
Resour
e Augmentation in Load Balan
ing�Yossi Azary Leah Epsteinz Rob van SteexJune 25, 2000Abstra
tWe
onsider load balan
ing in the following setting. The on-linealgorithm is allowed to use n ma
hines, whereas the optimal o�-linealgorithm is limited to m ma
hines, for some �xed m < n. We showthat while the greedy algorithm has a
ompetitive ratio whi
h de
ayslinearly in the inverse of n=m, the best on-line algorithm has a ratiowhi
h de
ays exponentially in n=m. Spe
i�
ally, we give a determin-isti
 algorithm with
ompetitive ratio of 1 + 2� nm (1�o(1)), and a lowerbound of 1 + e� nm (1+o(1)) on the
ompetitive ratio of any randomizedalgorithm.We also
onsider the preemptive
ase. We show an on-line algo-rithm with a
ompetitive ratio of 1 + e� nm (1+o(1)). We show that thealgorithm is optimal by proving a mat
hing lower bound.We also
onsider the non-preemptive model with temporary tasks.We prove that for n = m + 1, the greedy algorithm is optimal. (It isnot optimal for permanent tasks.)�A preliminary version of this paper appears in the pro
eedings of the 7th BiennialS
andinavian Workshop on Algorithm Theory, SWAT 2000.yDept. of Computer S
ien
e, Tel-Aviv University. E-Mail: azar�math.tau.a
.il. Re-sear
h supported in part by the Israel S
ien
e Foundation and by the United States-IsraelBinational S
ien
e Foundation (BSF).zDept. of Computer S
ien
e, Tel-Aviv University. E-Mail: lea�math.tau.a
.il. Partof the resear
h was done while this author was visiting the Centre for Mathemati
s andComputer S
ien
e (CWI), supported by a grant from the Netherlands Organization ofS
ienti�
 Resear
h.xCentre for Mathemati
s and Computer S
ien
e (CWI). E-Mail: Rob.van.Stee�
wi.nl.Resear
h supported by the Netherlands Organization for S
ienti�
 Resear
h (NWO),proje
t number SION 612-30-002.
1

1 INTRODUCTION 21 Introdu
tionCompetitive analysis has been
riti
ized for being too pessimisti
. It has alsobeen observed that this worst
ase analysis sometimes fails to di�erentiatebetween algorithms of whi
h the performan
e is observed empiri
ally tobe very di�erent. A general method to
ir
umvent these short
omings wasintrodu
ed byKalyanasundaram andPruhs [13℄: resour
e augmentation.For
ertain s
heduling problems with unbounded
ompetitive ratio, theyshow that it is possible to attain a good
ompetitive ratio if the ma
hinesof the on-line algorithm are slightly faster than the ma
hines of the o�-linealgorithm.Resour
e augmentation has been applied to a number of problems. Itwas already used in the paper where the
ompetitive ratio was introdu
ed[20℄. In that paper, the performan
e of some paging algorithms was studied,where they have more memory than the optimal o�-line algorithm.In several ma
hine s
heduling and load balan
ing problems [4, 8, 13, 14,16, 18℄, the e�e
t of adding more or faster ma
hines has been studied.We
onsider the following load balan
ing problem. Jobs arrive on-line,where job j has a
ertain weight wj . The job has to be assigned immediatelyto a ma
hine, adding wj to the ma
hine's load. The on-line algorithm has nidenti
al ma
hines, and it is
ompared to an optimal o�ine algorithm whi
hhas m < n identi
al ma
hines.For a job sequen
e � we write An(�) for the maximum load of A on nma-
hines when it is given this job sequen
e. Analogously, we write OPTm(�).We denote the
ompetitive ratio of an online algorithm A with n ma
hinesrelative to an optimal o�ine algorithm withm ma
hines by
m;n(A). Spe
if-i
ally,
m;n(A) = max� An(�)OPTm(�) :The
lassi
al
ase of n = m was
onsidered in a series of papers [11, 12,3, 15, 1℄. The best upper bound is 1:923 due to Albers [1℄ and the bestlower bound is 1:853 [10℄ based on [1℄. The
ase n > m was introdu
ed byBrehob et al [5℄. They showed that no matter how many ma
hines theon-line algorithm has, it
an never perform optimally:
m;n(A) > 1 for alln > m � 2. However, one would expe
t that for any reasonable algorithmA,
m;n(A) will approa
h 1 when t = n=m tends to in�nity.. In fa
t, [5℄showed that the greedy algorithm has a
ompetitive ratio whi
h approa
hes1 in a rate depending linearly on 1=t.In
ontrast, we design an algorithm with a
ompetitive ratio whi
h ap-proa
hes 1 in a rate depending exponentially on t. More spe
i�
ally, we give

