
Routing Strategies for Fast Networks �Yossi Azar y Joseph (Se�) Naor z Raphael Rom xAbstractModern fast packet switching networks forced to rethink the routing schemesthat are used in more traditional networks. The reexamination is necessitatedbecause in these fast networks switches on the message's route can a�ord tomake only minimal and simple operation. For example, examining a table of asize proportional to the network size is out of the question.In this paper we examine routing strategies for such networks based onooding and prede�ned routes. Our concern is to get both e�cient routing andan even (balanced) use of network resources. We present e�cient algorithmsfor assigning weights to edges in a controlled ooding scheme but show thatthe ooding scheme is not likely to yield a balanced use of the resources. Wethen present e�cient algorithms for choosing routes along: (i) bfs trees; and (ii)shortest paths. We show that in both cases a balanced use of network resourcescan be guaranteed.Index terms: routing strategies, controlled ooding, network resources, loadbalancing, shortest paths, bfs trees, conditional probabilities.
�Preliminary version of this paper appeared in the Proceedings of the 11th IEEE INFOCOM,Florence, Italy, (1992), pp. 170-179.yDepartment of Computer Science, Tel-Aviv University, Tel-Aviv, Israel 69978. E-mail:azar@math.tau.ac.ilzComputer Science Department, Technion, Haifa, Israel 32000. E-mail: naor@cs.technion.ac.ilxDepartment of Electrical Engineering, Technion, Haifa, Israel 32000, and Sun Microsystems,Mountain View, CA 94043-1100. E-mail:rom@ee.technion.ac.il

1 IntroductionTraditional computer networks were designed on the premise of fast processing capa-bility and relatively slow communications channels. This manifested itself by burden-ing network nodes with frequent network management decisions such as ow controland routing [1, 2, 3]. In a typical packet-switching network the routing decision atevery node is based on the packet's destination and on routing information storedlocally. This routing information may become quite voluminous, increasing the per-packet processing time.Changes in technology, applications, and network sizes have forced to rethinkthese strategies. Modern fast packet switching networks [4, 5] relegate most of therouting computation to the end-nodes leaving all but the minimal computation to theintermediate nodes once the packet is on its way. This paper considers and comparesseveral routing strategies for such fast networks. We assume that links are of highcapacity so that message length is of no great concern. Computation capability inintermediate nodes is assumed limited so that all decisions made enroute should besimple and could not rely, for example, on generating random numbers or on tablesthat grow with the size of the network.The �rst to encounter similar problems were the designers of parallel computers.Their solution, in the form of an interconnection network, typically derives the routedirectly from the destination address [6]. This approach, however, is limited to speci�ctypes of network topology and a structured layout which cannot be assumed for ageneral network. Furthermore, deriving the route from the address in general conictswith alternate routing approach.Flow-based techniques, used in many existing networks [7, 8], are also inadequatefor our environment. These routing strategies are destination based (typically requirea table entry per destination) but more importantly, result in bifurcated routingnecessitating intermediate nodes to generate random numbers.Two strategies are considered in this paper { controlled ooding and �xed routing.Flooding is a routing strategy that guarantees fast arrivals with minimal enroutecomputation at the expense of excessive bandwidth use. The scheme we use here,�rst proposed in [9], limits the extent to which a message is ooded through thenetwork. Essentially, each link is assigned a weight (also known as its cost) and everymessage carries with it a wealth. A message arriving at an intermediate node willbe duplicated and forwarded along all outgoing links (except the one it came from)whose cost is lower than the message wealth. The cost of the link is then deductedfrom the message wealth. The problem is to assign the link costs so as to achievebest performance. In [9] it is shown that for such a scheme to be optimal the shortestpath between every pair of nodes (based on link costs) must be unique. We showtwo methods of computing optimal weights that are drawn from a polynomial range(as opposed to the exponential range proposed in [9]). However, we do show thatthe assignment does not result in a routing scheme that uses network resources in abalanced way. 1

