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Every a
tion must be due to one or other of seven 
auses:
han
e, nature, 
ompulsion, habit, reasoning, anger, orappetite.| Aristotle, Rhetori
, Bk. II.No one wants advi
e | only 
orroboration.| John Steinbe
k, The Winter of Our Dis
ontent.
ABSTRACTExperimental eviden
e suggests that spe
tral te
hniques arevaluable for a wide range of appli
ations. A partial list ofsu
h appli
ations in
lude (i) semanti
 analysis of do
umentsused to 
luster do
uments into areas of interest, (ii) 
ollab-orative �ltering | the re
onstru
tion of missing data items,and (iii) determining the relative importan
e of do
umentsbased on 
itation/link stru
ture. Intuitive arguments 
anexplain some of the phenomena that has been observed butlittle theoreti
al study has been done. In this paper wepresent a model for framing data mining tasks and a uni-�ed approa
h to solving the resulting data mining problemsusing spe
tral analysis. These results give strong justi�
a-tion to the use of spe
tral te
hniques for latent semanti
indexing, 
ollaborative �ltering, and web site ranking.
1. INTRODUCTIONSpe
tral te
hniques have proven, at least empiri
ally, use-ful in a variety of data mining appli
ations [4, 12, 11℄. Toapply these te
hniques, the data is typi
ally represented asa set of ve
tors in a high-dimensional spa
e. For example, ifthe data set is a 
orpus of do
uments, then ea
h do
ument
an be represented as a a ve
tor of terms ~d, where the i-th
omponent of the ve
tor, di, is 1 if the i-th term o
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the do
ument and is 0 otherwise. With su
h a representa-tion, the entire 
orpus 
an be viewed as a matrix, say A,ea
h of whose 
olumns represent a do
ument.The matrix representation 
an be used for other types ofdata sets where 
olumns index obje
ts in the data set, rowsindex attributes of those obje
ts, and the [i; j℄ entry of thematrix represents the value of the i-th attribute in the j-thobje
t. Some examples of interest are where both rows and
olumns refer to web sites and the [i; j℄ entry indi
ates thatsite i has a link to site j; another is that 
olumns refer toindividuals, rows refer to produ
ts, and the [i; j℄ entry indi-
ates something about how mu
h individual j likes produ
ti. In this paper, we 
onsider the appli
ation of spe
tral te
h-niques to a variety of data mining tasks. We begin by pre-senting a general model that we believe 
aptures many ofthe essential features of important data mining tasks. Wethen present a set of 
onditions under whi
h data miningproblems in this framework 
an be solved using spe
tralte
hniques, and use these results to theoreti
ally justify theprior empiri
al su

ess of these te
hniques for tasks su
h asobje
t 
lassi�
ation and web site ranking. We also use ourtheoreti
al framework as a foundation for developing new al-gorithms for 
ollaborative �ltering. Our data mining modelsallow both erroneous and missing data, and show how andwhen spe
tral te
hniques 
an over
ome both.The data mining model we introdu
e assumes that thedata of interest 
an be represented as an obje
t/attributematrix. The model is depi
ted in Figure 1 whi
h showshow three fundamental phenomena 
ombine to govern thepro
ess by whi
h a data set is 
reated:1. A probabilisti
 model of data M : We assume thatthere exists an underlying set of probability distribu-tions that govern ea
h obje
t's attribute values (in thedegenerate 
ase, these values 
ould be deterministi-
ally 
hosen). These probability distributions are 
ap-tured by the probabilisti
 modelM in the �gure, wherethe random variable des
ribing the ith attribute of thej-th obje
t is denoted Mi;j . The a
tual value of thisattribute is then obtained by sampling from the dis-tribution Mi;j ; we denote the resulting value mij . Weassume that the Mij 's are independent.2. An error pro
ess Z: We assume that the data isnoisy and error-ridden. The error pro
ess Z des
ribesthe manner by whi
h the error is generated. We as-sume that the data value mij is 
orrupted by the ad-dition of the error zij .
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Figure 1: The Data Generation Model3. An omission pro
ess P : Some of the data may notbe available to the data miner. In our model, we as-sume that there is a probability distribution P gov-erning the pro
ess by whi
h data is omitted or madeavailable. In parti
ular, the value mij+zij is availableto the data miner with probability pij , and is omittedfrom the data set (whi
h we represent by the presen
eof a \?") with probability 1 � pij . We denote by A�the resulting data set (whi
h is then input to the datamining algorithm).The goal of the data mining algorithm: given A� asinput (and no knowledge of M , P or Z), obtain meaningfulinformation about M . In parti
ular, we are interested inobtaining information about the matrix E(M), whose (i; j)entry is the expe
tation of the random variable Mij .
1.1 Contributions of this PaperClearly, without any assumptions aboutM , Z and P , it ishopeless to a
hieve the data mining goal just laid out. The�rst 
ontribution of this paper is to present a general setof 
onditions under whi
h it is possible to eÆ
iently retrievemeaningful information about E(M). In essen
e, our resultsshow that if the underlying data model is suÆ
iently \stru
-tured", then the randomness of a probabilisti
 pro
ess, theaddition of error and the fa
t that a signi�
ant fra
tion ofthe data may be missing will not prevent the data minerfrom re
overing meaningful information about the \true"data.More formally, we prove the following general theorem:Theorem 1. Suppose that the availability matrix P isknown to the data mining algorithm, and its entries arebounded away from 0. In addition, suppose that E(M) isa rank k matrix1 with �k = !(pn), and the 2-norm of theerror matrix Z is o(�k), where �k is the k-th singular valueof E(M). Then there is a polynomial time algorithm, thattakes as input only P and A�, that is guaranteed to re
on-stru
t 1� o(1) of the entries of E(M) to within an additiveo(1) error.
Justification of AssumptionsThe fundamental assumption being made in this paper isthat E(M) is well approximated by a low rank matrix. Anatural question to ask is whether su
h an assumption isjusti�ed in the 
ontext of data mining appli
ations.1Similar results hold if E(M) is well-approximated by a lowrank, say rank k, matrix.

