
Resoure Augmentation in Load Balaning�Yossi Azary Leah Epsteinz Rob van SteexJune 25, 2000AbstratWe onsider load balaning in the following setting. The on-linealgorithm is allowed to use n mahines, whereas the optimal o�-linealgorithm is limited to m mahines, for some �xed m < n. We showthat while the greedy algorithm has a ompetitive ratio whih deayslinearly in the inverse of n=m, the best on-line algorithm has a ratiowhih deays exponentially in n=m. Spei�ally, we give a determin-isti algorithm with ompetitive ratio of 1 + 2� nm (1�o(1)), and a lowerbound of 1 + e� nm (1+o(1)) on the ompetitive ratio of any randomizedalgorithm.We also onsider the preemptive ase. We show an on-line algo-rithm with a ompetitive ratio of 1 + e� nm (1+o(1)). We show that thealgorithm is optimal by proving a mathing lower bound.We also onsider the non-preemptive model with temporary tasks.We prove that for n = m + 1, the greedy algorithm is optimal. (It isnot optimal for permanent tasks.)�A preliminary version of this paper appears in the proeedings of the 7th BiennialSandinavian Workshop on Algorithm Theory, SWAT 2000.yDept. of Computer Siene, Tel-Aviv University. E-Mail: azar�math.tau.a.il. Re-searh supported in part by the Israel Siene Foundation and by the United States-IsraelBinational Siene Foundation (BSF).zDept. of Computer Siene, Tel-Aviv University. E-Mail: lea�math.tau.a.il. Partof the researh was done while this author was visiting the Centre for Mathematis andComputer Siene (CWI), supported by a grant from the Netherlands Organization ofSienti� Researh.xCentre for Mathematis and Computer Siene (CWI). E-Mail: Rob.van.Stee�wi.nl.Researh supported by the Netherlands Organization for Sienti� Researh (NWO),projet number SION 612-30-002.
1

1 INTRODUCTION 21 IntrodutionCompetitive analysis has been ritiized for being too pessimisti. It has alsobeen observed that this worst ase analysis sometimes fails to di�erentiatebetween algorithms of whih the performane is observed empirially tobe very di�erent. A general method to irumvent these shortomings wasintrodued byKalyanasundaram andPruhs [13℄: resoure augmentation.For ertain sheduling problems with unbounded ompetitive ratio, theyshow that it is possible to attain a good ompetitive ratio if the mahinesof the on-line algorithm are slightly faster than the mahines of the o�-linealgorithm.Resoure augmentation has been applied to a number of problems. Itwas already used in the paper where the ompetitive ratio was introdued[20℄. In that paper, the performane of some paging algorithms was studied,where they have more memory than the optimal o�-line algorithm.In several mahine sheduling and load balaning problems [4, 8, 13, 14,16, 18℄, the e�et of adding more or faster mahines has been studied.We onsider the following load balaning problem. Jobs arrive on-line,where job j has a ertain weight wj . The job has to be assigned immediatelyto a mahine, adding wj to the mahine's load. The on-line algorithm has nidential mahines, and it is ompared to an optimal o�ine algorithm whihhas m < n idential mahines.For a job sequene � we write An(�) for the maximum load of A on nma-hines when it is given this job sequene. Analogously, we write OPTm(�).We denote the ompetitive ratio of an online algorithm A with n mahinesrelative to an optimal o�ine algorithm withm mahines by m;n(A). Speif-ially, m;n(A) = max� An(�)OPTm(�) :The lassial ase of n = m was onsidered in a series of papers [11, 12,3, 15, 1℄. The best upper bound is 1:923 due to Albers [1℄ and the bestlower bound is 1:853 [10℄ based on [1℄. The ase n > m was introdued byBrehob et al [5℄. They showed that no matter how many mahines theon-line algorithm has, it an never perform optimally: m;n(A) > 1 for alln > m � 2. However, one would expet that for any reasonable algorithmA, m;n(A) will approah 1 when t = n=m tends to in�nity.. In fat, [5℄showed that the greedy algorithm has a ompetitive ratio whih approahes1 in a rate depending linearly on 1=t.In ontrast, we design an algorithm with a ompetitive ratio whih ap-proahes 1 in a rate depending exponentially on t. More spei�ally, we give

