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The goal of this paper is to develop local algo-rithms with globally-optimum performance guaran-tees. The problems considered are related to \frac-tional" versions of maximum independent set andminimum coloring in hyper-graphs. While integerversions of these problem appear to be hard to ap-proximate, [BGLR93, FGL+91, AS92, ALM+92], theversions, that happen to be the ones that matterin practice, do not fall into this class. Thus, thereis no excuse for substituting \local maximality" for\global maximum", since the gap between the twooften grows linearly in the size of the problem. Thisis in fact the disadvantage of existing techniques inthe �eld of distributed computing, such as algorithmsfor maximal independent sets, � + 1 coloring, anddining philosophers [Lub86b, Lub86a, Lin87, GPS87,AGLP89, AS90].This paper in fact achieves globally-optimum so-lutions by local asynchronous algorithms. To thebest of our knowledge, this is the �rst example ofa local (poly-logarithmic time) distributed algorithmfor which no non-trivial (constant time) \checker" isknown, i.e. we do not see immediate way to verifycorrectness by considering the immediate vicinities ofindividual nodes.Essence of the problem. The nature of the prob-lem can be illustrated on the classical example ofphilosophers dining at a round table, with only onefork on the table in between each two nearby philoso-phers. Each philosopher needs two forks in order toeat.If each philosopher grabs the left fork, then, in fact,we reach a situation of \deadlock", since no philoso-pher can eat with only one fork. While philoso-phers cannot all simultaneously eat, the \maximum-throughput" resolution of such a deadlock would re-quire, say, every other philosopher to drop its forkwhich allows half of the philosophers to eat.In more general version of this problem, di�erentPage 1



philosophers may need di�erent accessories, e.g. somephilosophers prefer knifes to forks. In the arbitrary-access version of the problem, philosophers are notso stubborn; i.e. either one of the two forks wouldsu�ce, provided that there also is a knife. Gener-ally speaking, one may request any monotone booleanfunction of the requested resources.Observe that in the maximum-throughput version,philosophers do not wait for for each other; we onlywant to maximize the number of philosophers thateat immediately, since after that, the food alreadybecomes cold and thus uneatable.In the standard formulation of \dining philoso-phers" [AS90, ACS94] problem, philosophers are infact ready to wait, and thus, instead of maximiz-ing the number of philosophers who eat immediately(\throughput"), we are interested in minimizing timeit will take to feed all philosophers. In case of the din-ing at a round table, this would involve two phases ofconcurrent eating.The real motivation, of course, is to deal with gen-eral resource allocation in general client-server archi-tectures; i.e., in the above simple example, philoso-phers correspond to clients, and forks are servers.In such setting, only local information is avail-able. Clients can only communicate to the accessibleservers the sizes of their jobs being submitted, andservers communicate back to their client the server'sload at the time, i.e., the total volume of all the jobspreviously enqueued in the server queue.Example: distributed bandwidth manage-ment. An important example to which our modelapplies includes distributed bandwidth managementalgorithms in high-speed networks, that so far hasonly been considered in online centralized setting[AAF+93, AAP93, AAPW94]. In case in which num-ber of route selections is polynomial, our methodsyield poly-logarithmically competitive algorithms.Bandwidth management is modeled by havingserver's resources be bandwidth of a certain commu-nication link, and clients be connections entering thenetwork. Each connection may need simultaneousaccess to all links on the communication path fromthe sender to receiver. The di�erent variations of thebandwidth management problem are captured in oursetting as follows.� admission control, i.e. decision on whether to ad-mit an incoming connection, so as to maximizethe total throughput, without exceeding link ca-pacities [GGK+93, LT94, ABFR93, AAP93], iscaptured by the maximum-throughput version ofthe problem. In particular,