In fa
t, this question is fundamentally outside the s
opeof this paper, but intuitive arguments abound. In 
ommonto all the appli
ations we 
onsider one 
an argue philosoph-i
ally that people, produ
ts, do
uments, terms in 
lassi
alGreek, web sites, et
., are all inherently determined by orasso
iated with a small number of fundamental properties,where ea
h individual person, produ
t, word, et
., 
an be de-s
ribed by a weighted ve
tor of these base properties. Thus,the justi�
ation that E(M) be of low rank. The examplesabove of a do
ument 
orpus, personal preferen
es and weblinks 
an all be pla
ed in this framework. Of 
ourse, the realjusti�
ation is empiri
al.
1.2 ApplicationsThe se
ond 
ontribution of this paper is in showing thatthe data mining model we have des
ribed 
aptures a num-ber of bona �de important data mining problems, and inpresenting a uni�ed approa
h to their solution using Theo-rem 1. In this respe
t, our major results are the following:
Analysis of LSI as an information retrieval toolLatent semanti
 indexing (LSI) is a su

essful te
hnique forinformation retrieval (IR) from do
uments. It is empiri-
ally e�e
tive at over
oming synonymy (
ar vs. automobile)and polysemy (WWW spider vs. eight-legged spider). Inan important �rst step towards providing a theoreti
al jus-ti�
ation for the empiri
al su

ess of LSI, Papadimitriou,Raghavan, Tamaki and Vempala [14℄ presented a probabilis-ti
 model des
ribing the generation of a 
orpus of do
umentson a set of topi
s and showed that, for do
uments generateda