2 PERMANENT TASKS 3an algorithm of ompetitive ratio 1 + 12t(1�o(1)) . Moreover, we show that theompetitive ratio of any on-line algorithm annot derease faster than ex-ponentially in t by proving a lower bound of 1+ 1et(1+o(1)) on the ompetitiveratio of any on-line algorithm. We also show for n = 2m a lower bound of5=4.We also onsider the preemptive ase. Here we view load as time. Eahjob may be assigned to one or more mahines and time slots, where the timeslots have to be disjoint. The assignment has to be determined ompletelyat the arrival of a job. Using similar tehniques as in [6, 7, 19℄ we provea lower bound of 1=(1 � (m�1m)n) = 1 + 1et(1+o(1)) on the ompetitive ratioof any randomized preemptive algorithm. We also show a mathing upperbound by adapting the optimal preemptive algorithm of [7℄ to our problem.We an also view time as a separate axis and not as the load axis. Herejobs arrive and depart at arbitrary times and the ost of an algorithm is themaximum load over time and mahines. This model is alled the temporarytasks model (the ase where jobs never leave is alled the permanent tasksmodel). It was proved in [2℄ that for n = m the greedy algorithm, whihis (2 � 1=m)-ompetitive, is optimal for this model. We show that if n isjust slightly larger than m, i.e., n = m+1, then the greedy algorithm whihis (2 � 2=(m + 1))-ompetitive is also optimal. Note that the algorithm of[1℄, whih implies that the greedy algorithm is not optimal for n = m forpermanent tasks, also implies that the greedy algorithm is not optimal forn > m for permanent tasks.2 Permanent tasksIn this setion we investigate the growth of the ompetitive ratio as a fun-tion of t = n=m. We start with the ompetitive ratio of the greedy algorithm.This algorithm was �rst given by Graham [11℄, and assigns eah new jobto the least loaded mahine. The following lemma is shown in [5℄ using asimilar analysis as in [11℄:Lemma 1 The ompetitive ratio of the greedy algorithm is 1 + m�1n .The above theorem implies a ompetitive ratio whih is a linear funtionin 1=t. Surprisingly, we an give an algorithm alled Bukets whih has aompetitive ratio 1 + 2�t(1�o(1)).

2 PERMANENT TASKS 42.1 Algorithm BuketsFor desribing the algorithm Bukets we assume that t > 3. (If t � 3 weuse the greedy algorithm.) Let 0 < " < 1 be some parameter to be �xedlater. We partition all mahines into bukets: k = bt � 2" small bukets,eah of whih ontains m mahines, and one big buket that ontains allother mahines. Note that the big buket ontains at least 2m" mahines.Algorithm Bukets maintains a value �. Denote by �i the value of �after the arrival of i jobs and by OPTi the optimal load after i jobs. Thealgorithm onsists of phases. During phase j, the algorithm an use onlythe big buket and the small buket number j mod k. We assign the �rstjob to the �rst small buket and initialize �1 = w1. We modify � only whena new phase starts while keeping the following two invariants on �:� maxj�iwj � �i� (2� ")OPTi � �iOn arrival of a job i (starting from i = 2), we do the following.� If wi � �i�1=2 assign i greedily to the least loaded mahine in the bigbuket.� If �i�1=2 < wi � �i�1, and there is a mahine in the urrent smallbuket whih was not used in the urrent phase, assign i to this ma-hine.� Finally, if all m mahines in the urrent small buket were used in theurrent phase, or if wi > �i�1, then a new phase begins: we de�ne�i = max((2 � ")�i�1; wi) and the job is assigned to a mahine in thenext small buket.Theorem 1 The algorithm Bukets is (1+ 12t(1�o(1)))-ompetitive for an ap-propriate hoie of ".Proof. We start by showing that both invariants hold after the arrivalof a job (and thus hold throughout the exeution of Bukets). After theassignment of the �rst job, �1 = OPT1 = w1, and both invariants hold sine" < 1.The �rst invariant always holds, sine when a job whih is larger than� arrives, � is modi�ed. To show that the seond invariant holds, we showthat � is inreased only if the previous � is smaller than the urrent OPT ,

