Minimizing the Flow Timewithout Migration

Baruch Awerbuch Yossi Azart

Abstract

We consider the classical problem of scheduling jobs in a
multiprocessor setting in order to minimize the flow time
(total time in the system). The performance of the algo-
rithm, both in offline and online settings, can be signifi-
cantly improved if we allow preemption: i.e., interrupt a
job and later continue its execution, perhaps migrating it
to a different machine. Preemption is inherent to make a
scheduling algorithm efficient. While in case of a single

Stefano Leonardh Oded Rege¥

can achieve a better bound.

Without migration, no (offline or online) approxima-
tions are known. This paper introduces a new algorithm
that does not use migration, worgsline, and is just as ef-
fective (in terms of approximation ratio) as the best known
offlinealgorithm (SRPT) that uses migration.

1 Introduction

processor, most operating systems can easily handle pre-

emptions, migrating a job to a different machine results in

a huge overhead. Thus, it is not commonly used in most
multiprocessor operating systems. The natural question is
whether migration is an inherent componentfor an efficient

scheduling algorithm, in either online or offline setting.

Leonardi and Raz (STOC'97) showed that the well
known algorithm, shortest remaining processing time
(SRPT), performs within a logarithmic factor of the opti-
mal algorithm. Note that SRPT must uiseth preemption
and migration to schedule the jobs. It is not known if bet-
ter approximation factors can be reached. In fact, in the
on-line setting, Leonardi and Raz showed that no algorithm

*Johns Hopkins University, Baltimore, MD 21218, and MIT
Lab. for Computer Science. E-mail: baruch@blaze.cs ¢hu.e
Supported by Air Force Contract TNDGAFOSR-86-
0078, ARPA/Army contract DABT63-93-C-0038, ARO contract
DAALO03-86-K-0171, NSF contract 9114440-CCR, DARPA con-
tract NO0014-J-92-1799, and a special grant from IBM.

tDepartment of Computer Science, Tel Aviv University, Tel-
Aviv, 69978, Israel. E-Mail: azar@math.tau.ac.il. Resbaup-
ported in part by the Israel Science Foundation and by the US-
Israel Binational Science Foundation (BSF).

Dipartimento di Informatica Sistemistica, UniversitaRbma
“La Sapienza”, via Salaria 113, 00198-Roma, Italia. Thigkvo
was partly supported by EU ESPRIT Long term Research Project
ALCOM-IT under contract n. 20244, and by lItalian Ministry of
Scientific Research Project 40% “Algoritmi, Modelli di Calo e
Strutture Informative”. E-Mail: leon@dis.uniromal.it.

§Department of Computer Science, Tel Aviv University. E-
Mail: odedr@math.tau.ac.il

Objectives. One of the most basic performance mea-
sures in multiprocessor scheduling problems is the overall
time the jobs are spending in the system. This includes the
delay of waiting for service as well as the actual service
time. This measure captures the overall quality of service
of the system. Multiprocessor scheduling problems arise,
for example, in the context of server farms accommodating
requests for retrieving Web contents over the Internet.

We consider the classical problem of minimizing the
flow time in a multiprocessor setting with jobs which are
released over time. The performance of the algorithm, both
in offline and online settings, can be significantly improved
if we allow preemption: i.e., interrupt a job and later con-
tinue its execution, perhaps migrating it to a different ma-
chine. As shown below, preemption is inherent to make a
scheduling algorithm efficient.

While in case of a single processor, most operating sys-
tems can easily handle preemptions, migrating a job to a
different machine results in a huge overhead. Thus, it is not
commonly used in most multiprocessor operating systems.
The natural question is whether migration is an inherent
component for an efficient scheduling algorithm, in either
online or offline setting.

Existing work. Surveys on approximation algorithms
for scheduling can be found in [4, 6]. In the non-preemptive
case it is impossible to achieve a "reasonable” approxima-
tion. Specifically, even for one machine one cannot achieve
an approximation factor OO(n%‘E) unlessN P P
wheren is the number of jobs [5]. Fom > 1itis im-
possible to achiev@(ni‘é) approximation factor unless
NP = P [7]. Thus, preemptions really seem to be essen-
tial.

