Spectral Analysis of Data-

Yossi Azart Amos Fiat'

Every action must be due to one or other of seven causes:
chance, nature, compulsion, habit, reasoning, anger, or
appetite.

— Aristotle, Rhetoric, Bk. II.
No one wants advice — only corroboration.

— John Steinbeck, The Winter of Our Discontent.

ABSTRACT

Experimental evidence suggests that spectral techniques are
valuable for a wide range of applications. A partial list of
such applications include (i) semantic analysis of documents
used to cluster documents into areas of interest, (ii) collab-
orative filtering — the reconstruction of missing data items,
and (iii) determining the relative importance of documents
based on citation/link structure. Intuitive arguments can
explain some of the phenomena that has been observed but
little theoretical study has been done. In this paper we
present a model for framing data mining tasks and a uni-
fied approach to solving the resulting data mining problems
using spectral analysis. These results give strong justifica-
tion to the use of spectral techniques for latent semantic
indexing, collaborative filtering, and web site ranking.

1. INTRODUCTION

Spectral techniques have proven, at least empirically, use-
ful in a variety of data mining applications [4, 12, 11]. To
apply these techniques, the data is typically represented as
a set of vectors in a high-dimensional space. For example, if
the data set is a corpus of documents, then each document
can be represented as a a vector of terms J: where the i-th
component of the vector, d;, is 1 if the i-th term occurs in
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the document and is 0 otherwise. With such a representa-
tion, the entire corpus can be viewed as a matrix, say A,
each of whose columns represent a document.

The matrix representation can be used for other types of
data sets where columns index objects in the data set, rows
index attributes of those objects, and the [7, j] entry of the
matrix represents the value of the i-th attribute in the j-th
object. Some examples of interest are where both rows and
columns refer to web sites and the [4, j] entry indicates that
site ¢ has a link to site j; another is that columns refer to
individuals, rows refer to products, and the [é, j] entry indi-
cates something about how much individual j likes product
i.

In this paper, we consider the application of spectral tech-
niques to a variety of data mining tasks. We begin by pre-
senting a general model that we believe captures many of
the essential features of important data mining tasks. We
then present a set of conditions under which data mining
problems in this framework can be solved using spectral
techniques, and use these results to theoretically justify the
prior empirical success of these techniques for tasks such as
object classification and web site ranking. We also use our
theoretical framework as a foundation for developing new al-
gorithms for collaborative filtering. Our data mining models
allow both erroneous and missing data, and show how and
when spectral techniques can overcome both.

The data mining model we introduce assumes that the
data of interest can be represented as an object/attribute
matrix. The model is depicted in Figure 1 which shows
how three fundamental phenomena combine to govern the
process by which a data set is created:

1. A probabilistic model of data M: We assume that
there exists an underlying set of probability distribu-
tions that govern each object’s attribute values (in the
degenerate case, these values could be deterministi-
cally chosen). These probability distributions are cap-
tured by the probabilistic model M in the figure, where
the random variable describing the ith attribute of the
j-th object is denoted M; ;. The actual value of this
attribute is then obtained by sampling from the dis-
tribution M; ;; we denote the resulting value m;;. We
assume that the M;;’s are independent.

2. An error process Z: We assume that the data is
noisy and error-ridden. The error process Z describes
the manner by which the error is generated. We as-
sume that the data value m;; is corrupted by the ad-
dition of the error z;;.
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Figure 1: The Data Generation Model

3. An omission process P: Some of the data may not
be available to the data miner. In our model, we as-
sume that there is a probability distribution P gov-
erning the process by which data is omitted or made
available. In particular, the value m;; + z;; is available
to the data miner with probability p;;, and is omitted
from the data set (which we represent by the presence
of a “?”) with probability 1 — p;;. We denote by A*
the resulting data set (which is then input to the data
mining algorithm).

The goal of the data mining algorithm: given A" as
input (and no knowledge of M, P or Z), obtain meaningful
information about M. In particular, we are interested in
obtaining information about the matrix E(M), whose (i, 7)
entry is the expectation of the random variable M;;.

