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ABSTRACT

We initiate the study of error confinement in distributed lagap
tions, where the goal is that only nodes that were directiyofi
a fault may deviate from their correct external behaviod anly
temporarily. The external behavior of all other nodes mestain
impeccable, even though their internal state may be affedte-
ror confinement is impossible if an adversary is allowed fticin
arbitrary transient faults on the system, since the faulghthtom-
pletely wipe out input values. We introduce a new fault tafee
measure we cathgility, which quantifies the strength of an algo-
rithm that disseminate information, against state comgpfaults.

We study the basic problem of broadcast, and propose digusit
that guarantee error confinement with optimal agility tohivita
constant factor, even in asynchronous networks when thtadgp
is unknown. These algorithms can serve as building blocksare
general reactive systems. Previous results in exploringlity in
reactive systems were not error confined, and relied on egs
tion (not used in current paper) that the errors hitting eaotie
are probabilistic, such that a faulty node itself, or itsgidior, can
detect the node faulty.

The main algorithm uses the nowabre bootstrappingechnique,
that seems inherent for voting in reactive networks; itslyeis
leads to an interesting combinatorial problem. The teamignd
the analysis may be of independent interest

1. INTRODUCTION

One key difference between centralized and distributeterysis
that in distributed systems, faults may hit only a part ofgpstem.
To achieve error confinement we to benefit from the fact thatyma
nodes may have not been hit. This intuition was exploredrieefo
for the case of non-reactive systems (but error confinendmt,
fined below, was not achieved). This becomes harder in bligéd
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systems that are required to propagate information, e gnumi-
cating new input of one node to remote nodes. The difficubtynst
from the fact that the propagation may amplify the effect &t
by spreading wrong information across the system. Thisffate
causes the receiving nodes to become faulty too. That is,ahe
put and messages differ from the case that no faults hit thiesy
This phenomenon acts against the attempt to benefit fromattie f
that many of the nodes may not have been hit by the originétsfau
The main technical contribution of this paper, in Subsetid.3,
3.4, is an algorithm that prevents this amplification effect

Previous papers avoided this difficulty, and addressedésthat
are still to be faced if this difficulty does not exist. For exale,
in [2] it was assumed that every faulty node can detect ifaelty
since it was also assumed that the nature of the faults wadmpro
bilistic. Thus, a faulty node knows not to spread the fadltse task
of that paper was then to recover from the faults fast, if thier
of faults was small. (Error confinement, defined below, wasde
dressed, but isimmediate in that model.) A similar prineiglused
in [26] (there the fault can be detected by a neighbor). Sirlyil
[16]) avoided the spreading issue by addressing only the tiat
the propagation is not needed; it handled problems rengaafter
the information was already somehow spread correctly, aiyg o
then faults occurred. Thus, again, the nodes corrupted udysfa
were not required to spread their values (and the faultsg tabk
remaining was just to hold some “special” kind of a conserisus
which each non-faulty node voted the already spread valdéten
faulty nodes may have voted another. That consensus wasdpe
in the sense that it was in a self stabilizing model, and irstrese
that it was required to be fast when the number of faults wadlsm

Some fault-resilient protocols deal with faults by allogiarbitrary
behavior until recovery is complete (intuitively, dectagia tempo-
rary “state of emergency”). In papers such as [16, 2, 17, i8] t
question is how to shorten this period (if the number of fist
small). The problem addressed in this paper is how to deyise s
tems that keep the faulty information masked from the exterser
as much as possible, even during the recovery period.

Let us be more specific (see Section 2 for formal definitiokgs.
consider the model of a distributed system that executes seat-
tive task, i.e., the environment inputs values at nodes eadisrout-
puts from nodes. The requirement is specified as a predivate o
the sequences of input and output values. We consider éransi
faults, i.e., faults that eventually leave the system. Thisodeled
by assuming that a fault may hit a set of nodes by arbitrarigim



fying their state, but this may happen at most once in thegiat
(If additional faults occur “enough time” after the first fauhe er-
ror confinement property is preserved in the algorithmsepresi
below; on the other hand, if additional faults occur “socmgfthe
first, the algorithms still self stabilize, but may not becgrcon-
fined). Intuitively, a system is said to have the error comfiaat
property if in any execution, the observable input and outad+
ues meet the specification, where the only possible exaeptice
nodes directly hit by a fault. Note that it is not possible tag
antee a better behavior, since a local fault can trivialbjate the
specification by changing the value of a local output vadal@n
the other hand, it is good enough for some purposes. For égamp
low-level error-confined system can be used to build higbeell
applications which are error-confined, as we show in thigpap

The specific problem we study isoadcast where a value is input
at one of the nodes and the task is that eventually, all otbées
will output that value exactly. The problem of broadcashiefest-
ing in our context for two reasons. First, the essence ofdwast
is dissemination of information, in apparent contrast witlea of
error confinement, since the operation of the protocol magim-
taminate non-faulty nodes with bad information. And sedgnd
broadcast can be viewed as a complete problem for reacti® pr
lem: intuitively, if all nodes know all inputs, then each ®odan
compute its output locally.

Previous papers that handled self stabilizing broadcakttdin a
context were the value of the broadcast source node canmatrbe
rupted. For example, in self stabilizing topology update.(§L1])
a broadcast source broadcasts the current status of itsadirik
knows it at that point in time; its “knowledge” is, by defimiti,
correct. Another example- in [16] every node broadcastvite”,
which may be a result of a corruption, but needs to be broadcas
nevertheless (if the corrupted were the minority of the sdten
the consensus yielded the right result). In Subsectiong/8.¢on-
struct an error confined broadcast algorithm for the casettiea
source is non- faulty. This is used as a building block in oairm
algorithm that handles the reactive case in Subsection83t3

Error confinement is not always possible, because if a valir i
put at a node, and an error hits that very node before it sent ou

ily entails a slowdown of facto® for broadcast. We then present
an error-confined algorithm whose agility and speed areimvith
constant factor even from algorithms that are not error oexfi

The main novel technique introduced here is thataye bootstrap-
ping. It is useful for preventing the amplification of errors bysne
sage propagation. Thus it seems to be useful for other tasks i
reactive systems. Our main algorithm uses a specific vavfehat
method, calledball core, that is very natural in the context of broad-
cast in reactive systems. For algorithms using ball corepnesent
matching lower and upper bounds on the agility of any brostdca
algorithm. We remark that the latter analysis is relatechtodow
path problem [22], and may be of independent interest.