{ ow control issue, i.e. decision on how muchtra�c to admit into the network given a�xed path from sender to receiver, is cap-tured by the full-access version of the prob-lem.� route selection issue, i.e. decision on how toroute tra�c, so as to minimize maximum linkload, [AAF+93, AKP+93, AAPW94] is capturedin our setting by maximum time deadlock reso-lution.We stress that the \serially-competitive" routingalgorithms, say in [AAF+93, AAP93] do not work inthe concurrent setting. These algorithms operate byselecting the shortest weighted path for an incomingconnection, where links weights grow exponentiallywith tra�c admitted so far into the system. Thecoordination between routing decisions is expressedin that the load introduced by the previous connec-tion must be incorporated into the routing decisionmade by the subsequent connection. While the algo-rithms works regardless of the order in which connec-tions come in, their competitiveness is crucially de-pendent on proper coordination with respect to someorder, making these algorithms infeasible for concur-rent decision-making.1.2 Our results versus existing workPerformance evaluation: \concurrent" com-petitiveness. As in this paper we would like toconsider the problem in distributed concurrent set-ting, we �rst need to de�ne the appropriate complex-ity measures. These de�nitions, informally outlinedbelow, and further elaborated in Section 2.1, consti-tute one of the innovations of this paper.In maximum-throughput version of the problem,there are two performance measures: throughput com-petitiveness, i.e. how many philosophers do we man-age to feed compared to o�ine optimum, as well astime it takes our distributed algorithm to �gure thatout. Time performance of a distributed algorithm ismeasured in a standard way by assuming that thetime it takes any client to communicate with any ofthe servers it is attached to is exactly (at most) onetime unit in the synchronous (resp., asynchronous)network.In minimum-time version of the problem, thereis only one performance criteria - total completiontime, which consists of actual execution time plusthe number of rounds needed to compute the sched-ule. Even though our results hold for most generalcase, to simplify our initial discussion and to developPage 2



intuition, we will be restricting ourselves to the spe-cial case in which job run-time is one unit, (as in[AS90, AKP92]), e.g. run-time equals communica-tion delay between servers and clients.As in [AKP92], the e�ciency is measured by thecompetitive ratio in total running time of the dis-tributed algorithm, including both the time to dis-tributively construct and execute the schedule. Incontrast, o�ine algorithm does not waste any timeto distributively construct the schedule.Unlike in online centralized version of the some-what simpler problem, where, as pointed out by[SWW91], we can always achieve a factor of 2 in com-pletion time by essentially reducing the problem to ano�ine problem, this option does not exist in the dis-tributed version of the problems considered in thispaper.Related work Centralized algorithms approximat-ing the maximum fractional independent set andmaximum fractional coloring, can be easily obtainedby linear programming or incorporating the tech-niques in [PST91]. Our problem can be viewed asdual of positive linear programs considered by Lubyand Nisan [LN93] who also provided a parallel ap-proximation algorithm, which, however, lacks the de-sired locality properties.The deadlock resolution and job scheduling prob-lems are analogous to fractional versions of maxi-mum independent set and coloring problems in hyper-graphs. Combining techniques in [RT85, Rag86] withmethods in [PST91] yields centralized approxima-tions.Online centralized scheduling and load balancingalgorithms were considered various of papers suchas [SWW91, ANR92, ABK92, BFKV92, AAF+93,PSW94].Unfortunately, there exist no \competitive" dis-tributed deadlock resolution strategies, in the sensethat all known techniques for distributed symme-try breaking and deadlock resolution [CM83, BT87,BBG83, BC89, AM86, AKP91, AS90, ACS94], eventhough ensure eventual progress, have competitive ra-tio that may grow linearly in the number of processorsinvolved.Results and techniques of this paper. In con-trast, in this work, we provide �rst competitive dis-tributed solutions, that have logarithmic or poly-logarithmic overhead.� maximum-throughput: our algorithm in Section2 computes the schedule in O(logn) time in ei-