In the �xed routing scheme the route of the message is determined at the sourcenode and is included in the message. No further routing decision are done enroute.The problem is therefore to �nd a set of routes, one for each pair of nodes, such thatall the network's links will be used in a balanced manner. We propose two methods toachieve this. In the �rst one, we force the messages to be routed along a (topological)breadth �rst search tree. The problem can be formulated as �nding a set of rootedBFS trees such that the maximum load on a link is minimized (messages are routedalong the tree toward the root as a destination). Notice that no link in the networkremains unused. We provide polynomial algorithms to generate such a set of balancedroutes.In the second method, routing is done along paths that do not necessarily formtrees. One of the shortest paths between every pair of nodes is designated as the pathalong which these two nodes exchange messages. We prove that a set of paths canbe chosen that yields a balanced load. We de�ne the notion of a balanced load withrespect to randomized choices of paths, i.e., every pair chooses uniformly in randomone of the shortest paths connecting them. We �rst show that with high probabilitythe load on every edge will be close to its expected value. We then show how toconstruct deterministically in polynomial time such a set of balanced paths via themethod of conditional probabilities.2 Assigning Weights for Controlled FloodingIn this section we focus on the controlled ooding scheme and address the problemof assigning weights to the links.Since the controlled ooding scheme is a derivative of a ooding algorithm, it isimpossible to assure that a message always arrives only at the nodes it is intended to.In particular, when used for point-to-point routing it is evident that more nodes thannecessary might receive a message. Clearly, di�erent weight assignments may changethe pattern of ooding. Thus, to �nd an optimal assignment a �gure of merit isde�ned which is proportional to the (average) number of nodes that will receive everymessage. An optimal weight assignment is one that minimizes the �gure of merit. Toformalize our discussion let the network be represented by the graph G(V;E) withjV j = n and jEj = m, let the length of a path in the network be de�ned as the sumof the weights of the edges of the path, and let the shortest path between two nodesbe the path with minimal length. Then, it is shown in [9] that for an assignment tobe optimal, the following requirements (referred to as optimality requirements) musthold for every vertex (node) r:� For every vertex v 2 V , the shortest path from r to v is unique.� For any two vertices u; v 2 V , the length of the shortest path from r to u isdi�erent from the length of the shortest path from r to v.2

Assignments that satisfy the above requirements are called good. An assignmentis good with respect to r if all shortest paths from r satisfy the above requirements.Let us assume without loss of generality that the weights assigned are all positiveintegers.Let [1 : : :R] denote the range of numbers from which weights are drawn and letn denote the number of nodes in the network. If R = 2jEj, it is easy to �nd a goodassignment. For example, assigning 2i as the weight of edge ei assures that any twodi�erent paths will have di�erent lengths. However, because the length of the pathis carried by every message it is desirable to reduce R as much as possible.We present two methods for constructing good assignments such that R is poly-nomial in n. In the �rst method the communication is restricted to a spanning treeT of the graph. This is done by assigning in�nite weight to edges that are not in thetree. Denoting the tree edges by e1; : : : ei : : :, the algorithm is recursively de�ned asfollows. Let vl be a leaf of T , let ul be its neighbor in the tree, and let el be the edgeconnecting ul and vl.1. Compute (recursively) a good assignment for the tree T � vl.2. Extend the good assignment from T � vl to T .We assume inductively that a good assignment was computed in Step 1. Step 2can be implemented by checking all the values in the range 1 : : : R and �nding onethat satis�es the requirements for a good assignment. Obviously, a good value for elexists if R is large enough. The next lemma bounds the value of R.Lemma 2.1 If R � n2, then there exists a good assignment.Proof: Since a good assignment was computed for T � vl at Step 1, any valueassigned to el will complete a good assignment with respect to vl. The number ofdistinct values that el cannot assume is at most (n � 1)(n � 2): for each vertexr 2 T � vl, the distance from r to vl should be di�erent from the distance from r toany other vertex, and thus, there can be at most n� 2 forbidden values (with respectto r), and the claim follows. 2The complexity of the algorithm is O(n3) since each step can be implemented inO(n2) time. For each vertex vi 2 V , a table of all its distances to the other verticesis maintained and for each node all the forbidden values in the range [1 : : : n2] aremarked. One of the unmarked numbers is chosen arbitrarily for el. Then, the tablesof all other nodes are updated.The above assignment, being tree based, makes no use of many of the networklinks. The second assignment, which we present next, has the property that the wholenetwork participates in the communication. We present two algorithms; the �rst isa randomized one that lends itself to distributed computation because the weight foreach edge is chosen independently of the other edges. This algorithm generates agood assignment with high probability. The second algorithm is deterministic, andthe weights are chosen from a smaller range than in the randomized algorithm.3

