
Distributed Error Confinement

Extended Abstract

Yossi Azar
Dept. of Computer Science

Tel Aviv University
Tel Aviv 69978

Israel

azar@cs.tau.ac.il

Shay Kutten
Dept. of Industrial Engineering

Technion
Haifa 32000

Israel

kutten@ie.technion.ac.il

Boaz Patt-Shamir
∗

HP Cambridge Research Lab
One Cambridge Center,
Cambridge MA 02142

USA

Boaz.PattShamir@HP.com

ABSTRACT
We initiate the study of error confinement in distributed applica-
tions, where the goal is that only nodes that were directly hit by
a fault may deviate from their correct external behavior, and only
temporarily. The external behavior of all other nodes must remain
impeccable, even though their internal state may be affected. Er-
ror confinement is impossible if an adversary is allowed to inflict
arbitrary transient faults on the system, since the faults might com-
pletely wipe out input values. We introduce a new fault tolerance
measure we callagility, which quantifies the strength of an algo-
rithm that disseminate information, against state corrupting faults.

We study the basic problem of broadcast, and propose algorithms
that guarantee error confinement with optimal agility to within a
constant factor, even in asynchronous networks when the topology
is unknown. These algorithms can serve as building blocks inmore
general reactive systems. Previous results in exploring locality in
reactive systems were not error confined, and relied on the assump-
tion (not used in current paper) that the errors hitting eachnode
are probabilistic, such that a faulty node itself, or its neighbor, can
detect the node faulty.

The main algorithm uses the novelcore bootstrappingtechnique,
that seems inherent for voting in reactive networks; its analysis
leads to an interesting combinatorial problem. The technique and
the analysis may be of independent interest

1. INTRODUCTION
One key difference between centralized and distributed systems is
that in distributed systems, faults may hit only a part of thesystem.
To achieve error confinement we to benefit from the fact that many
nodes may have not been hit. This intuition was explored before
for the case of non-reactive systems (but error confinement,de-
fined below, was not achieved). This becomes harder in distributed

∗On leave from Department of Electrical Engineering, Tel Aviv
University, Tel Aviv 69978, Israel.

PODC’03,July 17–99, 2003, Boston, Massachusetts, USA.

systems that are required to propagate information, e.g. communi-
cating new input of one node to remote nodes. The difficulty stems
from the fact that the propagation may amplify the effect of afault
by spreading wrong information across the system. This, in effect,
causes the receiving nodes to become faulty too. That is, their out-
put and messages differ from the case that no faults hit the system.
This phenomenon acts against the attempt to benefit from the fact
that many of the nodes may not have been hit by the original faults.
The main technical contribution of this paper, in Subsections 3.3,
3.4, is an algorithm that prevents this amplification effect.

Previous papers avoided this difficulty, and addressed issues that
are still to be faced if this difficulty does not exist. For example,
in [2] it was assumed that every faulty node can detect itselffaulty
since it was also assumed that the nature of the faults was proba-
bilistic. Thus, a faulty node knows not to spread the faults.The task
of that paper was then to recover from the faults fast, if the number
of faults was small. (Error confinement, defined below, was not ad-
dressed, but is immediate in that model.) A similar principle is used
in [26] (there the fault can be detected by a neighbor). Similarly,
[16]) avoided the spreading issue by addressing only the state that
the propagation is not needed; it handled problems remaining after
the information was already somehow spread correctly, and only
then faults occurred. Thus, again, the nodes corrupted by faults
were not required to spread their values (and the faults). The task
remaining was just to hold some “special” kind of a consensusin
which each non-faulty node voted the already spread value and the
faulty nodes may have voted another. That consensus was “special”
in the sense that it was in a self stabilizing model, and in thesense
that it was required to be fast when the number of faults was small.

Some fault-resilient protocols deal with faults by allowing arbitrary
behavior until recovery is complete (intuitively, declaring a tempo-
rary “state of emergency”). In papers such as [16, 2, 17, 13] the
question is how to shorten this period (if the number of faults is
small). The problem addressed in this paper is how to devise sys-
tems that keep the faulty information masked from the external user
as much as possible, even during the recovery period.

Let us be more specific (see Section 2 for formal definitions).We
consider the model of a distributed system that executes some reac-
tive task, i.e., the environment inputs values at nodes and reads out-
puts from nodes. The requirement is specified as a predicate over
the sequences of input and output values. We consider transient
faults, i.e., faults that eventually leave the system. Thisis modeled
by assuming that a fault may hit a set of nodes by arbitrarily modi-

fying their state, but this may happen at most once in the execution.
(If additional faults occur “enough time” after the first fault, the er-
ror confinement property is preserved in the algorithms presented
below; on the other hand, if additional faults occur “soon after” the
first, the algorithms still self stabilize, but may not be error con-
fined). Intuitively, a system is said to have the error confinement
property if in any execution, the observable input and output val-
ues meet the specification, where the only possible exceptions are
nodes directly hit by a fault. Note that it is not possible to guar-
antee a better behavior, since a local fault can trivially violate the
specification by changing the value of a local output variable. On
the other hand, it is good enough for some purposes. For example,
low-level error-confined system can be used to build higher level
applications which are error-confined, as we show in this paper.

The specific problem we study isbroadcast, where a value is input
at one of the nodes and the task is that eventually, all other nodes
will output that value exactly. The problem of broadcast is interest-
ing in our context for two reasons. First, the essence of broadcast
is dissemination of information, in apparent contrast to the idea of
error confinement, since the operation of the protocol mightcon-
taminate non-faulty nodes with bad information. And secondly,
broadcast can be viewed as a complete problem for reactive prob-
lem: intuitively, if all nodes know all inputs, then each node can
compute its output locally.

Previous papers that handled self stabilizing broadcast did it in a
context were the value of the broadcast source node cannot becor-
rupted. For example, in self stabilizing topology update (e.g. [11])
a broadcast source broadcasts the current status of its linkas it
knows it at that point in time; its “knowledge” is, by definition,
correct. Another example- in [16] every node broadcasts its“vote”,
which may be a result of a corruption, but needs to be broadcast
nevertheless (if the corrupted were the minority of the votes then
the consensus yielded the right result). In Subsections 3.1we con-
struct an error confined broadcast algorithm for the case that the
source is non- faulty. This is used as a building block in our main
algorithm that handles the reactive case in Subsections 3.3, 3.4.

Error confinement is not always possible, because if a value is in-
put at a node, and an error hits that very node before it sent out
any message, then the input value may have no trace whatsoever
in the system, making recovery impossible. On the other hand, it
is known how to recover from faults that hit any minority of the
nodes, if they occur when the input value is already safely mirrored
in all nodes [16]. This motivates us to introduce the measureof
agility, which quantifies the resilience of reactive algorithms as a
function of time. Intuitively, we consider faults that may hit only a
minority of the nodes in a ball around the origin of the input value.
An algorithm is more agile if that ball grows more quickly, i.e., the
agility of the algorithm measureshow quickly do we lift the restric-
tion on the faults.For example, an algorithm that cannot recover
from a corrupted source has agility0, and an algorithm that can
recover at any timet from a fault that corrupts only a minority of
the nodes in the ball of radiust

5
around the source has agility1

5
.