ther synchronous or asynchronous setting, andachieves O(logn) throughput-competitiveness.� minimum-time: our algorithm in Section 3 com-putes the schedule in O(log3 n) time in ei-ther synchronous or asynchronous setting, andachieves O(logn) time-competitiveness.We comment that the asynchronous version of ouralgorithm poses another attractive feature, which isis wait-freedom: undetectable failure of one client willnot slow scheduling for another client provided thatthe servers are reliable.In the new algorithms, we build on techniques usedin context of online resource allocation [AAF+93,AKP+93, AAP93, AAPW94] as well as on techniquesused in �eld of distributed computing. Our algorithmis similar to the Luby-Nisan algorithm [LN93].Structure of this extended abstract.Maximum-throughput problem is handled in Section2 and Minimum-time (load) problem is handled inSection 3. We prove the minimum-time fractionalalgorithm in Section 4. In the in the �nal versionwe show how to achieve the integer solution via ran-domization and rounding techniques, and provide theproofs for the max-throughput case.2 Maximum-throughputIn this section, we deal with maximum-throughputdeadlock resolution. We start with the simplest \fullaccess" case, in which job requests access to a speci�cset of resources (that may may depend on the job).We then generalize it to more general case, in whichchoice is possible.2.1 Full-access maximum-throughputproblemGenerally speaking, we have a collection of clients(\philosophers") X , with a job of demand ds, associ-ated with each client s 2 X . Also, we have a collec-tion of servers (\resources" or \forks") E, each servere 2 E having a capacity c(e). During its execution ajob s 2 X needs access to subset P (s) � E of serversconsuming ds resources from each of these servers.The essence of full-access deadlock resolution is to�nd an approximately \maximum" weighted subsetI � X of clients (philosophers), that can be con-currently scheduled without exceeding capacity con-straints at the servers. Formally, we need to maxi-Page 3



mize the \throughput"Xs2I ds, subject to the \capac-ity constraints" Xs2Ije2P (s) ds � c(e), for all servere.Let n = maxfjX j; jEj; �g where� = maxe c(e)=minec(e).The fractional version of the problem. Insteadof making an \integer decision" about admitting jobs(yes or no) it is much easier to make a \fractional deci-sion", i.e., determine values 0 � ps � 1 indicating thefraction of each job s 2 X to be executed. We de�nefs = dsps which is the absolute size of the fractionof the job s. The capacity constraints for this versionof the problem are modi�ed asPs2Ije2P (s) fs � c(e)where the goal is maximize \fractional throughput"Xs2X fs. This is the version of the problem for whichour algorithms will be designed.To transfer the fractional solution to an integer onewe view p(s) as values which are proportional to theprobability that the jobs s is executed (not aborted).(The formalisms are elaborate in the �nal version.)For this transformation to work, we need to make a(quite realistic) assumption (at least, in case of vir-tual circuit routing), that capacity of each resourceexceeds size of each job by a logarithmic factor, i.e.mine2P c(e) = 
(logn) �maxs2X ds (1)We comment that the general \integer" prob-lem, without making an assumption of such type, isprovably un-approximable [BGLR93, FGL+91, AS92,ALM+92], unless P = NP. Indeed, the maximum-throughput (minimum-time) problems, are in fact,generalization of maximum independent set (mini-mum coloring, resp.) problem on hyper-graphs.2.2 Max-throughput full-access algo-rithmThe algorithm executed by each job s (see Figure 1)works as follows. It starts by calling Procedure Init,which initializes the assignment to some small of itsdemand ds. Then, inside the inner loop, this fractionis successively doubled, using procedure Pump, untileither total assignment reaches the value of demandds, or the local \weight variable\ weightsP exceeds 1.The latter weight variable is updated by procedureUpdate.The procedures used by the main algorithm in Fig-ure 1 are described in Figure 2.Procedure Init de�nes the \bottleneck capacity"cP as the minimum server capacity in P , and then