2 PERMANENT TASKS 3an algorithm of
ompetitive ratio 1 + 12t(1�o(1)) . Moreover, we show that the
ompetitive ratio of any on-line algorithm
annot de
rease faster than ex-ponentially in t by proving a lower bound of 1+ 1et(1+o(1)) on the
ompetitiveratio of any on-line algorithm. We also show for n = 2m a lower bound of5=4.We also
onsider the preemptive
ase. Here we view load as time. Ea
hjob may be assigned to one or more ma
hines and time slots, where the timeslots have to be disjoint. The assignment has to be determined
ompletelyat the arrival of a job. Using similar te
hniques as in [6, 7, 19℄ we provea lower bound of 1=(1 � (m�1m)n) = 1 + 1et(1+o(1)) on the
ompetitive ratioof any randomized preemptive algorithm. We also show a mat
hing upperbound by adapting the optimal preemptive algorithm of [7℄ to our problem.We
an also view time as a separate axis and not as the load axis. Herejobs arrive and depart at arbitrary times and the
ost of an algorithm is themaximum load over time and ma
hines. This model is
alled the temporarytasks model (the
ase where jobs never leave is
alled the permanent tasksmodel). It was proved in [2℄ that for n = m the greedy algorithm, whi
his (2 � 1=m)-
ompetitive, is optimal for this model. We show that if n isjust slightly larger than m, i.e., n = m+1, then the greedy algorithm whi
his (2 � 2=(m + 1))-
ompetitive is also optimal. Note that the algorithm of[1℄, whi
h implies that the greedy algorithm is not optimal for n = m forpermanent tasks, also implies that the greedy algorithm is not optimal forn > m for permanent tasks.2 Permanent tasksIn this se
tion we investigate the growth of the
ompetitive ratio as a fun
-tion of t = n=m. We start with the
ompetitive ratio of the greedy algorithm.This algorithm was �rst given by Graham [11℄, and assigns ea
h new jobto the least loaded ma
hine. The following lemma is shown in [5℄ using asimilar analysis as in [11℄:Lemma 1 The
ompetitive ratio of the greedy algorithm is 1 + m�1n .The above theorem implies a
ompetitive ratio whi
h is a linear fun
tionin 1=t. Surprisingly, we
an give an algorithm
alled Bu
kets whi
h has a
ompetitive ratio 1 + 2�t(1�o(1)).