Existing work: single processor. Minimizing the flow
time on one machine with preemption can be done opti-
mally in polynomial time using the natural algorithm short-
est remaining processing time (SRPT) [1].

Existing work: multiple processors with migration.

For more than one machine the preemptive problem be-
comesN P-hard [2]. Only very recently, Leonardiand Raz
[7] (STOC'97) showed that SRPT achieves logarithmic ap-
proximation for the multiprocessor case, showing a tight
bound of O(log(min{n/m, P})) on m > 1 machines
with n jobs, whereP denotes the ratio between the pro-
cessing time of the longest and the shortest jobs.

Note that SRPT must udsth preemption and migra-
tion to schedule the jobs. It is not known if better approxi-
mation factors can be reached. In fact, in the on-line ggttin
no algorithm can achieve a better bound [7]. For the easier
problem of minimizing the total completion time a constant
approximation can be achieved [3].

Our result: multiple processors without migration.
Without migration, no (offline or online) approximations
are known. We present a new algorithm for minimizing
flow time that uses local preemption, but does not migrate
jobs between machines. It can be shown to perform as well
as the best knowafflinealgorithm (SRPT) for the preemp-
tive problem that uses migration. More specifically, our
algorithm guarantees, on all input instances, a small per-
formance gap in comparison to the optir#lineschedule
that allowsboth preemption and migration. Denote B

the ratio between the processing time of the longest and
the shortest jobs. Then our algorithm performs by at most
O(min{log P,log n}) factor of the optimal preemptive al-
gorithm that allows migration. The algorithm can be easily
implemented in polynomial time in the size of the input in-
stance.

Our algorithm is also on-line. We note that in the proof
of the Q(log P), ©2(log n/m) lower bounds of [7] for on-
line algorithms, the optimal algorithm does not use migra-
tion. Hence, the (randomized) lower bound holds also for
a non-migrative algorithm. This implies that our algorithm
is optimal with respect to the paramefri.e., no on-line
algorithm can achieve a better bound both when the off-
line algorithm is or is not allowed to migrate jobs (the first
claim is obviously stronger), while there is still a smalpga
between theO(log n) upper bound and th&(log n/m)
lower bound. A matching(log n) lower bound for the
algorithm is omitted in this extended abstract.

Unlike SRPT our algorithm may continue to run a job
on a machine even when a shorter job is waiting to be pro-
cessed. This seems essential in the non-migrative setting
since being too eager to run a shorter job may result in an
unbalanced commitment to machines. A non-migrative al-
gorithm has to trade off between the commitment of a job
to a machine and the decrease in the flow time yielded by
running a shorter job. Our algorithm runs the job with the
shortest remaining processing time among all the jobs that

were already assigned to that machine, and a new job is as-
signed to a machine if its processing time is considerably
shorter than the job that is currently running.

The model: We are given a sef of n jobs and a set of

m identical machines. Each jglis assigned a pair;, p;)
wherer; is the release time of the job apglis its process-

ing time. In the preemptive model a job that is running
can be preempted and continued later on any machine. Our
model allows preemption but does not allow migration, i.e.,
a job that is running can be preempted but must later con-
tinue its execution on the same machine on which its exe-
cution began. The scheduling algorithm decides which of
the jobs should be executed at each time. Clearly a ma-
chine can process at most one job in any given time and a
job cannot be processed before its release time. For a given
schedule define; to be the completion time of job in

that schedule. The flow time of jopfor this schedule is

Fj = cj —rj. Thetotal flow time is) ., Fj. The goal

of the scheduling algorithm is to minimize the total flow
time for each given instance of the problem. In the off-line
version of the problem all the jobs are known in advance.
In the on-line version of the problem each job is introduced
at its release time and the algorithm bases its decision only
upon the jobs that were already released.

