Routing Strategies for Fast Networks *

Yossi Azar T Joseph (Seffi) Naor * Raphael Rom *

Abstract

Modern fast packet switching networks forced to rethink the routing schemes
that are used in more traditional networks. The reexamination is necessitated
because in these fast networks switches on the message’s route can afford to
make only minimal and simple operation. For example, examining a table of a
size proportional to the network size is out of the question.

In this paper we examine routing strategies for such networks based on
flooding and predefined routes. Our concern is to get both efficient routing and
an even (balanced) use of network resources. We present efficient algorithms
for assigning weights to edges in a controlled flooding scheme but show that
the flooding scheme is not likely to yield a balanced use of the resources. We
then present efficient algorithms for choosing routes along: (i) bfs trees; and (ii)
shortest paths. We show that in both cases a balanced use of network resources
can be guaranteed.
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1 Introduction

Traditional computer networks were designed on the premise of fast processing capa-
bility and relatively slow communications channels. This manifested itself by burden-
ing network nodes with frequent network management decisions such as flow control
and routing [1, 2, 3]. In a typical packet-switching network the routing decision at
every node is based on the packet’s destination and on routing information stored
locally. This routing information may become quite voluminous, increasing the per-
packet processing time.

Changes in technology, applications, and network sizes have forced to rethink
these strategies. Modern fast packet switching networks [4, 5] relegate most of the
routing computation to the end-nodes leaving all but the minimal computation to the
intermediate nodes once the packet is on its way. This paper considers and compares
several routing strategies for such fast networks. We assume that links are of high
capacity so that message length is of no great concern. Computation capability in
intermediate nodes is assumed limited so that all decisions made enroute should be
simple and could not rely, for example, on generating random numbers or on tables
that grow with the size of the network.

The first to encounter similar problems were the designers of parallel computers.
Their solution, in the form of an interconnection network, typically derives the route
directly from the destination address [6]. This approach, however, is limited to specific
types of network topology and a structured layout which cannot be assumed for a
general network. Furthermore, deriving the route from the address in general conflicts
with alternate routing approach.

Flow-based techniques, used in many existing networks [7, 8], are also inadequate
for our environment. These routing strategies are destination based (typically require
a table entry per destination) but more importantly, result in bifurcated routing
necessitating intermediate nodes to generate random numbers.

Two strategies are considered in this paper — controlled flooding and fixed routing.
Flooding is a routing strategy that guarantees fast arrivals with minimal enroute
computation at the expense of excessive bandwidth use. The scheme we use here,
first proposed in [9], limits the extent to which a message is flooded through the
network. Essentially, each link is assigned a weight (also known as its cost) and every
message carries with it a wealth. A message arriving at an intermediate node will
be duplicated and forwarded along all outgoing links (except the one it came from)
whose cost is lower than the message wealth. The cost of the link is then deducted
from the message wealth. The problem is to assign the link costs so as to achieve
best performance. In [9] it is shown that for such a scheme to be optimal the shortest
path between every pair of nodes (based on link costs) must be unique. We show
two methods of computing optimal weights that are drawn from a polynomial range
(as opposed to the exponential range proposed in [9]). However, we do show that
the assignment does not result in a routing scheme that uses network resources in a
balanced way.



In the fixed routing scheme the route of the message is determined at the source
node and is included in the message. No further routing decision are done enroute.
The problem is therefore to find a set of routes, one for each pair of nodes, such that
all the network’s links will be used in a balanced manner. We propose two methods to
achieve this. In the first one, we force the messages to be routed along a (topological)
breadth first search tree. The problem can be formulated as finding a set of rooted
BFS trees such that the maximum load on a link is minimized (messages are routed
along the tree toward the root as a destination). Notice that no link in the network
remains unused. We provide polynomial algorithms to generate such a set of balanced
routes.

In the second method, routing is done along paths that do not necessarily form
trees. One of the shortest paths between every pair of nodes is designated as the path
along which these two nodes exchange messages. We prove that a set of paths can
be chosen that yields a balanced load. We define the notion of a balanced load with
respect to randomized choices of paths, i.e., every pair chooses uniformly in random
one of the shortest paths connecting them. We first show that with high probability
the load on every edge will be close to its expected value. We then show how to
construct deterministically in polynomial time such a set of balanced paths via the
method of conditional probabilities.

