet in GRβ(σ2) ∩ A(σ1) is mapped to at most once.

Proof: We construct the mapping ML on-line following the operation of the admission control
policies. We assume w.l.o.g that A does not preempt packets. Note that an optimal solution can
always mark the packets that will eventually be transmitted out of the queue and enqueue only
them, therefore rendering preemption redundant. For the remainder of the proof we denote the
contents of the queue according to GR operation (respectively A operation) by QGR (respectively by
QA). We further denote by ML

−1(p) the packets that are mapped to packet p (note that |ML
−1(p)| ≤

2 for every packet p). Given a packet p ∈ QGR(t) we denote by potential(p) the maximum number of
packets that can be mapped to p according to the properties of the lemma, namely potential(p) = 1
for p ∈ A(σ1), otherwise potential(p) = 2. We further denote by availablet(p) the number of
available mappings to p at time t, namely potential(p) minus the number of packets already mapped
to p until time t. A packet p ∈ QGR(t) is called fully-mapped if no additional packet can be mapped
to it, i.e. if availablet(p) = 0. The definition of the mapping ML appears in figure 4.

Mapping ML : σA−GR → GR(σ2)

1. Let Packet p arrive at time t; If p is discarded by GR but accepted by A, map it to the
packet closest to the head in queue QGR that is not fully-mapped.

2. Let q ∈ QGR(t) be a packet that is preempted during time t. Update ML as follows:

(a) If q ∈ A(σ1) map it to the packet closest to the head that is not fully-mapped.

(b) Do the same with respect to ML
−1(q) (if exists).

Figure 4: Local mapping ML.

For simplicity of notation, we prove the lemma for GR, i.e. GR1. The lemma will then follow
directly for the general case, using the same construction, since for GRβ the ratio between a dis-
carded packet and any packet in the queue is at most β. We begin by observing that the mapping
ML indeed adheres to the required properties of the lemma.

Claim 3.3 The mapping ML meets properties 1–3 of Lemma 3.2

Proof: By induction on the time steps. First, observe that a packet is mapped to only if it is not
fully-mapped, therefore properties 2–3 are satisfied. Second, by the definition of GR, when a packet
p is discarded from the queue all other packets residing in the queue have higher values. By the
induction hypothesis, this is also true with respect to ML

−1(p). Therefore, all mappings concur
with property 1. This completes the proof.

6

We now turn to characterize the packets in queue QGR whenever a mapped packet resides in
the queue.

Claim 3.4 Let p ∈ QGR(t) be a mapped packet in queue QGR at time step t. Then the following
holds:

1. h(QGR(t)) (the packet at the head) is mapped.

2. For every packet q ∈ ML
−1(p) we have: v(q) ≤ v(h(QGR(t)))

Proof: If packet p is at the head of queue QGR at time t then we are clearly done by Claim 3.3.
Otherwise, let t′ ≤ t be any time step at which packet p was mapped to. By the definition of ML

all the packets closer to the head than p were already fully-mapped at time t′. Furthermore, all
those packets have higher values than the value of the packet (or packets) mapped to p at that
time, according to the definition of GR. Since FIFO order is obtained, these properties continue to
hold at time t, and the claim follows.

To complete the proof of Lemma 3.2 we need to prove that the definition of ML is valid, i.e.
that indeed whenever a packet is discarded, queue QGR contains packets that are not fully-mapped.

Claim 3.5 The definition of the mapping ML is valid, namely, at each time step the queue QGR

contains unmapped packets as assumed in the definition of ML.

Proof: We define a potential function Φ(t) =
∑

p∈QGR(t) availablet(p), that counts the number of
available mappings at every time step. We prove the claim by induction on the changes that occur
in the system, i.e. packet arrivals and transmissions. Specifically, the correctness of the claim
follows from the invariant inequality Φ(t) + |QA(t)| ≥ |QGR(t)| that is shown to hold at each time
step by induction. For the initial state the inequality clearly holds. We next denote by ∆Φ, ∆A

and ∆GR the changes that occur in the values of Φ, |QA(t)|, |QGR(t)|, respectively. We examine all
possible changes in the system, and show that the inequality continues to hold, either by proving
it directly or by showing that ∆Φ + ∆A ≥ ∆GR.