2 PERMANENT TASKS 42.1 Algorithm Bu
ketsFor des
ribing the algorithm Bu
kets we assume that t > 3. (If t � 3 weuse the greedy algorithm.) Let 0 < " < 1 be some parameter to be �xedlater. We partition all ma
hines into bu
kets: k = bt � 2"
 small bu
kets,ea
h of whi
h
ontains m ma
hines, and one big bu
ket that
ontains allother ma
hines. Note that the big bu
ket
ontains at least 2m" ma
hines.Algorithm Bu
kets maintains a value �. Denote by �i the value of �after the arrival of i jobs and by OPTi the optimal load after i jobs. Thealgorithm
onsists of phases. During phase j, the algorithm
an use onlythe big bu
ket and the small bu
ket number j mod k. We assign the �rstjob to the �rst small bu
ket and initialize �1 = w1. We modify � only whena new phase starts while keeping the following two invariants on �:� maxj�iwj � �i� (2� ")OPTi � �iOn arrival of a job i (starting from i = 2), we do the following.� If wi � �i�1=2 assign i greedily to the least loaded ma
hine in the bigbu
ket.� If �i�1=2 < wi � �i�1, and there is a ma
hine in the
urrent smallbu
ket whi
h was not used in the
urrent phase, assign i to this ma-
hine.� Finally, if all m ma
hines in the
urrent small bu
ket were used in the
urrent phase, or if wi > �i�1, then a new phase begins: we de�ne�i = max((2 � ")�i�1; wi) and the job is assigned to a ma
hine in thenext small bu
ket.Theorem 1 The algorithm Bu
kets is (1+ 12t(1�o(1)))-
ompetitive for an ap-propriate
hoi
e of ".Proof. We start by showing that both invariants hold after the arrivalof a job (and thus hold throughout the exe
ution of Bu
kets). After theassignment of the �rst job, �1 = OPT1 = w1, and both invariants hold sin
e" < 1.The �rst invariant always holds, sin
e when a job whi
h is larger than� arrives, � is modi�ed. To show that the se
ond invariant holds, we showthat � is in
reased only if the previous � is smaller than the
urrent OPT ,

2 PERMANENT TASKS 5and that � is not in
reased too mu
h. If � is in
reased be
ause �i�1 < wi,then OPTi � wi and sin
e �i = max((2� ")�i�1; wi) then �i � (2� ")wi �(2� ")OPTi. If � is in
reased be
ause all the ma
hines in the small bu
ketwere used in the
urrent phase, then there are at least m+1 jobs of weightmore than �i�12 and hen
e the optimal s
hedule has to assign two of themon one ma
hine, yielding OPTi > �i�1. Thus �i � (2� ")OPTi.Next we show that the maximum load in the big bu
ket never ex
eedsOPTi at step i (after arrival of job i). It is easy to see that the maximumload of running the greedy algorithm on �m ma
hines is at most OPTi� +maxj�iwj . Sin
e wj � �i�12 and �i�1=(2�") � OPTi�1, the load is boundedby (1� + 2�"2)OPTi�1 � ("2 + 2�"2)OPTi = OPTi.Last, we bound the maximum load on the small bu
ket ma
hines. Whena new phase starts, the value of � is multiplied by at least 2 � ". Ea
hma
hine in a small bu
ket is used at most on
e in ea
h phase.Consider a ma
hine in a small bu
ket. Denote the last job assigned tothis ma
hine by i0, and let �0 = �i0 . The previous job assigned to the samema
hine is of weight at most �0=(2� ")k. Moreover, a job that was assignedr � 1 jobs before i0 to the same ma
hine is of weight at most �0=(2 � ")rk.Thus the total weight of all jobs on this ma
hine, ex
ept i0, is at most2�0=(2 � ")k. Sin
e OPT � 1(2�")�0 we get that the total weight of jobs onthis ma
hine is at mostw(j0) + 4OPT(2� ")k � (1 + 4(2� ")k)OPT � (1 + 4(2� ")t�2="�1)OPT:Choosing an appropriate value of " (for example " = p3=t) yields abound of 1 + 2�t+O(pt) = 1 + 2�t(1�o(1)) as required. �2.2 Lower boundsWe begin by giving a simple exponential lower bound:Theorem 2 The
ompetitive ratio of any deterministi
 on-line algorithm isat least 1 + 2�2t+1.Proof. Consider an on-line algorithm A. We give a proof for even m andfor integer t. It is easy to extend the proof for all
ases. The sequen
e
onsists of n + m2 jobs that arrive in 2t + 1 phases. Phase 1
onsists of m2unit jobs, and phase i for i > 1
onsists of m2 jobs of weight 2i�2. Thesequen
e stops after a phase in whi
h A s
hedules two jobs on one ma
hine.(If A rea
hes the last phase, there are more jobs than on-line ma
hines,