Most of the presentation is for the synchronous network rhaxie
assuming that the network topology is known, but the finabalg
rithm works in the asynchronous network model with unknown

topology.

Related work. Error confinement is an important aspect in fault-
tolerant software systems. See, e.g., [19, 24] and refesctherein
for the software engineering perspective on fault confirmdalkhi
et al. [21] study error confinement in the presence of Byzantine
faults. Our approach in modeling faults is similar to the ong0,

7]. The model of state-corrupting faults is implicit in thensi-
nal work of Dijkstra abouself stabilizatior{10]: put in our termi-
nology, a system is called self-stabilizing if even afteraabitrary
state-corrupting fault occurs (possibly hitting all nodewventually
the system starts behaving correctly. Some general digaidtso-
lutions for making a system self-stabilizing appear in [355],
based on the paradigm ofset[6]: when an error is detected, a
global reset action is invoked, imposing a correct statehersys-
tem. These papers do not distinguish between a fault thaefiip
say, a single bit in the system, and a massive fault that &sich
many nodes, and therefore a significant disturbance inceivial-
lowed in both cases. A reduction in themberof nodes corrected
is achieved in many cases by the reset protocol of [11]. Tiigp
col brings the system to a correct global state that is ctdedbe
faulty state, rather than backing into the same correctajlstate

in every situation. This saves in the number of nodes to cbrre

any message, then the input value may have no trace whatsoevesStill, this algorithm is not error confined. For example, lie ttase

in the system, making recovery impossible. On the other hiand
is known how to recover from faults that hit any minority okth
nodes, if they occur when the input value is already safetyared

in all nodes [16]. This motivates us to introduce the measire
agility, which quantifies the resilience of reactive algorithms as a
function of time. Intuitively, we consider faults that maiy tinly a
minority of the nodes in a ball around the origin of the inpalue.

An algorithm is more agile if that ball grows more quickle.i.the
agility of the algorithm measurdsw quickly do we lift the restric-
tion on the faults.For example, an algorithm that cannot recover
from a corrupted source has agilily and an algorithm that can
recover at any time from a fault that corrupts only a minority of
the nodes in the ball of radiu§ around the source has agiliéy.
The main technical question addressed in this paper is whhei
maximal agility that allows the existence of error-confilsgdtems.

Our contribution. In this paper we formalize the concepts of error
confinement and agility. Note that agility makes sense alsodn-
confined algorithms. As a concrete example, we considerakie b
primitive of broadcast. We prove that error confinement agae

of a broadcast, a fault in a single node may cause every naié-to
put an incorrect value temporarily, and to refuse to outpsbane
other times (during its participation in the reset). Anottigection
in limiting the damage caused by faults is correlating ttemvery
time with the number of faulty nodes. In some problems that ar
inherently local, a single fault can be corrected immedjates was
pointed out in [8, 11]. More general approaches were prapose
[17, 2, 13, 16]. In [13, 23, 16], a distinction is made betwéss
time it takes the observable output to stabilize, and the ttrrakes
for the internal state to stabilize. We stress that all thveseks al-
low for correct nodes to exhibit faulty behavior before dtaation.

Another concept worth mentioning $sapstabilization [9]: A sys-
tem is called snap-stabilizing if its behavior stabilizests spec-
ification in 0 time. Clearly, snap stabilization is possible only for
a certain class of task specifications, that allow everytyaubde

to be considered externally correct even at the time of thé.fa
Broadcast does not satisfy this requirement. For thoselgmab
that do satisfy this requirement it seems that turning sieipiliz-
ing protocols into error confined ones should be possible.



e An actionis associated with (a.k.a. occurs im@de An action may
be eitherexternalor internal. An external action is either anputor
anoutputaction. Nodes may also be called “processors,” or “sitegs.”

e A behavioris a sequence of external actions. Given a no@dad a
behaviors, 3, is thelocal behaviorof v, i.e., the subsequence 8f
that consists only of actions that occurnin

e A taskis a set of behaviors, callddgal behaviordor the task.

e A protocol is a specification oftatesandtransitions A state is a
vector oflocal states one local state for each node. Transitions a
triples denoted — s, wheres ands’ are states, and is an action.
An actiona is said to beenabledin states if s — s’ is a transition
for some state’. Input actions are enabled in all states. A subset of
the states is designatediagial states

=

e

¢ An executionof protocol P is an infinite sequencey =% s1 23 ...,

wheresg is an initial state ofP, ands; _1 X s; is a transition ofP
for all 2. In atimedexecution, each action is annotated with its tife
of occurrence.

e Given an executior, its corresponding behavior, denotgge), is
the sequence of all external actionsein

e A protocol P implementgaskII if its set of behaviors is a subset
the legal behaviors dff.

pf

Figure 1: Actions, behaviors, states, executions etc.: |10 Automata
formalism.

Organization of this paper. In Section 2 we formally define the
model and the concepts of error confinement and algorithiityagi
In Section 3 we develop an error-confined algorithm for treadr
cast problem in the synchronous model and analyze itsyadilith-
sections 3.3, 3.4 present our main algorithmic contributidhe
algorithm in Section 3.3 is presented assuming an noveltiears
we termcore, while Subsection 3.4 solves an optimization problem
in order to select the best core. (This analysis is relatede@ow
path problem). In Section 4 we present an extension of thig bas
algorithm to the asynchronous model. We conclude with soste d
cussion in Section 5. Some additional proofs are providetthén
appendix.