2 Assigning Weights for Controlled Flooding

In this section we focus on the controlled flooding scheme and address the problem
of assigning weights to the links.

Since the controlled flooding scheme is a derivative of a flooding algorithm, it is
impossible to assure that a message always arrives only at the nodes it is intended to.
In particular, when used for point-to-point routing it is evident that more nodes than
necessary might receive a message. Clearly, different weight assignments may change
the pattern of flooding. Thus, to find an optimal assignment a figure of merit is
defined which is proportional to the (average) number of nodes that will receive every
message. An optimal weight assignment is one that minimizes the figure of merit. To
formalize our discussion let the network be represented by the graph G(V, F) with
V| = n and |E| = m, let the length of a path in the network be defined as the sum
of the weights of the edges of the path, and let the shortest path between two nodes
be the path with minimal length. Then, it is shown in [9] that for an assignment to
be optimal, the following requirements (referred to as optimality requirements) must
hold for every vertex (node) r:

e For every vertex v € V., the shortest path from r to v is unique.

e For any two vertices u,v € V, the length of the shortest path from r to u is
different from the length of the shortest path from r to v.



Assignments that satisfy the above requirements are called good. An assignment
is good with respect to r if all shortest paths from r satisty the above requirements.
Let us assume without loss of generality that the weights assigned are all positive
integers.

Let [1...R] denote the range of numbers from which weights are drawn and let
n denote the number of nodes in the network. If R = 2/¥1 it is easy to find a good
assignment. For example, assigning 2' as the weight of edge e; assures that any two
different paths will have different lengths. However, because the length of the path
is carried by every message it is desirable to reduce R as much as possible.

We present two methods for constructing good assignments such that R is poly-
nomial in n. In the first method the communication is restricted to a spanning tree
T of the graph. This is done by assigning infinite weight to edges that are not in the
tree. Denoting the tree edges by ey,...€; ..., the algorithm is recursively defined as
follows. Let v; be a leaf of T, let u; be its neighbor in the tree, and let ¢; be the edge
connecting u; and v;.

1. Compute (recursively) a good assignment for the tree T' — v.

2. Extend the good assignment from 7' — v; to T

We assume inductively that a good assignment was computed in Step 1. Step 2
can be implemented by checking all the values in the range 1... R and finding one
that satisfies the requirements for a good assignment. Obviously, a good value for ¢,
exists if R is large enough. The next lemma bounds the value of R.

Lemma 2.1 If R > n?, then there exisls a good assignment.

Proof: Since a good assignment was computed for T — v; at Step 1, any value
assigned to e; will complete a good assignment with respect to v;. The number of
distinct values that e; cannot assume is at most (n — 1)(n — 2): for each vertex
r € T — vy, the distance from r to v; should be different from the distance from r to
any other vertex, and thus, there can be at most n — 2 forbidden values (with respect
to r), and the claim follows. O

The complexity of the algorithm is O(n?) since each step can be implemented in
O(n?) time. For each vertex v; € V, a table of all its distances to the other vertices
is maintained and for each node all the forbidden values in the range [1...n?*] are
marked. One of the unmarked numbers is chosen arbitrarily for ;. Then, the tables
of all other nodes are updated.

The above assignment, being tree based, makes no use of many of the network
links. The second assignment, which we present next, has the property that the whole
network participates in the communication. We present two algorithms; the first is
a randomized one that lends itself to distributed computation because the weight for
each edge is chosen independently of the other edges. This algorithm generates a
good assignment with high probability. The second algorithm is deterministic, and
the weights are chosen from a smaller range than in the randomized algorithm.



Our main tool in the randomized case is the Isolating Lemma of Mulmuley, Vazi-
rani and Vazirani [10]. A set system (5, F') consists of a finite set S of elements,
S ={wx1,...,2,}, and a family F' of subsets of S, F' = {51,...,5}. Let a weight w;
be assigned to each element of S. The weight of a subset is defined to be the sum of
the weights of its elements.

Lemma 2.2 (Isolating Lemma) Let R > n and let (S, F') be a set system whose
elements are assigned integer weights chosen uniformly and independently from the

range [1...R]. Then,

Prob[There is a unigue minimum (mazxzimum) weitght set in F] > 1 — —

R

(Note: the lemma in its original form in [10] was proven for R = 2n but actually

holds for all R > n). a

We start by proving that the following randomized process will generate a good
assignment with high probability. Let a weight for each edge be chosen randomly and
uniformly from the range[l ... R].