2 The algorithm

Ajob is called alive at time for a given schedule if it has
already been released but has not been completed yet. Our
algorithm classifies the jobs that are alive into classes ac-
cording to their remaining processing times. A jptwvhose
remaining processing time is [8%, 2%} is in classk for

—oo < k < oo. Notice that a given job changes its class
during its execution. The algorithm holds a pool of jobs
that are alive and have not been processed at all. In ad-
dition, the algorithm holds a stack of jobs for each of the
machines. The stack of machifiolds jobs that are alive
and have already been processed by machiriée algo-
rithm works as follows:

¢ Eachmachine processesthe job at the top of its stack.

¢ When a new job arrives the algorithm looks for a ma-
chine that is idle or currently processing a job of a
higher class than the new job. In case it finds one, the
new job in pushed into that machine’s stack and its
processing begins. Otherwise, the job is inserted into
the pool.

¢ When a job is completed on some machine it is
popped from its stack. The algorithm compares the
class of the job at the top of the stack with the min-
imum class of a job in the pool. If the minimum is
in the pool then a job that achieves the minimum is
pushed into the stack (and removed from the pool).

Clearly, when a job is assigned to a machine it will be
processed only on that machine and thus the algorithm does

not use migration. In fact, the algorithm bases its decsion classes of jobs in the stacks change in one of three cases.
only on the jobs that were released up to the current time The first is when the class of the currently processed job
and hence is an on-line algorithm. Note that it may seem decreases. Since the currently processed job is the job with
that the algorithm has to keep track of all the infinite num- the lowest class, the lemma remains true. The second case
ber of classes through which a job evolves. However, the is when a new job arrives. In case it enters the pool there is
algorithm recalculates the classes of jobs only at arrival 0 no change in any stack. Otherwise it is pushed into a stack
completion of a job. whose top is of a higher class which preserves the first part
of the lemma. Since the class of the new job is at I2ast
the second part of the lemma remains true. The third case
3 Analysis is when a job is completed on some machine. If no job is
pushed into the stack of that machine the lemma remains
easily true. If a new job is pushed to the stack then the

We denote by our scheduling algorithm and Wy PT the lemma remains true in much the same way as in the case of
optimal off-line algorithm that minimizes the flow time for the arrival of a new job.]

any given instance. For our analysis we can even assume
thatO PT may migrate jobs between machines. Whenever
we talk about time we mean the moment after the events Corollary 3.3 There are at mos2 + log P jobs in each
of time ¢ hasppened. For a given scheduling algoritl$m stack.

we defineV ®(¢) to be the volume of a schedule at a certain

timet. This volume is the sum of all the remaining process-
ing times of jobs that are alive. In addition, we deféét)

to be the number of jobs that are alivAV (¢) is defined

to be the volume difference between our algorithm and the
optimal algorithm, i.e.V #(¢) — VF7(¢). We also define We look at the state of the schedule at a certain time
by Ad(t) = 64(t) — 6°F7(¢) the alive jobs difference at First let's look att ¢ 7T

time ¢t betweend andOPT. For a generic functioif (V,

AV, § or Ad) we usefsn,<x(t) to denote the value of

at time t when restricted to jobs of classes betwéeand Lemma3.4 Fort ¢ T,84(t) < v4(t)(2 + log P).

k. Similarly, the notationf=x(t) will represent the value
of function f at timet when restricted to jobs of class pre-
ciselyk.

Proof: The number of classes of jobs in each stack is at
MOStkmas — kmin + 1 <2 + log P. |

Proof: By definition of 7, at timet¢ at least one machine

is idle. That implies that the pool is empty. Moreover, all
Let y°(£) be the number of non-idle machines at time the stacks of the idle machines are obviously empty. So, all

t. Notice that because our algorithm does not migrate jobs, the jobs that are alive are in the stacks of the non-idle ma-

there are situations in whicp(t) < m ands(t) > m. chines. The number of non-idle machines(t) and the
We denote byT” the set of times in which(t) = m, that number of jobs in each stack is at m@st log P according
is, the set of times in which none of the machines is idle, © corollary 3.3 u

Denote byP,..;» the processing time of the shortest job and
by Pr.... the processing time of the longest job. Note that
P = Praz/Pmin. Denote bykmin = |log Pmin] and
kmae = |log Pmaz | the classes of the shortest and longest
jobs upon their arrival.