Our main tool in the randomized case is the Isolating Lemma of Mulmuley, Vazi-rani and Vazirani [10]. A set system (S;F) consists of a �nite set S of elements,S = fx1; : : : ; xng, and a family F of subsets of S, F = fS1; : : : ; Skg. Let a weight wibe assigned to each element of S. The weight of a subset is de�ned to be the sum ofthe weights of its elements.Lemma 2.2 (Isolating Lemma) Let R � n and let (S;F) be a set system whoseelements are assigned integer weights chosen uniformly and independently from therange [1 : : :R]. Then,Prob[There is a unique minimum (maximum) weight set in F] � 1 � nR :(Note: the lemma in its original form in [10] was proven for R = 2n but actuallyholds for all R � n). 2We start by proving that the following randomized process will generate a goodassignment with high probability. Let a weight for each edge be chosen randomly anduniformly from the range[1 : : : R].Lemma 2.3 For R � n5 the probability that an assignment is good is at least 12 .Proof: Let Aij be the event the shortest path between nodes vi and vj is not unique.Then A = [i;jAij is the event indicating the existence of at least one pair of nodeswith non-unique shortest path between them. For each pair of nodes vi and vj letthe set system F be the set of all paths connecting them. From the isolating lemmawe have that the shortest path between them will be unique with probability at least1� mR , or, Prob[Aij] � mR . Hence, Prob[A] � Pi;j Prob[Aij] � �n2� � mR .Let Bijk represent the event that nodes vi, vj, and vk form a bad triplet, namelythat the length of the shortest path between vi and vk equals that between vj and vk.B = [ijkBijk then represents the existence of at least one bad triplet in the network.In a way similar to the above we get Prob[B] � �n3� � mR .Finally, A[B is the event indicating that the requirements are not met, and thusProb[good assignment] � 1�Prob[A]�Prob[B] � 1�mn(n� 1)2R �mn(n� 1)(n� 2)6R :Since m � n2, for R � n5, the right handside exceeds 12. 2The last lemma provides us with a randomized distributed algorithm for con-structing a good assignment. The probability of failure can be made arbitrarily smallby increasing the value of R.Notice that this method does not ensure that every edge participates in at leastone shortest path. This can be �xed by forcing the weight assignment so that theBFS tree resulting from the weight assignment is also a BFS tree in the underlyinggraph without weights. This can be done in the following way. Assign weights to theedges according to any of the above described algorithms and then add the value n �Rto each weight. Now every edge takes part in at least one shortest path.4

Next we show how a good assignment can be constructed deterministically. Oneway would be to derandomize the above randomized process. Notice that the proofof Lemma 2.1 actually implies that every partial assignment that does not violate theoptimality requirements can be completed to a good assignment. We can thus assignweights to the edges one-by-one ensuring at every step that none of the requirementsis violated.A better way of doing this is by the following algorithm that constructs a goodassignment with R = n3 (compared with n5). Initially, every edge ei is assignedweight n4 � 2i. The weights of the edges are then changed one-by-one to �t into therange [1 : : :R] while maintaining the goodness of the assignment. At each step, theweight of the heaviest edge is changed.Lemma 2.4 If R � n3, a good assignment can be constructed.Proof: The invariant which is maintained at the end of each step is that theassignment remains good. This is true initially. Let wi be the new weight assignedto edge ei at step i, where ei connects vertices x and y. We prove that wi can be�tted into the range [1 : : : R] by bounding the number of forbidden values for wi andshowing that at least one permitted number exists. Let luv denote the value of theshortest distance between vertex u and vertex v when edge ei is removed from thegraph (luv might be in�nite).To maintain goodness we must accommodate both optimality requirement. We�rst show how to maintain the uniqueness of the shortest path between every pairof vertices. Let r and v be a pair of vertices, and assume without loss of generalitythat lrx < lry. (They cannot be equal by the invariant). Let ei be the edge of largestweight. If the removal of edge ei from the graph leaves vertices r and v in di�erentconnected components, then any value can be chosen for wi with respect to r and v.Assume this is not the case. Since edge ei had the largest weight in the graph (i.e.,n4 � 2i), the shortest path from r to v cannot contain edge ei and lrv is the value ofthe shortest distance from r to v. Hence, to maintain the uniqueness of the shortestpath requirement, it is enough thatlrv 6= lrx + wi + lyv:(Notice that the shortest path will remain unique even if it contains edge ei, becauseof the uniqueness of the shortest paths from r to x and from y to v). This conditiongenerates at most n� 1 forbidden values for wi with respect to every vertex r in thegraph, or n(n � 1) forbidden values altogether.Let us now show how the second requirement of optimality is maintained. Let r,u and v be a triplet of vertices. Again, notice that if the removal of edge ei from thegraph leaves vertex r in one connected component, and vertices u and v in a di�erentconnected component, then any value can be chosen for wi with respect to r, u andv. The same holds if the removal of ei leaves y separated from r, u, and v. Assumethis is not the case. It follows from the above discussion that the shortest distancefrom r to u is either lru, or lrx+wi + lyu. Similarly, the shortest distance from r to vis either lrv, or lrx + wi + lyv. 5