2 PERMANENT TASKS 6therefore A has two jobs on one ma
hine). The optimal o�-line load afterevery phase is the weight of the last job. If A has two jobs on one ma
hine,its load it at least 1+x where x is the weight of the last job. The minimumvalue of 1+xx is 1 + 12i�2 where i = 2t+ 1, hen
e 1 + 2�2t+1 is a lower boundon the
ompetitive ratio. �We
an give a slightly better lower bound. This bound holds for deter-ministi
 and randomized algorithms. In fa
t, we show a lower bound onpreemptive algorithms versus a non-preemptive optimal algorithm. Hen
eour lower bound holds both for the preemptive and non-preemptive mod-els. The lower bound builds on the lower bounds given by Sgall [19℄ andindependently by Chen, van Vliet and Woeginger [6, 7℄.The main idea here is to use small jobs and a sequen
e of n big jobs Jifor 1 � i � n of in
reasing weight so that the optimal o�-line load after jobJi, whi
h we denote by OPTi, is exa
tly equal to the weight of Ji. Hen
e,the weight of ea
h big job is equal to the total weight of all previous jobsdivided by m � 1. Spe
i�
ally, the sequen
e begins by very small jobs oftotal weight m� 1 followed by n big jobs. The weight of Ji for 1 � i � n is�i�1 where � = mm�1 .Lemma 2 The optimal o�-line load for the above sequen
e is �k�1 after thearrival of the job Jk, for 1 � k � n.Proof. We
onsider an algorithm whi
h assigns all jobs on o�-line ma-
hines, and show that the resulting load is �k�1.The algorithm assigns jobs to the o�-line ma
hines greedily, in non-in
reasing order (sorted a

ording to weight). This is equivalent to using theLPT rule. We show that the loads never ex
eed �k�1 after the assignmentof a big job. Note that the total weight of all small jobs and the �rst j bigjobs is �j(m� 1) = �j�1m.Assume that the assignment of job j
auses the maximum load to ex
eed�k�1. This means that all other ma
hines are loaded by more than �k�1 ��j�1. Sin
e the total weight of jobs smaller or equal to Jj is �j�1m, we getthat the total weight of jobs is more than �k�1m, whi
h is a
ontradi
tion.Hen
e, the assignment of the small jobs results in balan
ed ma
hines, ea
hwith load of �k�1. �The following lemma, adapted from [19, 9℄, is the key of lower boundingthe
ompetitive ratio.Lemma 3 For any deterministi
 or randomized, preemptive or non-preemptivealgorithm for the sequen
e above the following holds: r � WPni=1OPTi , where

2 PERMANENT TASKS 7r is the
ompetitive ratio and W is the total weight of the jobs.Proof. Denote by A(Ji) the maximum load of the on-line algorithm Aafter the assignment of the job Ji. ThenPni=1E(A(Ji))Pni=1OPTi � Pni=1 r �OPTiPni=1OPTi = r:Hen
e it is enough to show that Pni=1E(A(Ji)) �W .Assume that A is deterministi
. For 1 � l � n, let Tl be the load on thelth ma
hine at the end of the sequen
e, after sorting the ma
hines by non-in
reasing load. Removing any l � 1 jobs still leaves a ma
hine with a loadof at least Tl (even if the s
hedule is preemptive), and thus A(Jl) � Tn�l+1.Sin
e W =Pni=1 Ti we
on
lude thatnXi=1 A(Ji) � nXi=1 Tn�l+1 =Was needed. If A is randomized, we average over deterministi
 algorithms and
on
lude again that Pni=1E(A(Ji)) �W: �Theorem 3 The
ompetitive ratio of an on-line algorithm, deterministi
or randomized, preemptive or non-preemptive, is at least 1=(1 � (m�1m)n) =1 + e� nm (1+o(1)).Proof. We use the above job sequen
e and apply Lemma 3. We haveW = �n(m� 1) ;nXi=1 OPTi = nXi=1 �i�1 = �n � 1�� 1and r � �n(m� 1)(�n � 1) (�� 1) = �n�n � 1 = 11� 1�n = 11� (m�1m)nas needed. �We
an improve the bound for the spe
ial
ase t = 2 for the non-preemptive deterministi

ase.Claim 1 The
ompetitive ratio of any non-preemptive deterministi
 on-linealgorithm with n = 2m, where m � 8, is at least 54 .