Now, assume that € 7 and lett, < t be the earliest
time for which[to,t) C 7. We denote the last time in
which a job of class more thak was processed by;. In
case such jobs were not processed at all in the time interval

We start by observing the simple fact that the flow time [to, £) We setty = fo.

is the integral over time of the number of jobs that are alive
(for example, see [7]): Lemma35 Fort € T, AVei(t) < AViy(ts).

Fact 3.1 For any schedules,)) o)
Proof: Notice that in the time intervdts, t), algorithm A
FS = /Js(t)dt. is con_stantly processing on all th_e machines jobs yvhose
. class is at most. The off-line algorithm may process jobs
of higher classes. Moreover, that can cause jobs of class
more thark to actually lower their classes foand below
therefore adding even more 1T (¢). Finally, the re-
lease of jobs of class k in the intervaltg, t) is not affect-
ing AV<,(t). Therefore, the difference in volume between
the two algorithms cannot increase. |

First we note that the algorithm preserves the following
property of the stacks:

Lemma 3.2 In each stack the jobs are ordered in a strictly
increasing class order and there is at most one job whose
class is at Mokt mir.

Lemma3.6 Fort € T, AV (tr) < m2*+2.
Proof: Attime ¢t = 0 the lemma is true since all the stacks
are empty. The lemma is proved by induction on time. The

Proof: First we claim that at any momerg — ¢, for any

€ > 0 small enough, the pool does not contain jobs whose
class is at mosk. In caset, = to, at any moment just
beforet, there is at least one idle machine which means
the pool is empty. Otherwise; > to and by definition
we know that a job of class more thans processed just
beforet,. Therefore, the pool does not contain any job
whose class is at moat

At time ¢, jobs of class at mosk might arrive and fill
the pool. However, those jobs increase BBl * (¢«) and

V2 (t) by the same amount, so jobs that arrive exactly at
tx do not chang& V¢ (tx) and can be ignored.

Since the jobs in the pool at timg, can be ignored,
we are left with the jobs in the stacks. Using lemma 3.2,
AVei(te) < m(2¥t 428 42871 4) <m2*2. m

Lemma3.7 Fort € T, AV (t) < m2*+2,

Proof: Combining Lemma 3.5 and 3.6, we obtain
AVSk(t) S AVSk(tk) S m2k+2 ||

The claim of the following Lemma states a property
that will be used in the proof of both th@(log P) and the
O(log n) approximation result.

Lemma38 Fort € T, for kmin < k1 < k2 < kmae,
884, <ky () < 2m(ky — k1 +2) + 26207 (1)

Proof: 5§k1 <k, (t) can be expressed as:

k2
> 55()
i=ky
k2 . OPT
< Z(AV:z(t) ‘2|‘iV=z (t))
i=ky
k2
AV (t) — AV (¢
< Y Al -RVanll g, (o
i=ky
AV () 2= AV(t)
Ska <:
< k> + Z 2i+1
i=ky
AV 1 (t
B Szkl; 1() 26;’1:1’1:Sk2 (t)
ky—1
S 4m—|— Z 2m—|—6<k1 1()+26§,1;1’1:Sk2(t)
i=ky
< 2m(ke — k1 +2) + 2625, (8)-

The first inequality follows sinc@® is the minimum
processing time of a job of clags The second inequal-
ity follows since the processing time of a job of class

less thar2®t!. The fourth inequality is derived bg/ %)plylng
Lemma 3.7, observing thak Vg, —1(t) > —Vi 2 (¢)

and that2®: is the maximum processing time of a JOb of
class at most; — 1. The claim of the lemma then follows.
|

The following corollary of Lemma 3.8 is used in the
proof of theO(log P) approximation ratio of Theorem 3.10

Corollary 39 For t € T, §%(t) < 2m(4 + log P) +
289PT (4).