ording to this model, the k-dimensional subspa
e pro-du
ed by LSI yields, with high probability, sharply de�ned
lusters among do
uments on ea
h topi
 with respe
t to the
osine measure2. Two limitations of their model are thatdo
uments are assumed to be nearly \pure" (the subje
t ofa single topi
) and terms asso
iated with di�erent topi
s areassumed to be disjoint, and hen
e there is no polysemy intheir model. An open problem from their paper is to extendtheir justi�
ation of LSI as an IR tool to more general do
-ument generation models, espe
ially ones whi
h in
orporatepolysemy.We 
an des
ribe this open problem as the informationretrival problem, whi
h is a spe
ial 
ase of our general datamining model: We assume that the presen
e of term i in do
-ument j (or the value of attribute i for obje
t j) is a randomvariable with mean E(Mij). Thus, do
uments of similar se-2whi
h measures the distan
e between do
uments as the 
o-sine of the angle between their 
orresponding ve
tors.
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omposition are generated from similar probabilitydistributions, however this similarity is hidden from the in-formation retrieval algorithm by the probabilisti
 generativepro
ess. We further assume that the 
orpus is 
orrupted byan additive error pro
ess Z. The goal of the informationretrieval algorithm is to learn meaningful data about thematrix E(M), su
h as the angles between the 
olumns ofE(M), given only the matrix A� as input.Papadimitriou et. al.'s result essentially shows that LSI is
apable of 
omputing meaningful information about E(M)when it is a parti
ular type of low rank matrix, namely aslightly perturbed blo
k matrix. We generalize this to showthat LSI solves the information retrieval problem whenM isan arbitrary matrix su
h that E(M) is well approximated bya low rank matrix. We also allow an additional error matrixZ | any error matrix of independent random values withmean 0 and 
onstant deviation. Thus, our results prove thatLSI works in wider variety of settings than those 
onsideredby [14℄, and in parti
ular provides theoreti
al justi�
ationfor the fa
t that LSI 
an over
ome the problem of polysemy.
Collaborative FilteringA fundamental problem in data mining, usually referredto as 
ollaborative �ltering (or re
ommendation systems)is to use partial information that has been 
olle
ted about agroup of users to make re
ommendations to individual users.(See e.g., [2, 8, 15, 13, 16, 9℄.) For instan
e, a movie re
om-mendation system might re
ommend \Happiness" to some-one who enjoyed \Ameri
an Beauty" or \Ali
e in Wonder-land" to someone who enjoyed \The Phantom Tollbooth".More generally, 
ollaborative �ltering 
an be viewed as theproblem of taking an in
omplete data set and attempting todetermine properties of the absent data (perhaps 
ompletere
onstru
tion). To our knowledge, there has been very littleprior theoreti
al work on 
ollaborative �ltering algorithmsother than the work of Kumar, Raghavan, Rajagopalan andTomkins who took an important �rst step of de�ning an an-alyti
 framework for evaluating 
ollaborative �ltering [13℄.We model the 
ollaborative �ltering problem within theframework of our general data mining model as follows: Weassume that the utility of produ
t j for individual i is givenby a random variable Mij and whi
h data is missing is de-termined by a probabilisti
 omission pro
ess P .On
e again, we assume that the matrix E(M) is well ap-proximated by a low-rank matrix. For the 
ollaborative �l-tering problem, this 
an be viewed as a psy
hologi
al as-sumption on the simplisti
 nature of humankind. Under thisassumption, we present an algorithm that, for any P whoseentries are bounded away from 0, given a random subset ofthe entries of A� (the instantiation of M , followed by dis-
arding elements using P ), 
an provably 
ompute E(M [i; j℄)for a 1 � o(1) fra
tion of the missing entries of A�, with1� o(1) a

ura
y.Comparing these results to those of Kumar et al [13℄, weobserve that their psy
hologi
al assumptions about human-ity are mu
h more simplisti
 than ours3, and they also re-quire more a-priori information than we do. Our 
ollab-orative �ltering algorithms handle any utility matrix witha good low rank approximation. No 
lustering or a prioriknowledge of obje
t similarity is required.3It is not perfe
tly 
lear that this is a weakness of theirmodel...

Theoretical support for Kleinberg’s algorithmKleinberg's seminal work on web hubs and authorities hashad a true impa
t on the real world [11℄.We model the determination of hub and authority s
oreswithin the framework of our data mining model as follows.We assume that the matrix A� is the result of a proba-bilisti
 pro
ess that determines whether a 
ertain site willrefer to another or not, based on the true importan
e (as anauthority or a hub) of a site. The simplest version of theresult assumes that there is a pair of ve
tors h and a, withentries between 0 and 1, su
h that hi represents the trueimportan
e of web site i as a hub and ai represents the trueimportan
e of web site i as an authority. The existen
e of alink from site i to site j is then a Bernoulli random variablewith expe
tation hiaj .It is an immediate 
onsequen
e of our results that Klein-berg's de�nition of importan
e is robust in the sense that theimportant sites will remain important (almost) irrespe
tiveof the a
tual random 
hoi
es made when the \real world" is
onstru
ted.
Paper LayoutOur paper will follow the following outline. Se
tion 2 willgive mathemati
al preliminaries. In Se
tion 3, we will presentresults on the stability of the strong singular subspa
es ofa matrix A after perturbation by an additive error matrixE. In Se
tion 4, we will spe
ialize these stability resultsto the 
ase where the entries of E are independent randomvariables with mean 0 and 
onstant deviation. Finally, inSe
tion 5, we use these stability results to solve the datamining problems dis
ussed in the introdu
tion.
2. PRELIMINARIESWe begin by reviewing some ba
kground material andthen summarize our notation.
2.1 The Singular Value DecompositionThe singular value de
omposition (SVD) of an m byn matrix A is a manner of rewriting the matrix asA = UDV Twhere U and V are orthogonal m�m and n�nmatri
es andD is a diagonal matrix whose diagonal entries, �i, we 
allthe singular values. These singular values are non-in
reasingand non-negative. The singular value de
omposition is de-�ned for all A and is unique up to 
ertain degenera
ies in-volving equal singular values. Observe that for vi a 
olumnof V and ui a 
olumn of U it is the 
ase that Avi = �iuiand ATui = �ivi. For this reason, we 
all (ui; vi) a singularve
tor pair. Singular ve
tor pairs have an asso
iation witheigenve
tors in that ui and vi are the eigenve
tors 
orre-sponding to the ith largest eigenvalues of the matri
es AATand ATA respe
tively.We de�ne the m by n matrix Ak asAk = UkDkV Tkwhere Uk is them�kmatrix 
onsisting of the �rst k 
olumnsof U , Dk is the k � k diagonal matrix 
onsisting of the topk singular values, and Vk is the n � k matrix 
onsisting ofthe �rst k 
olumns of V . A very useful property of the SVDis that Ak is the best rank k approximation to A: of all



