
Minimizing the Flow Time without Migration

Baruch Awerbuch� Yossi Azary Stefano Leonardiz Oded RegevxAbstract
We consider the classical problem of scheduling jobs in a
multiprocessor setting in order to minimize the flow time
(total time in the system). The performance of the algo-
rithm, both in offline and online settings, can be signifi-
cantly improved if we allow preemption: i.e., interrupt a
job and later continue its execution, perhaps migrating it
to a different machine. Preemption is inherent to make a
scheduling algorithm efficient. While in case of a single
processor, most operating systems can easily handle pre-
emptions, migrating a job to a different machine results in
a huge overhead. Thus, it is not commonly used in most
multiprocessor operating systems. The natural question is
whether migration is an inherent component for an efficient
scheduling algorithm, in either online or offline setting.

Leonardi and Raz (STOC’97) showed that the well
known algorithm, shortest remaining processing time
(SRPT), performs within a logarithmic factor of the opti-
mal algorithm. Note that SRPT must usebothpreemption
and migration to schedule the jobs. It is not known if bet-
ter approximation factors can be reached. In fact, in the
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can achieve a better bound.

Without migration, no (offline or online) approxima-
tions are known. This paper introduces a new algorithm
that does not use migration, worksonline, and is just as ef-
fective (in terms of approximation ratio) as the best known
offlinealgorithm (SRPT) that uses migration.1 IntroductionObjectives. One of the most basic performance mea-
sures in multiprocessor scheduling problems is the overall
time the jobs are spending in the system. This includes the
delay of waiting for service as well as the actual service
time. This measure captures the overall quality of service
of the system. Multiprocessor scheduling problems arise,
for example, in the context of server farms accommodating
requests for retrieving Web contents over the Internet.

We consider the classical problem of minimizing the
flow time in a multiprocessor setting with jobs which are
released over time. The performance of the algorithm, both
in offline and online settings, can be significantly improved
if we allow preemption: i.e., interrupt a job and later con-
tinue its execution, perhaps migrating it to a different ma-
chine. As shown below, preemption is inherent to make a
scheduling algorithm efficient.

While in case of a single processor, most operating sys-
tems can easily handle preemptions, migrating a job to a
different machine results in a huge overhead. Thus, it is not
commonly used in most multiprocessor operating systems.
The natural question is whether migration is an inherent
component for an efficient scheduling algorithm, in either
online or offline setting.Existing work. Surveys on approximation algorithms
for scheduling can be found in [4, 6]. In the non-preemptive
case it is impossible to achieve a ”reasonable” approxima-
tion. Specifically, even for one machine one cannot achieve
an approximation factor ofO(n 12��) unlessNP = P
wheren is the number of jobs [5]. Form > 1 it is im-
possible to achieveO(n 13��) approximation factor unlessNP = P [7]. Thus, preemptions really seem to be essen-
tial.



Existing work: single processor. Minimizing the flow
time on one machine with preemption can be done opti-
mally in polynomial time using the natural algorithm short-
est remaining processing time (SRPT) [1].Existing work: multiple processors with migration.
For more than one machine the preemptive problem be-
comesNP -hard [2]. Only very recently, Leonardi and Raz
[7] (STOC’97) showed that SRPT achieves logarithmic ap-
proximation for the multiprocessor case, showing a tight
bound ofO(log(minfn=m;Pg)) on m > 1 machines
with n jobs, whereP denotes the ratio between the pro-
cessing time of the longest and the shortest jobs.