Lemma 2.3 For R > n® the probability thalt an assignment is good is al least %

Proof: Let A;; be the event the shortest path between nodes v; and v; is not unique.
Then A = U, ;A;; is the event indicating the existence of at least one pair of nodes
with non-unique shortest path between them. For each pair of nodes v; and v; let
the set system [’ be the set of all paths connecting them. From the isolating lemma
we have that the shortest path between them will be unique with probability at least
1 — %, or, Prob[A;;] < %&. Hence, Prob[A] < 37, Prob[A;;] < (”) -

2 R

Let B;;, represent the event that nodes v;, v;, and v form a bad triplet, namely
that the length of the shortest path between v; and v equals that between v; and vy.
B = U, B;ji then represents the existence of at least one bad triplet in the network.

In a way similar to the above we get Prob[B] < (g) .

Finally, AU B is the event indicating that the requirements are not met, and thus

_mn(n - 1) _mn(n —1)(n—2)
2R 6R '

Since m < n?, for R > n®, the right handside exceeds % a

Problgood assignment] > 1—Prob[A]—Prob[B] > 1

The last lemma provides us with a randomized distributed algorithm for con-
structing a good assignment. The probability of failure can be made arbitrarily small
by increasing the value of R.

Notice that this method does not ensure that every edge participates in at least
one shortest path. This can be fixed by forcing the weight assignment so that the
BFS tree resulting from the weight assignment is also a BFS tree in the underlying
graph without weights. This can be done in the following way. Assign weights to the
edges according to any of the above described algorithms and then add the value n- R
to each weight. Now every edge takes part in at least one shortest path.

4



Next we show how a good assignment can be constructed deterministically. One
way would be to derandomize the above randomized process. Notice that the proof
of Lemma 2.1 actually implies that every partial assignment that does not violate the
optimality requirements can be completed to a good assignment. We can thus assign
weights to the edges one-by-one ensuring at every step that none of the requirements
is violated.

A better way of doing this is by the following algorithm that constructs a good
assignment with R = n® (compared with n°). Initially, every edge e; is assigned
weight n* - 2°. The weights of the edges are then changed one-by-one to fit into the
range [1...R] while maintaining the goodness of the assignment. At each step, the
weight of the heaviest edge is changed.

Lemma 2.4 If R > n®, a good assignment can be constructed.

Proof:  The invariant which is maintained at the end of each step is that the
assignment remains good. This is true initially. Let w; be the new weight assigned
to edge e; at step ¢, where ¢; connects vertices  and y. We prove that w; can be
fitted into the range [1... R] by bounding the number of forbidden values for w; and
showing that at least one permitted number exists. Let [,, denote the value of the
shortest distance between vertex u and vertex v when edge e; is removed from the
graph (l,, might be infinite).

To maintain goodness we must accommodate both optimality requirement. We
first show how to maintain the uniqueness of the shortest path between every pair
of vertices. Let r and v be a pair of vertices, and assume without loss of generality
that [, < l,,. (They cannot be equal by the invariant). Let e; be the edge of largest
weight. If the removal of edge e; from the graph leaves vertices r and v in different
connected components, then any value can be chosen for w; with respect to r and v.
Assume this is not the case. Since edge e; had the largest weight in the graph (i.e.,
n. Zi), the shortest path from r to v cannot contain edge e; and [, is the value of
the shortest distance from r to v. Hence, to maintain the uniqueness of the shortest
path requirement, it is enough that

ZTU 7£ ZML’ + w; + lyv-

(Notice that the shortest path will remain unique even if it contains edge e;, because
of the uniqueness of the shortest paths from r to « and from y to v). This condition
generates at most n — 1 forbidden values for w; with respect to every vertex r in the
graph, or n(n — 1) forbidden values altogether.

Let us now show how the second requirement of optimality is maintained. Let r,
u and v be a triplet of vertices. Again, notice that if the removal of edge e; from the
graph leaves vertex r in one connected component, and vertices u and v in a different
connected component, then any value can be chosen for w; with respect to r, v and
v. The same holds if the removal of ¢; leaves y separated from r, u, and v. Assume
this is not the case. It follows from the above discussion that the shortest distance
from r to u is either [, or [, + w; +[,,. Similarly, the shortest distance from r to v
is either [,,,, or [, + w; + ly,.