rank k matri
es M , Ak minimizes the error jA �M j2. Infa
t, it is the 
ase that jA � Akj = �k+1 whi
h leads us tothe 
on
lusion that �i � �i+1 represents the importan
e ofin
orporating the ith singular ve
tor pair into our approxi-mation.See [7℄ for a more 
omplete dis
ussion of the SVD and itsproperties.
2.2 Symmetric versus non-symmetric matri-

cesIn our proofs, we will be interested in applying theoremsabout symmetri
 matri
es to non-symmetri
 matri
es. Itwill be 
onvenient for us to use the following well knownrelation [7℄ between the singular value de
omposition of anon-symmetri
 matrix A and the symmetri
 (eigen) de
om-position of the symmetri
 matrixB = � 0 ATA 0 � :In parti
ular, observe that if (ui; vi) is a singular ve
tor pairof A, then both � viui � and � vi�ui �are eigenve
tors of the matrix B with eigenvalues �i and ��irespe
tively. All other eigenve
tors have eigenvalue zero. Itis important to note that the top k eigenve
tors of B will
orrespond to the top k singular ve
tor pairs of A , and thattheir eigenvalues and singular values 
orrespond exa
tly.
2.3 Summary of NotationAs above, let A be some original matrix, E a perturbationmatrix, and bA = A+E.We use the matrix produ
t UDV T to denote the SVD ofA, and the matrix produ
t bU bDbV T to denote the SVD of bA.The diagonal elements of D (resp. bD) are the singular valuesof A (resp. bA) and are denoted, in non-in
reasing order, �i(resp. b�i). Similarly, we will use Ak = UkDkV Tk (resp.bAk = bUk bDk bV Tk ) to denote the best rank k approximation toA (resp. bA).Throughout the paper we will be using the 2-norm of ma-tri
es and ve
tors. The 2-norm of a ve
tor v is of 
oursede�ned as jvj2 =pPi v2i . The 2-norm of a matrix isjM j2 = maxjuj2=1 jMuj2We will drop the subs
ript 2 from all norms for 
larity.Finally, for any matrix M , we will use M (i) to refer to itsi-th 
olumn. We denote by ai the proje
tion of the A(i) ontothe �rst k 
olumns of U (where the dimension k is impli
it),i.e., ai = UTk A(i).
3. THE STABILITY OF SINGULAR SUB-

SPACESThe prin
ipal work of the paper 
on
erns the potential toretrieve strong singular subspa
es of a matrix A after someperturbation E is applied. Analyses in a similar spirit, butless general, have been 
ondu
ted in [14, 10℄.Central to our results is the following result of Stewart's[7℄ des
ribing the stability of eigenve
tors of symmetri
 ma-tri
es after a symmetri
 error is applied.

Theorem 2 (Stewart). [17℄ Let B and B+F be sym-metri
 n � n matri
es with eigenve
torsQ = hQ1 Q2i and bQ = h bQ1 bQ2iwhere both Q1 and bQ1 are n� k matri
es. Let �i (resp. b�i)be the eigenvalue asso
iated with the i-th 
olumn of Q (resp.bQ). If jF j is o(b�k � �k+1), thenbQ1 = Q1R+ FQwhere R is an orthogonal matrix and jFQj is O� jF jjb�k��k+1j�.We use Stewart's theorem to obtain the following 
orol-lary.Corollary 3. Let A and bA = A+E be m� n real ma-tri
es where A = UDV T and bA = bU bDbV Tare the SVDs of A and bA Let Æk = b�k��k+1. If jEj is o(Æk)we 
an write the �rst k 
olumns of bU and bV asbUk = UkR+EUbVk = VkR+EVwhere Uk and Vk are the �rst k 
olumns of U and V respe
-tively, R is an orthonormal matrix and the norms of EU andEV are O(jEj=Æk).Proof. We will apply Theorem 2, lettingB = � 0 ATA 0 � and F = � 0 ETE 0 �From Se
tion 2.2, we have that� viui � and � bvibui �are eigenve
tors of B and B + F with 
orresponding eigen-values �i and b�i. Sin
e the norm of F is equal to the normof E, and b�k � �k+1 = b�k � �k+1, Theorem 2 allows us to
on
lude that � bVkbUk � = � VkUk �R+ � EVEU �whi
h we de
ompose into the 
on
lusion of the 
orollary.We are now able to present the main result of this se
tion,whi
h gives the pre
ise assumptions needed to preserve theangles between rows or 
olumns of a matrix proje
ted intoits top k singular ve
tors after it is perturbed by an addi-tive error matrix. We will show later that there are manyappli
ations where all of these assumptions are met.Theorem 4. Let A and bA = A+E be m�n real matri
es.Assume that jEj 2 o(b�k � �k+1). We de�neai = UTk A(i) bai = bUTk bA(i) and ei = bUTk E(i)