The main technical question addressed in this paper is what is the
maximal agility that allows the existence of error-confinedsystems.

Our contribution. In this paper we formalize the concepts of error
confinement and agility. Note that agility makes sense also for non-
confined algorithms. As a concrete example, we consider the basic
primitive of broadcast. We prove that error confinement necessar-

ily entails a slowdown of factor2 for broadcast. We then present
an error-confined algorithm whose agility and speed are within a
constant factor even from algorithms that are not error confined.

The main novel technique introduced here is that ofcore bootstrap-
ping. It is useful for preventing the amplification of errors by mes-
sage propagation. Thus it seems to be useful for other tasks in
reactive systems. Our main algorithm uses a specific variantof that
method, calledball core, that is very natural in the context of broad-
cast in reactive systems. For algorithms using ball cores, we present
matching lower and upper bounds on the agility of any broadcast
algorithm. We remark that the latter analysis is related to the cow
path problem [22], and may be of independent interest.

Most of the presentation is for the synchronous network model and
assuming that the network topology is known, but the final algo-
rithm works in the asynchronous network model with unknown
topology.

Related work. Error confinement is an important aspect in fault-
tolerant software systems. See, e.g., [19, 24] and references therein
for the software engineering perspective on fault confinement. Malkhi
et al. [21] study error confinement in the presence of Byzantine
faults. Our approach in modeling faults is similar to the onein [20,
7]. The model of state-corrupting faults is implicit in the semi-
nal work of Dijkstra aboutself stabilization[10]: put in our termi-
nology, a system is called self-stabilizing if even after anarbitrary
state-corrupting fault occurs (possibly hitting all nodes), eventually
the system starts behaving correctly. Some general algorithmic so-
lutions for making a system self-stabilizing appear in [15,3, 5],
based on the paradigm ofreset [6]: when an error is detected, a
global reset action is invoked, imposing a correct state on the sys-
tem. These papers do not distinguish between a fault that flipped,
say, a single bit in the system, and a massive fault that touches
many nodes, and therefore a significant disturbance in service is al-
lowed in both cases. A reduction in thenumberof nodes corrected
is achieved in many cases by the reset protocol of [11]. This proto-
col brings the system to a correct global state that is closest to the
faulty state, rather than backing into the same correct global state
in every situation. This saves in the number of nodes to correct.
Still, this algorithm is not error confined. For example, in the case
of a broadcast, a fault in a single node may cause every node toout-
put an incorrect value temporarily, and to refuse to output at some
other times (during its participation in the reset). Another direction
in limiting the damage caused by faults is correlating the recovery
time with the number of faulty nodes. In some problems that are
inherently local, a single fault can be corrected immediately, as was
pointed out in [8, 11]. More general approaches were proposed in
[17, 2, 13, 16]. In [13, 23, 16], a distinction is made betweenthe
time it takes the observable output to stabilize, and the time it takes
for the internal state to stabilize. We stress that all theseworks al-
low for correct nodes to exhibit faulty behavior before stabilization.

Another concept worth mentioning issnapstabilization [9]: A sys-
tem is called snap-stabilizing if its behavior stabilizes to its spec-
ification in 0 time. Clearly, snap stabilization is possible only for
a certain class of task specifications, that allow every faulty node
to be considered externally correct even at the time of the fault.
Broadcast does not satisfy this requirement. For those problems
that do satisfy this requirement it seems that turning snap stabiliz-
ing protocols into error confined ones should be possible.

• An action is associated with (a.k.a. occurs in) anode. An action may
be eitherexternalor internal. An external action is either aninput or
anoutputaction. Nodes may also be called “processors,” or “sites.”

• A behavior is a sequence of external actions. Given a nodev and a
behaviorβ, βv is thelocal behaviorof v, i.e., the subsequence ofβ

that consists only of actions that occur inv.
• A taskis a set of behaviors, calledlegal behaviorsfor the task.
• A protocol is a specification ofstatesand transitions. A state is a

vector oflocal states, one local state for each node. Transitions are
triples denoteds

a
→ s′, wheres ands′ are states, anda is an action.

An actiona is said to beenabledin states if s
a
→ s′ is a transition

for some states′. Input actions are enabled in all states. A subset of
the states is designated asinitial states.

• An executionof protocolP is an infinite sequences0
a1→ s1

a2→ . . .,

wheres0 is an initial state ofP , andsi−1
ai→ si is a transition ofP

for all i. In a timedexecution, each action is annotated with its time
of occurrence.

• Given an executione, its corresponding behavior, denotedβ(e), is
the sequence of all external actions ine.

• A protocolP implementstaskΠ if its set of behaviors is a subset of
the legal behaviors ofΠ.

Figure 1: Actions, behaviors, states, executions etc.: IO Automata
formalism.

Organization of this paper. In Section 2 we formally define the
model and the concepts of error confinement and algorithm agility.
In Section 3 we develop an error-confined algorithm for the broad-
cast problem in the synchronous model and analyze its agility. Sub-
sections 3.3, 3.4 present our main algorithmic contribution. The
algorithm in Section 3.3 is presented assuming an novel construct
we termcore, while Subsection 3.4 solves an optimization problem
in order to select the best core. (This analysis is related tothe cow
path problem). In Section 4 we present an extension of the basic
algorithm to the asynchronous model. We conclude with some dis-
cussion in Section 5. Some additional proofs are provided inthe
appendix.

2. BASIC CONCEPTS
In this section we define the model of computation, the broadcast
task, and the key concept of algorithm agility.

2.1 A Model for Error Confinement

General parameters.The system is modeled as a fixed undirected
connected graphG = (V, E), where nodes represent processors
and edges represent bi-directional communication links. We denote
|V | = n, and the diameter of the graph is denoteddiam. The
distance between two nodesu, v ∈ V , denoteddist(u, v), is the
minimal number of edges in a path connecting them. Given a node
v ∈ V , we denoteballv(r) = {u ∈ V | dist(v, u) ≤ r}, and call
it the ball of radiusr aroundv.

Error confinement. To define error confinement formally, we use
IO Automata as our underlying formalism [20]. The standard def-
initions are summarized in Figure 1. In this paper we consider a
single type of faults, calledstate corrupting, that abstracts all tran-
sient faults. Such faults are formally defined as follows.

DEFINITION 2.1. A state corrupting faultis an action that al-
ters the state arbitrarily in some subset of nodes. The nodeswhose

local state was altered are calledfaulty.