2. BASIC CONCEPTS

In this section we define the model of computation, the brastic
task, and the key concept of algorithm agility.

2.1 A Model for Error Confinement

General parameters.The system is modeled as a fixed undirected
connected grapldir = (V, E), where nodes represent processors
and edges represent bi-directional communication links déhote
V] n, and the diameter of the graph is denotédm. The
distance between two nodesv € V, denoteddist(u, v), is the
minimal number of edges in a path connecting them. Given & nod
v € V, we denotedall, (r) = {u € V | dist(v,u) < r}, and call

it the ball of radiusr aroundv.

Error confinement. To define error confinement formally, we use
10 Automata as our underlying formalism [20]. The standazé d
initions are summarized in Figure 1. In this paper we comside
single type of faults, calledtate corruptingthat abstracts all tran-
sient faults. Such faults are formally defined as follows.

DEFINITION 2.1. A state corrupting faults an action that al-
ters the state arbitrarily in some subset of nodes. The nadiese

local state was altered are callddulty.

In our model, there is at most one fault in an execution, wica
span a set of nodes.

The new concept we propose is the following.

DEFINITION 2.2. A protocol P is said to be arerror-confined
protocol for taskII if for any execution with behavigs (possibly
containing a fault) there exists a legal behavigfrof IT such that

(1) For each non-faulty node, 8, = 3,,.

(2) For each faulty node, there exists a suffig, of 3, and
a suffixg!, of 3, such that3, = 3.,.

Theoutput stabilization timef a faulty nodev is the time duration
of the prefix of3, that is not included irg, .

The main point in the definition above is that the behaviorai-n
faulty nodes must be exactly as in the specification: onlytfau
nodes may have some period (immediately following the fanlt
which their behavior does not agree with the specification.

Formally, the broadcast task is defined as follows. (A gdnas,
of course, will include many instances of broadcast.)

Broadcast (BCAST)

Input actions:inp, (b), done at node € V, andb in some seiD.
The nodes is calledsource

Output actions:outp(b), required at all nodes € V', whereb €
Du{Ll}.

Legal behaviors:There is at most ong¢np_ action. Each node
outputsoutp(L) in each step up to some point, and then it outputs
outp(b) in each step, wherkis the value input by theénp action.

For ease of exposition, we abuse notation slightly and ueeiaip
input and output registers calledrror: an input action is equiv-
alent to assigning a value to therror, register at the source

and similarly the output action at nodejust reads the value of
the localmirror, value. (We use the convention that variables are
subscripted by their node name.)

Error confined broadcast means that if any non-faulty nodieutsi
avaluea # L, then all non-faulty nodes may output oniyor L),
and all nodes must outputeventually.

Agility. As mentioned above, there is no way to maintain error
confinement in the face of an arbitrary state-corruptindtfae
fault may hit the source immediately after the input actieaying

no trace of the original input value. However, faults can bero
come if they arrive later, since the source could have conicated
the input to some other nodes in the meantime. It is impassibl
design an algorithm that will ensure replication to moreewthan
those in a certain distancelfallaround the source) that depends on
the time. If a fault hits the majority of nodes in this ball,semning
recovery is impossible. The notion efconstrained environment
formalizes this idea.

DEFINITION 2.3. Anenvironment is called(t)-constrainedor
some functionx(¢) and a given system topology if the following



condition holds. Suppose that input is made at neds timeto,
and that a fault occurs at timg. Then the number of nodes hit by
the fault is less thag |balls (a(ty — to))].

The propagation of information in the system is physicéltyited
to within a dynamically growing ball centered at the souraed
hence no algorithm can recover inputs if that ball is cordpOur
definition restricts the faults inside a ball whose radiuswgh is
bounded by the functioa(t).

DEFINITION 2.4. An algorithm for the broadcast problehas
agility «(t) if it has the error-confinement property for all(¢)-
constrained environments. An algorithm is said to haveitggil
for a constant if it has «(t) agility for a(t) = ¢ - ¢t forall ¢t > 0.

Note that while our definition is for error-confinement, ingeal-
izes for any type of fault resilience. The agility of an aligfam,
intuitively, defines the maximum rate in whiet{t) grows that still
allows the algorithm to be correct.

T Ts

time

Figure 2: The agility is the rate the constraint on the fault is re-
leased to allow more faults

Example. This example demonstrate an interesting finding given
in Subsection 3.4. I&(T;) = Rs, then, attimet = T; — ¢ for
somee > 0, the constraint on the faults is a ball of radifts_
(see example in Figure 2). Thus, if the agility rate is samten

c < % One may expeci(t) to grow smoothly, rather than
maintaining the same value for long periods. That is, one exay
pect the algorithm to maximizes in each step greedily. Interest-
ingly, itturns out that the infrequent changes in the value are an
inherent property of the optimal algorithm (see Section.3.41

Synchronous and asynchronous computationsin most of this
paper, we use a simplified model of computation calledsyre
chronous network modelin this model, time proceeds in steps,
where in each step (calledund of computation), all nodes first
read the state of their neighbors, and then set their owe. stétis
model abstracts the underlying mechanism whose job is te rnek
state available at neighbors, as well as synchronize thegress.
Note that in the synchronous model, states change at dissbegis.
When we say “at time,” the interpretation is “in the state between
the end of steg and the start of step+ 1.” The asynchronous
network model is treated in Section 4.