If it is the 
ase thatjaij 2 �(jA(i)j) and jeij 2 o(jaij)then it is the 
ase thatjai �Rbaij 2 o(jaij) and jA(i)k � bA(i)k j 2 o(jA(i)k j)Proof. We will apply Corollary 3 and 
on
lude thatETU =bUTk � RTUTk has norm o(1). Re
all that we assume thatjaij 2 �(jA(i)j) and jeij 2 o(jaij).jai �Rbaij = jai �RbUTk bA(i)j= jai �RbUTk A(i) +RbUTk E(i)j= jai � (UTk +RETU )A(i) +Reij= j �RETUA(i) +Reij� jETUA(i)j + jeij2 o(jaij)The se
ond result is of a similar nature, but has one parti
-ular advantage over the relation between ai and bai. Namely,we are a
tually able to 
ompute bA(i)k from bA, whereas 
om-putation of Rbai requires knowledge of the matrix R, whi
his unfortunately unavailable for the purposes of our datamining appli
ations.jA(i)k � bA(i)k j = jUkai � bUkbaij= jUkai � (UkR+EU)baij= jUkai � UkRbai �EUbaij� jUk(ai �Rbai)j+ jEUbaij� jai �Rbaij+ jEU jjbaij2 o(jaij)2 o(jA(i)k j)Theorem 4 generalizes results from [14, 10℄ from the 
asewhere Ak is a blo
k diagonal matrix 
onsisting of k blo
ksto the 
ase where Ak is an arbitrary rank k matrix.Although the theorem is presented in terms of 
olumns, itapplies equally well in the the 
ontext of rows of A and bA.We will be parti
ularly interested in angles between ve
-tors. Let \(x; y) denote the angle between ve
tors x and y.A simple extension of spatial proximity to angular proximity
an be used to obtain the following 
orollary.Corollary 5. Let ai and aj be proje
ted 
olumns of A.4If both ai and aj satisfy the 
onditions in Theorem 4, thenit is the 
ase that1. j\(ai; aj)� \(bai;baj)j 2 o(1)2. j\(A(i)k ; A(j)k )� \( bA(i)k ; bA(j)k )j 2 o(1)4In fa
t, one or both 
ould be proje
ted rows of A.

4. STABILITY UNDER RANDOM PERTUR-
BATIONFor the data mining appli
ations we shall study, we willneed to spe
ialize Theorem 4 to the 
ase where the error Eintrodu
ed is a random matrix whose entries are indepen-dent random variables with mean zero and 
onstant devi-ation. Doing so yields the following 
orollary to Theorem4. Corollary 6. Let A be a matrix with�k � �k+1 2 !(pm+ n):Let bA = A + E, where E is a matrix whose entries areindependent random variables with mean zero and 
onstantdeviation. Let ai = UTk A(i) be the proje
tion of the i-th 
ol-umn of A onto A's top k singular ve
tors. Let ei = bUTk E(i).We say that this 
olumn is good if jaij is �(jA(i)j) and jeijis o(jaij). Then, with high probability, for all good 
olumnsi, 1. jai �Rbaij 2 o(jaij)2. jA(i)k � bA(i)k j 2 o(jA(i)k j):3. jA(i)k [`℄ � bA(i)k [`℄j 2 o(1) for all but o(m) values of `.Moreover, for any pair of 
olumns i, j, su
h that both satisfythe previous 
onditions it follows that:1. j\(ai; aj)� \(bai;baj)j 2 o(1)2. j\(A(i)k ; A(j)k )�\( bA(i)k ; bA(j)k )j 2 o(1).The same results hold, mutatis mutandis, for rows of thematri
es A and bA.Proof. This 
orollary's proof lies in observing that thenorm of a random matrix whose entries are independentrandom variables with mean zero and 
onstant deviation isalmost 
ertainly �(pm+ n). This follows from a result ofBoppana5 [5℄ showing that su
h a symmetri
 random matrixof dimension n has norm O(pn) with high probability. Weapply this observation to the matrix� 0 ETE 0 �whi
h has the same norm as E. Therefore, we get a boundof O(pm+ n) on jEj. Sin
e, in addition, 
�k � �k � jEj, we
an 
on
lude that jEj 2 o(
�k � �k+1), and thus Theorem 4applies.From the fa
t that the angles between good 
olumns 
hangeby nominal amounts, we 
an 
on
lude that the fra
tion of en-tries in these 
olumns whose error is 
(1) is at most o(1).