1. Packet p ∈ σ1 ∩ σ2 arrives: We distinguish three possible cases:

(a) p is accepted by GR while no packet is preempted: Clearly, ∆Φ ≥ ∆GR.

(b) p is rejected by GR: If p is also rejected by A nothing changes. Otherwise, queue QA

was not full before the arrival of p as opposed to queue QGR. Hence by the induction
hypothesis before the packet arrival Φ > 0. After we map a packet to p, ∆Φ + ∆A = 0
and the inequality holds.

(c) p is accepted by GR while a packet is preempted: Clearly, ∆GR = 0 since a packet
is discarded only when queue QGR is full. Note that in either case (p is accepted or
rejected by A) ∆Φ + ∆A ≥ 0 since the left-hand side of the inequality first increases
by two and then decreases by at most two (case 2 in ML definition). Therefore, the
inequality continues to hold.

2. Packet p ∈ σ2\σ1 arrives: ∆Φ ≥ ∆GR whether p is accepted by GR or not.

7

3. Packet p ∈ σ1\σ2 arrives: ∆A ≥ 0, while other values remain unchanged.

4. Transmission step t ∈ T1 ∩T2: If queue QGR does not hold mapped packets, the inequality
trivially holds, since in this case Φ(t) ≥ |QGR(t)|. Otherwise, by Claim 3.4 the packet at
the head of the queue is a mapped packet. If the packet at the head of the queue is a fully-
mapped packet then after the transmission takes place ∆A = ∆GR = −1 while ∆Φ = 0 and
the inequality holds; Otherwise, by the definition of ML, there are no additional mapped
packets in queue QGR and we are back to the previous case.

5. Transmission step t ∈ T2\T1: If the packet at the head of queue QGR is fully-mapped then
after the transmission takes place ∆GR = −1 while ∆Φ = ∆A = 0 and the inequality holds.
Otherwise, after the transmission there are no mapped packets in the queue and, again, by
the same considerations given in the previous case, the inequality goes on.

This completes the proof of Lemma 3.2.

Corollary 3.6 Let ML : σA−GRβ → GRβ(σ2) be the local mapping defined in Lemma 3.2. Then we
can construct a weight function w : GRβ(σ2) → R

+ such that the following properties hold:

1.
∑

p∈σ
A−GRβ v(p) ≤

∑
p∈GRβ(σ2) w(p).

2. w(p) ≤ 2β · v(p), for every packet p ∈ GRβ(σ2)\A(σ1).

3. w(p) ≤ β · v(p), for every packet p ∈ GRβ(σ2) ∩ A(σ1).

Proof: Directly from Lemma 3.2 by defining w(p) =
∑

q∈ML
−1(p) v(q).

Step 2: Handling lost packets in input queues. Note that algorithm SG can lose packets by
one of two ways. Packets can be discarded at the input queues, and packets stored in the output
queues can be preempted in favor of higher value packets. In the following we show how to handle
both incidents. Ideally, we would like to apply the weight function construction from Corollary 3.6
to each input queue separately to account for preempted packets. However, the condition specified
in Lemma 3.2, that is needed for the construction of the local mapping ML, is not met; We have
no guarantee that T1 ⊆ T2, namely that SG transmits from each input queue whenever Opt does.
As we shall see this obstacle can be overcome with some extra cost.