Note that SRPT must usebothpreemption and migra-
tion to schedule the jobs. It is not known if better approxi-
mation factors can be reached. In fact, in the on-line setting,
no algorithm can achieve a better bound [7]. For the easier
problem of minimizing the total completion time a constant
approximation can be achieved [3].Our result: multiple processors without migration.
Without migration, no (offline or online) approximations
are known. We present a new algorithm for minimizing
flow time that uses local preemption, but does not migrate
jobs between machines. It can be shown to perform as well
as the best knownofflinealgorithm (SRPT) for the preemp-
tive problem that uses migration. More specifically, our
algorithm guarantees, on all input instances, a small per-
formance gap in comparison to the optimalofflineschedule
that allowsboth preemption and migration. Denote byP
the ratio between the processing time of the longest and
the shortest jobs. Then our algorithm performs by at mostO(minflog P; log ng) factor of the optimal preemptive al-
gorithm that allows migration. The algorithm can be easily
implemented in polynomial time in the size of the input in-
stance.

Our algorithm is also on-line. We note that in the proof
of the
(log P ), 
(log n=m) lower bounds of [7] for on-
line algorithms, the optimal algorithm does not use migra-
tion. Hence, the (randomized) lower bound holds also for
a non-migrative algorithm. This implies that our algorithm
is optimal with respect to the parameterP , i.e., no on-line
algorithm can achieve a better bound both when the off-
line algorithm is or is not allowed to migrate jobs (the first
claim is obviously stronger), while there is still a small gap
between theO(log n) upper bound and the
(log n=m)
lower bound. A matchingO(log n) lower bound for the
algorithm is omitted in this extended abstract.

Unlike SRPT our algorithm may continue to run a job
on a machine even when a shorter job is waiting to be pro-
cessed. This seems essential in the non-migrative setting
since being too eager to run a shorter job may result in an
unbalanced commitment to machines. A non-migrative al-
gorithm has to trade off between the commitment of a job
to a machine and the decrease in the flow time yielded by
running a shorter job. Our algorithm runs the job with the
shortest remaining processing time among all the jobs that

were already assigned to that machine, and a new job is as-
signed to a machine if its processing time is considerably
shorter than the job that is currently running.The model: We are given a setJ of n jobs and a set ofm identical machines. Each jobj is assigned a pair(rj; pj)
whererj is the release time of the job andpj is its process-
ing time. In the preemptive model a job that is running
can be preempted and continued later on any machine. Our
model allows preemption but does not allow migration, i.e.,
a job that is running can be preempted but must later con-
tinue its execution on the same machine on which its exe-
cution began. The scheduling algorithm decides which of
the jobs should be executed at each time. Clearly a ma-
chine can process at most one job in any given time and a
job cannot be processed before its release time. For a given
schedule definecj to be the completion time of jobj in
that schedule. The flow time of jobj for this schedule isFj = cj � rj. The total flow time is

Pj2J Fj. The goal
of the scheduling algorithm is to minimize the total flow
time for each given instance of the problem. In the off-line
version of the problem all the jobs are known in advance.
In the on-line version of the problem each job is introduced
at its release time and the algorithm bases its decision only
upon the jobs that were already released.2 The algorithm
A job is called alive at timet for a given schedule if it has
already been released but has not been completed yet. Our
algorithm classifies the jobs that are alive into classes ac-
cording to their remaining processing times. A jobj whose
remaining processing time is in[2k; 2k+1) is in classk for�1 < k < 1. Notice that a given job changes its class
during its execution. The algorithm holds a pool of jobs
that are alive and have not been processed at all. In ad-
dition, the algorithm holds a stack of jobs for each of the
machines. The stack of machinei holds jobs that are alive
and have already been processed by machinei. The algo-
rithm works as follows:� Each machine processesthe job at the top of its stack.� When a new job arrives the algorithm looks for a ma-

chine that is idle or currently processing a job of a
higher class than the new job. In case it finds one, the
new job in pushed into that machine’s stack and its
processing begins. Otherwise, the job is inserted into
the pool.� When a job is completed on some machine it is
popped from its stack. The algorithm compares the
class of the job at the top of the stack with the min-
imum class of a job in the pool. If the minimum is
in the pool then a job that achieves the minimum is
pushed into the stack (and removed from the pool).