In our model, there is at most one fault in an execution, whichcan
span a set of nodes.

The new concept we propose is the following.

DEFINITION 2.2. A protocolP is said to be anerror-confined
protocol for taskΠ if for any execution with behaviorβ (possibly
containing a fault) there exists a legal behaviorβ′ of Π such that

(1) For each non-faulty nodev, βv = β′
v .

(2) For each faulty nodev, there exists a suffixβv of βv and
a suffixβ′

v of β′
v such thatβv = β′

v.

Theoutput stabilization timeof a faulty nodev is the time duration
of the prefix ofβv that is not included inβv .

The main point in the definition above is that the behavior of non-
faulty nodes must be exactly as in the specification: only faulty
nodes may have some period (immediately following the fault) in
which their behavior does not agree with the specification.

Formally, the broadcast task is defined as follows. (A general task,
of course, will include many instances of broadcast.)

Broadcast (BCAST)
Input actions:inps(b), done at nodes ∈ V , andb in some setD.
The nodes is calledsource.
Output actions:outp(b), required at all nodesv ∈ V , whereb ∈
D ∪ {⊥}.
Legal behaviors:There is at most oneinps action. Each nodev
outputsoutp(⊥) in each step up to some point, and then it outputs
outp(b) in each step, whereb is the value input by theinp action.

For ease of exposition, we abuse notation slightly and use special
input and output registers calledmirror: an input action is equiv-
alent to assigning a value to themirrors register at the sources,
and similarly the output action at nodev just reads the value of
the localmirrorv value. (We use the convention that variables are
subscripted by their node name.)

Error confined broadcast means that if any non-faulty node outputs
a valuea 6= ⊥, then all non-faulty nodes may output onlya (or⊥),
and all nodes must outputa eventually.

Agility. As mentioned above, there is no way to maintain error
confinement in the face of an arbitrary state-corrupting fault: the
fault may hit the source immediately after the input action,leaving
no trace of the original input value. However, faults can be over-
come if they arrive later, since the source could have communicated
the input to some other nodes in the meantime. It is impossible to
design an algorithm that will ensure replication to more nodes than
those in a certain distance (aballaround the source) that depends on
the time. If a fault hits the majority of nodes in this ball, ensuring
recovery is impossible. The notion ofα-constrained environment
formalizes this idea.

DEFINITION 2.3. An environment is calledα(t)-constrainedfor
some functionα(t) and a given system topology if the following

condition holds. Suppose that input is made at nodes at timet0,
and that a fault occurs at timetf . Then the number of nodes hit by
the fault is less than1

2
|balls(α(tf − t0))|.

The propagation of information in the system is physically limited
to within a dynamically growing ball centered at the source,and
hence no algorithm can recover inputs if that ball is corrupted. Our
definition restricts the faults inside a ball whose radius growth is
bounded by the functionα(t).

DEFINITION 2.4. An algorithm for the broadcast problemhas
agility α(t) if it has the error-confinement property for allα(t)-
constrained environments. An algorithm is said to have agility c
for a constantc if it hasα(t) agility for α(t) = c · t for all t ≥ 0.

Note that while our definition is for error-confinement, it general-
izes for any type of fault resilience. The agility of an algorithm,
intuitively, defines the maximum rate in whichα(t) grows that still
allows the algorithm to be correct.

R1

R 2

3R

time

T1 T2 3T

1

1

c (t)

Figure 2: The agility is the rate the constraint on the fault is re-
leased to allow more faults

Example. This example demonstrate an interesting finding given
in Subsection 3.4. Ifα(Ti) = Ri, then, at timet = Ti − ǫ for
someǫ > 0, the constraint on the faults is a ball of radiusRi−1

(see example in Figure 2). Thus, if the agility rate is somec, then
c ≤ Ri−1

Ti

. One may expectα(t) to grow smoothly, rather than
maintaining the same value for long periods. That is, one mayex-
pect the algorithm to maximizesα in each step greedily. Interest-
ingly, it turns out that the infrequent changes in the value of α are an
inherent property of the optimal algorithm (see Section 3.4).

Synchronous and asynchronous computations.In most of this
paper, we use a simplified model of computation called thesyn-
chronous network model. In this model, time proceeds in steps,
where in each step (calledround of computation), all nodes first
read the state of their neighbors, and then set their own state. This
model abstracts the underlying mechanism whose job is to make the
state available at neighbors, as well as synchronize their progress.
Note that in the synchronous model, states change at discrete steps.
When we say “at timet,” the interpretation is “in the state between
the end of stept and the start of stept + 1.” The asynchronous
network model is treated in Section 4.

3. BROADCAST WITH ERROR CONFINE-
MENT

The main novel technique in this paper appears in Subsections 3.3,
3.4 where we develop an algorithm for BCAST with error confine-
ment in the synchronous model that works even if the source may

suffer faults. Subsection 3.3 presents the framework of thealgo-
rithm, while Subsection 3.4 solves an optimization problemin or-
der to decide the specific parameter. The behavior of the optimum
seems interesting in itself.

Before that we construct a building block- an algorithm for BCAST
assuming that the source is never faulty, see Subsection 3.1. Recall
(from the introduction) that this more limited case (that the source
is never faulty) has some similarities to the cases dealt with in some
previous papers (though solutions in previous papers were not er-
ror confined). This makes its treatment easier, and we use it as a
module for our core bootstrapping protocol of Subsections 3.3, 3.4.

We also prove, in Subsection 3.2, a lower bound that says thatany
algorithm for broadcast must slow down the output by at leasta
factor of2, even if the execution is fault-free.

3.1 A building block: Broadcast with a correct
source

We first solve BCAST under the assumption that the source is cor-
rect. This part is less difficult than the general case of Subsections
3.3, 3.4. Still, this primitive is useful since it has the following
partial error confinement property (whether the source was hit by a
fault or not): if the algorithm outputs a value at a non-faulty node
v, then the output value isauthentic, in the sense that it was indeed
communicated by the source. (We say “partial” error confinement
since, if the source is faulty, the value communicated by thesource
may be faulty.)

To solve BCAST with a correct source, let us start with the problem
of distance computation.

Single source distance computation (SSD)
Input actions:starts, made at the source nodes.
Output actions:d, whered ∈ {0, 1, . . . , N} ∪ {⊥} for some large
integerN .
Legal behaviors:Each nodev outputs⊥ in each step up to some
point, and then it outputsdist(s, v) in each subsequent step.

Without the requirement for error confinement, the Bellman-Ford
algorithm solves SSD even in the face of state-corrupting faults
(see, e.g., [4]). Informally, the algorithm works as follows. In non-
source nodes, the initial value of the output variabledistv is ⊥,
and in each step, the node sets its value to be one plus the minimum
of the distance variables of its neighbors (where⊥ is treated as
infinity). The source node sets its output variable to0 in each step
following thestarts action.