To fix the problem described in the previous paragraph we first rectify the definition of ML.
Looking closer into case 4 in the proof of Claim 3.5, it should be obvious that in order to maintain
the invariant inequality defined in the proof of Claim 3.5, it is sufficient to remove a single mapping
from one of the mapped packets in the queue whenever Opt transmits a packet from the queue
while SG does not and the queue contains mapped packets. With that in mind, we handle such
instances by releasing ML mappings and moving them to a set of dummy packets (see figure 5).
As a result, our ML mapping for the input queues is now valid (although not all lost packets are
accounted for). We define the corresponding weight function according to Corollary 3.6, denoted by

8

w1
σ(·), in order to cover the total value lost by SG compared to Opt at the input queues, excluding

the value of the dummy packets. However, we just shifted the problem further. For the analysis to
work, we need to prove that the value of the dummy packets can be absorbed in the system, i.e. it
can be assigned to real packets. This will be done shortly.

Creating dummy packets

1. For scheduling round ts define:

S(ts) = {(i, j) : V Oij contains a mapped packet}

S1(ts) = {(i, j) ∈ S(ts) : (i, j) ∈ MOpt(ts) ∧ (i, j) ∈ GSG(ts)\M
SG(ts)}

S2(ts) = {(i, j) ∈ S(ts) : (i, j) ∈ MOpt(ts) ∧ (i, j) 6∈ GSG(ts)}

2. For each (i, j) ∈ S1(ts) ∪ S2(ts) do:

(a) Let p be the mapped packet closest to the tail in input queue V Oij at time ts, and
let q ∈ ML

−1(p).

(b) Create dummy packet dij(ts) such that v(dij(ts)) = v(q).

(c) Set ML(q) = ∅.

Figure 5: Creating dummy packets.

Step 3: Handling lost packets in output queues. We define the modifications in the weight
function w1

σ(·), in case of packet preemption at the output queues. Let packet p preempt packet q
at an output queue. We modify w1

σ(p) = w1
σ(p) + w1

σ(q) + v(q), in order to account for the value of
packet q and the weight already assigned to it. We therefore cover all preempted packets at output
queues.

Step 4: Covering dummy packets. In order to complete the definition of the weight function,
we should handle the dummy packet created at step 3. The first stage is to account for all dummy
packets dij(ts) ∈ S1(ts). From now on these dummy packets will be referred to as dummy packets
of the first kind, while dummy packets created due to S2(ts) will be referred to as dummy packets
of the second kind. Recall that S1(ts) ⊆ GSG(ts), and that S1(ts) forms a matching whose value is
lower than the value of the maximum weighted matching MSG(ts). We modify the weight function
w1

σ(·) as follows. Let p ∈ MSG(ts) be a packet scheduled by SG at time step ts. We modify
w1

σ(p) = w1
σ(p) + v(p). We thus absorbed the value of dummy packets of the first kind. Therefore,

we may continue the analysis while ignoring these dummy packets.

We are now left only with the dummy packets of the second kind, i.e. packets of the form
dij(ts) ∈ S2(ts). Denote by σj the sequence of packets scheduled by SG to output queue j through-

out the operation of the algorithm. Further denote by σdummy
j = ∪ts:(i,j)∈S2(ts) dij(ts) all the

dummy packets of the second kind that are destined to output queue Oj . Now recall that for
every scheduling round ts, S2(ts) ∩ GSG(ts) = ∅. By the definition of algorithm SG this means
that v(h(V Oij(ts))) ≤ β · min(Oj(ts)). By Claim 3.4 it follows that v(dij(ts)) ≤ β · min(Oj(ts)).
Therefore, dummy packet dij(ts) would have been rejected from queue Oj had it been sent to it.

9

We can now apply the local mapping construction ML from Lemma 3.2 to queue Oj with arrival

sequence σj ∪ σdummy
j in order to map all dummy packets in σdummy

j to real packets in the output
queue Oj . Looking closer into the definition of the local mapping ML (case 2), this can be done
while mapping each real packet in the output queue at most once. Using Corollary 3.6 we define
the corresponding weight function, denoted w2

σ(·). Since we have now accounted for all dummy
packets of the second kind, we may consider them as absorbed in the system and ignore them.

Defining the global weight function - recap and conclusion. We now define our global
weight function by wσ(p) = w1

σ(p) + w2
σ(p), for every packet p ∈ SG(σ). Figure 6 summarizes the

construction of the weight functions we used.