Clearly, when a job is assigned to a machine it will be
processed only on that machine and thus the algorithm does



not use migration. In fact, the algorithm bases its decisions
only on the jobs that were released up to the current time
and hence is an on-line algorithm. Note that it may seem
that the algorithm has to keep track of all the infinite num-
ber of classes through which a job evolves. However, the
algorithm recalculates the classes of jobs only at arrival or
completion of a job.3 Analysis
We denote byA our scheduling algorithm and byOPT the
optimal off-line algorithm that minimizes the flow time for
any given instance. For our analysis we can even assume
thatOPT may migrate jobs between machines. Whenever
we talk about timet we mean the moment after the events
of time t happened. For a given scheduling algorithmS
we defineV S(t) to be the volume of a schedule at a certain
timet. This volume is the sum of all the remaining process-
ing times of jobs that are alive. In addition, we define�S(t)
to be the number of jobs that are alive.�V (t) is defined
to be the volume difference between our algorithm and the
optimal algorithm, i.e.,V A(t)� V OPT (t). We also define
by ��(t) = �A(t) � �OPT (t) the alive jobs difference at
time t betweenA andOPT . For a generic functionf (V ,�V , � or ��) we usef�h;�k(t) to denote the value off
at timet when restricted to jobs of classes betweenh andk. Similarly, the notationf=k(t) will represent the value
of functionf at timet when restricted to jobs of class pre-
ciselyk.

Let 
S(t) be the number of non-idle machines at timet. Notice that because our algorithm does not migrate jobs,
there are situations in which
A(t) < m and�A(t) � m.
We denote byT the set of times in which
A(t) = m, that
is, the set of times in which none of the machines is idle.
Denote byPmin the processing time of the shortest job and
by Pmax the processing time of the longest job. Note thatP = Pmax=Pmin. Denote bykmin = blog Pminc andkmax = blog Pmaxc the classes of the shortest and longest
jobs upon their arrival.

We start by observing the simple fact that the flow time
is the integral over time of the number of jobs that are alive
(for example, see [7]):

Fact 3.1 For any schedulerS,FS = Zt �S(t)dt:
First we note that the algorithm preserves the following

property of the stacks:

Lemma 3.2 In each stack the jobs are ordered in a strictly
increasing class order and there is at most one job whose
class is at mostkmin.

Proof: At time t = 0 the lemma is true since all the stacks
are empty. The lemma is proved by induction on time. The

classes of jobs in the stacks change in one of three cases.
The first is when the class of the currently processed job
decreases. Since the currently processed job is the job with
the lowest class, the lemma remains true. The second case
is when a new job arrives. In case it enters the pool there is
no change in any stack. Otherwise it is pushed into a stack
whose top is of a higher class which preserves the first part
of the lemma. Since the class of the new job is at leastkmin
the second part of the lemma remains true. The third case
is when a job is completed on some machine. If no job is
pushed into the stack of that machine the lemma remains
easily true. If a new job is pushed to the stack then the
lemma remains true in much the same way as in the case of
the arrival of a new job.

Corollary 3.3 There are at most2 + log P jobs in each
stack.

Proof: The number of classes of jobs in each stack is at
mostkmax � kmin + 1 � 2 + log P .

We look at the state of the schedule at a certain timet.
First let’s look att =2 T :

Lemma 3.4 For t =2 T , �A(t) � 
A(t)(2 + log P ).
Proof: By definition ofT , at timet at least one machine
is idle. That implies that the pool is empty. Moreover, all
the stacks of the idle machines are obviously empty. So, all
the jobs that are alive are in the stacks of the non-idle ma-
chines. The number of non-idle machines is
A(t) and the
number of jobs in each stack is at most2+log P according
to corollary 3.3

Now, assume thatt 2 T and lett0 < t be the earliest
time for which [t0; t) � T . We denote the last time in
which a job of class more thank was processed bytk. In
case such jobs were not processed at all in the time interval[t0; t) we settk = t0.
Lemma 3.5 For t 2 T , �V�k(t) � �V�k(tk).
Proof: Notice that in the time interval[tk; t), algorithmA
is constantly processing on all the machines jobs whose
class is at mostk. The off-line algorithm may process jobs
of higher classes. Moreover, that can cause jobs of class
more thank to actually lower their classes tok and below
therefore adding even more toV OPT�k (t). Finally, the re-
lease of jobs of class� k in the interval[tk; t) is not affect-
ing�V�k(t). Therefore, the difference in volume between
the two algorithms cannot increase.