Note that the Bellman-Ford algorithm is not error-confined:A non-
faulty node sets its distance variable to one plus the minimum of the
values of its neighbors, and that minimum may be erroneous. But
a simple extension makes Bellman-Ford error-confined. The key
observation is that if the distance variable value isd, and it has not
changed for at leastd time units, then the distance of the node from
the source is indeedd. This gives rise to Algorithm A, presented
formally in Figure 3. The effect of the input action at the sources
is to setdists ← 0 in that step and every subsequent step.

We now prove the error confinement property of Algorithm A. Let
us assume without loss of generality that the fault occurs attime0,
and that at that point, the state variables have arbitrary values.

State at nodev 6= s:
distv : output distance variable, initially⊥
cand distv : internal distance variable, initially⊥
countv : counter, initially0

Code at nodev 6= s:
if cand distv 6= 1 + min {cand distu | u is a neighbor ofv}

then
cand distv ← 1 + min {cand distu | u is a neighbor ofv}
countv ← 0
elsecountv ← min(countv + 1, cand distv)

if countv ≥ cand distv

then distv ← cand distv

Figure 3: Algorithm A: Single source distance computation with
confined errors.

L EMMA 3.1. At any timet ≥ 0, for any nodev, it holds that
cand distv ≥ min(dist(s, v), t).

Proof Sketch: First, note that the lemma holds trivially for the
source node. We proceed by induction on time. Fort = 0 the
lemma holds sincecand distv ≥ 0 always. For the inductive step,
let v 6= s be any node, and consider timet + 1. By the induction
hypothesis, we have that for every neighboru of v, cand distu ≥
min(t, dist(s, u)). If t < dist(s, u) for all neighborsu, we are
done, sincedist(s, v) = 1 + minu {dist(s, u)}, andv assigns a
value which is at leastt+1 ≥ min(t+1,dist(s, v)). If dist(s, u) ≤
t for some neighbors ofv, let u0 be the neighbor closest tos.
Note thatdist(s, v) = dist(s, u0) + 1. By induction hypothe-
sis, we have thatcand distu0

≥ min(t,dist(s, u0)), and since
cand distv ≥ cand distu0

+ 1, we get thatcand distv ≥
cand distu0

+1 ≥ min(t, dist(s, u0))+1 = min(t+1,dist(s, v)).

L EMMA 3.2. If dist(s, v) ≤ d for some nodev, then at any
timet ≥ d, we have thatcand distv ≤ d.

Proof: By induction on the distancedist(s, v). If dist(s, v)=0, then
v = s the claim follows directly from the code. Assume that the
claim is true for all nodes at distanceδ at all time stepst ≥ δ, and
consider a nodev with dist(s, v) = δ + 1. Let u0 be a neighbor of
v with dist(s, u0) = δ. By the induction hypothesis, at timeδ and
onward, we have thecand distu0

≤ δ. It follows from the code
that at timeδ + 1 an onward,cand distv ≤ δ + 1, as required.

Using the lemmas above, we now analyze the broadcast time. Let
the start time of the broadcast bet0. If faults occurred before the
broadcast delivers the message everywhere then lettf be the time
of the faults. Otherwise, lettf = t0. We measure the time of the
broadcast frommax{t0, tf}:

THEOREM 3.3. Algorithm A solves SSD with confined errors
and output stabilization time2 · diam.

Proof: We first prove stabilization. By Lemmas 3.1 and 3.2, we
havecand distv = dist(s, v) for any timet ≥ diam, at any node

State at nodev 6= s:
mirrorv : the broadcast value to be output, initially⊥
cand mirrorv : an internal estimate of the output value, initially⊥
cand distv : an internal estimate of the distance, initially⊥
countv : counter, initially0

Code at nodev 6= s:
Let u0 be the neighbor ofv such that

cand distu0
= min {cand distu | u is a neighbor ofv}

if (cand distv 6= 1 + cand distu0
) or

(cand mirrorv 6= cand mirroru0
)

then
cand distv ← 1 + cand distu0

cand mirrorv ← cand mirroru0

countv ← 0
elsecountv ← min(countv + 1, cand distv)

if countv ≥ cand distv distance and mirror are correct
then mirrorv ← cand mirrorv

Figure 4: Building block: Algorithm B. Broadcast with confined
errors assuming the source is non-faulty.

v. Hence,count is never reset after timediam, and hence, by time
2 · diam we havecountv ≥ dist(s, v) ≥ cand distv. It fol-
lows that by time2 · diam, all nodes setdistv ← cand distv =
dist(s, v), and the system stabilizes as required. Next, we show er-
ror confinement. Consider any nodev, and suppose thatv changes
the value of itsdistv variable at timet. There are two cases to con-
sider. If the value ofdistv is changed less thancand distv time
units since the last time thecand distv variable was changed,
then clearly thecountv variable does not have its intended seman-
tics, and hence nodev is faulty and we are done. So suppose that
the distv variable is set tod after at leastd time units in which
cand dist = d. By Lemma 3.1 we have thatdist(v, s) ≥ d, and
by Lemma 3.2dist(v, s) ≤ d. The result follows.

We remark that Theorem 3.3 holds for a fault that hits any number
of nodes at any time, simply because there is no input value.

We now extend Algorithm A to solve the BCAST task. This is done
by “piggy-backing” the broadcast value on the distance value, once
it is input. The broadcast value becomes externally visibleonly
when thedist variable would have become visible in Algorithm
A. The algorithm for broadcast with error confinement is formally
presented in Figure 4 for non-source nodes. For the source nodes,
we have that theinps(b) action results in assigningmirrors ← b,
and also the source keeps settingcand dists ← 0 anddists ← 0
in each subsequent step.

THEOREM 3.4. If the source node is non-faulty, then Algorithm
B solves BCAST with confined errors, and output stabilization time
2 · diam.

Proof Sketch: Consider a non-faulty nodev, and suppose that it
assigns a value tomirrorv at timet. We show that this value is
correct. Suppose that at timet, cand distv = d. Sincev is non-
faulty, we have by the code that at timet, countv = d, and that
there were at leastd time units during whichcand distv did not
change.