3. BROADCAST WITH ERROR CONFINE-
MENT

The main novel technique in this paper appears in Subsecli
3.4 where we develop an algorithm for BCAST with error confine
ment in the synchronous model that works even if the sourge ma

suffer faults. Subsection 3.3 presents the framework ofate-
rithm, while Subsection 3.4 solves an optimization problaror-
der to decide the specific parameter. The behavior of thenojpti
seems interesting in itself.

Before that we construct a building block- an algorithm f@A&ST
assuming that the source is never faulty, see SubsectioRachll
(from the introduction) that this more limited case (tha gource
is never faulty) has some similarities to the cases deditiwisome
previous papers (though solutions in previous papers wetrem
ror confined). This makes its treatment easier, and we usedt a
module for our core bootstrapping protocol of SubsectioBs34.

We also prove, in Subsection 3.2, a lower bound that saysthat
algorithm for broadcast must slow down the output by at least
factor of2, even if the execution is fault-free.

3.1 Abuilding block: Broadcastwith a correct

source
We first solve BCAST under the assumption that the sourceris co
rect. This part is less difficult than the general case of 8ctizns
3.3, 3.4. still, this primitive is useful since it has thel@oling
partial error confinement property (whether the source \itds/ta
fault or not): if the algorithm outputs a value at a non-fautbde
v, then the output value suthentic in the sense that it was indeed
communicated by the source. (We say “partial” error confieeim
since, if the source is faulty, the value communicated bysthece
may be faulty.)

To solve BCAST with a correct source, let us start with theoperm
of distance computation.

Single source distance computation (SSD)

Input actions:start s, made at the source node

Output actionsd, whered € {0,1,..., N} U{L} for some large
integerN.

Legal behaviors:Each nodev outputs_L in each step up to some
point, and then it outputdist(s, v) in each subsequent step.

Without the requirement for error confinement, the Bellnfame
algorithm solves SSD even in the face of state-corruptindtda
(see, e.g., [4]). Informally, the algorithm works as follawn non-
source nodes, the initial value of the output variablet, is L,
and in each step, the node sets its value to be one plus theommi
of the distance variables of its neighbors (whdrds treated as
infinity). The source node sets its output variablé® o each step
following thestart action.

Note that the Bellman-Ford algorithm is not error-confin&dion-
faulty node sets its distance variable to one plus the minirofthe
values of its neighbors, and that minimum may be erroneous. B
a simple extension makes Bellman-Ford error-confined. Hye k
observation is that if the distance variable valud,iand it has not
changed for at leagttime units, then the distance of the node from
the source is indeed. This gives rise to Algorithm A, presented
formally in Figure 3. The effect of the input action at the gmks

is to setdists < 0 in that step and every subsequent step.

We now prove the error confinement property of Algorithm At Le
us assume without loss of generality that the fault occutisnat0,
and that at that point, the state variables have arbitrdnesa



State at node # s:
dist,: output distance variable, initially-
cand_dist,: internal distance variable, initially
count,,: counter, initially0

Code at node # s:
if cand_dist, # 1 + min {cand_dist, | uis a neighbor ob}
then
cand_dist, < 1 + min {cand_dist, | u is a neighbor ob}
count, «— 0
elsecount, <« min(count, + 1, cand_dist,)

if count, > cand_dist,
thendist, < cand_dist,

Figure 3: Algorithm A: Single source distance computation with
confined errors.

LEmMMA 3.1. At any timet > 0, for any nodev, it holds that
cand_dist, > min(dist(s,v), t).

Proof Sketch First, note that the lemma holds trivially for the
source node. We proceed by induction on time. Fet 0 the
lemma holds sinceand dist, > 0 always. For the inductive step,
letv # s be any node, and consider time- 1. By the induction
hypothesis, we have that for every neighbmf v, cand dist, >
min(¢, dist(s,u)). If ¢ < dist(s,u) for all neighborsu, we are
done, sincdlist(s,v) = 1 + min, {dist(s,u)}, andv assigns a
value whichis atleastt-1 > min(¢+1, dist(s, v)). If dist(s, u) <

t for some neighbors ob, let uo be the neighbor closest ta
Note thatdist(s,v) = dist(s,u0) + 1. By induction hypothe-
sis, we have thatand dist,, > min(t,dist(s,uo)), and since
cand.dist, > cand.dist,, + 1, we get thatcand dist, >
cand_disty,+1 > min(¢, dist(s, uo))+1 = min(¢t+1, dist(s, v)).

LEMMA 3.2. If dist(s,v) < d for some nodey, then at any
timet > d, we have thatand_dist, < d.

Proof: By induction on the distanadist(s, v). If dist(s, v)=0, then

v = s the claim follows directly from the code. Assume that the
claim is true for all nodes at distanéeat all time stepg > §, and
consider a node with dist(s,v) = 6 + 1. Letug be a neighbor of

v with dist(s, uo) = J. By the induction hypothesis, at tindeand
onward, we have theand_dist,, < ¢. It follows from the code
that at timej + 1 an onwardcand dist, < § + 1, as required.

Using the lemmas above, we now analyze the broadcast tinte. Le
the start time of the broadcast he If faults occurred before the
broadcast delivers the message everywhere then le¢ the time

of the faults. Otherwise, lety = to. We measure the time of the
broadcast frommax{to, t}:

THEOREM 3.3. Algorithm A solves SSD with confined errors
and output stabilization timg - diam.