Proof: We express

8U(t) = Olkmanikmin (£) + 6Zkmsn (2)
S zm(kmaz - kmzn + 2) + ZJOPT() + m
< 2m(4 4 1log P) + 26°F7 ()
The second inequality follows from the claim of

Lemma 3.8 wherks = kmaz andk; = kmin, and from
the claim of Lemma 3.2 stating that the stack of each ma-
chine contains at most one job of class less thaf.. The
third inequality is obtained sind&naz — kmin + 5/2 <
log P + 4. [|

Theorem3.10 F# < 2(5 + log P) - FOFT that is, al-
gorithm 4 has a2(5 + log P) approximation factor even
compared to the optimal off-line algorithm that is allowed
to migrate jobs.

Proof:
F* = /JA(t)dt
t
= / JA(t)dt—i—/ 54 (t)dt
t¢T teT
< / 7 (8)(2 + log P)dt
t¢T
—|—/ (2m(4 + log P)—l—ZJOPT(t))dt
teT
< C+iogP) [oA
¢T
+2(4 +log P)/ mdt—|—2/ §°FT (t)dt
teT
< (8—|—ZlogP)/fyA(t)dt—l—Z/JOPT(t)dt
t t
< 2(5+41log P)- FOFT

The first equality is from the definition df4. The sec-
ond is obtained by looking at the time in which none of the

machines is idle and the time in which at least one machine
is idle separately. The third inequality uses Lemma 3.4 and
Corollary 3.9. The fifth inequality is true sinee*(t) = m
whent € T. Finally,ftfy“‘(t)dt is the total time spent pro-
cessing jobs by the machines which is exa@}/jejp,-.

That sum is upper bounded by the flow time@PT since
each job’s flow time must be at least its processing time.

We now turn to prove th&(log n) approximation ratio
of the algorithm. A different argument is required to prove
this second bound. The main idea behind the proof of the
O(log P) approximation ratio was to bound for any time
t € T, the alive jobs difference betweehandOPT by
O(mlog P). A similar approach does not allow to prove
theO(log n) approximation ratio: It is possible to construct
instances where the the alive jobs differenc@(s).

Leonardi and Raz [7] proved th@(log n/m) approx-
imation ratio for SRPT when migration is allowed arguing
that the worst case ratio between the SRPT flow time and
the optimal flow time can be raised only if a “big” alive
jobs difference is kept for a “long” time period. This ob-
servation yields also for our non-migrative algorithm. §hi
is formally stated in Lemma 3.11 for any timez 7 when
no machine is idle and in Lemma 3.12 for any titng¢ 7.
These Lemmas prove that the minimum remaining process-
ing time of a set of unfinished jobs is exponentially decreas-
ing with the size of the alive jobs difference betwetand
OPT. Thus, either new jobs are released at a rate exponen-
tial in the size of the alive jobs difference, or the ongoing
processed jobs are consumed and the alive jobs difference
is reduced.

We need to introduce more notation. Recall tifais
defined to be the set of times in whigH'(t) = m. We
denote byT' = ftert the size of sef. For anyt €

T, define by§4:¥(t) the number of jobs in the pool of
algorithm A4, i.e., not assigned to a machine, at timand

by Aé% () = 64F (t) — 26°FT (¢) the difference between
the number of jobs in the pool of algorithhand twice the
number of jobs not finished by the optimal algorithm. For
any maching, time¢, define bys+! (t) the number of jobs
assigned to machiriet timet in the schedule of algorithm
A. Moreover, define by* = {t|64(¢t) > 0}, the set of
times when machinkis assigned with at least one job, and
byT' = [, . dt the size of sef".

Lemma3.11 For any timet € T, if AT (t) > 2mi, for
1 > 3, then the pool of algorithmt contains at leasem

jobs of remaining processing time at me"'%%.

Proof: Letk be the maximum integer such trt:" () >
2m. Then, -

. . % VA(t) . . .
thus yielding2® < =_~1. In particular, the last inequality

follows since2* is the minimum processing time of a job
of classk.

By the definition ofk, we have:
AP OPT
8 z(8) ‘SSE (£) — 20 3 (t)
5P (t) - 6;"{(0 —2(8°FT (1) = 6257 (1))
P AP OPT
AS(t) — 6>E)+ 25>E (®)
2m(i —1).

>

where the last inequality follows siné¢:” (¢) < 2m.