Remarks1. Corollary 6 applies only to to 
olumns whi
h are \good".What does this really mean? The 
ondition that ai is�(jA(i)j) means that the i-th 
olumn of the matrix iswell represented by the top k singular ve
tors. For ex-ample, if A were rank k every 
olumn would satisfythis 
ondition. This 
ondition is here to avoid 
om-pli
ations with ve
tors who are not well des
ribed by5who in turn extended a result of Furedi and Komlos [6℄



the stru
ture of A. Note that these ve
tors would bepoorly approximated in Ak even without random er-ror. The se
ond 
ondition, that ei 2 o(jaij), is almostalways true for those jaij 2 !(1). (See Lemma 10 inthe Appendix for a pre
ise version of this statement.)2. When we apply 
orollary 6 we a
tually assume thatb�k � b�k+1 2 !(pm+ n). Our purpose in so doing isto present the theorems in a form that allows the dataminer to verify that the pre
onditions of the theoremhold. b�k � b�k+1 2 !(pm+ n) follows by observingthat for any i, j�i � b�ij � jEj and jEj 2 O(pm+ n).Thus, �k � �k+1 2 !(pm+ n), if and only if b�k �b�k+1 2 !(pm+ n).
5. DATA MININGWe next show how Corollary 6 
an be used to solve someof the data mining questions des
ribed in the introdu
tion.
5.1 Information RetrievalWe begin by 
onsidering the information retrieval problemdis
ussed in Se
tion 1.2. In this 
ontext take A = E(M), amatrix whose [i; j℄ entry is the expe
tation of Mij , the ran-dom variable used to generate the (i; j)th entry of the puremodel matrix. Let bA be the matrix whose [i; j℄th 
oordinate
ontains a sample of the random variable, namely mij .Our �rst goal is to determine information about the ma-trix A, given the matrix bA. This typi
ally is of the formof information extra
tion (a
tual entries in A) or similar-ity (the angles between rows or 
olumns of A). Corollary 6implores us to take the following approa
h to this problem:61. Determine the largest k su
h thatb�k+1 � b�k = !(pm+ n):2. Compute bAk the optimal rank k approximation to bA.3. For any desired information about A, use the answerobtained by 
onsidering bAk instead.The 
on�den
e we have in the information output by thispro
ess is given in the following theorem.Theorem 7. Let M , A and bA be de�ned as above, and letthe notion of a good 
olumn or row be de�ned as in Corollary6. Assume that the random variables in M have 
onstantstandard deviation and the separation b�k�b�k+1 of the matrixbA is !(pm+ n). Then with probability 1�o(1), for all good
olumns j, jA(j)k [`℄� bA(j)k [`℄j 2 o(1)for all but o(m) values of `. Moreover, for all good 
olumnsi and j:� jA(j)k � bA(j)k j 2 o(jA(j)k j)� j\(A(i)k ; A(j)k )� \( bA(i)k ; bA(j)k )j 2 o(1)Analagous statements hold for good rows.6We have des
ribed all the algorithms in this paper usingasymptoti
 notation. These 
an be 
onverted to well-de�nedalgorithms by repla
ing the asymptoti
 notation with appro-priate (small) absolute 
onstants.

Proof. Consider the error between the matri
es bA andA. Any parti
ular entry in this error matrix E = bA� A isa random variable with the distributionE[i; j℄ = mi;j �E(Mi;j):Therefore, entries in this matrix are independent randomvariables with mean zero. From the se
ond remark afterCorollary 6, we 
an assume that �k � �k+1 = !(pm+ n).Additionally, sin
e the deviations of E[i; j℄ are bounded, we
an apply Corollary 6 to 
on
lude that the angles betweengood rows and 
olumns and most entries in good rows and
olumns 
hange by nominal amounts.It is straightforward to see that if bA is further 
orruptedby the addition of an error matrix whose entries have mean0 and 
onstant deviation, the same 
on
lusions hold.
5.1.1 Discussion of Latent Semantic IndexingThe impli
ations of Theorem 7 with respe
t to the use ofLSI for information retrieval in do
uments should be fairly
lear. Though the result is more general, for illustration pur-poses, 
onsider the spe
ial 
ase where the presen
e of termi in do
ument j is an independent Bernoulli random vari-able with expe
tation A[i; j℄. Do
uments of similar semanti