Proof: We first prove stabilization. By Lemmas 3.1 and 3.2, we
havecand dist, = dist(s, v) for any timet > diam, at any node

State at node # s:
mirror,: the broadcast value to be output, initially
cand_mirror,: an internal estimate of the output value, initially
cand_dist,: an internal estimate of the distance, initially
count,,: counter, initially0

Code at node # s:
Let ug be the neighbor o such that
cand-disty, = min {cand_dist, | v is a neighbor ob}
if (cand_dist, # 1 + cand_dist,,) or
(cand mirror, # candmirrory)
then
cand_disty < 1+ cand_disty,
cand mirror, < cand-mirrory,
count, <« 0
elsecount, < min(count, + 1, cand_dist,)
if count, > cand-dist, distance and mirror are correc
thenmirror, <« cand_mirror,

Figure 4: Building block: Algorithm B. Broadcast with confined
errors assuming the source is non-faulty.

v. Hencecount is never reset after timéiam, and hence, by time

2 - diam we havecount, > dist(s,v) > cand_dist,. It fol-
lows that by time2 - diam, all nodes sedist, < cand dist, =
dist(s, v), and the system stabilizes as required. Next, we show er-
ror confinement. Consider any nodeand suppose thatchanges
the value of itslist, variable at time. There are two cases to con-
sider. If the value oflist, is changed less thatand dist, time
units since the last time theand dist, variable was changed,
then clearly theount, variable does not have its intended seman-
tics, and hence nodeis faulty and we are done. So suppose that
thedist, variable is set tal after at least! time units in which
cand_dist = d. By Lemma 3.1 we have thaist(v, s) > d, and

by Lemma 3.2ist(v, s) < d. The result follows. i

We remark that Theorem 3.3 holds for a fault that hits any rermb
of nodes at any time, simply because there is no input value.

We now extend Algorithm A to solve the BCAST task. This is done
by “piggy-backing” the broadcast value on the distanceeatince

it is input. The broadcast value becomes externally visdvily
when thedist variable would have become visible in Algorithm
A. The algorithm for broadcast with error confinement is fatyn
presented in Figure 4 for non-source nodes. For the soudesno
we have that thenp, (b) action results in assigningirrors < b,
and also the source keeps settiagd dist, < 0 anddists < 0

in each subsequent step.

THEOREM 3.4. If the source node is non-faulty, then Algorithm
B solves BCAST with confined errors, and output stabilizctiioe
2 - diam.

Proof Sketcht Consider a non-faulty node, and suppose that it
assigns a value tairror, at timet. We show that this value is
correct. Suppose that at tinhecand_dist, = d. Sincev is non-
faulty, we have by the code that at timecount, = d, and that
there were at least time units during whichcand_dist, did not
change.

We claim thatd = dist(s, v). First note that itZ > dist(s, v), then
by Lemma 3.2, by timeé we have thatand_dist, = dist(s, v) <



d, contradicting the fact thatdid not change itsand_dist, value.
So it must be the case that< dist(s, v). Suppose for contradic-
tion thatd < dist(s, v). We show thatount., must have been reset
by timet in this case. Let us say that a hogleonsistently depends
on nodeu in a given state itand_dist, = cand-dist, + 1 and
cand_mirror, = cand_mirror,. Nodesuvg, v ..., v are called

a consistent dependency chafivy in a given state ifv; consis-
tently depends om;+; for all 0 < ¢ < k in that state. Note that if
the maximal consistent dependency chain of a node at sotedsta
of length0, then by code, that node will sebunt, < 0 inthe next
step. Now, consider thé maximal consistent dependency chains
of v, one chain for each time step-1,¢ — 2, ...,¢t — d. We claim
that at least one of these chains is of lengtivhich contradicts the
assumption thatount, was not reset during this time interval. To
see that, first note that the length of the chain at time exactly
d— cand_dist, ), whereu(7) is the last node in the chain ofat
time 7. Sinced < dist(s, v) by assumption, it follows from the tri-
angle inequality thatand_dist, ;) < dist(s,u(7)), and hence,
by Lemma 3.1 we have that at tinte— d + i the length of any
consistent dependency chaimwofs at mostd — 4, and hence there
will exist a zero-length chain by time— 1, as required. The out-
put stabilization time follows directly from the fact thdtex diam
time, all cand_dist andcand_mirror variables have the correct
values, which in turn follows from Lemmas 3.1 and 3.2]

3.2 Error confinement implies slowdown

Clearly, under Algorithm B, a node outputs a value afte? -
dist(s, v) time units, even if there are no faults: twice the neces-
sary minimum. The following theorem shows that this slowdow
is inherent to error confinement, even if there are no falltstd
that if there are faults, the stabilization time of algamitB is even
somewhat higher.)

THEOREM 3.5. Let X be an algorithm solving BCAST with
error-confinement if the soureds correct. Then for any non-faulty
nodev, the time in whichy outputs a value is at least- dist(s, v)
steps after the input at, even if there are no faults.

Proof: Consider a line graph, where nodes are numbeyed?2, . . .,
and let the source be node Consider any nodé We compare
two executions ofX: in executioneg, no input is ever made at the
source, and in executiogy, a valuel is input ats at some time
to. Lett; be the first time in which the execution of nodeliffers
betweeneg ande;. Obviously,t; > to + 4, since the first differ-
ence betweeny ande; occurs at time, at distance from node

1. To prove the theorem we claim that algorith¥hcannot output

a value at before timet; + i in e;. This is shown by contradic-
tion: Suppose thatoutputs a value at time < t; + i. We define
another execution’ as follows. Up to and excluding timeg, ¢’ is
identical toeg. At time t1, two events occur at’: First, an input
of value 0 is made ats; and second, a fault changes the states of
the nodes number— 1,...,7 — (t2 — t1) to be the same as in.
Note that the source is non-faulty because t; — t1. Also note
that node is non-faulty. It is immediate to verify by induction that
the execution of nodesi — 1, ...,7 — (t2 — t1) + j is identical in

e1 ande’ in stepsts, ..., t1 + j since each of these nodes cannot
distinguishe’ from e; at these times. It therefore follows that node
4 will output valuel in ¢/, a contradiction to the error-confinement
property that requires all outputs at non-faulty nodes ttheesame
as the input value. I

3.3 General Error-Confined Broadcast

We now present the main algorithmic contribution of the pape
This algorithm allows for a faulty source, under the assuonpt
that faults may not corrupt the state of a majority of the rsoithe
balls(a(t)) at timet¢. The idea is to apply a bootstrapping tech-
nique. While algorithm B used a single source (and had ggilit
zero), the Core-bootstrapping algorithm maintains a dyoalfy
growing set of nodes callecbre(t), for each time step (where
core(0) = {s}). Each node in the core set broadcasts (using Al-
gorithm B as a primitive) what it believes to be the true vahput

at s at time0. Assuming that no fault ever directly corrupts the
majority of the current core, the algorithm ensures #tatys the
majority of values in the core set is correct.