From Lemma 3.8, for any integéf < k, we get:

AsTH(E) = LT () + 85T () - 26287 (1)
< 8 lgsu(8) F 8L (8) — 26257 (8)
< 85 () +2m(k — k' +2),
thus yieldingé 23, (t) > 2m(i + k' — k — 3). Consider

now the maximum intege’ such that ;7 (¢) < 2m. For

suchk’ we get 2m > 2m (i + k' — k — 3) and thus
k' < k—i+3. It follows that there exist at least 2m jobs of
classatmost’ < k—i+3inthe pool of the algorithm. The
remaining processing time of tho2e: jobs is bounded by

VA(t) thus proving the claim. [

m2i—8

2%—i+4 <

Lemma 3.12 For any machind, timet € 7%, if §4'(¢) >
1 for: > 1 thenthere exists a job with remaining processing

time at mos%2 assigned to machinkat timet.

Proof: For any timet € T*, there is at most one job as-
signed to machiné for every specific class. Assume ma-
chinel is assigned with a job of highest claissobviously
satisfyingT! > 2*. If §4*(¢) > 4 then there is a job of
class at most —z + 1 assigned to machirdewith process-
ing time at mosg*—#+2 < I [|

> i3 -

We partition the set of time instarfflSwhen no machine
is idle into a collection of disjoint intervalf, = [t,),
k = 1,...,s, and associate an integéy > 1 to each
interval, such that for any time € Iy, 2m(ir — 1) <
AP (t) < 2m(ik +1) forix > 1 andAd” (t) < 2m(ix +
1) fordx = 1.

Each maximal interval of timegs, t.) contained in7”
is dealt with separately. Assume we already dealt with all

times in7 which are smaller thaty, and we have created
k — 1 intervals. We then defing = t;, with 7, = 1. Given
ty andiy, definer, = {min{t,t}t > t&, AST(t) >
2m(ix+1) or (ix > 1 AJP() < 2m(ir—1))}, thatis,rg

is the first timeA&P(t) reachesthe valuBn(ix+1), orthe
value2m(ix—1) if i > 1. Incasery < t., We setri1 =

ri andixgs = [25501 i ASP (£411) > 2mix +1),

P
inpr = [2ECR) 1t ASP (401) < 2m(in — 1). Itis
straightforward from this definition that indeed for anydim
t € In, 2m(ie — 1) < AST(t) < 2m(ix + 1) for i > 1
andAst (t) < 2m(ix + 1) = dmforip = 1.

Denote byz, = rr — tx the size of intervally,
and define7; = {Ulkl|ix i}, ¢ > 1, as the union
of the intervalsl; with g 1. We indicate byT; =
fteﬂ_ dt the size of set/;. We also denote byD =

max{T, max;e7{V*(t)/m}}. The following lemma re-
lates the number of jobs, and the values df;.

Lemma 3.13 The following lower bound holds for the
number of jobs:

n>—ZT 2%,

i>4

Proof: Consider the generic intervd},, with the corre-
spondingix. The interval starts wheA§¥ (¢i) reaches
2may, from above or from below. This interval ends when
AT (ri) reache@m(ix + 1) or 2m(ix — 1). In the first
case we have the evidencemf = m jobs finished by
OPT (recall thatAé” (t) = §F(t) — 26°FT (t)). In the
second case we have the evidencept= 2m jobs that ei-

ther leave the pool to be assigned to a machine by algorithm

A or arrive to both4A andOPT. In both cases we charge
nr > m jobs to intervall. We can then conclude with a
first lower boundr, > m on the number of jobs charged
to any intervally, € 7;, 2, > 4.

Next, we give a second lower bound, based on Lemma
3.11, stating that during an interv) = [t&, rz) there exist
in the poolm jobs with remaining processing time at most
S, SINCeAST (£) > 2m(ix — 1) for anyt € [tx,).
This implies that all then machines are processing jobs
with remaining processing time at most%. We look at

any subinterval ofj of length n, +. For each machine,

during this subinterval, either ajob is finished by the algo-
rithm or a job is preempted by a job of lower class. There-
fore, we can charge at least jobs that are either released
or finished with any subinterval of sm—:gT‘1 of Ix. A

second lower bound on the number of jObS charged to any
interval is then given by, > mLMJ.

