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Every ation must be due to one or other of seven auses:hane, nature, ompulsion, habit, reasoning, anger, orappetite.| Aristotle, Rhetori, Bk. II.No one wants advie | only orroboration.| John Steinbek, The Winter of Our Disontent.
ABSTRACTExperimental evidene suggests that spetral tehniques arevaluable for a wide range of appliations. A partial list ofsuh appliations inlude (i) semanti analysis of doumentsused to luster douments into areas of interest, (ii) ollab-orative �ltering | the reonstrution of missing data items,and (iii) determining the relative importane of doumentsbased on itation/link struture. Intuitive arguments anexplain some of the phenomena that has been observed butlittle theoretial study has been done. In this paper wepresent a model for framing data mining tasks and a uni-�ed approah to solving the resulting data mining problemsusing spetral analysis. These results give strong justi�a-tion to the use of spetral tehniques for latent semantiindexing, ollaborative �ltering, and web site ranking.
1. INTRODUCTIONSpetral tehniques have proven, at least empirially, use-ful in a variety of data mining appliations [4, 12, 11℄. Toapply these tehniques, the data is typially represented asa set of vetors in a high-dimensional spae. For example, ifthe data set is a orpus of douments, then eah doumentan be represented as a a vetor of terms ~d, where the i-thomponent of the vetor, di, is 1 if the i-th term ours in�Researh supported in part by NSF EIA-9870740 and agrant from the US-Israel Binational Siene Foundation(BSF).yDept. of Computer Siene, Tel Aviv University, Tel-Aviv69978, IsraelzDept. of Computer Siene, University of Washington atSeattle
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the doument and is 0 otherwise. With suh a representa-tion, the entire orpus an be viewed as a matrix, say A,eah of whose olumns represent a doument.The matrix representation an be used for other types ofdata sets where olumns index objets in the data set, rowsindex attributes of those objets, and the [i; j℄ entry of thematrix represents the value of the i-th attribute in the j-thobjet. Some examples of interest are where both rows andolumns refer to web sites and the [i; j℄ entry indiates thatsite i has a link to site j; another is that olumns refer toindividuals, rows refer to produts, and the [i; j℄ entry indi-ates something about how muh individual j likes produti. In this paper, we onsider the appliation of spetral teh-niques to a variety of data mining tasks. We begin by pre-senting a general model that we believe aptures many ofthe essential features of important data mining tasks. Wethen present a set of onditions under whih data miningproblems in this framework an be solved using spetraltehniques, and use these results to theoretially justify theprior empirial suess of these tehniques for tasks suh asobjet lassi�ation and web site ranking. We also use ourtheoretial framework as a foundation for developing new al-gorithms for ollaborative �ltering. Our data mining modelsallow both erroneous and missing data, and show how andwhen spetral tehniques an overome both.The data mining model we introdue assumes that thedata of interest an be represented as an objet/attributematrix. The model is depited in Figure 1 whih showshow three fundamental phenomena ombine to govern theproess by whih a data set is reated:1. A probabilisti model of data M : We assume thatthere exists an underlying set of probability distribu-tions that govern eah objet's attribute values (in thedegenerate ase, these values ould be deterministi-ally hosen). These probability distributions are ap-tured by the probabilisti modelM in the �gure, wherethe random variable desribing the ith attribute of thej-th objet is denoted Mi;j . The atual value of thisattribute is then obtained by sampling from the dis-tribution Mi;j ; we denote the resulting value mij . Weassume that the Mij 's are independent.2. An error proess Z: We assume that the data isnoisy and error-ridden. The error proess Z desribesthe manner by whih the error is generated. We as-sume that the data value mij is orrupted by the ad-dition of the error zij .
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Figure 1: The Data Generation Model3. An omission proess P : Some of the data may notbe available to the data miner. In our model, we as-sume that there is a probability distribution P gov-erning the proess by whih data is omitted or madeavailable. In partiular, the value mij+zij is availableto the data miner with probability pij , and is omittedfrom the data set (whih we represent by the preseneof a \?") with probability 1 � pij . We denote by A�the resulting data set (whih is then input to the datamining algorithm).The goal of the data mining algorithm: given A� asinput (and no knowledge of M , P or Z), obtain meaningfulinformation about M . In partiular, we are interested inobtaining information about the matrix E(M), whose (i; j)entry is the expetation of the random variable Mij .
1.1 Contributions of this PaperClearly, without any assumptions aboutM , Z and P , it ishopeless to ahieve the data mining goal just laid out. The�rst ontribution of this paper is to present a general setof onditions under whih it is possible to eÆiently retrievemeaningful information about E(M). In essene, our resultsshow that if the underlying data model is suÆiently \stru-tured", then the randomness of a probabilisti proess, theaddition of error and the fat that a signi�ant fration ofthe data may be missing will not prevent the data minerfrom reovering meaningful information about the \true"data.More formally, we prove the following general theorem:Theorem 1. Suppose that the availability matrix P isknown to the data mining algorithm, and its entries arebounded away from 0. In addition, suppose that E(M) isa rank k matrix1 with �k = !(pn), and the 2-norm of theerror matrix Z is o(�k), where �k is the k-th singular valueof E(M). Then there is a polynomial time algorithm, thattakes as input only P and A�, that is guaranteed to reon-strut 1� o(1) of the entries of E(M) to within an additiveo(1) error.
Justification of AssumptionsThe fundamental assumption being made in this paper isthat E(M) is well approximated by a low rank matrix. Anatural question to ask is whether suh an assumption isjusti�ed in the ontext of data mining appliations.1Similar results hold if E(M) is well-approximated by a lowrank, say rank k, matrix.