1.1 Contributions of this Paper

Clearly, without any assumptions about M, Z and P, it is
hopeless to achieve the data mining goal just laid out. The
first contribution of this paper is to present a general set
of conditions under which it is possible to efficiently retrieve
meaningful information about E(M). In essence, our results
show that if the underlying data model is sufficiently “struc-
tured”, then the randomness of a probabilistic process, the
addition of error and the fact that a significant fraction of
the data may be missing will not prevent the data miner
from recovering meaningful information about the “true”
data.

More formally, we prove the following general theorem:

THEOREM 1. Suppose that the availability matriz P is
known to the data mining algorithm, and its entries are
bounded away from 0. In addition, suppose that E(M) is
a rank k matriz* with o, = w(\/n), and the 2-norm of the
error matriz Z 1is o(oy), where ok is the k-th singular value
of E(M). Then there is a polynomial time algorithm, that
takes as input only P and A*, that is guaranteed to recon-
struct 1 — o(1) of the entries of E(M) to within an additive
o(1) error.

Justification of Assumptions

The fundamental assumption being made in this paper is
that E(M) is well approximated by a low rank matrix. A
natural question to ask is whether such an assumption is
justified in the context of data mining applications.

!Similar results hold if E(M) is well-approximated by a low
rank, say rank k, matrix.

In fact, this question is fundamentally outside the scope
of this paper, but intuitive arguments abound. In common
to all the applications we consider one can argue philosoph-
ically that people, products, documents, terms in classical
Greek, web sites, etc., are all inherently determined by or
associated with a small number of fundamental properties,
where each individual person, product, word, etc., can be de-
scribed by a weighted vector of these base properties. Thus,
the justification that E(M) be of low rank. The examples
above of a document corpus, personal preferences and web
links can all be placed in this framework. Of course, the real
justification is empirical.

1.2 Applications

The second contribution of this paper is in showing that
the data mining model we have described captures a num-
ber of bona fide important data mining problems, and in
presenting a unified approach to their solution using Theo-
rem 1. In this respect, our major results are the following:

Analysisof LS as an information retrieval tool

Latent semantic indezing (LSI) is a successful technique for
information retrieval (IR) from documents. It is empiri-
cally effective at overcoming synonymy (car vs. automobile)
and polysemy (WWW spider vs. eight-legged spider). In
an important first step towards providing a theoretical jus-
tification for the empirical success of LSI, Papadimitriou,
Raghavan, Tamaki and Vempala [14] presented a probabilis-
tic model describing the generation of a corpus of documents
on a set of topics and showed that, for documents generated
according to this model, the k-dimensional subspace pro-
duced by LSI yields, with high probability, sharply defined
clusters among documents on each topic with respect to the
cosine measure?. Two limitations of their model are that
documents are assumed to be nearly “pure” (the subject of
a single topic) and terms associated with different topics are
assumed to be disjoint, and hence there is no polysemy in
their model. An open problem from their paper is to extend
their justification of LSI as an IR tool to more general doc-
ument generation models, especially ones which incorporate
polysemy.

We can describe this open problem as the information
retrival problem, which is a special case of our general data
mining model: We assume that the presence of term ¢ in doc-
ument j (or the value of attribute ¢ for object 5) is a random
variable with mean E(M;;). Thus, documents of similar se-

2which measures the distance between documents as the co-
sine of the angle between their corresponding vectors.



mantic composition are generated from similar probability
distributions, however this similarity is hidden from the in-
formation retrieval algorithm by the probabilistic generative
process. We further assume that the corpus is corrupted by
an additive error process Z. The goal of the information
retrieval algorithm is to learn meaningful data about the
matrix E(M), such as the angles between the columns of
E(M), given only the matrix A™ as input.

Papadimitriou et. al.’s result essentially shows that LSI is
capable of computing meaningful information about E(M)
when it is a particular type of low rank matrix, namely a
slightly perturbed block matrix. We generalize this to show
that LSI solves the information retrieval problem when M is
an arbitrary matrix such that E(M) is well approximated by
a low rank matrix. We also allow an additional error matrix
Z — any error matrix of independent random values with
mean 0 and constant deviation. Thus, our results prove that
LSI works in wider variety of settings than those considered
by [14], and in particular provides theoretical justification
for the fact that LSI can overcome the problem of polysemy.