We claim thatd = dist(s, v). First note that ifd > dist(s, v), then
by Lemma 3.2, by timet we have thatcand distv = dist(s, v) <

d, contradicting the fact thatv did not change itscand distv value.
So it must be the case thatd ≤ dist(s, v). Suppose for contradic-
tion thatd < dist(s, v). We show thatcountv must have been reset
by timet in this case. Let us say that a nodev consistently depends
on nodeu in a given state ifcand distv = cand distu + 1 and
cand mirrorv = cand mirroru. Nodesv0, v1 . . . , vk are called
a consistent dependency chainof v0 in a given state ifvi consis-
tently depends onvi+1 for all 0 ≤ i < k in that state. Note that if
the maximal consistent dependency chain of a node at some state is
of length0, then by code, that node will setcountv ← 0 in the next
step. Now, consider thed maximal consistent dependency chains
of v, one chain for each time stept− 1, t− 2, . . . , t− d. We claim
that at least one of these chains is of length0, which contradicts the
assumption thatcountv was not reset during this time interval. To
see that, first note that the length of the chain at timeτ is exactly
d−cand distu(τ), whereu(τ) is the last node in the chain ofv at
timeτ . Sinced < dist(s, v) by assumption, it follows from the tri-
angle inequality thatcand distu(τ) < dist(s, u(τ)), and hence,
by Lemma 3.1 we have that at timet − d + i the length of any
consistent dependency chain ofv is at mostd − i, and hence there
will exist a zero-length chain by timet − 1, as required. The out-
put stabilization time follows directly from the fact that after diam

time, all cand dist andcand mirror variables have the correct
values, which in turn follows from Lemmas 3.1 and 3.2.

3.2 Error confinement implies slowdown
Clearly, under Algorithm B, a nodev outputs a value after2 ·
dist(s, v) time units, even if there are no faults: twice the neces-
sary minimum. The following theorem shows that this slowdown
is inherent to error confinement, even if there are no faults (Note
that if there are faults, the stabilization time of algorithm B is even
somewhat higher.)

THEOREM 3.5. Let X be an algorithm solving BCAST with
error-confinement if the sources is correct. Then for any non-faulty
nodev, the time in whichv outputs a value is at least2 · dist(s, v)
steps after the input ats, even if there are no faults.

Proof: Consider a line graph, where nodes are numbered0, 1, 2, . . .,
and let the source be node0. Consider any nodei. We compare
two executions ofX: in executione0, no input is ever made at the
source, and in executione1, a value1 is input ats at some time
t0. Let t1 be the first time in which the execution of nodev differs
betweene0 ande1. Obviously,t1 ≥ t0 + i, since the first differ-
ence betweene0 ande1 occurs at timet0 at distancei from node
i. To prove the theorem we claim that algorithmX cannot output
a value ati before timet1 + i in e1. This is shown by contradic-
tion: Suppose thati outputs a value at timet2 < t1 + i. We define
another executione′ as follows. Up to and excluding timet1, e′ is
identical toe0. At time t1, two events occur ate′: First, an input
of value0 is made ats; and second, a fault changes the states of
the nodes numberi− 1, . . . , i− (t2 − t1) to be the same as ine1.
Note that the source is non-faulty becausei > t2 − t1. Also note
that nodei is non-faulty. It is immediate to verify by induction that
the execution of nodesi, i− 1, . . . , i− (t2− t1) + j is identical in
e1 ande′ in stepst1, . . . , t1 + j since each of these nodes cannot
distinguishe′ from e1 at these times. It therefore follows that node
i will output value1 in e′, a contradiction to the error-confinement
property that requires all outputs at non-faulty nodes to bethe same
as the input value.

3.3 General Error-Confined Broadcast
We now present the main algorithmic contribution of the paper.
This algorithm allows for a faulty source, under the assumption
that faults may not corrupt the state of a majority of the nodes in
balls(α(t)) at time t. The idea is to apply a bootstrapping tech-
nique. While algorithm B used a single source (and had agility
zero), the Core-bootstrapping algorithm maintains a dynamically
growing set of nodes calledcore(t), for each time stept (where
core(0) = {s}). Each node in the core set broadcasts (using Al-
gorithm B as a primitive) what it believes to be the true valueinput
at s at time0. Assuming that no fault ever directly corrupts the
majority of the current core, the algorithm ensures thatalways, the
majority of values in the core set is correct.

The core grows inductively: A node may join the core if it has
“sufficient evidence” to determine that the value it is aboutto start
broadcasting is correct. “Sufficient evidence” here means the set of
values broadcast by a complete core set. This is “sufficient”since
faults may corrupt only a minority of the core nodes by assumption.
Thus, the main task is to select the next core in a way that willlift
these constraints on the adversary as fast as possible. Thismain
task is, actually, deferred to the next subsection

For the subtask of correctly collecting the above “sufficient evi-
dence” values, the algorithm uses Algorithm B as a building block,
this is why we needed it to be error confined too. This leaves us
with the task to design the algorithm in such a way that the as-
sumption on the constraints of the faults is minimal. Specifically,
consider the algorithm (with a parametriccore(t) function) that be-
haves at nodev in each time stept as follows:

Algorithm Boot:
(1) Receive broadcasts from all nodes using Algorithm B.
(2) If Algorithm B locally outputs values from all nodes incore(t−
1), setmirrorv value to their majority value (otherwise,mirrorv

retains its previous value).
(3) If v ∈ core(t), then broadcastmirrorv using Algorithm B.

The algorithm works for anycore(t) specification, so long as the
following condition is satisfied for all nodesv and time stepst:

Feasibility Condition: If v ∈ core(t)− core(t− 1), then by time
t nodev received broadcast valuesmirroru from all nodesu ∈
core(t− 1).

THEOREM 3.6. Let core(t) be a function satisfying the feasi-
bility condition, and assume|core(t)| ≥ |balls(α(t))| for some
functionα(t). Then Algorithm Boot is an error-confined algorithm

for broadcast with agility at leastmin
n

α(t)
t
| t ≥ 1

o

and output

stabilization time of2 · diam + min {t | core(t) = V }.

Proof: We first prove, by induction on time, that if nodev is non-
faulty, then it will never set itsmirrorv variable to a wrong value.
The base case ist ≤ tf , wheretf is the time of the fault (possibly,
tf = ∞). In this case, the claim follows from the trivial fact that
the system is correct before the fault. For the inductive step, sup-
pose that a non-faulty nodev sets itsmirrorv value at timet > tf .
By Theorem 3.4, Algorithm B guarantees that the local outputs at
v of the broadcasted values from nodes incore(t − 1) are authen-
tic. Since less than1

2
|core(tf)| nodes are faulty by assumption that

|core(t)| ≥ |balls(α(t))| and since all non-faulty nodes have cor-
rectmirror values by the induction hypothesis, and since all these

values will arrive atv by the second part of the feasibility condition,
v will set itsmirrorv variable to the correct value. This proves the
error confinement property.

The output stabilization time bound follows by the fact thatnon-
faulty nodes broadcast the correct value and from Theorem 3.4.

3.4 Ball Core Functions
Algorithm Boot does not specify how the core function is defined,
except for the restriction that it is feasible. In this section we focus
on ball cores, which match our definition for constrained environ-
ments. Ball core functions are defined as follows. In any given time
t we havecore(t) = balls(R(t)) for someR(t) called theradius
of the core at timet. We seek a ball core function that admits the
best possible agility.