In fat, this question is fundamentally outside the sopeof this paper, but intuitive arguments abound. In ommonto all the appliations we onsider one an argue philosoph-ially that people, produts, douments, terms in lassialGreek, web sites, et., are all inherently determined by orassoiated with a small number of fundamental properties,where eah individual person, produt, word, et., an be de-sribed by a weighted vetor of these base properties. Thus,the justi�ation that E(M) be of low rank. The examplesabove of a doument orpus, personal preferenes and weblinks an all be plaed in this framework. Of ourse, the realjusti�ation is empirial.
1.2 ApplicationsThe seond ontribution of this paper is in showing thatthe data mining model we have desribed aptures a num-ber of bona �de important data mining problems, and inpresenting a uni�ed approah to their solution using Theo-rem 1. In this respet, our major results are the following:
Analysis of LSI as an information retrieval toolLatent semanti indexing (LSI) is a suessful tehnique forinformation retrieval (IR) from douments. It is empiri-ally e�etive at overoming synonymy (ar vs. automobile)and polysemy (WWW spider vs. eight-legged spider). Inan important �rst step towards providing a theoretial jus-ti�ation for the empirial suess of LSI, Papadimitriou,Raghavan, Tamaki and Vempala [14℄ presented a probabilis-ti model desribing the generation of a orpus of doumentson a set of topis and showed that, for douments generatedaording to this model, the k-dimensional subspae pro-dued by LSI yields, with high probability, sharply de�nedlusters among douments on eah topi with respet to theosine measure2. Two limitations of their model are thatdouments are assumed to be nearly \pure" (the subjet ofa single topi) and terms assoiated with di�erent topis areassumed to be disjoint, and hene there is no polysemy intheir model. An open problem from their paper is to extendtheir justi�ation of LSI as an IR tool to more general do-ument generation models, espeially ones whih inorporatepolysemy.We an desribe this open problem as the informationretrival problem, whih is a speial ase of our general datamining model: We assume that the presene of term i in do-ument j (or the value of attribute i for objet j) is a randomvariable with mean E(Mij). Thus, douments of similar se-2whih measures the distane between douments as the o-sine of the angle between their orresponding vetors.