2 PERMANENT TASKS 5and that � is not inreased too muh. If � is inreased beause �i�1 < wi,then OPTi � wi and sine �i = max((2� ")�i�1; wi) then �i � (2� ")wi �(2� ")OPTi. If � is inreased beause all the mahines in the small buketwere used in the urrent phase, then there are at least m+1 jobs of weightmore than �i�12 and hene the optimal shedule has to assign two of themon one mahine, yielding OPTi > �i�1. Thus �i � (2� ")OPTi.Next we show that the maximum load in the big buket never exeedsOPTi at step i (after arrival of job i). It is easy to see that the maximumload of running the greedy algorithm on �m mahines is at most OPTi� +maxj�iwj . Sine wj � �i�12 and �i�1=(2�") � OPTi�1, the load is boundedby (1� + 2�"2)OPTi�1 � ("2 + 2�"2)OPTi = OPTi.Last, we bound the maximum load on the small buket mahines. Whena new phase starts, the value of � is multiplied by at least 2 � ". Eahmahine in a small buket is used at most one in eah phase.Consider a mahine in a small buket. Denote the last job assigned tothis mahine by i0, and let �0 = �i0 . The previous job assigned to the samemahine is of weight at most �0=(2� ")k. Moreover, a job that was assignedr � 1 jobs before i0 to the same mahine is of weight at most �0=(2 � ")rk.Thus the total weight of all jobs on this mahine, exept i0, is at most2�0=(2 � ")k. Sine OPT � 1(2�")�0 we get that the total weight of jobs onthis mahine is at mostw(j0) + 4OPT(2� ")k � (1 + 4(2� ")k)OPT � (1 + 4(2� ")t�2="�1)OPT:Choosing an appropriate value of " (for example " = p3=t) yields abound of 1 + 2�t+O(pt) = 1 + 2�t(1�o(1)) as required. �2.2 Lower boundsWe begin by giving a simple exponential lower bound:Theorem 2 The ompetitive ratio of any deterministi on-line algorithm isat least 1 + 2�2t+1.Proof. Consider an on-line algorithm A. We give a proof for even m andfor integer t. It is easy to extend the proof for all ases. The sequeneonsists of n + m2 jobs that arrive in 2t + 1 phases. Phase 1 onsists of m2unit jobs, and phase i for i > 1 onsists of m2 jobs of weight 2i�2. Thesequene stops after a phase in whih A shedules two jobs on one mahine.(If A reahes the last phase, there are more jobs than on-line mahines,

2 PERMANENT TASKS 6therefore A has two jobs on one mahine). The optimal o�-line load afterevery phase is the weight of the last job. If A has two jobs on one mahine,its load it at least 1+x where x is the weight of the last job. The minimumvalue of 1+xx is 1 + 12i�2 where i = 2t+ 1, hene 1 + 2�2t+1 is a lower boundon the ompetitive ratio. �We an give a slightly better lower bound. This bound holds for deter-ministi and randomized algorithms. In fat, we show a lower bound onpreemptive algorithms versus a non-preemptive optimal algorithm. Heneour lower bound holds both for the preemptive and non-preemptive mod-els. The lower bound builds on the lower bounds given by Sgall [19℄ andindependently by Chen, van Vliet and Woeginger [6, 7℄.The main idea here is to use small jobs and a sequene of n big jobs Jifor 1 � i � n of inreasing weight so that the optimal o�-line load after jobJi, whih we denote by OPTi, is exatly equal to the weight of Ji. Hene,the weight of eah big job is equal to the total weight of all previous jobsdivided by m � 1. Spei�ally, the sequene begins by very small jobs oftotal weight m� 1 followed by n big jobs. The weight of Ji for 1 � i � n is�i�1 where � = mm�1 .Lemma 2 The optimal o�-line load for the above sequene is �k�1 after thearrival of the job Jk, for 1 � k � n.Proof. We onsider an algorithm whih assigns all jobs on o�-line ma-hines, and show that the resulting load is �k�1.The algorithm assigns jobs to the o�-line mahines greedily, in non-inreasing order (sorted aording to weight). This is equivalent to using theLPT rule. We show that the loads never exeed �k�1 after the assignmentof a big job. Note that the total weight of all small jobs and the �rst j bigjobs is �j(m� 1) = �j�1m.Assume that the assignment of job j auses the maximum load to exeed�k�1. This means that all other mahines are loaded by more than �k�1 ��j�1. Sine the total weight of jobs smaller or equal to Jj is �j�1m, we getthat the total weight of jobs is more than �k�1m, whih is a ontradition.Hene, the assignment of the small jobs results in balaned mahines, eahwith load of �k�1. �The following lemma, adapted from [19, 9℄, is the key of lower boundingthe ompetitive ratio.Lemma 3 For any deterministi or randomized, preemptive or non-preemptivealgorithm for the sequene above the following holds: r � WPni=1OPTi , where