Collaborative Filtering

A fundamental problem in data mining, usually referred
to as collaborative filtering (or recommendation systems)
is to use partial information that has been collected about a
group of users to make recommendations to individual users.
(See e.g., [2, 8,15, 13, 16, 9].) For instance, a movie recom-
mendation system might recommend “Happiness” to some-
one who enjoyed “American Beauty” or “Alice in Wonder-
land” to someone who enjoyed “The Phantom Tollbooth”.
More generally, collaborative filtering can be viewed as the
problem of taking an incomplete data set and attempting to
determine properties of the absent data (perhaps complete
reconstruction). To our knowledge, there has been very little
prior theoretical work on collaborative filtering algorithms
other than the work of Kumar, Raghavan, Rajagopalan and
Tomkins who took an important first step of defining an an-
alytic framework for evaluating collaborative filtering [13].

We model the collaborative filtering problem within the
framework of our general data mining model as follows: We
assume that the utility of product j for individual ¢ is given
by a random variable M;; and which data is missing is de-
termined by a probabilistic omission process P.

Once again, we assume that the matrix E(M) is well ap-
proximated by a low-rank matrix. For the collaborative fil-
tering problem, this can be viewed as a psychological as-
sumption on the simplistic nature of humankind. Under this
assumption, we present an algorithm that, for any P whose
entries are bounded away from 0, given a random subset of
the entries of A* (the instantiation of M, followed by dis-
carding elements using P), can provably compute E(M][i, j])
for a 1 — o(1) fraction of the missing entries of A*, with
1 — o(1) accuracy.

Comparing these results to those of Kumar et al [13], we
observe that their psychological assumptions about human-
ity are much more simplistic than ours®, and they also re-
quire more a-priori information than we do. Our collab-
orative filtering algorithms handle any utility matrix with
a good low rank approximation. No clustering or a priori
knowledge of object similarity is required.

It is not perfectly clear that this is a weakness of their
model...

Theoretical support for Kleinberg's algorithm

Kleinberg’s seminal work on web hubs and authorities has
had a true impact on the real world [11].

We model the determination of hub and authority scores
within the framework of our data mining model as follows.
We assume that the matrix A* is the result of a proba-
bilistic process that determines whether a certain site will
refer to another or not, based on the true importance (as an
authority or a hub) of a site. The simplest version of the
result assumes that there is a pair of vectors h and a, with
entries between 0 and 1, such that h; represents the true
importance of web site 7 as a hub and a; represents the true
importance of web site ¢ as an authority. The existence of a
link from site ¢ to site j is then a Bernoulli random variable
with expectation h;a;.

It is an immediate consequence of our results that Klein-
berg’s definition of importance is robust in the sense that the
important sites will remain important (almost) irrespective
of the actual random choices made when the “real world” is
constructed.

Paper Layout

Our paper will follow the following outline. Section 2 will
give mathematical preliminaries. In Section 3, we will present
results on the stability of the strong singular subspaces of
a matrix A after perturbation by an additive error matrix
E. In Section 4, we will specialize these stability results
to the case where the entries of E are independent random
variables with mean 0 and constant deviation. Finally, in
Section 5, we use these stability results to solve the data
mining problems discussed in the introduction.

2. PRELIMINARIES

We begin by reviewing some background material and
then summarize our notation.

2.1 The Singular Value Decomposition

The singular value decomposition (SVD) of an m by
n matrix A is a manner of rewriting the matrix as

A=UDVT

where U and V are orthogonal m xm and n xn matrices and
D is a diagonal matrix whose diagonal entries, o;, we call
the singular values. These singular values are non-increasing
and non-negative. The singular value decomposition is de-
fined for all A and is unique up to certain degeneracies in-
volving equal singular values. Observe that for v; a column
of V and u; a column of U it is the case that Av; = o;u;
and ATu; = o;v;. For this reason, we call (u;,v;) a singular
vector pair. Singular vector pairs have an association with
eigenvectors in that w; and v; are the eigenvectors corre-
sponding to the it® largest eigenvalues of the matrices AAT
and AT A respectively.
We define the m by n matrix Ay as

A, =U,Dy, VkT

where Uy, is the m x k matrix consisting of the first k columns
of U, Dy, is the k x k diagonal matrix consisting of the top
k singular values, and V}, is the n x k matrix consisting of
the first k columns of V. A very useful property of the SVD
is that Ay is the best rank k approximation to A: of all



rank k matrices M, A; minimizes the error |[A — M|>. In
fact, it is the case that |A — A| = ok41 which leads us to
the conclusion that o; — 041 represents the importance of
incorporating the ith singular vector pair into our approxi-
mation.