manti omposition are generated from similar probabilitydistributions, however this similarity is hidden from the in-formation retrieval algorithm by the probabilisti generativeproess. We further assume that the orpus is orrupted byan additive error proess Z. The goal of the informationretrieval algorithm is to learn meaningful data about thematrix E(M), suh as the angles between the olumns ofE(M), given only the matrix A� as input.Papadimitriou et. al.'s result essentially shows that LSI isapable of omputing meaningful information about E(M)when it is a partiular type of low rank matrix, namely aslightly perturbed blok matrix. We generalize this to showthat LSI solves the information retrieval problem whenM isan arbitrary matrix suh that E(M) is well approximated bya low rank matrix. We also allow an additional error matrixZ | any error matrix of independent random values withmean 0 and onstant deviation. Thus, our results prove thatLSI works in wider variety of settings than those onsideredby [14℄, and in partiular provides theoretial justi�ationfor the fat that LSI an overome the problem of polysemy.
Collaborative FilteringA fundamental problem in data mining, usually referredto as ollaborative �ltering (or reommendation systems)is to use partial information that has been olleted about agroup of users to make reommendations to individual users.(See e.g., [2, 8, 15, 13, 16, 9℄.) For instane, a movie reom-mendation system might reommend \Happiness" to some-one who enjoyed \Amerian Beauty" or \Alie in Wonder-land" to someone who enjoyed \The Phantom Tollbooth".More generally, ollaborative �ltering an be viewed as theproblem of taking an inomplete data set and attempting todetermine properties of the absent data (perhaps ompletereonstrution). To our knowledge, there has been very littleprior theoretial work on ollaborative �ltering algorithmsother than the work of Kumar, Raghavan, Rajagopalan andTomkins who took an important �rst step of de�ning an an-alyti framework for evaluating ollaborative �ltering [13℄.We model the ollaborative �ltering problem within theframework of our general data mining model as follows: Weassume that the utility of produt j for individual i is givenby a random variable Mij and whih data is missing is de-termined by a probabilisti omission proess P .One again, we assume that the matrix E(M) is well ap-proximated by a low-rank matrix. For the ollaborative �l-tering problem, this an be viewed as a psyhologial as-sumption on the simplisti nature of humankind. Under thisassumption, we present an algorithm that, for any P whoseentries are bounded away from 0, given a random subset ofthe entries of A� (the instantiation of M , followed by dis-arding elements using P ), an provably ompute E(M [i; j℄)for a 1 � o(1) fration of the missing entries of A�, with1� o(1) auray.Comparing these results to those of Kumar et al [13℄, weobserve that their psyhologial assumptions about human-ity are muh more simplisti than ours3, and they also re-quire more a-priori information than we do. Our ollab-orative �ltering algorithms handle any utility matrix witha good low rank approximation. No lustering or a prioriknowledge of objet similarity is required.3It is not perfetly lear that this is a weakness of theirmodel...

Theoretical support for Kleinberg’s algorithmKleinberg's seminal work on web hubs and authorities hashad a true impat on the real world [11℄.We model the determination of hub and authority soreswithin the framework of our data mining model as follows.We assume that the matrix A� is the result of a proba-bilisti proess that determines whether a ertain site willrefer to another or not, based on the true importane (as anauthority or a hub) of a site. The simplest version of theresult assumes that there is a pair of vetors h and a, withentries between 0 and 1, suh that hi represents the trueimportane of web site i as a hub and ai represents the trueimportane of web site i as an authority. The existene of alink from site i to site j is then a Bernoulli random variablewith expetation hiaj .It is an immediate onsequene of our results that Klein-berg's de�nition of importane is robust in the sense that theimportant sites will remain important (almost) irrespetiveof the atual random hoies made when the \real world" isonstruted.
Paper LayoutOur paper will follow the following outline. Setion 2 willgive mathematial preliminaries. In Setion 3, we will presentresults on the stability of the strong singular subspaes ofa matrix A after perturbation by an additive error matrixE. In Setion 4, we will speialize these stability resultsto the ase where the entries of E are independent randomvariables with mean 0 and onstant deviation. Finally, inSetion 5, we use these stability results to solve the datamining problems disussed in the introdution.
2. PRELIMINARIESWe begin by reviewing some bakground material andthen summarize our notation.
2.1 The Singular Value DecompositionThe singular value deomposition (SVD) of an m byn matrix A is a manner of rewriting the matrix asA = UDV Twhere U and V are orthogonal m�m and n�nmatries andD is a diagonal matrix whose diagonal entries, �i, we allthe singular values. These singular values are non-inreasingand non-negative. The singular value deomposition is de-�ned for all A and is unique up to ertain degeneraies in-volving equal singular values. Observe that for vi a olumnof V and ui a olumn of U it is the ase that Avi = �iuiand ATui = �ivi. For this reason, we all (ui; vi) a singularvetor pair. Singular vetor pairs have an assoiation witheigenvetors in that ui and vi are the eigenvetors orre-sponding to the ith largest eigenvalues of the matries AATand ATA respetively.We de�ne the m by n matrix Ak asAk = UkDkV Tkwhere Uk is them�kmatrix onsisting of the �rst k olumnsof U , Dk is the k � k diagonal matrix onsisting of the topk singular values, and Vk is the n � k matrix onsisting ofthe �rst k olumns of V . A very useful property of the SVDis that Ak is the best rank k approximation to A: of all