2 PERMANENT TASKS 8m mod 6 0 1 2 3 4 5Number of jobs 2m+ 2 2m+ 1 2m+ 1 2m+ 1 2m+ 1 2m+ 1Proof. We use a job sequen
e
onsisting of four phases:� m jobs of weight 1� bm2
 jobs of weight 3=2� bm3
+ 1 jobs of weight 3� bm+16
+ 1 jobs of weight 4.The sequen
e stops after a phase in whi
h the on-line algorithm s
hedulestwo jobs on one ma
hine. Note that the sequen
e
ontains more than 2mjobs.We show that the optimal load in phase i is i. This is
lear for phases1 and 2. In phase 3, if the ma
hines are pa
ked to a maximum load of 3,at most 2.5 of spa
e
an be lost: 2 if a job of weight 1 has to be assignedto its own ma
hine, and 0.5 if there is an odd number of jobs of weight 1.5.The total weight is at most m+ 3m4 + (m+ 3) = 11m4 + 3, whi
h is at most3m� 2:5 for m � 22. This implies that the ma
hines
an be pa
ked with amaximum load of 3 for m � 22. By inspe
tion, the ma
hines
an be pa
kedfor 8 � m � 21 too.In phase 4, the total weight is at most 11m4 +3+ 4m6 + 143 = 4112m+ 233 . In theoptimal pa
king, at most 3:5 of spa
e is lost. We have 4112m+ 233 � 4m�3:5 form � 20. Therefore the optimal algorithm
an maintain a load of 4 in phase4, if m � 20. By inspe
tion, the ma
hines
an be pa
ked for 8 � m � 19 aswell.As an example, we give the optimal s
hedules for phases 3 and 4 whenm = 8 and m = 9 (see Figure 1).Depending on the phase in whi
h the on-line algorithm puts two jobs onthe same ma
hine, we �nd
ompetitive ratios of 2; 54 ; 43 and 54 . Hen
e the
ompetitive ratio is at least 5=4: �2.3 An optimal preemptive algorithmThe last part of this se
tion presents an optimal preemptive on-line algo-rithm. The algorithm is similar to the algorithm in [7℄.Let r = 1=(1 � 1�n). We denote the load on ma
hine i at time T by LTi .The algorithm maintains three invariants, whi
h hold at any step T :

2 PERMANENT TASKS 9
phase 3

phase 4

m=8 m=9

phase 4

phase 3

Figure 1: The last phases for m = 8; 9� LT1 � LT2 � : : : � LTn .� LTn � r � OPT T .� For 1 � k � n, kXi=1 LTi � �k � 1�n � 1W T ;where W T is the total weight of jobs whi
h arrived till time T .Similar to the algorithm in [7℄, we try to maintain a ratio of mm�1 betweenma
hine loads. We show how to assign a new job j with weight wj , arrivingat time T +1, to n ma
hines. First,
ompute the new optimal load, whi
h ismax(W T+1=m; max1�i�T+1 wi) [17℄, and then reserve the following intervalsfor j: for 1 � l � n � 1, reserve [LTl ; LTl+1℄, and for l = n, reserve [LTn ; r �OPT T ℄. Note that these intervals are disjoint. Next, for j = n down to 1,assign a portion out of wj of size equal to the size of the reserved interval.Continue assigning portions until job j is
ompletely assigned. (The lastportion assigned might be smaller than the interval.)It is easy to follow the proof in [7℄, repla
ing the number of ma
hinesused by the on-line algorithm from m to n. The proof shows that ea
h jobis
ompletely distributed to the ma
hines and that the invariants hold. Bythat we
on
lude that the algorithm is r-
ompetitive as required.