Call Procedure Init(P = P (s);� = 1)repeatCall Remote Procedure Pumps(P = P (s); � = 1),Call Local Procedure Updates(P = P (s);	(h))where 	(h) = ((3n)2h � 1)=n),until fsP � ds orXe2P weightsP � 1Figure 1: Full-access Maximim-thruput algorithm w.r.t.client s. Uses procedures in Figure 2.De�ne Remote Procedure Pumps(P;�)�fsP  �fsPfsP  fsP +�fsP8e 2 P (s)send message Add LoadsP (�f) to eawait Current LoadsP (h) from ehsP;e  hDe�ne Local Procedure Updates(P;	)weightsP  Xe2P 	(hsP;e)De�ne Procedure Init(P;�)cP  mine2P c(e)fsP  1=n2 �minfds;� � cP gweightsP  0Figure 2: Procedures used for Deadlock Resolution Algo-rithms.sets the initial assignment to be 1=n2 fraction of theminimumbetween demand and the bottleneck capac-ity.Procedure Update computes the non-linear func-tion of the loads at the servers used by this job.Speci�cally, this is the sum, over all the servers, of	(hsP;e), where 	(h) = ((3n)2h � 1)=n. EstimateshsP;e, which are the load on the servers with respectto this source, are determined according to the mes-sages Current LoadsP (h) received from servers. Weshould note that the weight is a measure for the usageof the whole subset (e.g. [SM90]), rather than for aspeci�c server. We may stop increasing the load onset well before any single server over-utilized.Procedure Pumps(P; �) is used to increase the as-signment of job by � factor; in this case we choose� = 1. The need for the graduate growth in the as-signment value is to prevent the e�ect of extremechanges for the load on any server. This proce-dure is also in charge of communicating the new loadAdd LoadsP (�f) to e. It will subsequently wait forthe reply Current LoadsP (h) from e, contains thePage 4



current load on e, and update load estimate hsP;e ac-cordingly.The algorithm executed by each server (see Figure3) is straightforward: simply keep track of its load,and after the load is being changed by some job, theserver reports back the new load.Speci�cally, let Le be the current load on server enormalized by its capacity c(e). Whenever a serverreceives a message Add LoadsP (�f) from job s, itmeans that that this job increased its demand by �f ,and thus the server's load is increased by �f (normal-ized by the c(e)) and the reply Current LoadsP (Le)is sent back, carrying the normalized load on thatserver. for message Add LoadsP (�f) from s:Le  Le +�f=c(e)send Current LoadsP (Le) to sFigure 3: Algorithm execution by each server e.Theorem 2.1 The algorithm in Figure 1 achievesO(logn) throughput-competitiveness, and converges inO(logn) distributed time, either in synchronous or asyn-chronous distributed computation model.Proof: Omitted.2.3 Maximum-throughput arbitraryaccess problemIn a di�erent version of the problem, job s 2 Xmay request access to only one of the resources inY(s). This versions of the problem will be referred toas \OR" version, in contrast to previously discussed\AND" version in which access to all resources is re-quired.More generally, a client s, instead of requesting ac-cess to a single set P , requests access to at least one ofsets of a a collection P(s) = fP1(s); P2(s) : : : Pk(s)g.Each set P 2 P(s) consists of a number of servers,P = fe1i (s); e2i (s); : : : eli(s)g.This captures an arbitrary monotone boolean func-tion (written as a DNF formula), e.g., if client s needseither resource e1 or both resources e2; e3, this corre-sponds to setting P1(s) = fe1g and P2(s) = fe2; e3g.As for the full-access problem, we can de�ne thefractional version of the problem. Here instead ofone variable fs for each job s we have many variablesffsP jP 2 P(s)g, for the di�erent feasible subsets eachjob s. Here each job may split faction of its demandamong the possible feasible subsets.