Weight function wσ : SG(σ) → R
+

1. Apply mapping scheme ML to each input queue. Add dummy packets to ensure proper
definition of ML. Denote the corresponding weight function w1

σ(·).

2. Whenever packet p preempts packet q at an output queue, modify w1
σ(p) = w1

σ(p) +
w1

σ(q) + v(q).

3. Map the value of dummy packets of the first kind created at time ts to real packets
scheduled at that time. Modify w1

σ(·) accordingly.

4. Use mapping scheme ML to map dummy packets of the second kind to real packets in
output queues. Denote the corresponding weight function w2

σ(·).

5. Define wσ(p) = w1
σ(p) + w2

σ(p).

Figure 6: Construction of the global weight function wσ - summary.

So far we have shown how to account for the total value of lost packets through the use of the
weight function. To complete the proof of Theorem 3.1, it remains to bound the weight assigned
to each packet.

Claim 3.7 By setting β = 3, the following holds:

1. V (Opt(σ)\SG(σ)) ≤
∑

p∈SG(σ) wσ(p).

2. wσ(p) ≤ 8 · v(p), for each packet p ∈ SG(σ)\Opt(σ).

3. wσ(p) ≤ 7 · v(p), for each packet p ∈ SG(σ) ∩ Opt(σ).

Proof: The first part follows directly from the construction of the weight function. For the second
part, consider any packet p ∈ SG(σ)\Opt(σ). Clearly, according to our construction, w1

σ(p) ≤ 3·v(p)
before packet p reaches its destined output queue (a weight of at most 2v(p) can be assigned to
packet p while it resides in the input queue, and an additional weight of v(p) to account for dummy
packets of the first kind when it is scheduled to be transferred to the output queue). If p preempts
a packet q once it arrives at the output queue, then w1

σ(p) increases by w1
σ(q) + v(q) (note that in

this case v(p) > β · v(q)). Denote c = maxq∈SG(σ)\Opt(σ) w1
σ(q)/v(q). In order to bound c we require

10

that 3 + c+1
β

≤ c. In addition, while packet p resides in the output queue, w2
σ(p) ≤ β · v(p), since it

can be assigned with the value of a single dummy packet of the second kind, which is bounded by
β · v(p). Therefore, wσ(p) = w1

σ(p) + w2
σ(p) ≤ (c + β)v(p), for every packet p ∈ SG(σ)\Opt(σ). We

arrive at the following minimization problem:

min c + β

s.t. 3 +
c + 1

β
≤ c. (*)

Optimizing over β, we conclude that the optimum is obtained for β = 3, c = 5, and wσ(p) ≤
8 · v(p).

For the third part, note that for a packet p ∈ SG(σ) ∩ Opt(σ), w1
σ(p) ≤ v(p) while it resides in

the input queue (rather than 2v(p) in the previous case), therefore wσ(p) ≤ 7 · v(p), using the same
analysis.

We conclude that:

V (Opt(σ)) = V (Opt(σ) ∩ SG(σ)) + V (Opt(σ)\(SG(σ)))

≤ V (Opt(σ) ∩ SG(σ)) +
∑

p∈SG(σ)

wσ(p)

≤ V (Opt(σ) ∩ SG(σ))

+ 7 · V (Opt(σ) ∩ SG(σ)) + 8 · V (SG(σ)\Opt(σ))

= 8 · V (SG(σ)).

This completes the proof of Theorem 3.1.

4 Concluding remarks

• Recall that our proposed algorithm, SG, computes a maximum weighted matching in a bipar-
tite graph during each scheduling round. In many real-world systems, especially distributed
ones, computing a maximal weighted matching, by greedily adding the largest possible edge
at each step, is substantially faster. We note that if we use a maximal weighted matching in
each scheduling round in SG, our analysis will almost remain the same. Specifically, our con-
structed weight function w1

σ(·) will slightly change as follows. During each scheduling round,
a weight of at most 2v(p) can be charged to a packet p (rather than v(p) in the original
construction) to account for dummy packets of the first kind. As a result, the constraint (*)
in the minimization problem in the proof of Claim 3.7 will be changed to 4 + c+1

β
≤ c. We

still obtain a constant-competitive algorithm with a slightly worse ratio of 9.48.