By the invariant,lrv 6= lru and lrx + wi + lyu 6= lrx + wi + lyv:Hence, to maintain the second requirement of optimality, it is enough thatlrv 6= lrx + wi + lyuand lru 6= lrx + wi + lyv:These two conditions add at most 2 � �n�12 � forbidden values for wi with respect toevery vertex r in the graph, for a total of 2n � �n�12 �.Altogether, the number of forbidden values for wi is n(n � 1)(n + 1) < n3, andthe lemma follows. 2Note that the initial assignment (ei = n4 � 2i) is chosen to ensure that every edgeis treated exactly once, and when it is treated it does not participate in any shortestpath unless it is a bridge.The complexity of the algorithm is O(n3m) since each step can be implemented inO(n3) time. Every vertex vi 2 V maintains a table with all its shortest distances tothe other vertices; it then marks all the forbidden values in the range [1 : : : n3]. Oneof the unmarked numbers is chosen arbitrarily for ei. Then, the tables of all othervertices are updated.The reason why the range can be made smaller in the deterministic case is thatit is enough to ensure at each step that there is one good value, whereas in therandomized case, one has to ensure success with high probability.A desirable property of a routing scheme is having the tra�c be evenly distributedamong the edges. Unfortunately, this is the drawback of routing with random weights.The following example shows that with high probability this scheme does not yield abalanced load.Let the load on an edge be de�ned as the number of shortest paths that containit, and consider a graph made of two cliques of size k that are interconnected by twoedges, e1 and e2. The weight for each edge is chosen uniformly and independentlyfrom the range [1 : : : R]. In each clique, the distribution of the weights is uniformand thus, if the weights of e1 and e2 are not close to one another, most of the tra�cbetween the two cliques would go through the edge with smaller weight. Since thisevent will happen with high probability, the communication would not be balancedwith high probability. The next section dwells on routing via trees in a way that willallow us to optimally balance the load.3 Routing Along TreesIn this section we consider our second option of routing namely, routing along BFStrees. Routing along trees can be viewed in two ways: (1) the tree rooted at a node6

speci�es the routes used by the root when acting as a source of messages, or (2) thetree rooted at the node speci�es the routes used by the other nodes with the rootserving as the destination. From a design standpoint these are identical and in bothwe strive to balance the load on the links as much as possible.As before we consider the network as a graph G = (V;E) with jV j = n andjEj = m. In addition we single out a vertex r called the root. The graph is dividedinto layers relative to root r by conducting a breadth-�rst search on G from r (i.e.,we construct a tree of the shortest paths from r to all the other nodes in the graph).In this division, layer i, 0 � i � n� 1, contains all the vertices whose distance from ris i. The corresponding resultant tree is denoted Tr. Note that for a given G and r,the layers are de�ned uniquely but the BFS tree is not. Also note that given a BFStree, the edges of the original graph connect vertices only from adjacent layers or inthe same layer.Let v 2 V be some vertex in layer i (for some 1 � i � n � 1). De�ne drv as thenumber of neighbors of v at layer i� 1 in graph G rooted at r; by convention drr = 0.The following proposition establishes relations which we shall use later on.Proposition 3.1 For any graph G1. The number of di�erent BFS trees from root r is Qv2G�r drv2. For any r, Pv2V drv � mProof:1. All the BFS trees can be constructed by having each vertex v 2 G � r chooseindependently a parent out of its neighbors in the previous layer, and each suchconstruction corresponds to a legal and di�erent BFS tree rooted at r. Hencethe claim follows.2. Each edge contributes unity to the sum if its two endpoint vertices are not in thesame layer, and zero otherwise. Thus, this sum is exactly equal to the numberof edges connecting vertices of di�erent (and therefore adjacent) layers. 23.1 Homogeneous SourcesIn this section we assume that each node sends (or receives) the same amount of datato every other node, and our aim, as we indicated, is to use the resources evenly. Tothat end we de�ne the load on an edge as follows. Assume that for every vertex rin the graph we are given a single BFS tree rooted at that vertex (thus determiningnode's r routing). The load on an edge is de�ned (relative to this set of trees) as7

the number of trees which contain this edge. Formally, we are given a set fTrgr2Vcontaining a single Tr for every r 2 V and we de�ne the load asl(e) = jfr 2 V je 2 Trgj :Note that l(e) � n and Pe2E l(e) = n(n� 1), since there are n BFS trees with n� 1edges in each and each edge in a BFS tree contributes a unity to the sum. Thecapacity of an edge e, denoted c(e), is de�ned as the maximum number of BFS treesthat may contain it.Our goal is to choose a set fTrgr2V such that the maximum load of the edges isminimized. We do this by solving a more general problem in which edges have limitedcapacities that are not necessarily equal. Assume that we are given the edge capacityc(e) for each edge e 2 E. We are seeking a feasible solution that is, a set fTrgr2Vsuch that l(e) � c(e) for all e. A solution for the capacitated problem can be easilyused to solve the problem of minimizing the maximum load (in the uncapacitatedproblem). We just let c(e) = c for all e and perform a binary search on 1 � c � n,thereby increasing the complexity by a factor of log n.In order to solve the capacitated problem we de�ne the following bipartite graphH = (A [B;F). Side A consists of n(n � 1) vertices denoted by pairs (r; v) for allv; r 2 V , v 6= r (this pair will subsequently be interpreted as a root r and some vertexv in G). Side B consists of m vertices, each corresponding to (and denoted by) anedge e for all e 2 E. Each vertex (r; v) 2 A is connected to a vertex e 2 B i� 9Tr(i.e., a tree rooted at r) in which e 2 E connects v to a vertex from the previous level.Note that the degree of vertex (r; v) is drv as per the de�nition of drv. Also, fromproposition 3.1 jF j = Pv;r drv � Prm = nm.The key observation is that in order to solve our problem we need to �nd n(n�1)edges in the graph H such that the degree of each vertex in A is exactly 1 (matching),and the degree of vertex e 2 B is at most c(e). These edges de�ne the n BFS treesin G. Speci�cally, the edges of Tr are the vertices in B which are adjacent to thevertices (r; v) for all v 2 G� r. We present two algorithms for �nding these trees.Algorithm 1. Each vertex e 2 B with all its incident edges is duplicated c(e)times, generating an \exploded" graph. Now, it is clear that solving the problemis equivalent to �nding a perfect matching for side A into side B. The number ofvertices in the exploded graph is n(n � 1) +Pe c(e) < n2 + mn and the number ofedges is at most njF j � n2m. The complexity of computing a maximummatching ina bipartite graph is O(jEjqjV j) = O(m3=2n5=2) [11].The latter complexity can be improved by the next algorithm.Algorithm 2. Add to the graph H = (A [B;F) a source node s and sink t.Add directed edges from s to all the vertices in A, each with capacity 1, and directededges from each vertex e 2 B to t, each with capacity c(e). Finally, direct all theedges from A to B and assign each the capacity 1 (any capacity greater than 1 willalso do).Consider an integer ow problem with source s and destination t obeying the8