If we want to select of a given collection of com-munication paths in order to minimize the load, thiscan be captured by presenting the function as sum ofminterms, each minterm representing another com-munication path.2.4 Max-throughput arbitrary accessalgorithmThe algorithm, presented in Figure 4, is just as before,with the di�erence that the job maintains a list of \ac-tive" feasible subsets, with a single feasible subset Pbeing active if its weight is still less than 1, and in-creases its assignment only on active feasible subsets.All the procedures and the server algorithm remainas before, i.e. as in Figures 3 and 2, respectively.for all P 2 P(s), in parallelCall Procedure Init(P;� = 1)repeatfor all P 2 P(s) s.t. weightsP < 1Call Remote Procedure Pumps(P; � = 1)Call Local Procedure Updates(P;	(h))until XP2P(s) fsP � ds or 8P 2 P(s); weightsP � 1Figure 4: Deadlock Resolution Algorithm for the generalcase w.r.t. client s that needs access to one the sets ofservers P 2 P(s). Uses procedures in Figure 2.Theorem 2.2 The algorithm in Figure 4 achievesO(logn) throughput-competitiveness, and converges inO(logn) distributed time, either in synchronous or asyn-chronous distributed computation model.3 Minimum time/load3.1 Problem statementThe input for the Minimum-time deadlock resolutionis the same as for the the arbitrary access throughputproblem. However, the goal is to schedule all the jobsin non-conicting way. More speci�cally we need to�nd a feasible subset P (s) 2 P(s) and a time, (color)T (s) such that the capacity constraints are satis�edat each step i.e.8e; t XsjT (s)=t;e2P (s)ds � c(e):The goal is to minimize the maximum T . We can de-�ne somewhat relaxed version of the problem in whichPage 5



for all P 2 P(s), in parallelCall Procedure Init(P (s);� = ��)a = 1 + =8; � = loga jEj=(1� ) = O(log n)stage 0repeatstage = stage + 1repeatfor all P 2 P(s), s.t. weightsP < 2stage,Call Procedure Pumps(P; � = ��1)Call Local Procedure Updates(P;	e(h))where 	e(h)) = ah=�=c(e)))until 8P 2 P; weightsP > 2stageuntilXP2P fsP � ds or 2stage > � � (� + 2)Figure 5: The load or minimum-time deadlock resolutionfor job s. Uses procedures in Figure 2.we need to choose for each s, P (s) 2 P(s) where thegoal is to minimize the maximum load which isLe = Xsje2P (s) ds=c(e):It is clear that the maximum load is a lower boundfor the minimum-time deadlock resolution since wedo not require that all the resources for some job willbe scheduled simultaneously. Nevertheless, if we as-sume that mine c(e) = 
(logn) � maxds then tech-niques of [LMR88] can be used to achieve a random-ized algorithm for the minimum-time deadlock reso-lution. This increases the competitive ratio only by aconstant factor. Speci�cally, a job chooses a randomslot uniformly among the target number of time slots.The value of this target number is some constant timethe number of slot achieved by the min load algo-rithm. Furthermore, we can de�ne the fractional ver-sion of the load problem as for the throughput prob-lem. Again using randomization one can translate asolution for the fraction problem to a solution to in-teger problem by increasing the competitive ratio byonly a constant factor as described in �nal version.The above allow us to concentrate from now on onthe fractional load problem since its solution yields arandomized solution for minimum-time deadlock res-olution.3.2 Minimum load algorithmThe algorithm in Figure 5 deals with the fractionalload version problem. The algorithm, for each job,proceeds in stages, with the goal of each stage stagebeing to maximally utilize \active feasible subsets".These are de�ned as feasible subsets of \weight" less