By the invariant,

ZTU 7£ Zru and lrx + w; + lyu 7£ ZML’ + w; + lyv-

Hence, to maintain the second requirement of optimality, it is enough that

ZTU 7£ ZML’ + w; + lyu

and

Zru 7£ ZML’ + w; + lyv-
These two conditions add at most 2 - (”;1) forbidden values for w; with respect to

every vertex r in the graph, for a total of 2n - (”;1)

Altogether, the number of forbidden values for w; is n(n — 1)(n + 1) < n?, and
the lemma follows. O

Note that the initial assignment (¢; = n'-2') is chosen to ensure that every edge
is treated exactly once, and when it is treated it does not participate in any shortest
path unless it is a bridge.

*m) since each step can be implemented in

The complexity of the algorithm is O(n
O(n?) time. Every vertex v; € V maintains a table with all its shortest distances to
the other vertices; it then marks all the forbidden values in the range [1...n*]. One
of the unmarked numbers is chosen arbitrarily for e;. Then, the tables of all other

vertices are updated.

The reason why the range can be made smaller in the deterministic case is that
it is enough to ensure at each step that there is one good value, whereas in the
randomized case, one has to ensure success with high probability.

A desirable property of a routing scheme is having the traffic be evenly distributed
among the edges. Unfortunately, this is the drawback of routing with random weights.
The following example shows that with high probability this scheme does not yield a
balanced load.

Let the load on an edge be defined as the number of shortest paths that contain
it, and consider a graph made of two cliques of size k that are interconnected by two
edges, e; and e3. The weight for each edge is chosen uniformly and independently
from the range [1... R]. In each clique, the distribution of the weights is uniform
and thus, if the weights of e; and ey are not close to one another, most of the traffic
between the two cliques would go through the edge with smaller weight. Since this
event will happen with high probability, the communication would not be balanced
with high probability. The next section dwells on routing via trees in a way that will
allow us to optimally balance the load.

3 Routing Along Trees

In this section we consider our second option of routing namely, routing along BFS
trees. Routing along trees can be viewed in two ways: (1) the tree rooted at a node



specifies the routes used by the root when acting as a source of messages, or (2) the
tree rooted at the node specifies the routes used by the other nodes with the root
serving as the destination. From a design standpoint these are identical and in both
we strive to balance the load on the links as much as possible.

As before we consider the network as a graph G = (V, E) with |[V| = n and
|E| = m. In addition we single out a vertex r called the root. The graph is divided
into layers relative to root r by conducting a breadth-first search on G from r (i.e.,
we construct a tree of the shortest paths from r to all the other nodes in the graph).
In this division, layer z, 0 <7 < n — 1, contains all the vertices whose distance from r
is 2. The corresponding resultant tree is denoted T,. Note that for a given GG and r,
the layers are defined uniquely but the BF'S tree is not. Also note that given a BFS
tree, the edges of the original graph connect vertices only from adjacent layers or in
the same layer.

Let v € V be some vertex in layer ¢ (for some 1 < ¢ < n —1). Define d as the
number of neighbors of v at layer ¢ — 1 in graph G rooted at r; by convention d = 0.
The following proposition establishes relations which we shall use later on.

Proposition 3.1 For any graph G

1. The number of different BFS trees from root r is [1,eq_, d,,

v

2. Foranyr, 3 cvd, <m
Proof:

1. All the BFS trees can be constructed by having each vertex v € G — r choose
independently a parent out of its neighbors in the previous layer, and each such
construction corresponds to a legal and different BF'S tree rooted at r. Hence
the claim follows.

2. Each edge contributes unity to the sum if its two endpoint vertices are not in the
same layer, and zero otherwise. Thus, this sum is exactly equal to the number
of edges connecting vertices of different (and therefore adjacent) layers.

3.1 Homogeneous Sources

In this section we assume that each node sends (or receives) the same amount of data
to every other node, and our aim, as we indicated, is to use the resources evenly. To
that end we define the load on an edge as follows. Assume that for every vertex r
in the graph we are given a single BFS tree rooted at that vertex (thus determining
node’s r routing). The load on an edge is defined (relative to this set of trees) as



the number of trees which contain this edge. Formally, we are given a set {T,},cv
containing a single 7). for every r € V' and we define the load as

le)=|{r e Ve e T.}].