Lemma 3.6 For t 2 T , �V�k(tk) � m2k+2.



Proof: First we claim that at any momenttk � �, for any� > 0 small enough, the pool does not contain jobs whose
class is at mostk. In casetk = t0, at any moment just
beforetk there is at least one idle machine which means
the pool is empty. Otherwise,tk > t0 and by definition
we know that a job of class more thank is processed just
beforetk. Therefore, the pool does not contain any job
whose class is at mostk.

At time tk jobs of class at mostk might arrive and fill
the pool. However, those jobs increase bothV OPT�k (tk) andV A�k(tk) by the same amount, so jobs that arrive exactly attk do not change�V�k(tk) and can be ignored.

Since the jobs in the pool at timetk can be ignored,
we are left with the jobs in the stacks. Using lemma 3.2,�V�k(tk) �m(2k+1 + 2k + 2k�1 + : : :) �m2k+2.

Lemma 3.7 For t 2 T , �V�k(t) �m2k+2.

Proof: Combining Lemma 3.5 and 3.6, we obtain�V�k(t) � �V�k(tk) � m2k+2
The claim of the following Lemma states a property

that will be used in the proof of both theO(log P ) and theO(log n) approximation result.

Lemma 3.8 For t 2 T , for kmin � k1 � k2 � kmax,�A�k1 ;�k2 (t) � 2m(k2 � k1 + 2) + 2�OPT�k2 (t).
Proof: �A�k1 ;�k2 (t) can be expressed as:k2Xi=k1 �A=i(t)� k2Xi=k1(�V=i(t) + V OPT=i (t)2i )� k2Xi=k1 �V�i(t) ��V�i�1(t)2i + 2�OPT�k1;�k2 (t)� �V�k2 (t)2k2 + k2�1Xi=k1 �V�i(t)2i+1��V�k1�1(t)2k1 + 2�OPT�k1 ;�k2 (t)� 4m+ k2�1Xi=k1 2m+ �OPT�k1�1(t) + 2�OPT�k1 ;�k2 (t)� 2m(k2 � k1 + 2) + 2�OPT�k2 (t):

The first inequality follows since2i is the minimum
processing time of a job of classi. The second inequal-
ity follows since the processing time of a job of classi is

less than2i+1. The fourth inequality is derived by applying
Lemma 3.7, observing that�V�k1�1(t) � �V OPT�k1�1(t)
and that2k1 is the maximum processing time of a job of
class at mostk1 � 1. The claim of the lemma then follows.

The following corollary of Lemma 3.8 is used in the
proof of theO(log P ) approximation ratio of Theorem 3.10

Corollary 3.9 For t 2 T , �A(t) � 2m(4 + log P ) +2�OPT (t).
Proof: We express�A(t) = �A�kmax ;�kmin (t) + �A<kmin (t)� 2m(kmax � kmin + 2) + 2�OPT (t) +m� 2m(4 + log P ) + 2�OPT (t)

The second inequality follows from the claim of
Lemma 3.8 whenk2 = kmax andk1 = kmin, and from
the claim of Lemma 3.2 stating that the stack of each ma-
chine contains at most one job of class less thankmin. The
third inequality is obtained sincekmax � kmin + 5=2 �log P + 4.

Theorem 3.10 FA � 2(5 + log P ) � FOPT , that is, al-
gorithmA has a2(5 + log P ) approximation factor even
compared to the optimal off-line algorithm that is allowed
to migrate jobs.