2 PERMANENT TASKS 7r is the ompetitive ratio and W is the total weight of the jobs.Proof. Denote by A(Ji) the maximum load of the on-line algorithm Aafter the assignment of the job Ji. ThenPni=1E(A(Ji))Pni=1OPTi � Pni=1 r �OPTiPni=1OPTi = r:Hene it is enough to show that Pni=1E(A(Ji)) �W .Assume that A is deterministi. For 1 � l � n, let Tl be the load on thelth mahine at the end of the sequene, after sorting the mahines by non-inreasing load. Removing any l � 1 jobs still leaves a mahine with a loadof at least Tl (even if the shedule is preemptive), and thus A(Jl) � Tn�l+1.Sine W =Pni=1 Ti we onlude thatnXi=1 A(Ji) � nXi=1 Tn�l+1 =Was needed. If A is randomized, we average over deterministi algorithms andonlude again that Pni=1E(A(Ji)) �W: �Theorem 3 The ompetitive ratio of an on-line algorithm, deterministior randomized, preemptive or non-preemptive, is at least 1=(1 � (m�1m)n) =1 + e� nm (1+o(1)).Proof. We use the above job sequene and apply Lemma 3. We haveW = �n(m� 1) ;nXi=1 OPTi = nXi=1 �i�1 = �n � 1�� 1and r � �n(m� 1)(�n � 1) (�� 1) = �n�n � 1 = 11� 1�n = 11� (m�1m)nas needed. �We an improve the bound for the speial ase t = 2 for the non-preemptive deterministi ase.Claim 1 The ompetitive ratio of any non-preemptive deterministi on-linealgorithm with n = 2m, where m � 8, is at least 54 .

2 PERMANENT TASKS 8m mod 6 0 1 2 3 4 5Number of jobs 2m+ 2 2m+ 1 2m+ 1 2m+ 1 2m+ 1 2m+ 1Proof. We use a job sequene onsisting of four phases:� m jobs of weight 1� bm2 jobs of weight 3=2� bm3 + 1 jobs of weight 3� bm+16 + 1 jobs of weight 4.The sequene stops after a phase in whih the on-line algorithm shedulestwo jobs on one mahine. Note that the sequene ontains more than 2mjobs.We show that the optimal load in phase i is i. This is lear for phases1 and 2. In phase 3, if the mahines are paked to a maximum load of 3,at most 2.5 of spae an be lost: 2 if a job of weight 1 has to be assignedto its own mahine, and 0.5 if there is an odd number of jobs of weight 1.5.The total weight is at most m+ 3m4 + (m+ 3) = 11m4 + 3, whih is at most3m� 2:5 for m � 22. This implies that the mahines an be paked with amaximum load of 3 for m � 22. By inspetion, the mahines an be pakedfor 8 � m � 21 too.In phase 4, the total weight is at most 11m4 +3+ 4m6 + 143 = 4112m+ 233 . In theoptimal paking, at most 3:5 of spae is lost. We have 4112m+ 233 � 4m�3:5 form � 20. Therefore the optimal algorithm an maintain a load of 4 in phase4, if m � 20. By inspetion, the mahines an be paked for 8 � m � 19 aswell.As an example, we give the optimal shedules for phases 3 and 4 whenm = 8 and m = 9 (see Figure 1).Depending on the phase in whih the on-line algorithm puts two jobs onthe same mahine, we �nd ompetitive ratios of 2; 54 ; 43 and 54 . Hene theompetitive ratio is at least 5=4: �2.3 An optimal preemptive algorithmThe last part of this setion presents an optimal preemptive on-line algo-rithm. The algorithm is similar to the algorithm in [7℄.Let r = 1=(1 � 1�n). We denote the load on mahine i at time T by LTi .The algorithm maintains three invariants, whih hold at any step T :