speci�ed capacities. It is clear that any such legal ow starts with some edges from sto A with ow 1. Then, each vertex in A that has an incoming edge with one unit ofow also has one outgoing edge with one unit ow to a vertex in B. Finally, all theow reaching B continues to t. Thus we conclude that there is a feasible solution toour problem i� the maximum ow between s and t is exactly n(n� 1).We will use Dinic's algorithm for �nding the max-ow [12]. A careful analysisof the algorithm for our case yields a better complexity than more recent max-owalgorithms that perform better on general graphs. We �rst give a short review ofDinic's algorithm. The algorithm has O(jV j) phases; at each phase only augmentingpaths of length i, 1 � i � jV j, are considered. The invariant maintained at phase iis that there are no augmenting paths of length less than i. The complexity of eachphase is O(jEjjV j) in general graphs and O(jEj) in 0-1 networks.We �rst convert our graph into a 0-1 network. Each edge of capacity c(e) isduplicated into c(e) unity capacity edges which yields a 0-1 network. Since c(e) � nfor every edge e, the total number of new edges is at most nm and thus the numberof edges remains O(nm). As mentioned before, the complexity of Dinic`s algorithmfor 0-1 network is O(jEjjV j) which in our case becomesO([n2 +m][n2 +mn+mn]) = O(n2 �mn) = O(mn3)In fact, the running time can be reduced to O(mn2). Let the residual graph bede�ned as the graph (obtained from a given ow) that consists of all edges withpositive residual capacities, where the residual capacity of edge (u; v) represents themaximum additional ow that can be sent using edges (u; v) and (v; u). In our graph,there are no edges between vertices inA and also none between vertices inB, and therewill not be such in any of the residual graphs. In fact, the residual graph will alwaysstart with s, end with t, have only vertices of A in the other even numbered layers andonly vertices of B in the other odd-numbered layers. Moreover, the vertices of A willalways have, in any residual graph, at most one incoming edge. Let us run the �rstn � 1 phases of Dinic's algorithm (where each phase takes time O(jF j) = O(nm)).In phase n there will be at least n layers of A (unless we have already �nished), oneof them having at most n(n � 1)=n = n � 1 vertices. The incoming edges into thislayer of A de�ne a cut separating s from t whose capacity is at most n � 1. Thus,Dinic's algorithm will terminate after at most additional n � 1 phases, which givesthe desired time bound.3.2 Heterogeneous SourcesThe situation at hand in this section is similar to that of the previous subsectionexcept that we no longer assume homogeneous tra�c but rather that each nodegenerates a di�erent amount of tra�c. Translated into our model, this results in aproblem with weighted trees. Formally, let the relative tra�c intensity associatedwith node r be w(r) (assumed to be an integer). This means that the tree associatedwith r (where r is the root) has a weight of w(r) and we seek a set of BFS trees9