So fix a ball core functioncore. Let {Ri} denote the sequence of
all distinct radii of core in increasing order, i.e.,Ri < Ri+1 for
all i. Let Ti denote the first time thatcore(t) = balls(Ri). See
Figure 2. To simplify exposition, and motivated by Theorem 3.5,
from now on we normalize the time scale by a factor of2, which
means that the time between the start of Algorithm B at any nodev
and the time another nodeu has an authenticated value ofmirrorv

is dist(v, u) if no faults occur.

The following lemma establishes a strong connection between Ri

andTi (see Figure 5).

su v

core(T(i-1))

core(T(i))

R(i-1) R(i)

Figure 5: The feasibility condition implies that nodev cannot join
the core beforeRi + Ri+1 time units have passed since nodeu
joined the core.

L EMMA 3.7. Letcore be a feasible ball core function. Then for
all i > 0, we have

Ti ≥ Ri + 2
i−1
X

j=1

Rj .

Moreover, the best agility for the given radii sequence is attained
when equality holds.

Proof Sketch: It suffices to prove thatTi − Ti−1 ≥ Ri + Ri−1:
The inequality of the lemma then follows by unfolding. To prove
the latter inequality, consider any graph with nodess, u, v such that
dist(s, u) = Ri−1, dist(s, v) = Ri, anddist(u, v) = Ri−1 +
Ri. (A line graph of lengthRi + Ri−1 does the job.) Now, by
construction,u ∈ core(Ti−1)−core(Ti−1−1), andv ∈ core(Ti)−
core(Ti − 1). Hence the feasibility condition, and the fact that
dist(u, v) = Ri−1 + Ri imply the result. To prove the positive
part of the claim, we setTi = Ti−1 + Ri + Ri−1 inductively. To

see feasibility, note that the distance between the furthest node in
theith core and the(i+1)st core is at mostRi +Ri+1. Optimality
in case of equality is proven by induction.

Hence we have the problem of choosing a sequence of radii{Ri}
that maximizes the agility subject to the inequality of Lemma 3.7.

Note that the agility of the algorithm ismini

n

Ri−1

Ti−1

o

: at timeTi−
1, the core radius is stillRi−1. Interestingly, this problem is closely
related to the classicalcow path problem(see, e.g., [22, 14]), where
a cow wonders along a line until it finds food, and the goal of an
algorithm is to minimize the ratio between total distance traversed
by the cow and the path length between its origin and the food.

To gain some intuition into the problem of choosing the optimal
radii sequence, consider the “greedy” rule, where a nodev enters
the core at timet if this is the first time in whichv receives the
broadcasts of all nodes incore(t − 1). This means that the radii
sequence isRi = i. It follows from Lemma 3.7 that the greedy
rule leads to the core functioncore(t) = balls(

√
t), and hence the

agility is 1√
diam

. An interesting observation that follows from the
next two lemmas is that the number of times the optimal ball core
grows (the number of steps in Figure 2) is logarithmic inn.

The following two lemmas help us choose an optimal sequence of
radii. The proofs of these lemmas, given in the appendix, canalso
serve as new proofs for the cow path problem. The first lemma
asserts a lower bound on the agility of any ball core function.

L EMMA 3.8. Let R1, R2, . . . be any positive non-decreasing
sequence such thatR1 ≥ 1. Let T1, T2, . . . be a sequence such
thatTi ≥ Ri + 2

Pi−1
j=1 Rj . Thenlim inf Ri

Ti+1−1
≤ 1

3+2
√

2
.

Lemma 3.8 is stronger than what we need, since it proves the bound
for an infinite number of times. The next lemma shows how to pick
a sequence of radii that attains the agility lower bound of Lemma
3.8.

L EMMA 3.9. LetRi =
¨

(1 +
√

2)i+1
˝

for i ≥ 1, and letTi =

Ri + 2
Pi−1

j=1 Rj . Theninf Ri

Ti+1−1
≥ 1

3+2
√

2
.

Settingcore(t) = balls(max {Ri | t ≤ Ti}) in Algorithm boot-
strap, where theRi and theTi values are as given by Lemma
3.9, yields an error-confined algorithm for BCAST with agility

1
3+2

√
2
≈ 0.172, which is optimal for ball cores by Lemma 3.8.

4. ASYNCHRONOUS ERROR CONFINED
BROADCAST

The presentation of the asynchronous algorithm is deferredto the
full paper. Let us here just sketch the extension for Algorithm
Boot to the asynchronous model. Using ball cores, we also replace
the assumption that the topology is known to the nodes ahead of
time by the assumption that only the identity of the source node is
known. The extension adds another factor of2 slowdown to the
algorithm performance.

First, let us describe the model. We assume that the basic opera-
tions are message send and receive, and that messages can be de-
layed for an arbitrary (but finite) time in the communicationlinks.

Links can also be garbled by a state corrupting fault, but we assume
that in any given time, there is at most one outstanding message that
is in transit in every channel. We remark that this model can be gen-
eralized (without changing the asymptotic complexity) to allow any
number of messages to be stored in a link, so long as this number
is bounded by a constant. See [25] for further discussion.

Now, consider Algorithm Boot. The correctness of AlgorithmBoot
relies on synchrony in two ways: first, Algorithm Boot uses Algo-
rithm B as a subroutine, and the correctness of Algorithm B relies
on the assumption that the network is synchronous. And secondly,
each node needs to knowcore(t) for any stept, but there is no well-
defined notion of global step number in the asynchronous model.

Let us first describe an asynchronous version of Algorithm B called
Algorithm B’. (Similar ideas were used in different contexts in [3,
1].) We start by observing that the idea behind Algorithm B is
that before outputting a value, each node ensures that thereexists
a causal chain[18] carrying this value from the source to the des-
tination. This is done by counting communication rounds: suffi-
ciently many rounds without the value changed provide evidence
for the existence of a such causal chain. The idea in Algorithm B′

is to haveexplicit causal chains, made of messages, that start at the
source. The chains form along paths induced by the asynchronous
version of the Bellman-Ford algorithm. Counting the numberof
messages received on a path, each node can obtain a lower bound
on the number of messages that must have been sent by each of
its ancestors on the tree. Similarly to Algorithm B, Algorithm B′

forces each node to reset its counter when changes occur, nowin-
cluding also parent change, or parent counter change. This way, a
counter reset propagates down the tree. It turns out that it suffices
to count up tocand dist + 1.