omposition will be generated from very similar probabil-ity distributions (i.e., 
orresponding do
ument ve
tors in Awill be nearly identi
al). Noti
e however, that even if theprobability distributions for two 
olumns are identi
al, theresulting do
uments obtained from the random rounding ofthose probabilities (
olumns in bA) 
an be signi�
antly dif-ferent. Theorem 7 says that the similarity of the two do
-uments in terms of the underlying generative model will bere
overed in the transformation to bAk. Similarly, two do
u-ments with polysemous terms, say a do
ument on the topi
of the world-wide-web and a do
ument on spider webs, willbe well separated in bAk, despite the high probability of theword \web" appearing in ea
h, if the underlying generativemodels for ea
h are well separated.Thus, bAk, the k-dimensional subspa
e produ
ed by LSIwhen applied to the probabilisti
ally generated matrix bA,yields, with high probability, sharply de�ned 
lusters amongdo
uments of similar 
omposition in terms of the underly-ing model A (with respe
t to the 
osine measure). This of
ourse assumes that A is well approximated by a rank k ma-trix itself. A ri
h rank k do
ument generation model 
ouldbe de�ned, for example, by assuming that there are k se-manti
 
ategories or topi
s from whi
h the do
uments are
onstru
ted, and letting A be the produ
t of two matri
es Tand D, where T is an m� k matrix whose (i; `)-th entry isthe probability that a do
ument on topi
 ` 
ontains term i,and D is a k�n matrix whose (`; j)-th entry is the fra
tionof do
ument j on topi
 `.Theorem 7 thus helps explain the e�e
tiveness of LSI asa te
hnique for information retrieval and, in parti
ular, fordealing with polysemy and synonymy.
5.1.2 Discussion of Kleinberg’s Link AnalysisWe des
ribed in Se
tion 1.2 a generative model for the linkstru
ture of the web, de�ned by a pair of ve
tors h and a,su
h that there is an link from site i to site j ( bAij = 1) withprobability hiaj . In this 
ase the matrix E(M) is a rank onematrix. Theorem 7 tells us that 
omputing the top left andright singular ve
tors of Â will allow us to re
over almost



all the entries in h and a, and hen
e the true importan
e ofweb sites.
5.2 Collaborative FilteringWe next 
onsider the problem of mining an in
ompletedata set, as for example we would need to do for the 
ollab-orative �ltering problem.
A Model for Collaborative FilteringWe model the 
ollaborative �ltering problem as follows.� Let A represent a 
omplete data set (anm�nmatrix).� Omit entry A[i; j℄ with probability pij , (where omis-sions are independent of one another). We denote theresulting symboli
 matrix A�, so we have:A�[i; j℄ = � A[i; j℄ w.p. pij? w.p. 1� pijwhere \?" is a pla
eholder indi
ating omitted data.� Retrieve meaningful information about A, su
h as thevalues of the ?s.
A Collaborative Filtering AlgorithmWe propose the following algorithm, 
alled CF , for re
over-ing the ?'s assuming that the omission probabilities pij areknown. We will later des
ribe a te
hnique for estimating thepij values.1. De�ne the matrix bA as follows:bA[i; j℄ = � A[i; j℄=pij if A�[i; j℄ 6= ?0 if A�[i; j℄ = ?2. Compute the SVD of bA.3. For ea
h [i; j℄ entry of A� that is ?, output bAk[i; j℄ asthe estimate of A[i; j℄.
Analysis of the Algorithm CFWe next show that the algorithm CF su

eeds in re
on-stru
ting most of the missing entries of the matrix A.Theorem 8. Let A, A� and bA be de�ned as above, and letthe notion of a good 
olumn or row be de�ned as in Corollary6. Then if� all pij 2 
(1), and� the separation b�k�b�k+1 of the matrix bA is !(pm+ n),then with probability 1� o(1), in any good 
olumn (or row),1 � o(1) of the entries of Ak are re
onstru
ted to within anadditive error of o(1).Proof. On
e again, 
onsider the error between the ma-trix bA and our original matrix A. Note that any parti
ularentry in E = bA�A is a random variable with the distribu-tion E[i; j℄ = ( A[i;j℄pij �A[i; j℄ w.p. pij�A[i; j℄ w.p. 1� pijThus, the matrix E is 
omposed of independent randomvariables with mean zero and standard deviation (pij�1 �1)1=2A[i; j℄. Therefore, provided the pij are 
(1) and theA[i; j℄ areO(1), Corollary 6 applies, yielding the theorem.