The core grows inductively: A node may join the core if it has
“sufficient evidence” to determine that the value it is abmustart
broadcasting is correct. “Sufficient evidence” here mehasét of
values broadcast by a complete core set. This is “sufficiginte
faults may corrupt only a minority of the core nodes by asdionp
Thus, the main task is to select the next core in a way thatlifill
these constraints on the adversary as fast as possible.niHiis
task is, actually, deferred to the next subsection

For the subtask of correctly collecting the above “suffitieni-
dence” values, the algorithm uses Algorithm B as a buildileghk

this is why we needed it to be error confined too. This leaves us
with the task to design the algorithm in such a way that the as-
sumption on the constraints of the faults is minimal. Speaif,
consider the algorithm (with a parameteiere(¢) function) that be-
haves at node in each time step as follows:

Algorithm Boot:

(1) Receive broadcasts from all nodes using Algorithm B.

(2) If Algorithm B locally outputs values from all nodesdnre(t —
1), setmirror, value to their majority value (otherwisgirror,
retains its previous value).

(3) If v € core(t), then broadcasiirror, using Algorithm B.

The algorithm works for anyore(¢) specification, so long as the
following condition is satisfied for all nodasand time steps:

Feasibility Condition: If v € core(t) — core(t — 1), then by time
t nodew received broadcast valuesrror, from all nodesu €
core(t — 1).

THEOREM 3.6. Let core(t) be a function satisfying the feasi-
bility condition, and assuméore(t)| > |balls(«(t))| for some
functiona(t). Then Algorithm Boot is an error-confined algorithm

for broadcast with agility at leasinin {@ [t> 1} and output
stabilization time of - diam + min {¢ | core(t) = V'}.

Proof: We first prove, by induction on time, that if nodes non-
faulty, then it will never set itaiirror, variable to a wrong value.
The base case is< t¢#, wheret; is the time of the fault (possibly,
ty = 00). In this case, the claim follows from the trivial fact that
the system is correct before the fault. For the inductive,step-
pose that a non-faulty nodesets itsuirror, value attime > ¢.

By Theorem 3.4, Algorithm B guarantees that the local ottt
v of the broadcasted values from nodesdre(t — 1) are authen-
tic. Since less thag |core(t )| nodes are faulty by assumption that
|core(t)| > |balls(c(t))| and since all non-faulty nodes have cor-
rectmirror values by the induction hypothesis, and since all these



values will arrive ab by the second part of the feasibility condition,
v will setitsmirror, variable to the correct value. This proves the

error confinement property.

The output stabilization time bound follows by the fact thah-

faulty nodes broadcast the correct value and from Theorem 3.

3.4 Ball Core Functions

Algorithm Boot does not specify how the core function is defin
except for the restriction that it is feasible. In this seetive focus

on ball cores, which match our definition for constrainedirems
ments. Ball core functions are defined as follows. In anyrytime
t we havecore(t) = balls(R(t)) for someR(t) called theradius

of the core at timé. We seek a ball core function that admits the

best possible agility.

So fix a ball core functiorore. Let {R;} denote the sequence of

all distinct radii of core in increasing order, i.eR; < R;y:1 for

all i. LetT; denote the first time thatore(¢) = balls(R;). See
Figure 2. To simplify exposition, and motivated by Theorers, 3

from now on we normalize the time scale by a factoRpfvhich

means that the time between the start of Algorithm B at angmod

and the time another nodehas an authenticated valuengfrror,

is dist(v, u) if no faults occur.

The following lemma establishes a strong connection betwee

andT; (see Figure 5).

/ - core(r( ) \

core(T(i-1))

Figure 5: The feasibility condition implies that nodecannot join

the core beforeR; + R;t1 time units have passed since node

joined the core.

LEMMA 3.7. Letcore be a feasible ball core function. Then for

all 7 > 0, we have

i—1

T,>Ri+2) R;.

j=1

Moreover, the best agility for the given radii sequence taiatd

when equality holds.

Proof Sketch It suffices to prove thal; — T;—1 > R; + Ri—1:

The inequality of the lemma then follows by unfolding. To yeo
the latter inequality, consider any graph with nodes, v such that

dist(s,u) = Ri_1, dist(s,v) = R;, anddist(u,v) = Ri—1 +

R;. (A line graph of lengthR; + R;—1 does the job.) Now, by

constructiony € core(T;—1)—core(T;—1—1), andv € core(T;)—

core(T; — 1). Hence the feasibility condition, and the fact that
dist(u,v) = R;—1 + R; imply the result. To prove the positive

part of the claim, we sef; =

i—1 + Ri + R;—1 inductively. To

see feasibility, note that the distance between the furtihede in
the:th core and théi + 1)st core is at mosR; + R;+1. Optimality
in case of equality is proven by induction. I

Hence we have the problem of choosing a sequence of &g
that maximizes the agility subject to the inequality of Leenb7.

Note that the agility of the algorithm isin; attimeT; —

1, the core radius is stilR; —; . Interestingly, thIS problem is closely
related to the classicabw path problentsee, e.g., [22, 14]), where
a cow wonders along a line until it finds food, and the goal of an
algorithm is to minimize the ratio between total distanewérsed

by the cow and the path length between its origin and the food.