We now address the problem of computingcore(t) locally. For
ball cores, the solution is rather simple: each node knows its dis-
tance from the sources due to Algorithm B′. Consider a nodev
such thatRi−1 < dist(s, v) ≤ Ri, where{Ri} is the sequence
of the core radii. Nodev enters the core (i.e., starts broadcast-
ing) once it receives the mirror values from all nodes in the pre-
vious core, namely from all nodes whose distance froms is at
mostRi−1. This can be done in the asynchronous model by re-
quiring each node to broadcast its distance from the source along
with its mirror value. To maintain error confinement, we needto
address the possible scenario where the distances are not true: All
that Algorithm B′ ensures is that the value received was indeed
sent by the source, but it does not ensure that thedistancecommu-
nicated by a sourceu of Algorithm B′ is indeeddist(s, u). This
difficulty is easily solved by applying the slowdown mechanism
once again in the following way. If a nodev receives a message
from nodeu claiming thatdist(u, s) = d, then using arguments
similar to those used in the proof of Theorem 3.4, we can show
that delaying the use ofmirroru for d additional messages in
which u continuously claims this distance is sufficient to ensure
that this value is correct. This means thatmirroru can be used at
nodev after 2 · dist(u, v) + dist(u, s) messages are received by
nodev. By the triangle inequality,2 · dist(u, v) + dist(u, s) ≤
max(3 · dist(u, v), 2 · dist(s, v)). The net effect is that when a
non-faulty node enters the core, its mirror value is correct, at the
price of additional slowdown of most2. Let B′′ denote Algorithm
B′ with the above extensions.

Finally, we need to address the problem of how to avoid the cor-
ruption of correct nodesafter they enter the core. This is done by

simply not allowing a node to change its mirror value until ithears
from all nodes in the system. Specifically, the asynchronousver-
sion of Algorithm Boot at a nodev is as follows. Once a message
is received from the sources, v starts computing is distance froms
using Algorithm B′′. Based on that distance, it computesRi−1 as
the maximum core radius smaller thandist(s, v). When Algorithm
B′′ outputs all mirror values from nodesu with dist(s, u) ≤ Ri−1,
v setsmirrorv to be the majority of these values, and starts broad-
casting that value using Algorithm B′′. Node v may change its
mirror value only after it receives (by means of Algorithm B′′) the
mirror values ofall nodes in the system.

THEOREM 4.1. If the source node is non-faulty, then Algorithm
Async-Boot solves Broadcast with confined stabilization.

5. DISCUSSION
Error confinement, often required in centralized systems, seems to
be even more useful in distributed settings. This paper represents
only a first step in defining and exploring this notion in distributed
systems. It leaves many problems open. Can the agility of oural-
gorithm be improved? Our algorithm uses ball cores. Is this choice
optimal? Clearly, there exist topologies and source nodes locations
for which there exist better core functions. Another natural choice
is that of monotonically growing cores. In some settings, certain
nodes are better protected than others, and where this property of
nodes may change over time. Our algorithms start with a core that
consists of the source only. It may be the case (as in [21]) that the
initial core contains multiple nodes.

Another direction is the relaxation of the model assumptions. For
example, it is interesting to investigate the case where faults hit in
multiple batches. Other questions lie in correlating errorconfine-
ment to other notions. For example, the notion of time adaptivity
[17, 13, 16] restricts the allowedtime span of the faulty behavior,
as a function of the number of faulty nodes. Is there a trade off
between such a requirement and that of error confinement, that re-
stricts thespatialspan of faulty behavior as a function of the num-
ber of faults?

We have shown in Theorem 3.2 that error confinement implies a
(constant) slow down in the broadcast. This leaves open other ques-
tions of overhead implied by confinement. In particular, ouralgo-
rithms use much more communication resources and memory than
non-error confinement algorithms. Can this overhead be reduced?
The notion of error confinement presented here applies only to the
external behavior. In message passing models it seems that there
is no way to prevent the contamination of parts of the state that are
not exposed externally. Is this possible in other models?

Finally, there is the question regarding the applicabilityof the re-
sults to general reactive systems. There is a trivial reduction from
a general reactive task to broadcast. In this reduction, every node
broadcasts its values, and every node can compute the outputbased
on the inputs of all nodes. This, of course, is not a very efficient
reduction. It would be interesting to investigate the faultconfine-
ment of other problems, as well as the agility that can be achieved
for other problems. We believe that our broadcast algorithmwill
prove a useful primitive for solving such problems.

6. REFERENCES
[1] Y. Afek and A. Bremler. Self-stabilizing unidirectional

network algorithms by power-supply. InProc. of the 8th ann.

ACM-SIAM Symposium on Discrete Algorithms, pages
111–120, 1997.

[2] Y. Afek and S. Dolev. Local stabilizer. InProceedings of the
5th Israel Symposium on Theory of Computing and Systems,
June 1997.

[3] Y. Afek, S. Kutten, and M. Yung. Memory-efficient
self-stabilization on general networks. InProc. 4th Workshop
on Distributed Algorithms, pages 15–28, Italy, Sept. 1990.
Springer-Verlag (LNCS 486). To appear inTheoretical
Comp. Sci.

[4] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and
G. Varghese. Time optimal self-stabilizing synchronization.
In Proceedings of the 25th Annual ACM Symposium on
Theory of Computing, San Diego, California, pages
652–661, May 1993. Also appeared as IBM Research Report
RC-19149(83418).

[5] B. Awerbuch, B. Patt-Shamir, and G. Varghese.
Self-stabilization by local checking and correction. In32nd
Annual Symposium on Foundations of Computer Science,
San Juan, Puerto Rico, pages 268–277, Oct. 1991.

[6] B. Awerbuch, B. Patt-Shamir, G. Varghese, and S. Dolev.
Self-stabilization by local checking and global reset. InProc.
8th International Workshop on Distributed Algorithms, pages
326–339. Springer-Verlag (LNCS 857), 1994.

[7] M. Breitling. Modeling faults of distributed, reactive
systems. In6th International Symposium on Formal
Techniques in Real-Time and Fault-Tolerant Systems,
(FTRTFT 2000), pages 58–69. Springer (LNCS 1926), 2000.

[8] Imrich Chlamtac, Shlomit S. Pinter Distributed Nodes
Organization Algorithm for Channel Access in a Multihop
Dynamic Radio Network. IEEE Transactions on Computers
36(6): 728-737 (1987)

[9] A. Bui, A. K. Datta, F. Petit, and V. Villain. State-optimal
snap-stabilizing PIF in tree networks. InProceedings of the
Third Workshop on Self-Stabilizing Systems (WSS 3), pages
78–85. IEEE Computer Society, 1999.

[10] E. W. Dijkstra. Self-stabilizing systems in spite of distributed
control.Comm. ACM, 17(11):643–644, November 1974.

[11] S. Dolev and T. Herman. Superstabilizing protocols for
dynamic distributed systems. InProc. of the Second
Workshop on Self-Stabilizing Systems, pages 3.1–3.15, May
1995.