rank k matries M , Ak minimizes the error jA �M j2. Infat, it is the ase that jA � Akj = �k+1 whih leads us tothe onlusion that �i � �i+1 represents the importane ofinorporating the ith singular vetor pair into our approxi-mation.See [7℄ for a more omplete disussion of the SVD and itsproperties.
2.2 Symmetric versus non-symmetric matri-

cesIn our proofs, we will be interested in applying theoremsabout symmetri matries to non-symmetri matries. Itwill be onvenient for us to use the following well knownrelation [7℄ between the singular value deomposition of anon-symmetri matrix A and the symmetri (eigen) deom-position of the symmetri matrixB = � 0 ATA 0 � :In partiular, observe that if (ui; vi) is a singular vetor pairof A, then both � viui � and � vi�ui �are eigenvetors of the matrix B with eigenvalues �i and ��irespetively. All other eigenvetors have eigenvalue zero. Itis important to note that the top k eigenvetors of B willorrespond to the top k singular vetor pairs of A , and thattheir eigenvalues and singular values orrespond exatly.
2.3 Summary of NotationAs above, let A be some original matrix, E a perturbationmatrix, and bA = A+E.We use the matrix produt UDV T to denote the SVD ofA, and the matrix produt bU bDbV T to denote the SVD of bA.The diagonal elements of D (resp. bD) are the singular valuesof A (resp. bA) and are denoted, in non-inreasing order, �i(resp. b�i). Similarly, we will use Ak = UkDkV Tk (resp.bAk = bUk bDk bV Tk ) to denote the best rank k approximation toA (resp. bA).Throughout the paper we will be using the 2-norm of ma-tries and vetors. The 2-norm of a vetor v is of oursede�ned as jvj2 =pPi v2i . The 2-norm of a matrix isjM j2 = maxjuj2=1 jMuj2We will drop the subsript 2 from all norms for larity.Finally, for any matrix M , we will use M (i) to refer to itsi-th olumn. We denote by ai the projetion of the A(i) ontothe �rst k olumns of U (where the dimension k is impliit),i.e., ai = UTk A(i).
3. THE STABILITY OF SINGULAR SUB-

SPACESThe prinipal work of the paper onerns the potential toretrieve strong singular subspaes of a matrix A after someperturbation E is applied. Analyses in a similar spirit, butless general, have been onduted in [14, 10℄.Central to our results is the following result of Stewart's[7℄ desribing the stability of eigenvetors of symmetri ma-tries after a symmetri error is applied.

Theorem 2 (Stewart). [17℄ Let B and B+F be sym-metri n � n matries with eigenvetorsQ = hQ1 Q2i and bQ = h bQ1 bQ2iwhere both Q1 and bQ1 are n� k matries. Let �i (resp. b�i)be the eigenvalue assoiated with the i-th olumn of Q (resp.bQ). If jF j is o(b�k � �k+1), thenbQ1 = Q1R+ FQwhere R is an orthogonal matrix and jFQj is O� jF jjb�k��k+1j�.We use Stewart's theorem to obtain the following orol-lary.Corollary 3. Let A and bA = A+E be m� n real ma-tries where A = UDV T and bA = bU bDbV Tare the SVDs of A and bA Let Æk = b�k��k+1. If jEj is o(Æk)we an write the �rst k olumns of bU and bV asbUk = UkR+EUbVk = VkR+EVwhere Uk and Vk are the �rst k olumns of U and V respe-tively, R is an orthonormal matrix and the norms of EU andEV are O(jEj=Æk).Proof. We will apply Theorem 2, lettingB = � 0 ATA 0 � and F = � 0 ETE 0 �From Setion 2.2, we have that� viui � and � bvibui �are eigenvetors of B and B + F with orresponding eigen-values �i and b�i. Sine the norm of F is equal to the normof E, and b�k � �k+1 = b�k � �k+1, Theorem 2 allows us toonlude that � bVkbUk � = � VkUk �R+ � EVEU �whih we deompose into the onlusion of the orollary.We are now able to present the main result of this setion,whih gives the preise assumptions needed to preserve theangles between rows or olumns of a matrix projeted intoits top k singular vetors after it is perturbed by an addi-tive error matrix. We will show later that there are manyappliations where all of these assumptions are met.Theorem 4. Let A and bA = A+E be m�n real matries.Assume that jEj 2 o(b�k � �k+1). We de�neai = UTk A(i) bai = bUTk bA(i) and ei = bUTk E(i)