See [7] for a more complete discussion of the SVD and its
properties.

2.2 Symmetric versus non-symmetric matri-
ces

In our proofs, we will be interested in applying theorems
about symmetric matrices to non-symmetric matrices. It
will be convenient for us to use the following well known
relation [7] between the singular value decomposition of a
non-symmetric matrix A and the symmetric (eigen) decom-
position of the symmetric matrix

_[o AT
s[4

In particular, observe that if (u;,v;) is a singular vector pair

of A, then both
{ vi ] and [ vi ]
Ui —U;

are eigenvectors of the matrix B with eigenvalues o; and —o;
respectively. All other eigenvectors have eigenvalue zero. It
is important to note that the top k eigenvectors of B will
correspond to the top k singular vector pairs of A | and that
their eigenvalues and singular values correspond exactly.

2.3 Summary of Notation

As above, let A be some original matrix, E a perturbation
matrix, and A=A+E.

We use the matrix product UDV'T to denote the SVD of
A, and the matrix product UDVT to denote the SVD of A.
The diagonal elements of D (resp. ﬁ) are the singular values
of A (resp. 121\) and are denoted, in non-increasing order, o;
(resp. ;). Similarly, we will use Ay = U,DV;" (resp.
A = Ukﬁkf}f) to denote the best rank k approximation to
A (resp. A).

Throughout the paper we will be using the 2-norm of ma-

trices and vectors. The 2-norm of a vector v is of course
_ 2 s
defined as |v|2 = \/>_, v7. The 2-norm of a matrix is

|M|2 = max |Mul»
[ul2=1

We will drop the subscript 2 from all norms for clarity.

Finally, for any matrix M, we will use M@ to refer to its
i-th column. We denote by a; the projection of the A% onto
the first k columns of U (where the dimension k is implicit),
ie, a; =UFA®D,

3. THE STABILITY OF SINGULAR SUB-
SPACES

The principal work of the paper concerns the potential to
retrieve strong singular subspaces of a matrix A after some
perturbation F is applied. Analyses in a similar spirit, but
less general, have been conducted in [14, 10].

Central to our results is the following result of Stewart’s
[7] describing the stability of eigenvectors of symmetric ma-
trices after a symmetric error is applied.

THEOREM 2  (STEWART). [17] Let B and B+F be sym-
metric n X n matrices with eigenvectors

Q= [Ql Q2] and Q = [Ql Q2]

where both Q1 and Ql are n X k matrices. Let A; (resp. 3\\1)
be the eigenvalue associated with the i-th column of Q (resp.

Q). If |F| is oAr — Apt1), then
Q1 =QiR+ Fq
where R is an orthogonal matriz and |Fg| is O (ﬁ)
We use Stewart’s theorem to obtain the following corol-
lary.

COROLLARY 3. Let A and A= A+ E be m x n real ma-
trices where

A=UDVT and A=UDVT

are the SVDs of A and A Let Op =0k — kg1 If |E| is o(6r)
we can write the first k columns of U and V as

Ux = U.R+Eu
Vi = ViR+ FEvy

where Uy, and Vi, are the first k columns of U and V respec-
tively, R is an orthonormal matriz and the norms of Ey and
Ev are O(|E|/ék).

Proor. We will apply Theorem 2, letting

0 AT
A 0

From Section 2.2, we have that

MESE
u; u;

are eigenvectors of B and B + F with corresponding eigen-
values o; and o;. Since the norm of F is equal to the norm
of E, and Ay — A\p41 = 0k — 0k+1, Theorem 2 allows us to

conclude that
A[/k Vi R Ev
{ UAk ] { Uk ] [ Ey ]

which we decompose into the conclusion of the corollary. [

B:{ E 0

e (1]

We are now able to present the main result of this section,
which gives the precise assumptions needed to preserve the
angles between rows or columns of a matrix projected into
its top k singular vectors after it is perturbed by an addi-
tive error matrix. We will show later that there are many
applications where all of these assumptions are met.