2 PERMANENT TASKS 9
phase 3

phase 4

m=8 m=9

phase 4

phase 3

Figure 1: The last phases for m = 8; 9� LT1 � LT2 � : : : � LTn .� LTn � r � OPT T .� For 1 � k � n, kXi=1 LTi � �k � 1�n � 1W T ;where W T is the total weight of jobs whih arrived till time T .Similar to the algorithm in [7℄, we try to maintain a ratio of mm�1 betweenmahine loads. We show how to assign a new job j with weight wj , arrivingat time T +1, to n mahines. First, ompute the new optimal load, whih ismax(W T+1=m; max1�i�T+1 wi) [17℄, and then reserve the following intervalsfor j: for 1 � l � n � 1, reserve [LTl ; LTl+1℄, and for l = n, reserve [LTn ; r �OPT T ℄. Note that these intervals are disjoint. Next, for j = n down to 1,assign a portion out of wj of size equal to the size of the reserved interval.Continue assigning portions until job j is ompletely assigned. (The lastportion assigned might be smaller than the interval.)It is easy to follow the proof in [7℄, replaing the number of mahinesused by the on-line algorithm from m to n. The proof shows that eah jobis ompletely distributed to the mahines and that the invariants hold. Bythat we onlude that the algorithm is r-ompetitive as required.

3 TEMPORARY TASKS 103 Temporary tasksReall that for n = m the greedy algorithm is (2 � 1=m)-ompetitive forpermanent tasks as well as for temporary tasks. The greedy algorithm is notoptimal for permanent tasks, but is optimal for temporary tasks. Also forn > m, it is easy to see that the greedy algorithm has the same ompetitiveratio for temporary tasks as for permanent tasks, whih is 1 + (m � 1)=n.However, in ontrast to the ase n = m, the greedy algorithm is not optimalfor temporary tasks, sine algorithm Bukets (de�ned on temporary tasks)ahieves a better ompetitive ratio for large n.Claim 2 For temporary tasks, the algorithm Bukets is (1+ 12t(1�o(1)))-ompetitivefor an appropriate hoie of ".Proof. The analysis of Bukets for both the big buket and the smallbukets in the proof of Theorem 1 also holds for temporary tasks. �However, we show that if the online algorithm has one more mahine thanthe optimal o�ine algorithm, then the greedy algorithm is still optimal.Theorem 4 The greedy algorithm is optimal for temporary tasks for n =m+ 1.Proof. We need to show a lower bound of 2mm+1 on the ompetitive ratio ofany on-line algorithm. The proof onsists of two parts: one for odd m andone for even m. In the proof we mention the value of the optimal load onlywhen the value inreases.Case A. m is odd. We start the sequene with (m � 1)m2 unit-weightjobs. The optimal load is m(m� 1). We distinguish between two ases:Case A1. The online algorithm plaes at least m(m � 1) jobs on onemahine, say mahine x.In this ase, all the jobs leave exept m(m�1) jobs on x. Then,m(m�1)jobs of weight m � 1 arrive. Sine the optimal load is again m(m � 1), atmost m � 2 of them an be assigned to x. Otherwise the load would be(2m � 1)(m � 1) on x, and (2m�1)(m�1)m(m�1) > 2mm+1 . So (m � 1)2 + 1 of thesejobs must be assigned to the m empty mahines. We distinguish betweentwo sub-ases:

3 TEMPORARY TASKS 11Case A1a. One mahine (not x) has at least m jobs of weight m� 1.All jobs of weight m � 1 leave exept m jobs of weight m � 1 on onemahine, and m� 1 jobs of weight m(m� 1) arrive. The new optimal loadis (m + 1)(m � 1). Therefore all these jobs must be assigned to di�erentmahines. Finally, a job of weight m(m + 1) arrives. The optimal load ism(m + 1): the last job has it own mahine, the other mahines have onejob of weight m(m � 1), one or two jobs of weight m� 1 and some jobs ofweight 1, so that the load is preisely m(m+ 1). This ompletes the proof,sine the online load is 2m2.Case A1b. All mahines (exept mahine x) have at least one job ofweight m� 1.All jobs of weight m � 1 leave exept m jobs, one suh job remains oneah mahine exept on mahine x. Next, m2�2m�12 jobs of weight 2(m� 1)arrive. The optimal load is again m(m� 1). At most m�32 jobs are assignedto mahine x, otherwise the load there beomes too large. There are m�32 + 1mjobs on average on the other mahines, so there is at least one mahine (notx) with at least m�12 jobs of this weight and a load of at least m(m�1), saymahine y. All jobs leave exept the unit jobs on x and jobs of total weightpreisely m(m� 1) on mahine y.Finally, m � 1 jobs of weight m(m � 1) arrive and one job of weightm(m + 1). Clearly, the online algorithm must assign eah job of weightm(m�1) to an empty mahine and hene its �nal load is 2m2. The optimalalgorithm an balane its jobs and have a load of m(m+ 1) sine there areat least 2(m� 1) jobs of weight 1, whih ompletes the proof.Case A2. All mahines now have load at least m� 1.All jobs leave exept m� 1 jobs on eah mahine, and m2 �m� 1 jobsof weight m� 1 arrive. The average number of jobs of weight m� 1 on themahines is m� 2 + 1m+1 , and hene there is a mahine with m� 1 jobs ofweight m � 1 and a load of m(m � 1). By letting some jobs leave, we anget the loads to be the same as in Case A1b just before the arrival of thejobs of weight 2(m� 1). Hene, we an ontinue as in that ase.Case B. m is even. We start the sequene with (m � 1)m2 unit jobs.The optimal load is m(m� 1). We distinguish between two ases:Case B1. One mahine, say x, has at least m(m� 1) jobs. All jobs leaveexept m(m � 1) jobs on x, and (m � 1)2 jobs of weight m arrive. The

4 CONCLUSIONS 12optimal load is again m(m� 1). At most m� 2 jobs an be assigned to x.We distinguish between two sub-ases:Case B1a. Another mahine (not x) has load at least m(m�1). Then alljobs of weight m leave exept m� 1 jobs on that mahine, and m� 1 jobsof weight m(m � 1) arrive followed by a job of weight m(m + 1). Clearly,the online load is at least 2m2, while the optimal load is m(m + 1) whihompletes the proof.Case B1b. Eah mahine exept x has one job of weight m. All jobsof weight m leave exept m jobs, one remains on eah mahine exept onmahine x. Next m2�3m2 jobs of weight 2m arrive. At most m�22 an beassigned to mahine x. Hene, the average number of jobs of weight 2m onall mahines besides x is m2 � 2+ 1m . Thus, one mahine y must have m2 � 1jobs of weight 2m and a load of at least m(m� 1). All jobs leave exept theunit jobs on x and jobs of total weight m(m�1) on y. Finally, m�1 jobs ofweight m(m� 1) arrive and one job of weight m(m+ 1). Again, the onlineload is at least 2m2, while the optimal load is m(m + 1) whih ompletesthe proof.Case B2. There are at least m jobs on eah mahine. (This an happenonly for m � 4).All jobs leave exept m jobs on eah mahine. Next, m2(m�2)�m2 jobsof weight 2 arrive. If there is a mahine with load at least m(m � 1), weontinue as in Case B1. Otherwise, eah mahine has load at least 2m.Then, some jobs of weight 2 leave in suh a way that the load on eahmahine is 2(m � 1). Next, m2 � 2m � 2 jobs of weight m � 1 arrive andone mahine will have a load of at least m(m� 1). Jobs of weight m� 1 onthat mahine leave suh that the load beomes m(m� 1). All non-unit jobson the other mahines leave. We ontinue as in Case B1b. �4 ConlusionsWe have examined the e�ets of resoure augmentation for several load bal-aning problems. For the problem of sheduling jobs on idential mahines,we have shown an algorithm with a ompetitive ratio whih dereases ex-ponentially in n=m, while greedy has a ompetitive ratio that is linear inn=m.