If it is the ase thatjaij 2 �(jA(i)j) and jeij 2 o(jaij)then it is the ase thatjai �Rbaij 2 o(jaij) and jA(i)k � bA(i)k j 2 o(jA(i)k j)Proof. We will apply Corollary 3 and onlude thatETU =bUTk � RTUTk has norm o(1). Reall that we assume thatjaij 2 �(jA(i)j) and jeij 2 o(jaij).jai �Rbaij = jai �RbUTk bA(i)j= jai �RbUTk A(i) +RbUTk E(i)j= jai � (UTk +RETU )A(i) +Reij= j �RETUA(i) +Reij� jETUA(i)j + jeij2 o(jaij)The seond result is of a similar nature, but has one parti-ular advantage over the relation between ai and bai. Namely,we are atually able to ompute bA(i)k from bA, whereas om-putation of Rbai requires knowledge of the matrix R, whihis unfortunately unavailable for the purposes of our datamining appliations.jA(i)k � bA(i)k j = jUkai � bUkbaij= jUkai � (UkR+EU)baij= jUkai � UkRbai �EUbaij� jUk(ai �Rbai)j+ jEUbaij� jai �Rbaij+ jEU jjbaij2 o(jaij)2 o(jA(i)k j)Theorem 4 generalizes results from [14, 10℄ from the asewhere Ak is a blok diagonal matrix onsisting of k bloksto the ase where Ak is an arbitrary rank k matrix.Although the theorem is presented in terms of olumns, itapplies equally well in the the ontext of rows of A and bA.We will be partiularly interested in angles between ve-tors. Let \(x; y) denote the angle between vetors x and y.A simple extension of spatial proximity to angular proximityan be used to obtain the following orollary.Corollary 5. Let ai and aj be projeted olumns of A.4If both ai and aj satisfy the onditions in Theorem 4, thenit is the ase that1. j\(ai; aj)� \(bai;baj)j 2 o(1)2. j\(A(i)k ; A(j)k )� \( bA(i)k ; bA(j)k )j 2 o(1)4In fat, one or both ould be projeted rows of A.

4. STABILITY UNDER RANDOM PERTUR-
BATIONFor the data mining appliations we shall study, we willneed to speialize Theorem 4 to the ase where the error Eintrodued is a random matrix whose entries are indepen-dent random variables with mean zero and onstant devi-ation. Doing so yields the following orollary to Theorem4. Corollary 6. Let A be a matrix with�k � �k+1 2 !(pm+ n):Let bA = A + E, where E is a matrix whose entries areindependent random variables with mean zero and onstantdeviation. Let ai = UTk A(i) be the projetion of the i-th ol-umn of A onto A's top k singular vetors. Let ei = bUTk E(i).We say that this olumn is good if jaij is �(jA(i)j) and jeijis o(jaij). Then, with high probability, for all good olumnsi, 1. jai �Rbaij 2 o(jaij)2. jA(i)k � bA(i)k j 2 o(jA(i)k j):3. jA(i)k [`℄ � bA(i)k [`℄j 2 o(1) for all but o(m) values of `.Moreover, for any pair of olumns i, j, suh that both satisfythe previous onditions it follows that:1. j\(ai; aj)� \(bai;baj)j 2 o(1)2. j\(A(i)k ; A(j)k )�\( bA(i)k ; bA(j)k )j 2 o(1).The same results hold, mutatis mutandis, for rows of thematries A and bA.Proof. This orollary's proof lies in observing that thenorm of a random matrix whose entries are independentrandom variables with mean zero and onstant deviation isalmost ertainly �(pm+ n). This follows from a result ofBoppana5 [5℄ showing that suh a symmetri random matrixof dimension n has norm O(pn) with high probability. Weapply this observation to the matrix� 0 ETE 0 �whih has the same norm as E. Therefore, we get a boundof O(pm+ n) on jEj. Sine, in addition, �k � �k � jEj, wean onlude that jEj 2 o(�k � �k+1), and thus Theorem 4applies.From the fat that the angles between good olumns hangeby nominal amounts, we an onlude that the fration of en-tries in these olumns whose error is 
(1) is at most o(1).