THEOREM 4. Let A and A = A+FE be mxn real matrices.
Assume that |E| € o(Gr — ort1). We define

a; = UL AW a; = (?EE(“ and e; = ﬁg‘E(i)



If it is the case that

la;| € (AP  and
then it is the case that

lei| € o(ail)

lai — Ras| € o(lasl)  and  |A{Y — A{"| € o(|A}"))

PrROOF. We will apply Corollary 3 and conclude that Ef =
UL — RTUT has norm o(1). Recall that we assume that
lai] € (JAD|) and |ei| € o(|as]).

la; — RUF A

la; — RUF A® + RUFE®)
= lai — (UF + RED)AY) + Re;|
= |- REFAY 4 Rey

< |BFAY| + el

€ oflail)

The second result is of a similar nature, but has one partic-
ular advantage over the relation between a; and a;. Namely,

la; — Ra|

we are actually able to compute .21\,(;) from 121\, whereas com-
putation of Ra; requires knowledge of the matrix R, which
is unfortunately unavailable for the purposes of our data
mining applications.

A — AP = |Urai — Uedi
|Uka; — (UpyR + Ev)a;|
|Ukai — UkR?ii — EUai|

< |Uk(ai — Ra;)| + |Evas|
< lai — Rai| + |Ev|[ai]

€ oflail)

€ o4

O

Theorem 4 generalizes results from [14, 10] from the case
where Ay is a block diagonal matrix consisting of k blocks
to the case where Ay is an arbitrary rank k matrix.

Although the theorem is presented in terms of columns, it
applies equally well in the the context of rows of A and A.

We will be particularly interested in angles between vec-
tors. Let Z(x,y) denote the angle between vectors z and y.
A simple extension of spatial proximity to angular proximity
can be used to obtain the following corollary.

COROLLARY 5. Let a; and a; be projected columns of A.*
If both a; and a; satisfy the conditions in Theorem 4, then
it is the case that

1. |L(ai,a;) — Z(@i,a;)| € o(1)

2. |£(AP,AD) — £(AP A € o(1)

*In fact, one or both could be projected rows of A.

4. STABILITY UNDER RANDOM PERTUR-
BATION

For the data mining applications we shall study, we will
need to specialize Theorem 4 to the case where the error F
introduced is a random matrix whose entries are indepen-
dent random variables with mean zero and constant devi-
ation. Doing so yields the following corollary to Theorem
4.

COROLLARY 6. Let A be a matriz with
ok — Ok+1 € w(vVm +n).

Let A = A+ E, where E is a matrix whose entries are
independent random variables with mean zero and constant
deviation. Let a; = UL A be the projection of the i-th col-
umn of A onto A’s top k singular vectors. Let e; = (/J\',?E(i).
We say that this column is good if |a;| is 8(JAD|) and |e;]|
s 0(|asi|). Then, with high probability, for all good columns
2

1. |(Li — R?L\Z| € O(|(Ll|)
214} = A7| € o(14”)).
3. |A,(:)[£] — zzl\,iz)[fﬂ € o(1) for all but o(m) values of £.

Moreover, for any pair of columns i, 7, such that both satisfy
the previous conditions it follows that:

1. |4(ai,a;) — ZL(@;,a;)| € o(1)
2. |£(AP, AD) — £(A, A7)] € o(1).

The same results hold, mutatis mutandis, for rows of the
matrices A and A.