Observe now that each job is charged at most 4 times,
when it is released, when it is assigned to a machind by
when it is finished byd and when it is finished b@ PT.
Then,

mkzi"_4
o)} < 4n,

% ZT,' 2i—4 < Z m max{1, |

i>4 k|iy >4

where the first inequality is obtained by summing over

I.’s instead of overT;'s and the simple fact that <
max{1, | 2a|} and the second inequality follows from the
lower bounds we have shown on the charged jobs. The

lemma easily follows. |

We next bound the number of jobs that are assigned to
a machind during the time instants of*. We partition
the set of time instant§” into a set of disjoint intervals
IL = [th,rs), k = 1,..., s, and associate an integéy
to each interval, such that for any tinec Ii, 64'(t) =
iL.. Consider a maximal interval of timéé,, t) contained
in 7'. Assumet) = ti. Givent andik, definer,c =
{min{t, tL}|t > ti,&“‘"(t) zk} In caserl, < ti, we
settl,, = ri. Denote by}, = rj, — t}, the size of interval
I;. Define byT? = {UI}|i} = 4}, > 1, the union of the
intervalsI when the number of jobs assigned to machine

lis exactlyi, and byT! = Jicru dt the size of sef?.

Lemma 3.14 The following lower bound holds for the
number of jobs assigned to machine

Zlez

i>1

>_
n' 47!

Proof: We will proceed charging atleast one job with every
interval It. Every job will be charged at most twice, when
it is assigned to a machine by and when it is finished by

Consider the generic intervd], with the correspond-
ing 4. The interval starts wheé*+ (¢) reachegt, from
above or from below. The interval ends whéfi!(rs)
reachegl + 1 or i, — 1. In the first case we have the
evidence of one job that is assigned to a machind and
in the second case of one job that is finisheddoyin both
cases we charge one job to inter¥gl

Next we give a second lower bound, based on Lemma
3.12. Lemma 3.12 states that during an interfal =
[tL,rL), machind is constantly assigned with a job of re-

maining processing time at mosflj. We look at any
2k

subinterval off}

either a job is finished bi/ the algorithm or a job is pre-
empted by a job of a lower class. In any case, a job that

is assigned or finished during any subinterval of S|-$e—

is charged. A second lower bound on the number of jobs
it 2
charged to any interval is then given by > | = b T’: |

Observe now that each job is considered at most twice,
when it is assigned to machih@nd when it is finished by
A. Then, from the following inequalities:

2
1} <ond,

1
1 ! iz 2,2~
57T ZTi 27 < Z max{1, | T

i>1 Elil >1

the claim follows. |

Theorem 3.15 F# = O(log n)F°F7, that is algorithm
A has anO(log n) approximation ratio even compared
with the optimal off-line algorithm that is allowed to mi-
grate jobs.

Proof:

FA

Jeo
i/ I dt+/ 64T (t)dt

+/t€T(26°PT(t) + ASF(t))dt

m

< / s4H(t)dt 4 2FOFT
=1 teT!
+Z/ 2m (i + 1)dt
i>1 VtET:
< DN T 42FTT 4 om Y (i+1) T
I=1 i>1 i>1
= Y D T +2FFT 4 2m) (i-3) T
I=1 i>1 i>1
+2m Y 4T
i>1
< D DT 42FPT 4 2m Y (i-3) T
I=1 i>1 i>4
+8FOPT
< DD AT+ 10FOTT 4 am Y Ty

I=1 i>1 i>1

The second equality is obtained by separately consid-
ering for any machiné the contribution to the flow time
due to the jobs assigned to machinand the contribution
to the flow due to jobs in the pool. The fourth inequality

is obtained by partitioning” into the 7;'s, ¢ > 1, such
that at any timet € 7;, A67 () < 2m(i + 1). The sev-
enth inequality is obtained by observingtrrra§:i>1 T; <

>, pi < FOFT since all machines are busy processing

jobs at any time € 7.