3 TEMPORARY TASKS 103 Temporary tasksRe
all that for n = m the greedy algorithm is (2 � 1=m)-
ompetitive forpermanent tasks as well as for temporary tasks. The greedy algorithm is notoptimal for permanent tasks, but is optimal for temporary tasks. Also forn > m, it is easy to see that the greedy algorithm has the same
ompetitiveratio for temporary tasks as for permanent tasks, whi
h is 1 + (m � 1)=n.However, in
ontrast to the
ase n = m, the greedy algorithm is not optimalfor temporary tasks, sin
e algorithm Bu
kets (de�ned on temporary tasks)a
hieves a better
ompetitive ratio for large n.Claim 2 For temporary tasks, the algorithm Bu
kets is (1+ 12t(1�o(1)))-
ompetitivefor an appropriate
hoi
e of ".Proof. The analysis of Bu
kets for both the big bu
ket and the smallbu
kets in the proof of Theorem 1 also holds for temporary tasks. �However, we show that if the online algorithm has one more ma
hine thanthe optimal o�ine algorithm, then the greedy algorithm is still optimal.Theorem 4 The greedy algorithm is optimal for temporary tasks for n =m+ 1.Proof. We need to show a lower bound of 2mm+1 on the
ompetitive ratio ofany on-line algorithm. The proof
onsists of two parts: one for odd m andone for even m. In the proof we mention the value of the optimal load onlywhen the value in
reases.Case A. m is odd. We start the sequen
e with (m � 1)m2 unit-weightjobs. The optimal load is m(m� 1). We distinguish between two
ases:Case A1. The online algorithm pla
es at least m(m � 1) jobs on onema
hine, say ma
hine x.In this
ase, all the jobs leave ex
ept m(m�1) jobs on x. Then,m(m�1)jobs of weight m � 1 arrive. Sin
e the optimal load is again m(m � 1), atmost m � 2 of them
an be assigned to x. Otherwise the load would be(2m � 1)(m � 1) on x, and (2m�1)(m�1)m(m�1) > 2mm+1 . So (m � 1)2 + 1 of thesejobs must be assigned to the m empty ma
hines. We distinguish betweentwo sub-
ases:

3 TEMPORARY TASKS 11Case A1a. One ma
hine (not x) has at least m jobs of weight m� 1.All jobs of weight m � 1 leave ex
ept m jobs of weight m � 1 on onema
hine, and m� 1 jobs of weight m(m� 1) arrive. The new optimal loadis (m + 1)(m � 1). Therefore all these jobs must be assigned to di�erentma
hines. Finally, a job of weight m(m + 1) arrives. The optimal load ism(m + 1): the last job has it own ma
hine, the other ma
hines have onejob of weight m(m � 1), one or two jobs of weight m� 1 and some jobs ofweight 1, so that the load is pre
isely m(m+ 1). This
ompletes the proof,sin
e the online load is 2m2.Case A1b. All ma
hines (ex
ept ma
hine x) have at least one job ofweight m� 1.All jobs of weight m � 1 leave ex
ept m jobs, one su
h job remains onea
h ma
hine ex
ept on ma
hine x. Next, m2�2m�12 jobs of weight 2(m� 1)arrive. The optimal load is again m(m� 1). At most m�32 jobs are assignedto ma
hine x, otherwise the load there be
omes too large. There are m�32 + 1mjobs on average on the other ma
hines, so there is at least one ma
hine (notx) with at least m�12 jobs of this weight and a load of at least m(m�1), sayma
hine y. All jobs leave ex
ept the unit jobs on x and jobs of total weightpre
isely m(m� 1) on ma
hine y.Finally, m � 1 jobs of weight m(m � 1) arrive and one job of weightm(m + 1). Clearly, the online algorithm must assign ea
h job of weightm(m�1) to an empty ma
hine and hen
e its �nal load is 2m2. The optimalalgorithm
an balan
e its jobs and have a load of m(m+ 1) sin
e there areat least 2(m� 1) jobs of weight 1, whi
h
ompletes the proof.Case A2. All ma
hines now have load at least m� 1.All jobs leave ex
ept m� 1 jobs on ea
h ma
hine, and m2 �m� 1 jobsof weight m� 1 arrive. The average number of jobs of weight m� 1 on thema
hines is m� 2 + 1m+1 , and hen
e there is a ma
hine with m� 1 jobs ofweight m � 1 and a load of m(m � 1). By letting some jobs leave, we
anget the loads to be the same as in Case A1b just before the arrival of thejobs of weight 2(m� 1). Hen
e, we
an
ontinue as in that
ase.Case B. m is even. We start the sequen
e with (m � 1)m2 unit jobs.The optimal load is m(m� 1). We distinguish between two
ases:Case B1. One ma
hine, say x, has at least m(m� 1) jobs. All jobs leaveex
ept m(m � 1) jobs on x, and (m � 1)2 jobs of weight m arrive. The