To gain some intuition into the problem of choosing the optim
radii sequence, consider the “greedy” rule, where a nodaters
the core at time if this is the first time in whichv receives the
broadcasts of all nodes itore(t — 1). This means that the radii
sequence if; = 4. It follows from Lemma 3.7 that the greedy
rule leads to the core functiarre(t) = ball;(v/%), and hence the

\/dlm' An interesting observation that follows from the
next two lemmas is that the number of times the optimal bak co
grows (the number of steps in Figure 2) is logarithmiain

The following two lemmas help us choose an optimal sequefice o
radii. The proofs of these lemmas, given in the appendix,aism
serve as new proofs for the cow path problem. The first lemma
asserts a lower bound on the agility of any ball core function

LEMMA 3.8. Let R, Ro,... be any positive non-decreasing
sequence such that; > 1. LetT1,Tx,.. be a sequence such
that7; > R, +23_ ! R;. Thenlim inf s < s

Lemma 3.8 is stronger than what we need, since it proves tivedbo
for an infinite number of times. The next lemma shows how t& pic
a sequence of radii that attains the agility lower bound ohire
3.8.

LEMMA 3.9. LetR; = L(l + \/_)HIJ fori > 1, and letT; =

Ri +23,7) R;. Theninf 7= > ———.

Settingcore(t) = balls(max {R; | t < T;}) in Algorithm boot-
strap, where theR; and theT; values are as given by Lemma
3.9, yields an error-confined algorithm for BCAST with atyili

m;\/i ~ 0.172, which is optimal for ball cores by Lemma 3.8.
4. ASYNCHRONOUS ERROR CONFINED
BROADCAST

The presentation of the asynchronous algorithm is defdoéde

full paper. Let us here just sketch the extension for Aldnonit
Boot to the asynchronous model. Using ball cores, we aldacep
the assumption that the topology is known to the nodes ahtad o
time by the assumption that only the identity of the sourcgenis
known. The extension adds another factor2aslowdown to the
algorithm performance.

First, let us describe the model. We assume that the basia-ope
tions are message send and receive, and that messages @n be d
layed for an arbitrary (but finite) time in the communicatiorks.



Links can also be garbled by a state corrupting fault, butsgeime
that in any given time, there is at most one outstanding ngestbet
isin transit in every channel. We remark that this model Gagdn-
eralized (without changing the asymptotic complexity)ltowany

simply not allowing a node to change its mirror value untfiéars
from all nodes in the system. Specifically, the asynchronaus
sion of Algorithm Boot at a node is as follows. Once a message
is received from the souree v starts computing is distance fram

number of messages to be stored in a link, so long as this numbe using Algorithm B’. Based on that distance, it computBs_; as

is bounded by a constant. See [25] for further discussion.

Now, consider Algorithm Boot. The correctness of AlgoritBmoot
relies on synchrony in two ways: first, Algorithm Boot usegéd
rithm B as a subroutine, and the correctness of Algorithmligse
on the assumption that the network is synchronous. And sion
each node needs to knawre(t) for any steg, but there is no well-
defined notion of global step number in the asynchronous mode

Let us first describe an asynchronous version of Algorithnalkd
Algorithm B’. (Similar ideas were used in different contek [3,
1].) We start by observing that the idea behind Algorithm B is
that before outputting a value, each node ensures that ¢xests
acausal chain18] carrying this value from the source to the des-
tination. This is done by counting communication roundsffisu
ciently many rounds without the value changed provide exide
for the existence of a such causal chain. The idea in Algorith

the maximum core radius smaller thdiat(s, v). When Algorithm

B’ outputs all mirror values from nodeswith dist(s, u) < R;_1,

v setsmirror, to be the majority of these values, and starts broad-
casting that value using Algorithm”B Nodev may change its
mirror value only after it receives (by means of Algorithrfi)Bhe
mirror values ofall nodes in the system.

THEOREM 4.1. If the source node is non-faulty, then Algorithm
Async-Boot solves Broadcast with confined stabilization.

5. DISCUSSION

Error confinement, often required in centralized systemems to
be even more useful in distributed settings. This paperessmts
only a first step in defining and exploring this notion in dstted
systems. It leaves many problems open. Can the agility ofbur
gorithm be improved? Our algorithm uses ball cores. Is thisae

is to haveexplicit causal chains, made of messages, that start at the optimal? Clearly, there exist topologies and source nootestions

source. The chains form along paths induced by the asynohson
version of the Bellman-Ford algorithm. Counting the numbgr

for which there exist better core functions. Another ndtahmice
is that of monotonically growing cores. In some settingstaie

messages received on a path, each node can obtain a lowet bounpgdes are better protected than others, and where thisrprage
on the number of messages that must have been sent by each ofiodes may change over time. Our algorithms start with a ¢ t

its ancestors on the tree. Similarly to Algorithm B, Algbrit B’
forces each node to reset its counter when changes occuinpow
cluding also parent change, or parent counter change. Tdjisav
counter reset propagates down the tree. It turns out thaffites

to count up tacand-dist + 1.