Proor. This corollary’s proof lies in observing that the
norm of a random matrix whose entries are independent
random variables with mean zero and constant deviation is
almost certainly 6(v/m + n). This follows from a result of
Boppana® [5] showing that such a symmetric random matrix
of dimension n has norm O(y/n) with high probability. We
apply this observation to the matrix

0o ET
E 0
which has the same norm as E. Therefore, we get a bound
of O(v/m + n) on |E|. Since, in addition, o}, > o, — |E|, we
can conclude that |E| € o(dy — ok+1), and thus Theorem 4
applies.
From the fact that the angles between good columns change

by nominal amounts, we can conclude that the fraction of en-
tries in these columns whose error is Q(1) is at most o(1). [

Remarks

1. Corollary 6 applies only to to columns which are “good”.
What does this really mean? The condition that a; is
9(|A™|) means that the i-th column of the matrix is
well represented by the top k singular vectors. For ex-
ample, if A were rank k every column would satisfy
this condition. This condition is here to avoid com-
plications with vectors who are not well described by

who in turn extended a result of Furedi and Komlos [6]



the structure of A. Note that these vectors would be
poorly approximated in Ay even without random er-
ror. The second condition, that e; € o(|a;]), is almost
always true for those |a;| € w(1). (See Lemma 10 in
the Appendix for a precise version of this statement.)

2. When we apply corollary 6 we actually assume that
Ok — 0k+1 € w(v/m +n). Our purpose in so doing is
to present the theorems in a form that allows the data
miner to verify that the preconditions of the theorem
hold. &1 — Gr+1 € w(v/m + n) follows by observing
that for any ¢, |o; —oi| < |E| and |E| € O(v/m + n).
Thus, or — ok+1 € w(v/m +n), if and only if 7 —
Tr+1 € w(v/m +n).

5. DATA MINING

We next show how Corollary 6 can be used to solve some
of the data mining questions described in the introduction.

5.1 Information Retrieval

We begin by considering the information retrieval problem
discussed in Section 1.2. In this context take A = E(M), a
matrix whose [i, j] entry is the expectation of M;;, the ran-
dom variable used to generate the (i, 7)th entry of the pure
model matrix. Let A be the matrix whose [i, j]th coordinate
contains a sample of the random variable, namely m;;.

Our first goal is to determine information about the ma-
trix A, given the matrix A. This typically is of the form
of information extraction (actual entries in A) or similar-
ity (the angles between rows or columns of A). Corollary 6
implores us to take the following approach to this problem:®

1. Determine the largest k such that
Ok+1 — 0 = w(vVm +n).
2. Compute A\k the optimal rank k approximation to A.

3. For any desired information about A, use the answer
obtained by considering A instead.

The confidence we have in the information output by this
process is given in the following theorem.

THEOREM 7. Let M, A and A be defined as above, and let
the notion of a good column or row be defined as in Corollary
6. Assume that the random wvariables in M have constant
standard deviation and the separation G —0 g1 of the matriz

A is w(v/m + n). Then with probability 1—o(1), for all good
columns j,

1A 1) — AP[0)] € o(1)

for all but o(m) walues of £. Moreover, for all good columns
iandj:

o |47 = A7| € o(1A}))
o |£(AY,AY) — £(A, A7) € o(1)

Analagous statements hold for good rows.

5We have described all the algorithms in this paper using
asymptotic notation. These can be converted to well-defined
algorithms by replacing the asymptotic notation with appro-
priate (small) absolute constants.

Proor. Consider the error between the matrices A and
A. Any particular entry in this error matrix £ = A — A is
a random variable with the distribution

Eli, j] = mi,; — BE(M, ;).

Therefore, entries in this matrix are independent random
variables with mean zero. From the second remark after
Corollary 6, we can assume that o — or+1 = w(v/m +n).
Additionally, since the deviations of E[i, j] are bounded, we
can apply Corollary 6 to conclude that the angles between
good rows and columns and most entries in good rows and
columns change by nominal amounts. [

It is straightforward to see that if A is further corrupted
by the addition of an error matrix whose entries have mean
0 and constant deviation, the same conclusions hold.

5.1.1 Discussion of Latent Semantic Indexing

The implications of Theorem 7 with respect to the use of
LSI for information retrieval in documents should be fairly
clear. Though the result is more general, for illustration pur-
poses, consider the special case where the presence of term
¢ in document j is an independent Bernoulli random vari-
able with expectation A[i, j]. Documents of similar semantic
composition will be generated from very similar probabil-
ity distributions (i.e., corresponding document vectors in A
will be nearly identical). Notice however, that even if the
probability distributions for two columns are identical, the
resulting documents obtained from the random rounding of
those probabilities (columns in A\) can be significantly dif-
ferent. Theorem 7 says that the similarity of the two doc-
uments in terms of the underlying generative model will be
recovered in the transformation to A\k Similarly, two docu-
ments with polysemous terms, say a document on the topic
of the world-wide-web and a document on spider webs, will
be well separated in A.\k, despite the high probability of the
word “web” appearing in each, if the underlying generative
models for each are well separated.