Note that {(e) < n and } ..y l(e) = n(n — 1), since there are n BFS trees with n — 1
edges in each and each edge in a BFS tree contributes a unity to the sum. The
capacity of an edge e, denoted ¢(e), is defined as the maximum number of BFS trees
that may contain it.

Our goal is to choose a set {T,},cv such that the maximum load of the edges is
minimized. We do this by solving a more general problem in which edges have limited
capacities that are not necessarily equal. Assume that we are given the edge capacity
c(e) for each edge e € E. We are seeking a feasible solution that is, a set {7, },ecv
such that [(e) < ¢(e) for all e. A solution for the capacitated problem can be easily
used to solve the problem of minimizing the maximum load (in the uncapacitated
problem). We just let ¢(e) = ¢ for all e and perform a binary search on 1 < ¢ < n,
thereby increasing the complexity by a factor of log n.

In order to solve the capacitated problem we define the following bipartite graph
H = (AU B, F). Side A consists of n(n — 1) vertices denoted by pairs (r,v) for all
v,r € V, v # r (this pair will subsequently be interpreted as a root r and some vertex
vin (). Side B consists of m vertices, each corresponding to (and denoted by) an
edge e for all e € K. Each vertex (r,v) € A is connected to a vertex e € B iff 3T,
(i.e., a tree rooted at r) in which e € F connects v to a vertex from the previous level.

Note that the degree of vertex (r,v) is d/ as per the definition of d). Also, from
proposition 3.1 |F| =3, . d), <3, m =nm.

The key observation is that in order to solve our problem we need to find n(n —1)
edges in the graph H such that the degree of each vertex in A is exactly 1 (matching),
and the degree of vertex e € B is at most ¢(e). These edges define the n BFS trees
in G. Specifically, the edges of T, are the vertices in B which are adjacent to the
vertices (r,v) for all v € G — r. We present two algorithms for finding these trees.

Algorithm 1. Each vertex e € B with all its incident edges is duplicated ¢(e)
times, generating an “exploded” graph. Now, it is clear that solving the problem
is equivalent to finding a perfect matching for side A into side B. The number of
vertices in the exploded graph is n(n — 1) + 3, ¢(e) < n* + mn and the number of
edges is at most n|F| < n?m. The complexity of computing a maximum matching in

a bipartite graph is O(|E|\/|V|) = O(m3/?n%/%) [11].
The latter complexity can be improved by the next algorithm.

Algorithm 2. Add to the graph H = (AU B, F) a source node s and sink t.
Add directed edges from s to all the vertices in A, each with capacity 1, and directed
edges from each vertex e € B to t, each with capacity ¢(e). Finally, direct all the

edges from A to B and assign each the capacity 1 (any capacity greater than 1 will
also do).

Consider an integer flow problem with source s and destination ¢ obeying the



specified capacities. It is clear that any such legal flow starts with some edges from s
to A with flow 1. Then, each vertex in A that has an incoming edge with one unit of
flow also has one outgoing edge with one unit flow to a vertex in B. Finally, all the
flow reaching B continues to . Thus we conclude that there is a feasible solution to
our problem iff the maximum flow between s and ¢ is exactly n(n — 1).

We will use Dinic’s algorithm for finding the max-flow [12]. A careful analysis
of the algorithm for our case yields a better complexity than more recent max-flow
algorithms that perform better on general graphs. We first give a short review of
Dinic’s algorithm. The algorithm has O(|V]) phases; at each phase only augmenting
paths of length ¢, 1 < ¢ < |V], are considered. The invariant maintained at phase i
is that there are no augmenting paths of length less than . The complexity of each
phase is O(|E||V]) in general graphs and O(|E]) in 0-1 networks.

We first convert our graph into a 0-1 network. FEach edge of capacity ¢(e) is
duplicated into ¢(e) unity capacity edges which yields a 0-1 network. Since ¢(e) < n
for every edge e, the total number of new edges is at most nm and thus the number
of edges remains O(nm). As mentioned before, the complexity of Dinic‘s algorithm
for 0-1 network is O(| F||V|) which in our case becomes

O([n* 4+ m][n® + mn + mn]) = O(n® - mn) = O(mn?)