Proof:FA = Zt �A(t)dt= Zt=2T �A(t)dt+ Zt2T �A(t)dt� Zt=2T 
A(t)(2 + log P )dt+ Zt2T (2m(4 + log P ) + 2�OPT (t))dt� (2 + log P ) Zt=2T 
A(t)dt+2(4 + log P ) Zt2T mdt+ 2Zt2T �OPT (t)dt� (8 + 2 log P )Zt 
A(t)dt+ 2 Zt �OPT (t)dt� 2(5 + log P ) � FOPT
The first equality is from the definition ofFA. The sec-

ond is obtained by looking at the time in which none of the



machines is idle and the time in which at least one machine
is idle separately. The third inequality uses Lemma 3.4 and
Corollary 3.9. The fifth inequality is true since
A(t) =m
whent 2 T . Finally,

Rt 
A(t)dt is the total time spent pro-
cessing jobs by the machines which is exactly

Pj2J pj .
That sum is upper bounded by the flow time ofOPT since
each job’s flow time must be at least its processing time.

We now turn to prove theO(log n) approximation ratio
of the algorithm. A different argument is required to prove
this second bound. The main idea behind the proof of theO(log P ) approximation ratio was to bound for any timet 2 T , the alive jobs difference betweenA andOPT byO(m log P ). A similar approach does not allow to prove
theO(log n) approximation ratio: It is possible to construct
instances where the the alive jobs difference is
(n).

Leonardi and Raz [7] proved theO(log n=m) approx-
imation ratio for SRPT when migration is allowed arguing
that the worst case ratio between the SRPT flow time and
the optimal flow time can be raised only if a “big” alive
jobs difference is kept for a “long” time period. This ob-
servation yields also for our non-migrative algorithm. This
is formally stated in Lemma 3.11 for any timet 2 T when
no machine is idle and in Lemma 3.12 for any timet =2 T .
These Lemmas prove that the minimum remaining process-
ing time of a set of unfinished jobs is exponentially decreas-
ing with the size of the alive jobs difference betweenA andOPT . Thus, either new jobs are released at a rate exponen-
tial in the size of the alive jobs difference, or the ongoing
processed jobs are consumed and the alive jobs difference
is reduced.

We need to introduce more notation. Recall thatT is
defined to be the set of times in which
A(t) = m. We
denote byT = Rt2T dt the size of setT . For anyt 2T , define by�A;P (t) the number of jobs in the pool of
algorithmA, i.e., not assigned to a machine, at timet, and
by��P (t) = �A;P (t)� 2�OPT (t) the difference between
the number of jobs in the pool of algorithmA and twice the
number of jobs not finished by the optimal algorithm. For
any machinel, timet, define by�A;l(t) the number of jobs
assigned to machinel at timet in the schedule of algorithmA. Moreover, define byT l = ftj�A;l(t) > 0g, the set of
times when machinel is assigned with at least one job, and
by T l = Rt2T l dt the size of setT l.
Lemma 3.11 For any timet 2 T , if ��P (t) � 2mi, fori � 3, then the pool of algorithmA contains at least2m
jobs of remaining processing time at mostV A(t)m2i�3 .

Proof: Let k be the maximum integer such that�A;P�k (t) �2m. Then, 2m � �A;P�k (t) � �A�k(t)

� V A(t)2k
thus yielding2k � V A(t)2m . In particular, the last inequality

follows since2k is the minimum processing time of a job
of classk.

By the definition ofk, we have:��P�k(t) = �A;P�k (t)� 2�OPT�k (t)= �A;P (t)� �A;P>k (t)� 2(�OPT (t)� �OPT>k (t))= ��P (t)� �A;P>k (t) + 2�OPT>k (t)� 2m(i � 1):
where the last inequality follows since�A;P>k (t) < 2m.