Remarks1. Corollary 6 applies only to to olumns whih are \good".What does this really mean? The ondition that ai is�(jA(i)j) means that the i-th olumn of the matrix iswell represented by the top k singular vetors. For ex-ample, if A were rank k every olumn would satisfythis ondition. This ondition is here to avoid om-pliations with vetors who are not well desribed by5who in turn extended a result of Furedi and Komlos [6℄



the struture of A. Note that these vetors would bepoorly approximated in Ak even without random er-ror. The seond ondition, that ei 2 o(jaij), is almostalways true for those jaij 2 !(1). (See Lemma 10 inthe Appendix for a preise version of this statement.)2. When we apply orollary 6 we atually assume thatb�k � b�k+1 2 !(pm+ n). Our purpose in so doing isto present the theorems in a form that allows the dataminer to verify that the preonditions of the theoremhold. b�k � b�k+1 2 !(pm+ n) follows by observingthat for any i, j�i � b�ij � jEj and jEj 2 O(pm+ n).Thus, �k � �k+1 2 !(pm+ n), if and only if b�k �b�k+1 2 !(pm+ n).
5. DATA MININGWe next show how Corollary 6 an be used to solve someof the data mining questions desribed in the introdution.
5.1 Information RetrievalWe begin by onsidering the information retrieval problemdisussed in Setion 1.2. In this ontext take A = E(M), amatrix whose [i; j℄ entry is the expetation of Mij , the ran-dom variable used to generate the (i; j)th entry of the puremodel matrix. Let bA be the matrix whose [i; j℄th oordinateontains a sample of the random variable, namely mij .Our �rst goal is to determine information about the ma-trix A, given the matrix bA. This typially is of the formof information extration (atual entries in A) or similar-ity (the angles between rows or olumns of A). Corollary 6implores us to take the following approah to this problem:61. Determine the largest k suh thatb�k+1 � b�k = !(pm+ n):2. Compute bAk the optimal rank k approximation to bA.3. For any desired information about A, use the answerobtained by onsidering bAk instead.The on�dene we have in the information output by thisproess is given in the following theorem.Theorem 7. Let M , A and bA be de�ned as above, and letthe notion of a good olumn or row be de�ned as in Corollary6. Assume that the random variables in M have onstantstandard deviation and the separation b�k�b�k+1 of the matrixbA is !(pm+ n). Then with probability 1�o(1), for all goodolumns j, jA(j)k [`℄� bA(j)k [`℄j 2 o(1)for all but o(m) values of `. Moreover, for all good olumnsi and j:� jA(j)k � bA(j)k j 2 o(jA(j)k j)� j\(A(i)k ; A(j)k )� \( bA(i)k ; bA(j)k )j 2 o(1)Analagous statements hold for good rows.6We have desribed all the algorithms in this paper usingasymptoti notation. These an be onverted to well-de�nedalgorithms by replaing the asymptoti notation with appro-priate (small) absolute onstants.