In fact, the running time can be reduced to O(mn?). Let the residual graph be
defined as the graph (obtained from a given flow) that consists of all edges with
positive residual capacities, where the residual capacity of edge (u,v) represents the
maximum additional flow that can be sent using edges (v, v) and (v, u). In our graph,
there are no edges between vertices in A and also none between verticesin B, and there
will not be such in any of the residual graphs. In fact, the residual graph will always
start with s, end with t, have only vertices of A in the other even numbered layers and
only vertices of B in the other odd-numbered layers. Moreover, the vertices of A will
always have, in any residual graph, at most one incoming edge. Let us run the first
n — 1 phases of Dinic’s algorithm (where each phase takes time O(|F|) = O(nm)).
In phase n there will be at least n layers of A (unless we have already finished), one
of them having at most n(n — 1)/n = n — 1 vertices. The incoming edges into this
layer of A define a cut separating s from ¢ whose capacity is at most n — 1. Thus,
Dinic’s algorithm will terminate after at most additional n — 1 phases, which gives
the desired time bound.

3.2 Heterogeneous Sources

The situation at hand in this section is similar to that of the previous subsection
except that we no longer assume homogeneous traffic but rather that each node
generates a different amount of traffic. Translated into our model, this results in a
problem with weighted trees. Formally, let the relative traffic intensity associated
with node r be w(r) (assumed to be an integer). This means that the tree associated
with r (where r is the root) has a weight of w(r) and we seek a set of BFS trees



{T},},ev with load I(e) < ¢(e) for all e, where the load [(e) is defined in the natural
way, 1.e.,

I(e) = {Zw(r)|e € TT}

r

The Capacitated Problem of the previous subsection is the special case of our
problem with w(r) = 1 for all r € V. While the Capacitated Problem in the ho-
mogeneous case has an efficient solution, we prove that in the heterogeneous case
this problem is NP-complete (it is clear that the problem belongs to class NP). We
base our proof on a reduction from the “knapsack” problem which is known to be
NP-complete [13], defined as follows.

The Knapsack Problem: Given are integers xy...z, and s. Are there «; €
{0,1}, 1 < ¢ <n, such that 3 ayz; = 87

The Reduction: Consider a graph whose vertices are vy, ... v,, us, uz, t. Connect
v; tou; for 1 <1 < n,j =12 and connect u; and uy to . Let the weight of the
sources be w(v;) = a; for all 7, w(uy) = w(uy) = w(t) = 0. Finally, let the capacities
of the edges be c(ust) = s, ¢(ust) = 3 ; x; — s, and infinite (or big enough) for all the
rest. It is clear that each BFS tree from v;, 1 < ¢ < n, contains exactly one of the
edges uqt or ust. Since c¢(uqt) + e(ugt) = 3, x;, there is a solution iff there is a subset
of the integers z; that sums up to s.

Note that it is possible to eliminate the zero weights (and have the proof still
hold) by assigning w(uq) = w(uz) = w(t) = 1 and also adding 2 to the capacities of
the edges uit and wuqt.

3.3 Randomized Capacity Bounds

In this section we develop upper bounds on the capacities that are needed for the
edges in the Capacitated Problem of the homogeneous case (section 3.1) in order
to achieve “good” load balancing. Our reference is a random tree routing scheme
in which every node, whenever it needs to send a message, randomly and uniformly
chooses a BFS tree in which it is a root, and routes according to this tree. Intuitively,
such a routing scheme is likely to achieve a good balancing.

We start by calculating P — the probability that an edge e participates in a
randomly and uniformly chosen BFS tree rooted at r. Let 2 be an indicator random
variable indicating whether edge e belongs to the BFS tree rooted at r. By our

lle) =Y al.

reV

definition

Consider an edge e = (x,y). If both « and y are in the same layer (i.e., equidistant
from r), then P/ = 0. Otherwise, they belong to adjacent layers (without loss of

generality let @ be the vertex that is further away from r), and P/ = dir.
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Let I(e) be the expected load of e. Clearly E[z] = P’ and also

=[S ] =T pm-y
reVv reVv reVv
We cannot expect to find a set of BFS trees in which I(e) < I(e) for every edge e (I(e)
is not necessarily an integer for instance). However, we can find a set which is almost
as good. We show that there always exists a set of BFS trees {7, },cv such that the
load on any edge satisfies the following:

I(e) < 7(6) + 2\/7(6) log n.

We will prove the claim via the probabilistic method; one can easily find such a set by
applying the algorithm from section 3.1 as we are guaranteed that a solution exists.