From Lemma 3.8, for any integerk0 � k, we get:��P�k(t) = �A;P�k;�k0(t) + �A;P<k0 (t)� 2�OPT�k (t)� �A�k;�k0(t) + �A;P<k0 (t)� 2�OPT�k (t)� �A;P<k0 (t) + 2m(k � k0 + 2);
thus yielding�A;P<k0 (t) � 2m(i + k0 � k � 3). Consider

now the maximum integerk0 such that�A;P<k0 (t) < 2m. For

suchk0 we get 2m > 2m (i + k0 � k � 3) and thusk0 � k� i+3. It follows that there exist at least 2m jobs of
class at mostk0 � k�i+3 in the pool of the algorithm. The
remaining processing time of those2m jobs is bounded by2k�i+4 � V A(t)m2i�3 , thus proving the claim.

Lemma 3.12 For any machinel, timet 2 T l, if �A;l(t) �i for i � 1 then there exists a job with remaining processing

time at most T l2i�2 assigned to machinel at timet.
Proof: For any timet 2 T l, there is at most one job as-
signed to machinel for every specific class. Assume ma-
chinel is assigned with a job of highest classk, obviously
satisfyingT l � 2k. If �A;l(t) � i then there is a job of
class at mostk� i+1 assigned to machinel, with process-

ing time at most2k�i+2 � T l2i�2 .

We partition the set of time instantsT when no machine
is idle into a collection of disjoint intervalsIk = [tk; rk),k = 1; : : : ; s, and associate an integerik � 1 to each
interval, such that for any timet 2 Ik, 2m(ik � 1) <��P (t) < 2m(ik+1) for ik > 1 and��P (t) < 2m(ik+1) for ik = 1.

Each maximal interval of times[tb; te) contained inT
is dealt with separately. Assume we already dealt with all



times inT which are smaller thantb, and we have createdk� 1 intervals. We then definetk = tb with ik = 1. Giventk andik , definerk = fminft; tegjt > tk;��P (t) �2m(ik+1) or (ik > 1;��P (t) � 2m(ik�1))g, that is,rk
is the first time��P (t) reaches the value2m(ik+1), or the
value2m(ik�1) if ik > 1. In caserk < te, we settk+1 =rk andik+1 = b��P (tk+1)2m c if ��P (tk+1) � 2m(ik+1),ik+1 = d��P (tk+1)2m e if ��P (tk+1) � 2m(ik � 1). It is
straightforward from this definition that indeed for any timet 2 Ik, 2m(ik � 1) < ��P (t) < 2m(ik + 1) for ik > 1
and��P (t) < 2m(ik + 1) = 4m for ik = 1.

Denote byxk = rk � tk the size of intervalIk,
and defineTi = f[Ikjik = ig, i � 1, as the union
of the intervalsIk with ik = i. We indicate byTi =Rt2Ti dt the size of setTi. We also denote byD =maxfT;maxt2T fV A(t)=mgg. The following lemma re-
lates the number of jobs,n, and the values ofTi.
Lemma 3.13 The following lower bound holds for the
number of jobs: n � m8DXi�4 Ti 2i�4:
Proof: Consider the generic intervalIk, with the corre-
spondingik. The interval starts when��P (tk) reaches2mik, from above or from below. This interval ends when��P (rk) reaches2m(ik + 1) or 2m(ik � 1). In the first
case we have the evidence ofnk = m jobs finished byOPT (recall that��P (t) = �P (t) � 2�OPT (t)). In the
second case we have the evidence ofnk = 2m jobs that ei-
ther leave the pool to be assigned to a machine by algorithmA or arrive to bothA andOPT . In both cases we chargenk � m jobs to intervalIk. We can then conclude with a
first lower boundnk � m on the number of jobs charged
to any intervalIk 2 Ti, ik � 4.