We now address the problem of computiagre(t) locally. For
ball cores, the solution is rather simple: each node knosvdig-
tance from the source due to Algorithm B. Consider a node
such thatR;—1 < dist(s,v) < R;, where{R;} is the sequence
of the core radii. Node enters the core (i.e., starts broadcast-
ing) once it receives the mirror values from all nodes in the- p
vious core, namely from all nodes whose distance froins at
most R,_1. This can be done in the asynchronous model by re-
quiring each node to broadcast its distance from the souorey a
with its mirror value. To maintain error confinement, we néed
address the possible scenario where the distances areiepfdf
that Algorithm B ensures is that the value received was indeed
sent by the source, but it does not ensure thatlitiancecommu-
nicated by a source of Algorithm B’ is indeeddist(s,w). This
difficulty is easily solved by applying the slowdown mectsmi
once again in the following way. If a nodereceives a message
from nodew claiming thatdist(u, s) = d, then using arguments
similar to those used in the proof of Theorem 3.4, we can show
that delaying the use afirror, for d additional messages in
which u continuously claims this distance is sufficient to ensure
that this value is correct. This means thatrror, can be used at
nodewv after2 - dist(u,v) + dist(u, s) messages are received by
nodewv. By the triangle inequality? - dist(u, v) + dist(u,s) <
max(3 - dist(u,v), 2 - dist(s,v)). The net effect is that when a
non-faulty node enters the core, its mirror value is corratthe
price of additional slowdown of mo&t Let B” denote Algorithm

B’ with the above extensions.

Finally, we need to address the problem of how to avoid the cor
ruption of correct nodeafter they enter the core. This is done by

consists of the source only. It may be the case (as in [21{)thlea
initial core contains multiple nodes.

Another direction is the relaxation of the model assumpstioRor
example, it is interesting to investigate the case wherksf&it in
multiple batches. Other questions lie in correlating eoanfine-
ment to other notions. For example, the notion of time adapti
[17, 13, 16] restricts the allowetime span of the faulty behavior,
as a function of the number of faulty nodes. Is there a trafle of
between such a requirement and that of error confinementgha
stricts thespatial span of faulty behavior as a function of the num-
ber of faults?

We have shown in Theorem 3.2 that error confinement implies a
(constant) slow down in the broadcast. This leaves opem qthes-
tions of overhead implied by confinement. In particular, algo-
rithms use much more communication resources and memary tha
non-error confinement algorithms. Can this overhead becesif
The notion of error confinement presented here applies orlyet
external behavior. In message passing models it seemshtirat t

is no way to prevent the contamination of parts of the statedhe

not exposed externally. Is this possible in other models?

Finally, there is the question regarding the applicabitifythe re-

sults to general reactive systems. There is a trivial rédndtom

a general reactive task to broadcast. In this reductionmyevede

broadcasts its values, and every node can compute the datped
on the inputs of all nodes. This, of course, is not a very effiti
reduction. It would be interesting to investigate the fadbfine-

ment of other problems, as well as the agility that can beeaeldi
for other problems. We believe that our broadcast algorittith

prove a useful primitive for solving such problems.
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APPENDIX _
Proof of Lemma 3.8: Fix a sequencéR;}. LetS; = 23:1 R;j.
CIearIyTiH > Riy1 + 2S; > (1 + 2i)R1 > ¢+ 1. Thus,

R; R; R;
= +
Tiv1—1 Tiv1  Tit1(Tig1— 1)
Ri 1 Ri 1
+ + -,
Tivi  Tiy1—1 Tiv1 ¢

where the first inequality follows from the fact th&t < T;+1. We
use the fact that for any two sequendes; };~o0 and{Y;}:>o we
have

liminf(X; +Y;) < liminf X; + limsupY; .
Hence

7 i

L < liminf
i1 — 1

1
lim inf + lim sup — = lim inf
i+1 (3 i+1



Thus, it is enough to show thahninf% < a, wherea =

1
34+2v2°

T;
some positiveV such that for ali > N we have

LI
Tit1

Assume by contradiction thaim inf Ril > a. That is there is

for some fixed3 > «. Using the above with the definitions @§
and.S; we conclude thaf is at most

R; Si — Si—1 S =51 1—Si-1/S;

25; + Ri+1 - 28+ (Sit1—8)  Si+Sit1  1+8i11/S;°

Lety; = S;/S;—1. Hence we get that

1-— 1/y¢

< .
= 1+ yit1

Now definez; = 1 + y; (clearlyz; > 1) to get that

PR VICES

Zi+1

Now, we use the following inequality which holds for ahy- 1
1-1/(t—1) < at.

To prove this inequality we note that it is equivalent (nliting
byt—1)tot —2 < at® —atortoat® — (a+ 1)t +2 > 0. The
last inequality holds since the determingnt+ 1)> — 8a = 0 by
our choice ofa.

Using the above inequality we get
5< 1-1/(z — 1) < az;
Zi+1 Zi4+1
Hence
ziv1/zi < aff <1 —c¢€

for some fixect > 0. Hence for large enough z; becomes smaller
than 1 which is a contradiction. This completes the proofhef t
lemma.

. — 1 R; R
Proof of Lemma 3.9: Leta = ETCNOR Clearl Tﬂ%l > ﬁ?

for all 5. We show thatT—iR%L1 > o for all i.

We first define a sequend®; of real numbers, and then analyze

the sequence?;. Letq = 1+ V2. DefineR; = ¢'~! for all
i>0andT} = R +2S/_1 = ¢t +2(¢" ' —1)/(g — 1). Let
Si = >_5_, Rj as before. With these definitions we have

R’/L B qi—l - qi—l B 1 B
- i1 = i 2 -
Tl ¢+ 294 T ¢+ gty

by our choice ofyg (this is, of course, the optimal choice fgrto
maximize the ratio). This completes the proof for the seqaesf
reals{R;},. -
We now consider the integer sequer{de; },. , defined byR; =
|¢"*! |. By definition,R; = | R}, 5| > Rj ,—1foralli > 0. Let
Si =3, Ri. ClearlyS; < 5}, —(1+q), since we omitted the

first two elements of the sequence, and rounded the otheeatem
down. Hence

Tit1 = Riy1+28i < Ri 342510 —2(14q) = T{13—2(1+q) .
Now, since2(1 + ¢g)a > 1 we conclude that
Ri>Rio—1>aT/3—1>a(T3—2(1+q) > aTin

where the second inequality follows from the fact that wevptb
the lemma for the sequend® with real numbers. This completes
the proof.