fTrgr2V with load l(e) � c(e) for all e, where the load l(e) is de�ned in the naturalway, i.e., l(e) = (Xr w(r)je 2 Tr)The Capacitated Problem of the previous subsection is the special case of ourproblem with w(r) = 1 for all r 2 V . While the Capacitated Problem in the ho-mogeneous case has an e�cient solution, we prove that in the heterogeneous casethis problem is NP-complete (it is clear that the problem belongs to class NP). Webase our proof on a reduction from the \knapsack" problem which is known to beNP-complete [13], de�ned as follows.The Knapsack Problem: Given are integers x1 : : : xn and s. Are there �i 2f0; 1g, 1 � i � n, such that P�ixi = s?The Reduction: Consider a graph whose vertices are v1; : : : vn; u1; u2; t. Connectvi to uj for 1 � i � n, j = 1; 2 and connect u1 and u2 to t. Let the weight of thesources be w(vi) = xi for all i, w(u1) = w(u2) = w(t) = 0. Finally, let the capacitiesof the edges be c(u1t) = s, c(u2t) =Pi xi � s, and in�nite (or big enough) for all therest. It is clear that each BFS tree from vi, 1 � i � n, contains exactly one of theedges u1t or u2t. Since c(u1t)+ c(u2t) = Pi xi, there is a solution i� there is a subsetof the integers xi that sums up to s.Note that it is possible to eliminate the zero weights (and have the proof stillhold) by assigning w(u1) = w(u2) = w(t) = 1 and also adding 2 to the capacities ofthe edges u1t and u2t.3.3 Randomized Capacity BoundsIn this section we develop upper bounds on the capacities that are needed for theedges in the Capacitated Problem of the homogeneous case (section 3.1) in orderto achieve \good" load balancing. Our reference is a random tree routing schemein which every node, whenever it needs to send a message, randomly and uniformlychooses a BFS tree in which it is a root, and routes according to this tree. Intuitively,such a routing scheme is likely to achieve a good balancing.We start by calculating P re { the probability that an edge e participates in arandomly and uniformly chosen BFS tree rooted at r. Let xre be an indicator randomvariable indicating whether edge e belongs to the BFS tree rooted at r. By ourde�nition l(e) = Xr2V xre:Consider an edge e = (x; y). If both x and y are in the same layer (i.e., equidistantfrom r), then P re = 0. Otherwise, they belong to adjacent layers (without loss ofgenerality let x be the vertex that is further away from r), and P re = 1drx .10

Let l(e) be the expected load of e. Clearly E[xre] = P re and alsol(e) = E "Xr2V xre# = Xr2V E[xre] = Xr2V P reWe cannot expect to �nd a set of BFS trees in which l(e) � l(e) for every edge e (l(e)is not necessarily an integer for instance). However, we can �nd a set which is almostas good. We show that there always exists a set of BFS trees fTrgr2V such that theload on any edge satis�es the following:l(e) � l(e) + 2ql(e) log n:We will prove the claim via the probabilistic method; one can easily �nd such a set byapplying the algorithm from section 3.1 as we are guaranteed that a solution exists.To prove the bound on the load, we show that for each edge e, the probability thatl(e) exceeds the claimed bound is less than 12m . Hence, there is a positive probabilitythat the claim holds for all edges in the network. >From Cherno�'s bounds it can beshown that for all � � 0,Prob[l(e) > (1 +)l(e)] � E[e�l(e)]e(1+)�l(e)and it can be shown [14] that there exists a choice of � such thatE[e�l(e)]e(1+)�l(e) � e�2l(e)=2:Assigning = 2r lognl(e) , results inProb[l(e) > l(e) + 2ql(e) log n] � 1n2 < 12mwhich �nally yields Prob[8e; l(e)� l(e) + 2ql(e) log n] > 12By choosing other values for such as = kqlog n=l(e), it can be shown thatjl(e)� l(e)j � O(ql(e) log n)is ful�lled almost surely for all edges e 2 E.4 Routing Along Shortest PathsIn this section we consider a di�erent option of routing namely, routing along pathsthat do not necessarily form trees. One of the shortest paths between every pair of11

nodes is designated as the path along which these two nodes exchange messages. Weprove that a set of paths can be chosen that yields a balanced load. (Finding anoptimal set of paths is NP-complete by reduction from multi-commodity ow).The proof we present follows the exact same lines of the proof in section 3.3 andwe adopt the same notation. Again, our reference for a good load balancing is therandom path routing schemeWe �rst evaluate P uve {the probability that an edge e participates in a randomlyand uniformly chosen shortest path connecting vertices u and v. (We will denotethis event by the indicator variable xuve). To compute this probability, we must countthe shortest paths connecting u and v that contain edge e. Let Mp(u; v) denote thenumber of paths of length p between the vertices u and v. The number of shortestpaths between u and v can be computed in polynomial time by the following recursiveformula. Let the vertices adjacent to u be a1; : : : ; ad and let p be the length of theshortest path from u to v, thenMp(u; v) = dXi=1Mp�1(ai; v):We consider a pair of nodes u and v and an edge e = (x; y) (assume without lossof generality that vertex x is closer to u than vertex y). Denote by puv the distancebetween the vertices u and v, by pux the distance between u to x, and by pyv thedistance between v and y. De�ne p0 = puv � pux � 1. If pyv > p0, then P uve = 0;otherwise, P uve = Mpux(u; x) �Mpyv(y; v)Mpuv(u; v)Similar to the derivation in section 3.3 the expected load on an edge e is l(e) =Pu;v2V P uve and thus we cannot expect to �nd a set of shortest paths in which l(e) �l(e) for every edge e. However, again, we can �nd a set which is almost as good,namely, a set of shortest paths such that the load on any edge satis�esl(e) � l(e) + 2ql(e) log n:An edge whose load does not satisfy the above condition is called an overloaded edge.If there are no overloaded edges, then the set of paths is called a good set. We willprove that a good set of paths exists via the probabilistic method and then show howto �nd such a set of paths deterministically.Let every pair of vertices choose its path uniformly in random (among the shortestpaths between them). We show that with high probability, the set of paths chosen isgood. The random variable l(e) is a sum of �n2� indicator variables xuve . These variablesare independent because each pair of vertices chooses its path independently of theother pairs. If we show that the probability that edge e is overloaded is less than 12m,then with high probability the claim holds for all edges in the network. As stated in12