Thus, A.\k, the k-dimensional subspace produced by LSI
when applied to the probabilistically generated matrix A\,
yields, with high probability, sharply defined clusters among
documents of similar composition in terms of the underly-
ing model A (with respect to the cosine measure). This of
course assumes that A is well approximated by a rank k£ ma-
trix itself. A rich rank k document generation model could
be defined, for example, by assuming that there are k se-
mantic categories or topics from which the documents are
constructed, and letting A be the product of two matrices T'
and D, where T is an m x k matrix whose (i, £)-th entry is
the probability that a document on topic ¢ contains term g,
and D is a k X n matrix whose (¢, j)-th entry is the fraction
of document j on topic £.

Theorem 7 thus helps explain the effectiveness of LSI as
a technique for information retrieval and, in particular, for
dealing with polysemy and synonymy.

5.1.2 Discussion of Kleinberg's Link Analysis

We described in Section 1.2 a generative model for the link
structure of the web, defined by a pair of vectors h and a,
such that there is an link from site ¢ to site j (A\” = 1) with
probability h;a;. In this case the matrix E(M) is a rank one
matrix. Theorem 7 tells us that computing the top left and

right singular vectors of A will allow us to recover almost



all the entries in h and a, and hence the true importance of
web sites.

5.2 Collaborative Filtering

We next consider the problem of mining an incomplete
data set, as for example we would need to do for the collab-
orative filtering problem.

A Model for Collaborative Filtering
We model the collaborative filtering problem as follows.
e Let A represent a complete data set (an m X n matrix).

e Omit entry A[é, j] with probability p;;, (where omis-
sions are independent of one another). We denote the
resulting symbolic matrix A*, so we have:

where “?” is a placeholder indicating omitted data.

W.p. Pij
W.p. 1 — Pij

e Retrieve meaningful information about A, such as the
values of the 7s.

A Collaborative Filtering Algorithm

We propose the following algorithm, called C'F’, for recover-
ing the ?7’s assuming that the omission probabilities p;; are
known. We will later describe a technique for estimating the
pi; values.

1. Define the matrix A as follows:
an o= § Al pi AT ] # 7
Ali, 7] —{ 0 it A%[ij] =

2. Compute the SVD of A.

3. For each [i, j] entry of A* that is 7, output A\k[i,j] as
the estimate of A[s, j].

Analysis of the Algorithm CF
We next show that the algorithm CF succeeds in recon-

structing most of the missing entries of the matrix A.

THEOREM 8. Let A, A* and A be defined as above, and let
the notion of a good column or row be defined as in Corollary
6. Then if

e all pij € Q(1), and

o the separation G —ki1 of the matriz A is w(vm+n),
then with probability 1 — o(1), in any good column (or row),

1 —o(1) of the entries of Ay are reconstructed to within an
additive error of o(1).

PROOF. Once again, consider the error between the ma-
trix A and our original matrix A. Note that any particular
entry in E = A — A is a random variable with the distribu-

tion
Alidl _ Al 5 -
E[l,]] — Pij o A[la.]] W.P. Pij
—Ali, jl w.p. 1—pj
Thus, the matrix E is composed of independent random
variables with mean zero and standard deviation (p;; ' —
1)'/2A[i, j]. Therefore, provided the p;; are Q(1) and the
Ali, j] are O(1), Corollary 6 applies, yielding the theorem. [

Estimating The Omission Probabilities

The algorithm just presented assumed that the probability
of retention of a particular parcel of data was well known
to the algorithm. Such information is of course unlikely
to be available in practice, as the only observation of the
probabilities lies in the sampled values.