or equal to 2stage. The weight of a feasible sub-set is the sum of the weights of individual servers,which grow exponentially with the utilization of theseservers.Throughout a stage, the job will gradually increasethe volume of the jobs sent over the active feasiblesubsets, until all active feasible subsets become \sat-urated" and thus cease being active, or until the as-signed fraction satis�es the demand.Speci�cally, each stage will consist of a number ofphases, each phase increasing the assignment overeach active feasible subset by certain fraction 1=�with some appropriate initial assignment. Increasingthe assignment on a feasible subset P during a phaseis done by calling the procedure Pumps(P; ��1).We assume that the algorithm is given a value ��which is larger or equal to the load of the optimalalgorithm (�� can be found by doubling). Here thefunction 	e(h) is de�ne for some constant a > 1 as	e(h) = ah=��=c(e)which results in settingweightP =Xe2P aLe=��=c(e):The values a and � above de�nes as follows. Leta = 1 + =8 for some arbitrary constant 0 <  < 1and � = loga jEj=(1� ) = O(logn). Also let cP =mine2P c(e). Without loss of generality we normalizethe capacity such that maxe c(e) = 1.Theorem 3.1 The algorithm in Figure 5 (given ��)achieves O(log3 n) time-competitiveness either in syn-chronous or asynchronous distributed computationmodel.Comment: In fact, the algorithm O(logn) time-competitive in centralized model, in which commu-nication between servers and clients takes negligibletime. It converges in O(log3 n) phases.4 Load AnalysisIn this Section, we provide the proof of Theorem 3.1.Since we describe the load version of the problem,jobs are only scheduled but not executed until theend of the scheduling phase. Denote by f iP (k) thevalue of f iP at the end of phase k = ki of job i. Clearlyf iP (k) is 0 for k = 0 and is a monotone non-decreasingfunction of k. The incremental volume of a feasiblesubset P at phase k of job i is denoted as �f iP (k).By de�nition�f iP (k) = f iP (k)� f iP (k � 1) � 0 Page 6



To simplify the formulas, we will use ~Le(t) =Le(t)=�� to denote the normalized load of the dis-tributed algorithm (i.e. load divided by the o�ineload), and will use the ~ notation consistently.For the purpose of analysis we de�ne a mappingfrom the global time t to the index of the phase num-ber of each server. Let ki(t) be the index of the phaseof job i at time t. Also let kiP (t) be the index of thelast phase of job i before time t that feasible subset Pwas active and at a later phase (but still before timet) it was active again.Denote by t� the time immediately after the in-cremental volume of job i subscribed to server e offeasible subset P 2 Pi at phase k. LethiP;e(k) = Le(t�)If P is not active at phase k of job i then its heighton each server is the same as in the previous phase(initially it is 0).We de�ne the relative load of job i on e due tofeasible subsetP at the end of phase k asf iP;e(k) = f iP (k)=c(e)provided that e 2 P (otherwise it is 0) and similarlyde�ne �f iP;e(k).The committed relative load on server e at time t isde�ned by: `e(t) = Xi;P :e2E f iP;e(kiP (t))We call the load which is not yet committed pendingcommitted relative load. Clearly at any time the loadon an server is the sum of the committed load and thepending load. Clearly the the pending load consists ofthe union of the incremental demand of the current orthe last positive incremental demand of each feasiblesubset. We use the notation of ^ for the parametersof the o�-line centralized algorithm. In particular,f̂ iP is the part of the demand that is assign by thecentralized algorithm to the subset P by job i andf̂ iP;e = f̂ iP =c(e)We �rst prove the following lemmasLemma 4.1 For any i,XP Xk �f iP (k) =XP f iP � 2di = 2XP f̂ iPProof: The equalities follows from the de�nitions.We prove the inequality. As long as the job is stillunsatis�ed then by de�nition PP f iP (k) � di. Atthe last phase k0 (i.e when the job becomes satis�ed)the value of each f iP (k0� 1) may increase by a factor