[12] S. Dolev, A. Israeli, and S. Moran. Self-stabilizationof
dynamic systems assuming only read/write atomicity. In
Proc. 9th Ann. ACM Symp. on Principles of Distributed
Computing, Quebec City, Canada, Aug. 1990.

[13] S. Ghosh, A. Gupta, T. Herman, and S. V. Pemmaraju.
Fault-containing self-stabilizing algorithms. InProc. 15th
Ann. ACM Symp. on Principles of Distributed Computing,
May 1996.

[14] M.-Y. Kao, J. Reif, and S. Tate. Searching in an unknown
environment: An optimal randomized algorithm for the
cow-path problem. InProc. of the 4th ann. ACM-SIAM
Symposium on Discrete Algorithms, 1993.

[15] S. Katz and K. J. Perry. Self-stabilizing extensions for
message-passing systems.Distributed Computing,
7(1):17–26, 1993.

[16] S. Kutten and B. Patt-Shamir. Stabilizing time-adaptive
protocols.Theoretical Computer Science, 220(3):93–111,
1999.

[17] S. Kutten and D. Peleg. Fault-local distributed mending. In
Proc. 14th Ann. ACM Symp. on Principles of Distributed
Computing, Aug. 1995.

[18] L. Lamport. Time, clocks, and the ordering of events in a
distributed system.Comm. ACM, 21(7):558–565, July 1978.

[19] P. A. Lee and T. Anderson.Fault Tolerance: Principles and
Practice. Springer-Verlag, Wien, second revised edition,
1990.

[20] N. Lynch.Distributed Algorithms. Morgan Kaufmann, San
Mateo, CA, 1995.

[21] D. Malkhi, Y. Mansour, and M. Reiter. Diffusing without
false rumors: On propagating updates in a byzantine
environment.Theoretical Comput. Sci., 2002.

[22] C. H. Papadimitriou and M. Yanakakis. Shortest paths
without a map.Theoretical Computer Science,
84(1):127–150, 1991.

[23] G. Parlati and M. Yung. Non-exploratory self-stabilization
for constant-space symmetry-breaking. In J. van Leeuwen,
editor,Proceedings of the 2nd Annual European Symposium
on Algorithms, pages 26–28, Sept. 1994. LNCS 855,
Springer Verlag.

[24] D. J. Taylor. Practical techniques for damage confinement in
software. InProceedings of the 1998 Computer Security
Dependability and Assurance (CSDA ’98). IEEE, 1998.

[25] G. Varghese. Self-stabilization by counter flushing.SIAM J.
Comput., 30(2):486–510, 2000.

[26] I-Ling Yen: A Highly Safe Self-Stabilizing Mutual
Exclusion Algorithm.Information Processing Letters57(6):
301-305 (1996).

APPENDIX
Proof of Lemma 3.8: Fix a sequence{Ri}. Let Si =

Pi

j=1 Rj .
ClearlyTi+1 ≥ Ri+1 + 2Si ≥ (1 + 2i)R1 > i + 1. Thus,

Ri

Ti+1 − 1
=

Ri

Ti+1
+

Ri

Ti+1(Ti+1 − 1)

≤ Ri

Ti+1
+

1

Ti+1 − 1
<

Ri

Ti+1
+

1

i
,

where the first inequality follows from the fact thatRi ≤ Ti+1. We
use the fact that for any two sequences{Xi}i>0 and{Yi}i>0 we
have

lim inf(Xi + Yi) ≤ lim inf Xi + lim supYi .

Hence

lim inf
Ri

Ti+1 − 1
≤ lim inf

Ri

Ti+1
+ lim sup

1

i
= lim inf

Ri

Ti+1
.

Thus, it is enough to show thatlim inf Ri

Ti+1
≤ α, whereα =

1

3+2
√

2
.

Assume by contradiction thatlim inf Ri

Ti+1
> α. That is there is

some positiveN such that for alli > N we have

Ri

Ti+1
≥ β

for some fixedβ > α. Using the above with the definitions ofTi

andSi we conclude thatβ is at most

Ri

2Si + Ri+1
=

Si − Si−1

2Si + (Si+1 − Si)
=

Si − Si−1

Si + Si+1
=

1− Si−1/Si

1 + Si+1/Si

.

Let yi = Si/Si−1. Hence we get that

β ≤ 1− 1/yi

1 + yi+1
.

Now definezi = 1 + yi (clearlyzi > 1) to get that

β ≤ 1− 1/(zi − 1)

zi+1
.

Now, we use the following inequality which holds for anyt > 1

1− 1/(t− 1) ≤ αt .

To prove this inequality we note that it is equivalent (multiplying
by t− 1) to t− 2 ≤ αt2 − αt or toαt2 − (α + 1)t + 2 ≥ 0. The
last inequality holds since the determinant(α + 1)2 − 8α = 0 by
our choice ofα.

Using the above inequality we get

β ≤ 1− 1/(zi − 1)

zi+1
≤ αzi

zi+1

Hence

zi+1/zi ≤ α/β < 1− ǫ

for some fixedǫ > 0. Hence for large enoughi, zi becomes smaller
than 1 which is a contradiction. This completes the proof of the
lemma.

Proof of Lemma 3.9: Let α = 1

3+2
√

2
. Clearly Ri

Ti+1−1
≥ Ri

Ti+1

for all i. We show that Ri

Ti+1
≥ α for all i.

We first define a sequenceR′
i of real numbers, and then analyze

the sequenceRi. Let q = 1 +
√

2. DefineR′
i = qi−1 for all

i > 0 andT ′
i = R′

i + 2S′
i−1 = qi−1 + 2(qi−1 − 1)/(q − 1). Let

S′
i =

Pi

j=1 R′
j as before. With these definitions we have

R′
i

T ′
i+1

=
qi−1

qi + 2 qi−1
q−1

≥ qi−1

qi + 2qi

q−1

=
1

q + 2q

q−1

= α

by our choice ofq (this is, of course, the optimal choice forq to
maximize the ratio). This completes the proof for the sequence of
reals{R′

i}i>0.

We now consider the integer sequence{Ri}i>0 defined byRi =

⌊qi+1⌋. By definition,Ri = ⌊R′
i+2⌋ ≥ R′

i+2−1 for all i > 0. Let
Si =

Pi

j=1 Ri. ClearlySi ≤ S′
i+2−(1+q), since we omitted the

first two elements of the sequence, and rounded the other elements
down. Hence

Ti+1 = Ri+1+2Si ≤ R′
i+3+2S′

i+2−2(1+q) = T ′
i+3−2(1+q) .

Now, since2(1 + q)α > 1 we conclude that

Ri ≥ R′
i+2 − 1 ≥ αT ′

i+3 − 1 ≥ α(T ′
i+3 − 2(1 + q)) ≥ αTi+1

where the second inequality follows from the fact that we proved
the lemma for the sequenceR′

i with real numbers. This completes
the proof.