Proof. Consider the error between the matries bA andA. Any partiular entry in this error matrix E = bA� A isa random variable with the distributionE[i; j℄ = mi;j �E(Mi;j):Therefore, entries in this matrix are independent randomvariables with mean zero. From the seond remark afterCorollary 6, we an assume that �k � �k+1 = !(pm+ n).Additionally, sine the deviations of E[i; j℄ are bounded, wean apply Corollary 6 to onlude that the angles betweengood rows and olumns and most entries in good rows andolumns hange by nominal amounts.It is straightforward to see that if bA is further orruptedby the addition of an error matrix whose entries have mean0 and onstant deviation, the same onlusions hold.
5.1.1 Discussion of Latent Semantic IndexingThe impliations of Theorem 7 with respet to the use ofLSI for information retrieval in douments should be fairlylear. Though the result is more general, for illustration pur-poses, onsider the speial ase where the presene of termi in doument j is an independent Bernoulli random vari-able with expetation A[i; j℄. Douments of similar semantiomposition will be generated from very similar probabil-ity distributions (i.e., orresponding doument vetors in Awill be nearly idential). Notie however, that even if theprobability distributions for two olumns are idential, theresulting douments obtained from the random rounding ofthose probabilities (olumns in bA) an be signi�antly dif-ferent. Theorem 7 says that the similarity of the two do-uments in terms of the underlying generative model will bereovered in the transformation to bAk. Similarly, two dou-ments with polysemous terms, say a doument on the topiof the world-wide-web and a doument on spider webs, willbe well separated in bAk, despite the high probability of theword \web" appearing in eah, if the underlying generativemodels for eah are well separated.Thus, bAk, the k-dimensional subspae produed by LSIwhen applied to the probabilistially generated matrix bA,yields, with high probability, sharply de�ned lusters amongdouments of similar omposition in terms of the underly-ing model A (with respet to the osine measure). This ofourse assumes that A is well approximated by a rank k ma-trix itself. A rih rank k doument generation model ouldbe de�ned, for example, by assuming that there are k se-manti ategories or topis from whih the douments areonstruted, and letting A be the produt of two matries Tand D, where T is an m� k matrix whose (i; `)-th entry isthe probability that a doument on topi ` ontains term i,and D is a k�n matrix whose (`; j)-th entry is the frationof doument j on topi `.Theorem 7 thus helps explain the e�etiveness of LSI asa tehnique for information retrieval and, in partiular, fordealing with polysemy and synonymy.
5.1.2 Discussion of Kleinberg’s Link AnalysisWe desribed in Setion 1.2 a generative model for the linkstruture of the web, de�ned by a pair of vetors h and a,suh that there is an link from site i to site j ( bAij = 1) withprobability hiaj . In this ase the matrix E(M) is a rank onematrix. Theorem 7 tells us that omputing the top left andright singular vetors of Â will allow us to reover almost



all the entries in h and a, and hene the true importane ofweb sites.
5.2 Collaborative FilteringWe next onsider the problem of mining an inompletedata set, as for example we would need to do for the ollab-orative �ltering problem.
A Model for Collaborative FilteringWe model the ollaborative �ltering problem as follows.� Let A represent a omplete data set (anm�nmatrix).� Omit entry A[i; j℄ with probability pij , (where omis-sions are independent of one another). We denote theresulting symboli matrix A�, so we have:A�[i; j℄ = � A[i; j℄ w.p. pij? w.p. 1� pijwhere \?" is a plaeholder indiating omitted data.� Retrieve meaningful information about A, suh as thevalues of the ?s.
A Collaborative Filtering AlgorithmWe propose the following algorithm, alled CF , for reover-ing the ?'s assuming that the omission probabilities pij areknown. We will later desribe a tehnique for estimating thepij values.1. De�ne the matrix bA as follows:bA[i; j℄ = � A[i; j℄=pij if A�[i; j℄ 6= ?0 if A�[i; j℄ = ?2. Compute the SVD of bA.3. For eah [i; j℄ entry of A� that is ?, output bAk[i; j℄ asthe estimate of A[i; j℄.
Analysis of the Algorithm CFWe next show that the algorithm CF sueeds in reon-struting most of the missing entries of the matrix A.Theorem 8. Let A, A� and bA be de�ned as above, and letthe notion of a good olumn or row be de�ned as in Corollary6. Then if� all pij 2 
(1), and� the separation b�k�b�k+1 of the matrix bA is !(pm+ n),then with probability 1� o(1), in any good olumn (or row),1 � o(1) of the entries of Ak are reonstruted to within anadditive error of o(1).Proof. One again, onsider the error between the ma-trix bA and our original matrix A. Note that any partiularentry in E = bA�A is a random variable with the distribu-tion E[i; j℄ = ( A[i;j℄pij �A[i; j℄ w.p. pij�A[i; j℄ w.p. 1� pijThus, the matrix E is omposed of independent randomvariables with mean zero and standard deviation (pij�1 �1)1=2A[i; j℄. Therefore, provided the pij are 
(1) and theA[i; j℄ areO(1), Corollary 6 applies, yielding the theorem.