Estimating The Omission ProbabilitiesThe algorithm just presented assumed that the probabilityof retention of a parti
ular par
el of data was well knownto the algorithm. Su
h information is of 
ourse unlikelyto be available in pra
ti
e, as the only observation of theprobabilities lies in the sampled values.However, if we believe that the probabilities of retentionthemselves exhibit stru
ture,7 not dissimilar to the assump-tion on the nature of A, we will be able to re
over a verygood approximation to the matrix of probabilities, using thete
hniques of Se
tion 5.1 as follows:� Let bP be the matrix obtained by taking the matrix A�and repla
ing all ?s with 0 and all present data with a1.� Compute the largest k su
h that�0k+1 � �0k = !(pm+ n);where �0i is the i-th singular value of bP .� Compute bPk.� Use bPk[i; j℄ as an approximation to the omission prob-ability pij .Sin
e bP is a random rounding of the matrix P = fpijg, we
an retrieve \good" approximations (in the sense of Theorem7) to the pij , using this te
hnique.It is important to note, however, that our proof of theperforman
e of CF relies on having the pre
ise omissionprobabilities. At this time, we do not know whether thesame performan
e is guaranteed if CF takes as input onlya very good approximation to the omission probabilities.Resolving this question is a key open problem.
5.3 The General Data Mining ModelIt should be fairly obvious by now that very similar algo-rithms and theorems to those presented about the spe
i�
appli
ations su
h as information retrieval and 
ollaborative�ltering 
an be provided for the general data mining model{ the spe
tral te
hniques are robust in the presen
e of the
ombination of probabilisti
 data set generation, noise in-trodu
tion and data omission. We leave the details to thefull paper, but feel they should be fairly obvious from thedis
ussion to this point. One key 
aveat, as just mentioned,is that we do not yet fully understand the e�e
t of using theestimated omission probabilities in the matrix P (as justdes
ribed) in the 
ollaborative �ltering step.Perhaps the key limitation of the general data miningmodel is the fa
t that the random variables that form the7This might be the 
ase, if there are only a small numberof possible reasons that an item is omitted from A. Forexample, if omission o

urs be
ause 
ustomer j is entirelyunaware and has no opinion on produ
t i, then a low rankP 
an be easily justi�ed. If \awareness" is a fun
tion of ad-vertising on TV and radio, and every person has TV/Radiolistening habits and every produ
t has a TV/Radio adver-tising budget then we would expe
t P to be of rank 2. The(i; j) entry of P would re
e
t the produ
t of j's TV habitstimes i's TV budget plus the produ
t of j's Radio habitstimes i's radio budget. Alternatively, the probabilities in Pexhibit the right sort of stru
ture if they are proportional tothe values in A be
ause, for example, people are more likelyto buy things they like, or go to movies they like.



entries of M are assumed to be generated independently.Removing this restri
tion is an important dire
tion for fu-ture resear
h.
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7. APPENDIXWe will need the following lemma.Lemma 9. Let feig be a set of n random ve
tors of lengthm where ea
h 
oordinate of ea
h ve
tor is an independentrandom variable with mean 0 and bounded in absolute valueby some 
onstant 
. Let U be an m by k matrix whose
olumns are orthonormal, where k is a 
onstant. If fi isthe proje
tion of ei onto U , i.e., fTi = eTi U , then� Ea
h jfij is O(1) with probability 1� o(1).

� All jfij are O(plog(n)) with probability 1� o(1).Proof. Let U (`) be the `th 
olumn of U . De�ne Xk =P1�j�k ei[j℄U (`)[j℄, so that Xm = eTi U (`). Then the se-quen
eXk is 
learly a martingale, and jXk�Xk�1j � j
U `[k℄j.Applying Azuma's inequality (see [MR95℄, p. 92) we getthatPr(jXmj � �) � 2 exp� ��22
2jU (`)j2� = 2 exp���22
2 � :For � 2 !(1), we obtain the �rst 
laim. Letting � = Cplog(n),for an appropriately large C and applying a union bound,we obtain the se
ond 
laim.Lemma 10. Under the 
onditions of Corollary 6, with prob-ability 1� o(1), it is the 
ase that� jeij 2 o(pm+ n)� jeij 2 O(1) for all but o(n) 
olumnsProof. Re
all thatjeij = jbUTk E(i)j� jRTUTk E(i)j + jETUE(i)jLemma 9 indi
ates that the norm of the �rst term is 
er-tainly o(pm+ n). The se
ond term is the produ
t of ao(1) norm matrix with a O(pm+ n) norm ve
tor, yieldinga o(pm+ n) ve
tor. Together these give us the �rst asser-tion.The se
ond assertion is slightly more 
ompli
ated. Again,Lemma 9 indi
ates that the �rst term is O(1) for almost all
olumns. Con
erning the se
ond term, note the Frobeniusnorm of EUE. Re
all thatjEUEj2F =Xi �2iEUE is rank k, and thus has at most k singular values. Ea
hof these singular values is o(pm+ n), bounding jEUEj2F 2o(m+ n). As it is also the 
ase that for any matrix MXi jM (i)j2 = jM j2F ;we 
an infer that the sum of squared length of 
olumns inEUE is o(m + n). Therefore the number of 
olumns withlength 
(1) is o(m+ n)