Section 3.3, it can be shown that for all � � 0,Prob[l(e) > (1 +)l(e)] � E[e�l(e)]e(1+)�l(e)furthermore, there exists a choice of � [14] such thatE[e�l(e)]e(1+)�l(e) � e�2l(e)=2Similar to Section 3.3, assigning = 2r lognl(e) , results inProb[l(e) > l(e) + 2ql(e) log n] � 1n2 < 12mwhich �nally yields Prob[8e; l(e)� l(e) + 2ql(e) log n] > 12as was claimed.Having established that there exists a good set of paths we now show how to�nd this good set deterministically in polynomial time by the method of conditionalprobabilities [15],[16]. This method was introduced by Spencer [15] with the intentionof converting probabilistic proofs of existence of combinatorial structures into e�cientdeterministic algorithms for actually constructing these structures. The idea is toperform a binary search of the sample space associated with the random variables soas to �nd a good set. At each step of the binary search, the current sample spaceis split into two halves and the conditional probability of obtaining a good set iscomputed for each half. The search is then restricted to the half having a higherconditional probability. The search terminates when only one sample point remainsin the subspace, which must correspond to a good set.To apply this method to our case for �nding a good set of paths, we will considerthe indicator variables one-by-one. In a typical step of the algorithm, the value ofsome of the indicator variables has already been set, one variable is currently beingconsidered, and the rest are chosen in random. (By choosing in random we meanthat for the pair of vertices which is now being considered, the remainder of thepath is chosen uniformly in random.) At each step we will compute the (conditional)probability of �nding a good set if the variable considered is set to 0 and if it is setto 1.We denote by Pj the probability of �nding a bad set of paths after the variableconsidered at step j has already been assigned a value and by P ij the probability ofobtaining a bad set of paths by assigning the value i, for i = 0; 1, to the variableconsidered at step j. Initially, it follows from the existence proof that the probabilityof choosing a good set of paths is positive; we inductively maintain that Pj < 1 forj � 1, and hence, either P 0j < 1 or P 1j < 1.For the sake of simplicity, assume the following on the order in which the variablesare considered: 13

� For a pair of vertices u and v, for all edges e, the variables xuve are consideredconsecutively.� For a pair of vertices u and v, the edges are considered according to theirdistance from u. (Ties are broken arbitrarily).For example, suppose that we are considering the variable xuve where e = (a; b)and assume that vertex a is closer to u than b. Notice that by assigning a value toxuve ,� The probability P uvf may change for edges f for which xuvf has not been deter-mined yet. (These changes in the probabilities can be computed in polynomialtime.)� The value of xuvf for other edges f may also be determined, e.g., if xuve = 1, thenfor all edges f adjacent to a, xuvf = 0.A major stumbling block in applying the method of conditional probabilities isalways the computation of the conditional probabilities. In our case, we do notcompute the exact probability that there exists an overloaded edge (even initially),but rather only estimate it. Consequently, if the estimator is not chosen judiciously,it may happen that when a variable is considered, according to the estimator, novalue assigned to it can lead to a good solution. To overcome this di�culty, followingRaghavan [16], the notion of a pessimistic estimator is introduced. We call P̂j apessimistic estimator of the conditional probability Pj if it satis�es the followingconditions:1. P̂0 < 1.2. For any partial assignment of the �rst j variables, Pj � P̂j.3. minfP̂ 0j ; P̂ 1j g � P̂j�1 where P̂ ij is the estimator of P ij for i = 0; 1.4. The pessimistic estimators can be computed in polynomial time.It is not very hard to see that such a pessimistic estimator can equally well be usedin the method of conditional probabilities instead of the exact conditional probabilitieswhich are hard to compute in general. We now show that the pessimistic estimatorthat we will choose indeed satis�es the above conditions. We have earlier proved thatinitially,Prob [the set is bad] � Xf2EProb[l(f) > (1 + f)l(f)] � Xf2E E[e�fl(f)]e(1+f)�f l(f) < 1Notice that �f and f depend on the edge f . We de�neP̂0 = Xf2E E[e�f l(f)]e(1+f)�f l(f)14