To prove the bound on the load, we show that for each edge e, the probability that
I(e) exceeds the claimed bound is less than ﬁ Hence, there is a positive probability
that the claim holds for all edges in the network. ;From Chernoff’s bounds it can be

shown that for all A > 0,

_ E[e/\l(e)]
< —
Prob[l(e) > (1 + 7)l(e)] < )
and it can be shown [14] that there exists a choice of A such that
A(e -
Ele (_)] < ¢—Ple/2.
e(l-l-’Y)M(e) -

logn

I(e)?

Assigning v = 2 results in

Prob[l(e) > I(e) + 21/I(e)logn] < % < L

n 2m

which finally yields

Prob[Ve, () < I(e) + 21/1(e) log n] >

By choosing other values for 4 such as v = ky/logn/I(e), it can be shown that

[N

[[(e) = I(e)] < O(/I(e)logn)

is fulfilled almost surely for all edges e € F.

4 Routing Along Shortest Paths

In this section we consider a different option of routing namely, routing along paths
that do not necessarily form trees. One of the shortest paths between every pair of
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nodes is designated as the path along which these two nodes exchange messages. We
prove that a set of paths can be chosen that yields a balanced load. (Finding an
optimal set of paths is NP-complete by reduction from multi-commodity flow).

The proof we present follows the exact same lines of the proof in section 3.3 and
we adopt the same notation. Again, our reference for a good load balancing is the
random path routing scheme

We first evaluate PX**—the probability that an edge e participates in a randomly
and uniformly chosen shortest path connecting vertices v and v. (We will denote
this event by the indicator variable 2%¥). To compute this probability, we must count
the shortest paths connecting u and v that contain edge e. Let M,(u,v) denote the
number of paths of length p between the vertices u and v. The number of shortest
paths between v and v can be computed in polynomial time by the following recursive
formula. Let the vertices adjacent to u be aq,...,aq and let p be the length of the
shortest path from u to v, then

My (u,v) = Z M,_1(a;,v).

=1

We consider a pair of nodes u and v and an edge e = (x,y) (assume without loss
of generality that vertex x is closer to u than vertex y). Denote by p,, the distance
between the vertices v and v, by p,, the distance between u to x, and by p,, the
distance between v and y. Define p’ = pyy — puz — 1. If py, > p/, then P* = 0;
otherwise,

M

uv Pux
P =

(u, @) - My, (y,v)
M,,, (u,v)

Similar to the derivation in section 3.3 the expected load on an edge ¢ is l(¢) =
Yuwev P2 and thus we cannot expect to find a set of shortest paths in which I(e) <

[(e) for every edge e. However, again, we can find a set which is almost as good,
namely, a set of shortest paths such that the load on any edge satisfies

(e) + 2\/7(6) log n.

An edge whose load does not satisfy the above condition is called an overloaded edge.
If there are no overloaded edges, then the set of paths is called a good set. We will
prove that a good set of paths exists via the probabilistic method and then show how

—~—]

I(e) <

to find such a set of paths deterministically.

Let every pair of vertices choose its path uniformly in random (among the shortest
paths between them). We show that with high probability, the set of paths chosen is
good. The random variable [(¢e) is a sum of (;) indicator variables Y. These variables
are independent because each pair of vertices chooses its path independently of the
other pairs. If we show that the probability that edge e is overloaded is less than %,

then with high probability the claim holds for all edges in the network. As stated in

12



Section 3.3, it can be shown that for all A > 0,
B E[e/\l(e)]
<z
Prob[l(e) > (1 + 7)l(e)] < e
furthermore, there exists a choice of A [14] such that

E[eAl(f)] < Pl
e(1+7)Al(e) —

Similar to Section 3.3, assigning v = 2, /l;é;b, results in

Prob[l(e) > I(e) + 21/I(¢e)logn] < % < L

n 2m
which finally yields

Prob[Ve, () < I(e) + 21/1(e) log n] >

[N

as was claimed.

Having established that there exists a good set of paths we now show how to
find this good set deterministically in polynomial time by the method of conditional
probabilities [15],[16]. This method was introduced by Spencer [15] with the intention
of converting probabilistic proofs of existence of combinatorial structures into efficient
deterministic algorithms for actually constructing these structures. The idea is to
perform a binary search of the sample space associated with the random variables so
as to find a good set. At each step of the binary search, the current sample space
is split into two halves and the conditional probability of obtaining a good set is
computed for each half. The search is then restricted to the half having a higher
conditional probability. The search terminates when only one sample point remains
in the subspace, which must correspond to a good set.