4 CONCLUSIONS 12optimal load is again m(m� 1). At most m� 2 jobs
an be assigned to x.We distinguish between two sub-
ases:Case B1a. Another ma
hine (not x) has load at least m(m�1). Then alljobs of weight m leave ex
ept m� 1 jobs on that ma
hine, and m� 1 jobsof weight m(m � 1) arrive followed by a job of weight m(m + 1). Clearly,the online load is at least 2m2, while the optimal load is m(m + 1) whi
h
ompletes the proof.Case B1b. Ea
h ma
hine ex
ept x has one job of weight m. All jobsof weight m leave ex
ept m jobs, one remains on ea
h ma
hine ex
ept onma
hine x. Next m2�3m2 jobs of weight 2m arrive. At most m�22
an beassigned to ma
hine x. Hen
e, the average number of jobs of weight 2m onall ma
hines besides x is m2 � 2+ 1m . Thus, one ma
hine y must have m2 � 1jobs of weight 2m and a load of at least m(m� 1). All jobs leave ex
ept theunit jobs on x and jobs of total weight m(m�1) on y. Finally, m�1 jobs ofweight m(m� 1) arrive and one job of weight m(m+ 1). Again, the onlineload is at least 2m2, while the optimal load is m(m + 1) whi
h
ompletesthe proof.Case B2. There are at least m jobs on ea
h ma
hine. (This
an happenonly for m � 4).All jobs leave ex
ept m jobs on ea
h ma
hine. Next, m2(m�2)�m2 jobsof weight 2 arrive. If there is a ma
hine with load at least m(m � 1), we
ontinue as in Case B1. Otherwise, ea
h ma
hine has load at least 2m.Then, some jobs of weight 2 leave in su
h a way that the load on ea
hma
hine is 2(m � 1). Next, m2 � 2m � 2 jobs of weight m � 1 arrive andone ma
hine will have a load of at least m(m� 1). Jobs of weight m� 1 onthat ma
hine leave su
h that the load be
omes m(m� 1). All non-unit jobson the other ma
hines leave. We
ontinue as in Case B1b. �4 Con
lusionsWe have examined the e�e
ts of resour
e augmentation for several load bal-an
ing problems. For the problem of s
heduling jobs on identi
al ma
hines,we have shown an algorithm with a
ompetitive ratio whi
h de
reases ex-ponentially in n=m, while greedy has a
ompetitive ratio that is linear inn=m.