Estimating The Omission ProbabilitiesThe algorithm just presented assumed that the probabilityof retention of a partiular parel of data was well knownto the algorithm. Suh information is of ourse unlikelyto be available in pratie, as the only observation of theprobabilities lies in the sampled values.However, if we believe that the probabilities of retentionthemselves exhibit struture,7 not dissimilar to the assump-tion on the nature of A, we will be able to reover a verygood approximation to the matrix of probabilities, using thetehniques of Setion 5.1 as follows:� Let bP be the matrix obtained by taking the matrix A�and replaing all ?s with 0 and all present data with a1.� Compute the largest k suh that�0k+1 � �0k = !(pm+ n);where �0i is the i-th singular value of bP .� Compute bPk.� Use bPk[i; j℄ as an approximation to the omission prob-ability pij .Sine bP is a random rounding of the matrix P = fpijg, wean retrieve \good" approximations (in the sense of Theorem7) to the pij , using this tehnique.It is important to note, however, that our proof of theperformane of CF relies on having the preise omissionprobabilities. At this time, we do not know whether thesame performane is guaranteed if CF takes as input onlya very good approximation to the omission probabilities.Resolving this question is a key open problem.
5.3 The General Data Mining ModelIt should be fairly obvious by now that very similar algo-rithms and theorems to those presented about the spei�appliations suh as information retrieval and ollaborative�ltering an be provided for the general data mining model{ the spetral tehniques are robust in the presene of theombination of probabilisti data set generation, noise in-trodution and data omission. We leave the details to thefull paper, but feel they should be fairly obvious from thedisussion to this point. One key aveat, as just mentioned,is that we do not yet fully understand the e�et of using theestimated omission probabilities in the matrix P (as justdesribed) in the ollaborative �ltering step.Perhaps the key limitation of the general data miningmodel is the fat that the random variables that form the7This might be the ase, if there are only a small numberof possible reasons that an item is omitted from A. Forexample, if omission ours beause ustomer j is entirelyunaware and has no opinion on produt i, then a low rankP an be easily justi�ed. If \awareness" is a funtion of ad-vertising on TV and radio, and every person has TV/Radiolistening habits and every produt has a TV/Radio adver-tising budget then we would expet P to be of rank 2. The(i; j) entry of P would reet the produt of j's TV habitstimes i's TV budget plus the produt of j's Radio habitstimes i's radio budget. Alternatively, the probabilities in Pexhibit the right sort of struture if they are proportional tothe values in A beause, for example, people are more likelyto buy things they like, or go to movies they like.



entries of M are assumed to be generated independently.Removing this restrition is an important diretion for fu-ture researh.
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7. APPENDIXWe will need the following lemma.Lemma 9. Let feig be a set of n random vetors of lengthm where eah oordinate of eah vetor is an independentrandom variable with mean 0 and bounded in absolute valueby some onstant . Let U be an m by k matrix whoseolumns are orthonormal, where k is a onstant. If fi isthe projetion of ei onto U , i.e., fTi = eTi U , then� Eah jfij is O(1) with probability 1� o(1).

� All jfij are O(plog(n)) with probability 1� o(1).Proof. Let U (`) be the `th olumn of U . De�ne Xk =P1�j�k ei[j℄U (`)[j℄, so that Xm = eTi U (`). Then the se-queneXk is learly a martingale, and jXk�Xk�1j � jU `[k℄j.Applying Azuma's inequality (see [MR95℄, p. 92) we getthatPr(jXmj � �) � 2 exp� ��222jU (`)j2� = 2 exp���222 � :For � 2 !(1), we obtain the �rst laim. Letting � = Cplog(n),for an appropriately large C and applying a union bound,we obtain the seond laim.Lemma 10. Under the onditions of Corollary 6, with prob-ability 1� o(1), it is the ase that� jeij 2 o(pm+ n)� jeij 2 O(1) for all but o(n) olumnsProof. Reall thatjeij = jbUTk E(i)j� jRTUTk E(i)j + jETUE(i)jLemma 9 indiates that the norm of the �rst term is er-tainly o(pm+ n). The seond term is the produt of ao(1) norm matrix with a O(pm+ n) norm vetor, yieldinga o(pm+ n) vetor. Together these give us the �rst asser-tion.The seond assertion is slightly more ompliated. Again,Lemma 9 indiates that the �rst term is O(1) for almost allolumns. Conerning the seond term, note the Frobeniusnorm of EUE. Reall thatjEUEj2F =Xi �2iEUE is rank k, and thus has at most k singular values. Eahof these singular values is o(pm+ n), bounding jEUEj2F 2o(m+ n). As it is also the ase that for any matrix MXi jM (i)j2 = jM j2F ;we an infer that the sum of squared length of olumns inEUE is o(m + n). Therefore the number of olumns withlength 
(1) is o(m+ n)