Next, we give a second lower bound, based on Lemma
3.11, stating that during an intervalIk = [tk; rk) there exist
in the pool2m jobs with remaining processing time at mostD2ik�4 , since��P (t) > 2m(ik � 1) for anyt 2 [tk; rk).
This implies that all them machines are processing jobs
with remaining processing time at mostD2ik�4 . We look at

any subinterval ofIk of length D2ik�4 . For each machine,
during this subinterval, either a job is finished by the algo-
rithm or a job is preempted by a job of lower class. There-
fore, we can charge at leastm jobs that are either released
or finished with any subinterval of sizeD2ik�4 of Ik. A
second lower bound on the number of jobs charged to any

interval is then given bynk �mbxk2ik�4D c.
Observe now that each job is charged at most 4 times,

when it is released, when it is assigned to a machine byA,
when it is finished byA and when it is finished byOPT .
Then,

m2DXi�4 Ti 2i�4 � Xkjik�4 mmaxf1; bxk2ik�4D cg � 4n;
where the first inequality is obtained by summing overIk ’s instead of overTi ’s and the simple fact that� �maxf1; b2�cg and the second inequality follows from the
lower bounds we have shown on the charged jobs. The
lemma easily follows.

We next bound the number of jobs that are assigned to
a machinel during the time instants ofT l. We partition
the set of time instantsT l into a set of disjoint intervalsIlk = [tlk; rlk), k = 1; : : : ; sl, and associate an integerilk
to each interval, such that for any timet 2 I lk, �A;l(t) =ilk. Consider a maximal interval of times[tlb; tle) contained
in T l. Assumetlk = tlb. Given tlk and ilk, definerlk =fminft; tlegjt > tlk; �A;l(t) 6= ilkg. In caserlk < tle, we
settlk+1 = rlk. Denote byxlk = rlk � tlk the size of intervalIlk. Define byT li = f[Ilkjilk = ig, i � 1, the union of the
intervalsIlk when the number of jobs assigned to machinel is exactlyi, and byT li = Rt2T li dt the size of setT li .

Lemma 3.14 The following lower bound holds for the
number of jobs assigned to machinel:nl � 14T l Xi�1 T li 2i�2:
Proof: We will proceed charging at least one job with every
intervalIlk. Every job will be charged at most twice, when
it is assigned to a machine byA and when it is finished byA.

Consider the generic intervalIlk, with the correspond-
ing ilk. The interval starts when�A;l(tk) reachesilk, from
above or from below. The interval ends when�A;l(rk)
reachesilk + 1 or ilk � 1. In the first case we have the
evidence of one job that is assigned to a machine byA and
in the second case of one job that is finished byA. In both
cases we charge one job to intervalIlk.

Next we give a second lower bound, based on Lemma
3.12. Lemma 3.12 states that during an intervalIlk =[tlk; rlk), machinel is constantly assigned with a job of re-

maining processing time at mostT l2ilk�2 . We look at any

subinterval ofIlk of length T l2ilk�2 . During this subinterval,

either a job is finished by the algorithm or a job is pre-
empted by a job of a lower class. In any case, a job that
is assigned or finished during any subinterval of sizeT l2ilk�2
is charged. A second lower bound on the number of jobs

charged to any interval is then given bynk � bxlk2ilk�2T l c.



Observe now that each job is considered at most twice,
when it is assigned to machinel and when it is finished byA. Then, from the following inequalities:12T l Xi�1 T li 2i�2 � Xkjilk�1 maxf1; bxlk2ilk�2T l cg � 2nl;
the claim follows.

Theorem 3.15 FA = O(log n)FOPT , that is algorithmA has anO(log n) approximation ratio even compared
with the optimal off-line algorithm that is allowed to mi-
grate jobs.