5 ACKNOWLEDGMENTS 13An open question is whether it is possible to
lose the gap between thelower bound and the upper bound on identi
al ma
hines. Both boundsare de
reasing exponentially, and we
onje
ture that the true value of the
ompetitive ratio is
loser to the lower bound.5 A
knowledgmentsThe authors wish to thank Han La Poutr�e for helpful dis
ussions.Referen
es[1℄ S. Albers. Better bounds for on-line s
heduling. In Pro
. 29th ACMSymp. on Theory of Computing, pages 130{139, 1997.[2℄ Y. Azar and L. Epstein. On-line load balan
ing of temporary tasks onidenti
al ma
hines. In 5th Israeli Symp. on Theory of Computing andSystems, pages 119{125, 1997.[3℄ Y. Bartal, A. Fiat, H. Karlo�, and R. Vohra. New algorithms for anan
ient s
heduling problem. In Pro
. 24th ACM Symposium on Theoryof Algorithms, pages 51{58, 1992. To appear in Journal of Computerand System S
ien
es.[4℄ P. Berman and C. Coulston. Speed is more powerful than
lairvoyan
e.In Nordi
 Journal of Computing, pages 181{193, 1999.[5℄ M. Brehob, E. Torng, and P. Uthaisombut. Applying extra-resour
eanalysis to load balan
ing. Manus
ript, 1999.[6℄ B. Chen, A. van Vliet, and G. J. Woeginger. Lower bounds for ran-domized online s
heduling. Information Pro
essing Letters, 51:219{222,1994.[7℄ B. Chen, A. van Vliet, and G. J. Woeginger. An optimal algorithm forpreemptive on-line s
heduling. Operations Resear
h Letters, 18:127{131, 1995.[8℄ J. Edmonds. S
heduling in the dark. In Pro
eedings of the 31st ACMSymposium on Theory of Computing, pages 179{188, 1999.[9℄ L. Epstein and J. Sgall. A lower bound for on-line s
heduling on uni-formly related ma
hines. To appear in Oper. Res. Lett., 2000.

REFERENCES 14[10℄ T. Gormley, N. Reingold, E. Torng, and J. Westbrook. Generatingadversaries for request-answer games. In Pro
. 11th ACM-SIAM Symp.on Dis
rete Algorithms, 2000.[11℄ R.L. Graham. Bounds for
ertain multipro
essor anomalies. Bell Sys-tem Te
hni
al Journal, 45:1563{1581, 1966.[12℄ R.L. Graham. Bounds on multipro
essing timing anomalies. SIAM J.Appl. Math, 17:263{269, 1969.[13℄ B. Kalyanasundaram and K. Pruhs. Speed is as powerful as
lair-voyan
e. In Pro
eedings of 36th IEEE Symposium on Foundations ofComputer S
ien
e, pages 214{221, 1995.[14℄ Bala Kalyanasundaram and Kirk Pruhs. Maximizing job
ompletionsonline. In European Symposium on Algorithms, pages 235{246, 1998.[15℄ D. R. Karger, S. J. Phillips, and E. Torng. A better algorithm for anan
ient s
heduling problem. In Pro
. of the 5th ACM-SIAM Symposiumon Dis
rete Algorithms, pages 132{140, 1994.[16℄ Tak Wah Lam and Kar Keung To. Trade-o�s between speed and pro
es-sor in hard-deadline s
heduling. In ACM/SIAM Symposium on Dis
reteAlgorithms, pages 623{632, 1999.[17℄ R. M
Naughton. S
heduling with deadlines and loss fun
tions. Man-agement S
i., 6:1{12, 1959.[18℄ Cynthia A. Philips, Cli� Stein, Eri
 Torng, and Joel Wein. Optimaltime-
riti
al s
heduling via resour
e augmentation. In Pro
eedings ofthe 29th ACM Symposium on Theory of Computing, pages 140{149,1997.[19℄ J. Sgall. A lower bound for randomized on-line multipro
essor s
hedul-ing. Inf. Pro
ess. Lett., 63(1):51{55, 1997.[20℄ D. Sleator and R. E. Tarjan. Amortized eÆ
ien
y of list update andpaging rules. Communi
ations of the ACM, 28:202{208, 1985.