5 ACKNOWLEDGMENTS 13An open question is whether it is possible to lose the gap between thelower bound and the upper bound on idential mahines. Both boundsare dereasing exponentially, and we onjeture that the true value of theompetitive ratio is loser to the lower bound.5 AknowledgmentsThe authors wish to thank Han La Poutr�e for helpful disussions.Referenes[1℄ S. Albers. Better bounds for on-line sheduling. In Pro. 29th ACMSymp. on Theory of Computing, pages 130{139, 1997.[2℄ Y. Azar and L. Epstein. On-line load balaning of temporary tasks onidential mahines. In 5th Israeli Symp. on Theory of Computing andSystems, pages 119{125, 1997.[3℄ Y. Bartal, A. Fiat, H. Karlo�, and R. Vohra. New algorithms for ananient sheduling problem. In Pro. 24th ACM Symposium on Theoryof Algorithms, pages 51{58, 1992. To appear in Journal of Computerand System Sienes.[4℄ P. Berman and C. Coulston. Speed is more powerful than lairvoyane.In Nordi Journal of Computing, pages 181{193, 1999.[5℄ M. Brehob, E. Torng, and P. Uthaisombut. Applying extra-resoureanalysis to load balaning. Manusript, 1999.[6℄ B. Chen, A. van Vliet, and G. J. Woeginger. Lower bounds for ran-domized online sheduling. Information Proessing Letters, 51:219{222,1994.[7℄ B. Chen, A. van Vliet, and G. J. Woeginger. An optimal algorithm forpreemptive on-line sheduling. Operations Researh Letters, 18:127{131, 1995.[8℄ J. Edmonds. Sheduling in the dark. In Proeedings of the 31st ACMSymposium on Theory of Computing, pages 179{188, 1999.[9℄ L. Epstein and J. Sgall. A lower bound for on-line sheduling on uni-formly related mahines. To appear in Oper. Res. Lett., 2000.

REFERENCES 14[10℄ T. Gormley, N. Reingold, E. Torng, and J. Westbrook. Generatingadversaries for request-answer games. In Pro. 11th ACM-SIAM Symp.on Disrete Algorithms, 2000.[11℄ R.L. Graham. Bounds for ertain multiproessor anomalies. Bell Sys-tem Tehnial Journal, 45:1563{1581, 1966.[12℄ R.L. Graham. Bounds on multiproessing timing anomalies. SIAM J.Appl. Math, 17:263{269, 1969.[13℄ B. Kalyanasundaram and K. Pruhs. Speed is as powerful as lair-voyane. In Proeedings of 36th IEEE Symposium on Foundations ofComputer Siene, pages 214{221, 1995.[14℄ Bala Kalyanasundaram and Kirk Pruhs. Maximizing job ompletionsonline. In European Symposium on Algorithms, pages 235{246, 1998.[15℄ D. R. Karger, S. J. Phillips, and E. Torng. A better algorithm for ananient sheduling problem. In Pro. of the 5th ACM-SIAM Symposiumon Disrete Algorithms, pages 132{140, 1994.[16℄ Tak Wah Lam and Kar Keung To. Trade-o�s between speed and proes-sor in hard-deadline sheduling. In ACM/SIAM Symposium on DisreteAlgorithms, pages 623{632, 1999.[17℄ R. MNaughton. Sheduling with deadlines and loss funtions. Man-agement Si., 6:1{12, 1959.[18℄ Cynthia A. Philips, Cli� Stein, Eri Torng, and Joel Wein. Optimaltime-ritial sheduling via resoure augmentation. In Proeedings ofthe 29th ACM Symposium on Theory of Computing, pages 140{149,1997.[19℄ J. Sgall. A lower bound for randomized on-line multiproessor shedul-ing. Inf. Proess. Lett., 63(1):51{55, 1997.[20℄ D. Sleator and R. E. Tarjan. Amortized eÆieny of list update andpaging rules. Communiations of the ACM, 28:202{208, 1985.