To apply this method to our case for finding a good set of paths, we will consider
the indicator variables one-by-one. In a typical step of the algorithm, the value of
some of the indicator variables has already been set, one variable is currently being
considered, and the rest are chosen in random. (By choosing in random we mean
that for the pair of vertices which is now being considered, the remainder of the
path is chosen uniformly in random.) At each step we will compute the (conditional)
probability of finding a good set if the variable considered is set to 0 and if it is set
to 1.

We denote by P; the probability of finding a bad set of paths after the variable
considered at step j has already been assigned a value and by Pj the probability of
obtaining a bad set of paths by assigning the value ¢, for « = 0,1, to the variable
considered at step j. Initially, it follows from the existence proof that the probability
of choosing a good set of paths is positive; we inductively maintain that P; < 1 for
7 > 1, and hence, either Pjo <1or le < 1.

For the sake of simplicity, assume the following on the order in which the variables
are considered:

13



e For a pair of vertices u and v, for all edges e, the variables x” are considered
consecutively.

e For a pair of vertices u and v, the edges are considered according to their
distance from u. (Ties are broken arbitrarily).

For example, suppose that we are considering the variable 2" where e = (a,b)

and assume that vertex a is closer to u than b. Notice that by assigning a value to

uy

xe?

e The probability P/” may change for edges f for which x%” has not been deter-
mined yet. (These changes in the probabilities can be computed in polynomial
time.)

e The value of %" for other edges f may also be determined, e.g., if 2" = 1, then
for all edges f adjacent to a, %" = 0.

A major stumbling block in applying the method of conditional probabilities is
always the computation of the conditional probabilities. In our case, we do not
compute the exact probability that there exists an overloaded edge (even initially),
but rather only estimate it. Consequently, if the estimator is not chosen judiciously,
it may happen that when a variable is considered, according to the estimator, no
value assigned to it can lead to a good solution. To overcome this difficulty, following
Raghavan [16], the notion of a pessimistic estimator is introduced. We call Pj a
pessimistic estimator of the conditional probability P; if it satisfies the following

conditions:
1. By < 1.

2. For any partial assignment of the first j variables, P; < Pj.

3. min{]ﬁjo, P}l} < pj_l where ]5; is the estimator of Pj for s =0, 1.

4. The pessimistic estimators can be computed in polynomial time.

It is not very hard to see that such a pessimistic estimator can equally well be used
in the method of conditional probabilities instead of the exact conditional probabilities
which are hard to compute in general. We now show that the pessimistic estimator
that we will choose indeed satisfies the above conditions. We have earlier proved that
initially,

_ _ E[eM)]
Prob [the set is bad] < >~ Prob[l(f) > (1 +v,)I(f)] < > )

feE feE €
Notice that Ay and v, depend on the edge f. We define

Py = —_—
P A NI
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The estimator at Step j is defined to be

N E[e/\flj(f)]

P. = = 1
! gﬂ (1IN

where [;(f) is a random variable denoting the load on edge f at the end of Step j.
For example, suppose that [(f) = x1 + T2 + @3 + x4 and at the end of Step j, w3 =0
and x4 = 1. Then, [;(f) =1+ a1 + a3. (I(f), vs and A; retain their original values).

Condition (4) holds since the changes in the probabilities at each step can be
computed in polynomial time as mentioned earlier. (Notice that the random variable
[;(f) is the sum of independent random variables). Condition (2) holds since

P oo S probl] R BT
J—% rob[l;(f) > (14 7¢) (f)]_ém

_p.

Let us show that condition (3) holds as well. Suppose that at Step j 4 1 variable
is being considered. By definition,

ZE Xels(f Puv ZE Aply( )| _ 1]_|_ 1_Puv ZE Xels(f _0]
fekE JEE fEE

uy
€

where the probability of choosing edge e as part of the path from u to v is P (given
the assignments of the previous j steps). Now,

A

) E[eMhD]ze = 1]

o feE (L)1) g ’

E[eMb D)z = (]

po -
eI )If)As

]+1:Z

fEE

Hence,

Py=Pr Pl + (1= F") - Py

and clearly, min{PP_'_l,P]i_l_l} < Pj. The value of z!¥ is set to the value for which

pi

't 11 is minimized, for ¢ = 0, 1.
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