However, if we believe that the probabilities of retention
themselves exhibit structure,” not dissimilar to the assump-
tion on the nature of A, we will be able to recover a very
good approximation to the matrix of probabilities, using the
techniques of Section 5.1 as follows:

e Let P be the matrix obtained by taking the matrix A*
and replacing all ?s with 0 and all present data with a
1.

e Compute the largest k such that
Thr1 — 0, = w(Vm +n),
where o} is the i-th singular value of p.
e Compute P.

o Use ﬁk [i, 7] as an approximation to the omission prob-
ability Pij-

Since P is a random rounding of the matrix P = {pij }, we
can retrieve “good” approximations (in the sense of Theorem
7) to the p;j, using this technique.

It is important to note, however, that our proof of the
performance of C'F relies on having the precise omission
probabilities. At this time, we do not know whether the
same performance is guaranteed if C'F' takes as input only
a very good approximation to the omission probabilities.
Resolving this question is a key open problem.

5.3 The General Data Mining Model

It should be fairly obvious by now that very similar algo-
rithms and theorems to those presented about the specific
applications such as information retrieval and collaborative
filtering can be provided for the general data mining model
— the spectral techniques are robust in the presence of the
combination of probabilistic data set generation, noise in-
troduction and data omission. We leave the details to the
full paper, but feel they should be fairly obvious from the
discussion to this point. One key caveat, as just mentioned,
is that we do not yet fully understand the effect of using the
estimated omission probabilities in the matrix P (as just
described) in the collaborative filtering step.

Perhaps the key limitation of the general data mining
model is the fact that the random variables that form the

"This might be the case, if there are only a small number
of possible reasons that an item is omitted from A. For
example, if omission occurs because customer j is entirely
unaware and has no opinion on product %, then a low rank
P can be easily justified. If “awareness” is a function of ad-
vertising on TV and radio, and every person has TV /Radio
listening habits and every product has a TV/Radio adver-
tising budget then we would expect P to be of rank 2. The
(4,7) entry of P would reflect the product of j’s TV habits
times ¢’s TV budget plus the product of j’s Radio habits
times i’s radio budget. Alternatively, the probabilities in P
exhibit the right sort of structure if they are proportional to
the values in A because, for example, people are more likely
to buy things they like, or go to movies they like.



entries of M are assumed to be generated independently.
Removing this restriction is an important direction for fu-
ture research.
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7. APPENDIX

We will need the following lemma.

LEMMA 9. Let {e;} be a set of n random vectors of length
m where each coordinate of each vector is an independent
random variable with mean 0 and bounded in absolute value
by some constant c. Let U be an m by k matriz whose
columns are orthonormal, where k is a constant. If f; is
the projection of e; onto U, i.e., ff = el U, then

e Fach |fi| is O(1) with probability 1 — o(1).

o All|fi| are O(y/log(n)) with probability 1 — o(1).

ProOF. Let U be the fth column of U. Define X =
2i<ji<h ei[jlUP[j], so that X,, = efU®. Then the se-
quence X, is clearly a martingale, and | X}, — X5 1| < |cU*[K]|.
Applying Azuma’s inequality (see [MR95], p. 92) we get
that

-\’ -\’

For A € w(1), we obtain the first claim. Letting A = C'y/log(n),
for an appropriately large C and applying a union bound,
we obtain the second claim.

O

LEMMA 10. Under the conditions of Corollary 6, with prob-
ability 1 — o(1), it is the case that

* |eil € o(Vm +n)

e |e;| € O(1) for all but o(n) columns

Proor. Recall that
les] = |UFEY)
< |RTULEW| + |EFEY)

Lemma 9 indicates that the norm of the first term is cer-
tainly o(v/m +n). The second term is the product of a
o(1) norm matrix with a O(v/m + n) norm vector, yielding
a o(v/m + n) vector. Together these give us the first asser-
tion.

The second assertion is slightly more complicated. Again,
Lemma 9 indicates that the first term is O(1) for almost all
columns. Concerning the second term, note the Frobenius
norm of Ey E. Recall that

|EvE|p =) o}

Ey E is rank k, and thus has at most k singular values. Each
of these singular values is o(v/m + n), bounding |Ey E|} €
o(m +n). As it is also the case that for any matrix M

ST IMOP = M7,

(2

we can infer that the sum of squared length of columns in
EyE is o(m + n). Therefore the number of columns with
length Q(1) is o(m +n) O