To complete the proof of th&(log n) approximation
ratio, we will show that:

1. F(n) = 2m2:1.>1 i T;4s = O(mDlog %) We
give an upper bound t&(n) under the constraint
Ei>1 T;+3 < D, and the constraint on given by
Lemma 3.13.

3F(n)

D

maxyr, ,.

2m Zz>1 i Tits

— 1
8D Zz>1 it+3 2
T1-|-3

VIV Il

i>

We rewrite the problem using variables;
Z]'>,' Tiys, i 2> 1

max(y,,.1F(n) = sziZIY .
no> S (K- V) 2
D > i>Ya>

A relaxation of the second constraint can be rewritten

as
ZY 271

>1
and then the function is upper bounded by assigning
D:Yi .:Yk,andO:YHl:YHz:...
wherek is the minimum integer such that the con-
straint is tight or violated, namely it is the minimum

integer such thal22 (S5 2°71) > n.
We then obtain fok the valuek < 5+ log =, and
thenF(n) = O(mDlog).

>__
"< 38D

. For any machind, F'(n) S i =
O(T" log n'). We give an upper bound #®*(n!) un-
der the constrain}_,_ T} < T, and the constraint

onn! given by Lemma 3.14.

max(r, .3 F'(n') = Zz>1 i
nt > T Zz>1 T 2'7%.
Tl Z Zz>1 TT
We rewrite the problem using variableg; =
Zj>i Ti, 1> 1:
maxgy,, 3 F'(n') = Zz>1 Yi
n' > Tl Zz>1 (Y: = Yiy1) 277
" > i>Y >

A relaxation of the second constraint can be rewritten

as
ZY 271

i>1

L
233

as:

and then the function is upper bounded by assigning [7] S.Leonardiand D. Raz. Approximating total flow time

T'=Yi=...=%,and0 = Vg1 = Yo = ...
wherek is the minimum integer such that the con-
straint is tight or violated, namely it is the minimum

integer such thagZer (Y35 2871) > nl,
We then obtain fok the valuek < 5 + log n!, and
thenF!(n!) = O(T!log n').

We finally express the total flow time of algorithsh

i > AT+ 10FOFT £ om Y i Tigs

I=1 i>1 i>1

IN

IN

3 F(n') +10F°"7 + F(n)
=1

=) 0(T'logn') + 10F°FT + O(mDlog =)
m

=1

= O(logn) Y T'+10F°"" + O(log %)FOPT
=1

= O(logn)F°F7T.

The fourth equality follows since: D < max{mT,

maxier{V4(£)}} < Z].ejpj < F9PT_ The fifth
equality follows sinc§ ", T' =Y. p; < FOFT. m

References

(1]
(2]

(3]

[4]

(5]

(6]

K.R. Baker. Introduction to Sequencing and Schedul-
ing. Wiley, 1974.

J. Du, J. Y. T. Leung, and G. H. Young. Minimizing
mean flow time with release time constraifiheoreti-
cal Computer Scienc@&5(3):347-355, 1990.

L. Hall, D. Shmoys, and J. Wein. Scheduling to min-
imize average completion time: Off-line and on-line
algorithms. InProc. of 7th ACM-SIAM Symposium on
Discrete Algorithmspages 142—-151, 1996.

L.A. Hall. Approximation algorithms for scheduling.
In D.S. Hochbaum, edito\pproximation algorithms
for NP-hard problemspages 1-45. PWS publishing
company, 1997.

H. Kellerer, T. Tautenhahn and G.J. Woeginger. Ap-
proximability and nonapproximability results for mini-
mizing total flow time on a single machineroc. of the
28th Annual ACM Symposium on the Theory of Com-
puting, pp. 418-426, 1996.

E.L. Lawler, J.K Lenstra, A.H.G. Rinnooy Kan, and
D.B. Shmoys. Sequencing and scheduling: algorithms
and complexity. IrHandbooks in operations research
and management sciencelume 4, pages 445-522.
North Holland, 1993.

on parallel machines. IRroceedings of the Twenty-
Ninth Annual ACM Symposium on Theory of Comput-
ing, pages 110-119, El Paso, Texas, 1997.