of (1 + 1=�) for f iP (k0 � 1) > 0. Also the value ofat most n feasible subsets may increase from 0 to atmost di=(n2). Thus,XP f iP = XP f iP (k0)� (1 + 1=�)XP f iP (k0 � 1) + n � di=(n2)� (1 + 1=�)di + di=n � 2diThe algorithm maintain the followingDe�nition 4.2 The Main Induction Hypothesis attime t (or up to time t) denote by MIH(t) is as fol-lows: for any job i, any feasible subsets P; P 0 2 Pi inand k � kiP (t)Xe2P a~hiP;e(k)=c(e) � 4Xe2P 0 a~̀e(t)=c(e):Lemma 4.3 MIH(t) implies Pe2E a ~̀e(t) � jEj=(1�) and thus ~̀e(t) � � = O(logn)Proof: If Pe2E a~̀e(t) � jEj=(1 � ) then clearly~̀e(t) � loga(jEj=(1� )) = �MIH(t) with Lemma 4.1 imply that for any iXP Xk�kiP (t)�f iP (k)Xe2P a~hiP;e(k)=c(e)� 8XP f̂ iPXe2P a~̀e(t)=c(e)or 8XP Xk�kiP (t)Xe2E a~hiP;e(k)� ~f iP;e(k)� XP Xe2P a~̀e(t) ~̂f iP;eNote that since a = 1 + =8 we have that 8x �0 : (1� a�x) � (=8)x. Applying the inequality forx = ~f iP;e and using the inequality above yield:XP Xk�kiP (t)Xe2E(a~hiP;e � a~hiP;e(k)�� ~fiP;e(k))= XP Xk�kiP (t)Xe2P a~hiP;e(1� a�� ~fiP;e(k))� 8XP Xk�kiP (t)Xe2E a~hiP;e� ~f iP;e(k)� XP Xe2E a~̀e ~̂f iP;e Page 7



Summing over all currently active jobs, we get:Xi;P Xk�kiP (t)Xe2E(a~hiP;e(k) � a~hiP;e(k)��~fiP;e(k))� Xi;P Xe2E a~̀e(t) ~̂f iP;eExchanging the order of summation yieldsXe2P Xi;P je2E Xk�kiP (t)(a~hiP;e(k) � a~hiP;e(k)��~fiP;e(k))� Xe2E a~̀e(t) Xi;P je2E ~̂f iP;eObserve that the fact that the normalized load ofthe o�ine algorithm never exceeds 1 implies thatPi;P je2P ~̂f iP;e � 1. Also, for each server e the lefthand-side is a telescopic sum without the di�erencescreated by the pending incremental demand on thatserver. However, reducing the height of the each com-mitted incremental demand by the accumulative sizeof the pending demand on that serverwith of lowerheights may only reduce the value of the expres-sion. That results in a telescopic sum which is justa~̀e(t) � a0. Thus we conclude thatXe2E(a~̀e(t) � 1) � Xe2E a~̀e(t)Using the fact that  < 1, we getXe2E a~̀e(t) � jEj=(1� ):Theorem 4.4 The algorithm maintain MIH(t)Proof: Clearly MIH holds initially. New inequalitiesare added to MIH only when some kiP (t) is increased.That occurs after some job i0 starts a new phasewhich causes some previous pending incremental de-mand of feasible subsets in Pi0 to become committed.Let t+ be a time immediately after committing andt� a time just before committing. Both times are atthe same phase ki0 . We assume by induction that theMIH(t�) and show show that it is maintained also att+.By assumption the inequalities hold at t� for anyfeasible subsets P; P 0 2 Pi. Since the right hand-sideis monotonic non-decreasing function of t they alsohold at time t+ for all i; P and k � kiP (t�). Thus,we need to proof the inequalities for any committedP 2 Pi0 and arbitrary P 0 2 Pi0 where k� = ki0P (t+).We �rst proof the following:

Lemma 4.5 For any t � t�, ~Le(t) � ~̀e(t) + 2Proof: There is at most one pending incremental de-mand for each f iP for any unsatis�ed job. The valueof this incremental demand is at most f iP =� if thecommitted ow of job i on feasible subsetP is posi-tive and it is at most ��c(e)=n2 otherwise. Since theload is just the sum of the ow we have~Le(t) � ~̀e(t) � ~̀e(t)� + n � (��c(e)=n2)=(��c(e))= ~̀e(t)� + 1=n � 2where the last inequality follows from the inductivehypothesis and Lemma 4.3Lemma 4.5 implies thatXe2P 0 a~Le(t�)=c(e) � a2Xe2P 0 a~̀e(t�)=c(e):Let stage(ki0) denote the value of the stage of thecurrent phase ki0 of for job i. By the de�nition of astage 2stage(ki0 )�1 � Xe2P 0 a~Le(t�)=c(e)On the other hand since P is currently activeweightP (k�) � 2stage(ki0 ):Moreover, by the monotonicity of the load and thefact that testing the weight of a feasible subsetis com-puted after adding to its owXe2P a~hiP;e(k�)=c(e) � weightP (k�):Combining the above inequalities yields thatXe2P a~hiP;e(k�)=c(e) � 4Xe2P 0 a~̀e(t+)=c(e):We concludeCorollary 4.6 For all t and e,� Pe2E a ~̀e(t) � jEj=(1� )� ~̀e(t) � �� ~Le(t) � ~̀e(t) + 2Proof of Theorem 3.1: By corollary 4.6, ~Le(t) isbounded by O(logn). Thus, the algorithm is O(logn)competitive. Next we bound the number of steps un-til it converges. Consider job i. We claim that afterc� logn phases the value of stage increases by 1 orPage 8



the job is already satis�ed for an appropriate con-stant c. Otherwise there exists a feasible subset Pwhose weight is below 2stage at all these phases andit is active at all of them. Clearly after the �rst phasef iP � minfdi;��cP g=n2. Moreover, the ow is in-creased by a factor of 1+1=� at each phase and henceit increases by factor of (1+1=�)c� logn � 4n2�. Thusafter the c� logn phases the value of the ow is atleast 4� �minfdi;��cP g. If the minimumin the aboveexpression is di then job i is already over-satis�ed andtherefore its assignment was completed. On the otherhand if the minimum is ��cP then the server whosecapacity is cP has relative load ~Le � 4� � �+2 whichcontradicts corollary 4.6.Thus, unless the job it satis�ed stage increasesby 1 every c� logn phases. The minimum possibleweight of a feasible subset is 1 since we normalizedmaxe c(e) = 1. By corollary 4.6, the maximumweightof a feasible subset is jEj=(1�)=mine c(e). Thus bythe claim above the total number of rounds is at mostO(� logn(� + log �)) = O(log3 n)References[AAF+93] Jim Aspnes, Yossi Azar, Amos Fiat, SergePlotkin, and Orli Waarts. On-line load bal-ancing with applications to machine schedul-ing and virtual circuit routing. In Proc. 25thACM Symp. on Theory of Computing, pages623{631, May 1993.[AAP93] Baruch Awerbuch, Yossi Azar, and SergePlotkin. Throughput competitive on-linerouting. In Proc. 34rd IEEE Symp. onFound. of Comp. Science, pages 32{40. IEEE,November 1993.[AAPW94] Baruch Awerbuch, Yossi Azar, Serge Plotkin,and Orli Waarts. Competitive routing ofvirtual circuits with unknown duration. InProc. 5'th ACM-SIAM Symp. on Discrete Al-gorithms, 1994. to appear.[ABFR93] Baruch Awerbuch, Yair Bartal, Amos Fiat,and Adi Ros�en. Competitive non-preemptivecall control. In Proc. 5'th ACM-SIAM Symp.on Discrete Algorithms, 1993. to appear.[ABK92] Yossi Azar, Andrei Broder, and Anna Karlin.On-line load balancing. In Proc. 33rd IEEESymp. on Found. of Comp. Science, pages218{225, October 1992.[ACS94] Baruch Awerbuch, Lenore Cowen, and MarkSmith. E�cient asynchronous distributedsymmetry breaking. In Proc. 26th ACMSymp. on Theory of Computing, May 1994.
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