• Another variation of the model we consider is the less-restrictive model of CIOQ switches
with priority queues, rather than FIFO queues. Note that the value of the optimal solution
remains the same in this relaxed model. Therefore, a constant-competitive upper bound for
the priority queuing model can be directly derived from our result, by an algorithm that
simulates ours, and can only outperform it.

11

References

[1] W. A. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosén. Competitive queue policies for
differentiated services. In Proceedings of the IEEE INFOCOM 2000, pages 431–440.

[2] S. Albers and M. Schmidt. On the performance of greedy algorithms in packet buffering. In
Proc. 36th ACM Symp. on Theory of Computing, pages 35–44, 2004.

[3] N. Andelman, Y. Mansour, and A. Zhu. Competitive queueing policies for QoS switches. In
Proc. 14th ACM-SIAM Symp. on Discrete Algorithms, pages 761–770, 2003.

[4] M. Andrews, B. Awerbuch, A. Fernández, J. Kleinberg, T. Leighton, and Z. Liu. Universal
stability results for greedy contention-resolution protocols. In Proc. 37th IEEE Symp. on
Found. of Comp. Science, pages 380–389, 1996.

[5] Y. Azar and A. Litichevskey. Maximizing throughput in multi-queue switches. In Proc. 12th
Annual European Symposium on Algorithms, pages 53–64, 2004.

[6] Y. Azar and Y. Richter. Management of multi-queue switches in QoS networks. In Proc. 35th
ACM Symp. on Theory of Computing, pages 82–89, 2003.

[7] Y. Azar and Y. Richter. The zero-one principle for switching networks. In Proc. 36th ACM
Symp. on Theory of Computing, pages 64–71, 2004.

[8] N. Bansal, L. Fleischer, T. Kimbrel, M. Mahdian, B. Schieber, and M. Sviridenko. Further
improvements in competitive guarantees for QoS buffering. In Proc. 31st International Collo-
quium on Automata, Languages, and Programming, pages 196–207, 2004.

[9] A. Birman, H. R. Gail, S. L. Hantler, Z. Rosberg, and M. Sidi. An optimal service policy
for buffer systems. Journal of the Association Computing Machinery (JACM), 42(3):641–657,
1995.

[10] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. Williamson. Adversarial queuing
theory. In Proc. 28th ACM Symp. on Theory of Computing, pages 376–385, 1996.

[11] E. L. Hahne, A. Kesselman, and Y. Mansour. Competitive buffer management for shared-
memory switches. In Proceedings of the 13th Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 53–58, 2001.

[12] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, and M. Sviridenko. Buffer
overflow management in QoS switches. In Proc. 33rd ACM Symp. on Theory of Computing,
pages 520–529, 2001.

[13] A. Kesselman and Y. Mansour. Loss-bounded analysis for differentiated services. In Proc.
12th ACM-SIAM Symp. on Discrete Algorithms, pages 591–600, 2001.

[14] A. Kesselman, Y. Mansour, and R. van Stee. Improved competitive guarantees for QoS buffer-
ing. In Proc. 11th Annual European Symposium on Algorithms, pages 361–372, 2003.

[15] A. Kesselman and A. Rosén. Scheduling policies for CIOQ switches. In Proceedings of the
15th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 353–362, 2003.

12

[16] Z. Lotker and B. Patt-Shamir. Nearly optimal fifo buffer management for diffserv. In Proc.
21st ACM Symp. on Principles of Distrib. Computing, pages 134–143, 2002.

[17] M. May, J. C. Bolot, A. Jean-Marie, and C. Diot. Simple performance models of differentiated
services for the internet. In Proceedings of the IEEE INFOCOM 1999, pages 1385–1394.

13