Proof:FA = Zt �A(t)dt= mXl=1 Zt �A;l(t)dt+ Zt2T �A;P (t)dt= mXl=1 Zt2T l �A;l(t)dt+ Zt2T (2�OPT (t) + ��P (t))dt� mXl=1 Zt2T l �A;l(t)dt+ 2FOPT+Xi�1 Zt2Ti 2m(i + 1)dt� mXl=1Xi�1 i T li + 2FOPT + 2mXi�1 (i + 1) Ti= mXl=1Xi�1 i T li + 2FOPT + 2mXi�1 (i � 3) Ti+2mXi�1 4 Ti� mXl=1Xi�1 i T li + 2FOPT + 2mXi�4 (i � 3) Ti+8FOPT� mXl=1Xi�1 i T li + 10FOPT + 2mXi�1 i Ti+3
The second equality is obtained by separately consid-

ering for any machinel the contribution to the flow time
due to the jobs assigned to machinel, and the contribution
to the flow due to jobs in the pool. The fourth inequality

is obtained by partitioningT into theTi’s, i � 1, such
that at any timet 2 Ti, ��P (t) < 2m(i + 1). The sev-
enth inequality is obtained by observing thatmPi�1 Ti �Pj pj � FOPT , since all machines are busy processing
jobs at any timet 2 T .

To complete the proof of theO(log n) approximation
ratio, we will show that:

1. F (n) = 2mPi�1 i Ti+3 = O(mD log nm ). We
give an upper bound toF (n) under the constraintPi�1 Ti+3 � D, and the constraint onn given by
Lemma 3.13.maxfT1 ;:::gF (n) = 2mPi�1 i Ti+3n � m8DPi�1 Ti+3 2i�1;D � Pi�1 Ti+3:
We rewrite the problem using variablesYi =Pj�i Tj+3, i � 1:maxfY1 ;:::gF (n) = 2mPi�1 Yin � m8DPi�1(Yi � Yi+1) 2i�1;D � Y1 � Y2 � : : : :
A relaxation of the second constraint can be rewritten
as n � 12 m8D (Xi�1 Yi 2i�1);
and then the function is upper bounded by assigningD = Y1 = : : : = Yk, and0 = Yk+1 = Yk+2 = : : :
wherek is the minimum integer such that the con-
straint is tight or violated, namely it is the minimum
integer such thatmD16D (Pki=1 2i�1) � n.

We then obtain fork the valuek � 5 + log nm , and
thenF (n) = O(mD log nm ).

2. For any machinel, F l(nl) = Pi�1 iT li =O(T l log nl). We give an upper bound toF l(nl) un-
der the constraint

Pi�1 T li � T l, and the constraint

onnl given by Lemma 3.14.maxfT1 ;:::gF l(nl) = Pi�1 iT linl � 14T l Pi�1 T li 2i�2:T l � Pi�1 T li
We rewrite the problem using variablesYi =Pj�i Tj, i � 1:maxfY1 ;:::gF l(nl) = Pi�1 Yinl � 14T l Pi�1(Yi � Yi+1) 2i�2;T l � Y1 � Y2 � : : : :
A relaxation of the second constraint can be rewritten
as nl � 14 14T l (Xi�1 Yi 2i�1);



and then the function is upper bounded by assigningT l = Y1 = : : : = Yk, and0 = Yk+1 = Yk+2 = : : :
wherek is the minimum integer such that the con-
straint is tight or violated, namely it is the minimum

integer such thatT l16T l (Pki=1 2i�1) � nl.
We then obtain fork the valuek � 5 + log nl, and
thenF l(nl) = O(T l log nl).

We finally express the total flow time of algorithmA
as:FA � mXl=1Xi�1 iT li + 10FOPT + 2mXi�1 i Ti+3� mXl=1 F l(nl) + 10FOPT + F (n)= mXl=1 O(T l log nl) + 10FOPT +O(mD log nm)= O(log n) mXl=1 T l + 10FOPT +O(log nm)FOPT= O(log n)FOPT :

The fourth equality follows sincemD � maxfmT;maxt2T fV A(t)gg � Pj2J pj � FOPT . The fifth

equality follows since
Pml=1 T l =Pj pj � FOPT .References
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