The estimator at Step j is de�ned to beP̂j = Xf2E E[e�flj(f)]e(1+f)l(f)�fwhere lj(f) is a random variable denoting the load on edge f at the end of Step j.For example, suppose that l(f) = x1 + x2 + x3 + x4 and at the end of Step j, x2 = 0and x4 = 1. Then, lj(f) = 1 + x1 + x3. (l(f), f and �f retain their original values).Condition (4) holds since the changes in the probabilities at each step can becomputed in polynomial time as mentioned earlier. (Notice that the random variablelj(f) is the sum of independent random variables). Condition (2) holds sincePj � Xf2EProb[lj(f) > (1 + f)l(f)] � Xf2E E[e�f lj(f)]e(1+f)�f l(f) = P̂j :Let us show that condition (3) holds as well. Suppose that at Step j + 1 variablexuve is being considered. By de�nition,Xf2EE[e�flj(f)] = P uve � Xf2EE[e�flj(f)jxuve = 1] + (1 � P uve) � Xf2EE[e�flj(f)jxuve = 0]where the probability of choosing edge e as part of the path from u to v is P uve (giventhe assignments of the previous j steps). Now,P̂ 1j+1 = Xf2E E[e�flj(f)jxuve = 1]e(1+f)l(f)�f ; P̂ 0j+1 = Xf2E E[e�f lj(f)jxuve = 0]e(1+f)l(f)�fHence, P̂j = P uve � P̂ 1j+1 + (1 � P uve) � P̂ 0j+1and clearly, minf ^P 0j+1; ^P 1j+1g � P̂j. The value of xuve is set to the value for whichP̂ ij+1 is minimized, for i = 0; 1.AcknowledgemnetWe would like to thank Noga Alon for many helpful discussions on this paper and inparticular for his help in analyzing the algorithm of Section 3.1. Most of this workwas done while the �rst two authors were at the Computer Science Department ofStanford University and supported by contract ONR N00014-88-K-0166.15

References[1] A. Ephremides, \The routing problem in computer networks," in Communica-tions and Networks (I. Blake and H. Poor, eds.), pp. 299{324, New York: SpringerVerlag, 1986.[2] M. Schwartz and T. Stern, \Routing techniques used in computer communicationnetworks," IEEE Trans. on Communications, vol. COM-28, pp. 539{555, April1980.[3] P. Green, \Computer communications: Milestones and prophecies," IEEE Com-munications, pp. 49{63, 1984.[4] I. Cidon and I. Gopal, \Paris: An approach to integrated high-speed privatenetworks," International Journal of Digital and Analog Cabled Systems, vol. 1,pp. 77{86, April-June 1988.[5] J. Turner, \Design of a broadcast packet switching network," IEEE Trans. onCommunications, vol. COM-36, pp. 734{743, June 1988.[6] H. Siegel, Interconnection Networks for Large-Scale Parallel Processing: Theoryand Case Studies. Lexington, MA: Lexington Books, 1984.[7] L. Fratta, M. Gerla, and L. Kleinrock, \The ow deviation method: An approachto store and forward communication network design," Networks, vol. 3, no. 2,pp. 97{133, 1973.[8] R. Gallager, \A minimum delay routing algorithm using distributed computa-tion," IEEE Trans. on Communications, vol. COM-25, pp. 73{85, January 1977.[9] O. Lesser and R. Rom, \Routing by controlled ooding in communication net-works," in Proccedings of IEEE Infocom'90, (San Francisco, California), pp. 910{917, IEEE, June 1990.[10] K. Mulmuley, U. Vazirani, and V. Vazirani, \Matching is as easy as matrixinversion," Combinatorica, vol. 7, no. 1, pp. 105{113, 1987.[11] J. Hopcroft and R. Karp, \An n5=2 algorithm for maximummatching in bipartitegraphs," Siam J. Computing, vol. 2, pp. 225{231, 1973.[12] S. Even, Graph Algorithms. New York: Computer Science Press, 1979.[13] M. Garey and D. Johnson, Computers and Intractability. San Francisco: W.H.Freeman and Company, 1979.[14] D. Angluin and L. G. Valiant, \Fast probabilistic algorithms for hamiltoniancircuits and matchings," Journal of Computer and System Sciences, vol. 18,pp. 155{193, 1979. 16

[15] J. Spencer, Ten Lectures on the Probabilistic Method. Philadelphia, Pennsylvania:SIAM, 1987.[16] P. Raghavan, \Probabilistic construction of deterministic algorithms: Approxi-mating packing integer programs," Journal of Computer and System Sciences,vol. 37, pp. 130{143, October 1988.

17

