Chapter 9

On-line Generalized Steiner Problem

Baruch Awerbuch*

Abstract
The Generalized Steiner Problem (GSP) is defined

as follows. We are given a graph with non-negative
weights and a set of pairs of vertices. The algorithm
has to construct minimum weight subgraph such that
the two nodes of each pair are connected by a path.

Off-line generalized Steiner problem approxima-
tion algorithms were given in [AKR91, GW92].

We consider the on-line generalized Steiner prob-
lem, in which pairs of vertices arrive on-line and are
needed to be connected immediately.

We give a simple O(log” n) competitive determin-
istic on-line algorithm. The previous best algorithm
was O(y/nlogn) competitive [WY93].

We also consider the network connectivity leasing
problem which is a generalization of the GSP. Here
edges of the graph can be either bought or leased
for different costs. We provide simple randomized
O(log® n) competitive algorithm based on the on-line
generalized Steiner problem result.

1 Introduction

1.1 On-line Generalized Steiner Problem

~ *Johns Hopkins University and Lab. for Computer Science,
MIT. Supported by Air Force Contract TNDGAFOSR-86-0078,
ARO contract DAALO03-86-K-0171, NSF contract 9114440-
CCR, DARPA contract N00014-J-92-1799, and a special grant
from IBM. E-Mail: baruch@theory.lcs.mit.edu.

tDepartment of Computer Science, Tel Aviv University ,Tel-
Aviv 69978, Israel. Research supported in part by Allon Fel-
lowship and by the Israel Science Foundation administered by
the Israel Academy of Sciences. E-Mail: azar@math.tau.ac.il.

{Department of Computer Science, Tel-Aviv University,
Tel-Aviv 69978, Israel. Research supported in part by Ben
Gurion Fellowship, the Ministry of Science and Arts. E-Mail:
yairb@math.tau.ac.il.

Yossi Azarf

Yair Bartalt

Off-line version of the problem.The General-
ized Steiner Problem (GSP) is defined as follows. We
are given a graph with non-negative weights and a set
of pairs of vertices. The algorithm has to construct
minimum weight subgraph such that the two nodes
of each pair are connected by a path. This problem
[AKR91, GW92] has recently received a lot of atten-
tion in combinatorial optimization, networking, and
distributed computing communities.

Agrawal et al and Goemans et al [AKR91, GW92]
have shown a polynomial-time 2(1— %)—approximation
algorithm. However, these algorithms are inapplicable
in either on-line or distributed environments.

The special case of the GSP problem where all
pairs of some subset of vertices have to be connected
is the Steiner Tree problem. It is one of the most noto-
rious NP-hard problems [Kar72, Win92]. The prob-
lem has been studies in a series of papers including

[IW91, CV93, AA93, ABF93, WY93].

On-line version of the problem.On-line
Steiner tree problem comes up in the context of
network synchronization [AP90], mobile users track-
ing [AP91], distributed paging and file allocation
[BFR92, ABF93, WY93, LRWY94], etc.

On-line Generalized Steiner Problem (in contrast
to on-line Steiner Tree) problem [WY93] captures
more refined communication requirements, e.g., sit-
uations where only partial (rather than global) syn-
chronization is necessary. As pointed out in [AKR91],
the on-line generalized Steiner problem can be viewed
as the problem of minimizing the cost of building a
network satisfying certain connectivity requirements,
where new such requirements appear over time. It
also captures the aspect of communication aggrega-
tion, namely the fact that in many situations, the cost
of communication protocol 1s measured by the num-

ON-LINE GENERALIZED STEINER PROBLEM

ber of edges used, rather than by the number of bits
sent, which is certainly the case with long-term trunk
reservation of telephone network. More formally, the
problem can be defined as follows

Input:We consider an undirected weighted graph
G(V, B, w) with |V| = n vertices and a weight function
w : K — RT, assigning an arbitrary non-negative
weight w(e) to each edge e € E. Pairs of vertices of
G, p = {q, q} appear on-line.

Output:The algorithm has to construct sub-
graph H such that for each pair ¢ is connected to
q (i.e., there is a path between ¢,q). The goal is to
construct H of minimum weight.

It is easy to see that H ought to be a forest of
trees.

We comment that on-line GSP problem is also
equivalent to the following problem. Pairs (j,v)
arrives on-line where j is index of a set and v 1s a
vertex in G. The algorithm has to add v to the j’th
group, so that all the vertices which belong to group
j are connected.

Our result versus previous work.Westbrook
and Yan [WY93] gave an algorithm for on-line GSP
that achieves O(y/nlogn) competitive ratio.

In contrast, we show

THEOREM 1.1. The Mwn-Cost algorithm for the
on-line generalized Steiner problem is O(log2 n) com-
petitive.

An Q(logn) lower bound on the competitiveness
of any on-line alorithm for the generalized Steiner
problem follows from the lower bound on-line Steiner
tree, shown by Imaze and Waxman [TW91].

1.2 Network Connectivity Leasing Problem

The GSP problem can be generalized to Network
Connectivity Leasing problem below. Imagine we
can either buy or lease network edges. The cost
of purchasing an edge is F times more expensive
than the cost of renting that edge. Once an edge is
bought, it can be used for free to accommodate future
requests. The special case of Connectivity Leasing
problem, in which all edges bought must form a tree, is
called Tree Leasing Problem. We comment this special
case is essentially the file replication problem [BS89,
BFR92, ABF93, WY93, Kog93, AK9%4, LRWY94].

69

Picking FF = 1, the problem reduces to the
generalized Steiner problem. Note that for a single
link network, this is exactly the ski rental problem

(due to L. Rudolph, see [Kar92]).

Our result versus previous work.Optimally-
competitive algorithms are known for both ski rental
problem [Kar92] and tree leasing problem [BFR92,
ABF93]. This work does not apply to the general
case of network connectivity leasing.

We give a randomized connectivity leasing algo-
rithm that follows as application of Theorem 1.1, us-
ing a general technique ([Bar94]) that applies to a
large set of on-line problems.

THEOREM 1.2. There exists an O(log” n) com-
petitive randomaized algorithm for the network connec-
twity leasing problem.

2 On-line Generalized Steiner Problem

Algorithm

The Minimum Cost GSP Algorithm:For two
vertices u, v in a graph G let distg(u,v) denote the
(weighted) length of a shortest path in G between
those vertices, i.e., the cost of the cheapest path
connecting them, where the cost of a path (eq,...,e;)
s D e wler). (We sometimes omit the subscript
G where no confusion arises.)

Given an algorithm for the generalized Steiner
problem, at every stage we can associate a graph
G’(V, E,w) such that w differs from w in that every
edge, e of the subgraph H constructed by the algo-

rithm at that stage has new weight w(e) = 0.

Min-Cost GSP Algorithm:For request p =
{q, ¢} connect ¢ to ¢ thru the current minimum cost
path in the graph G.

THEOREM 2.1. The Min-Cost GSP algorithm is
O(log® n) competitive.

Proof. We denote by Cost(p) the on-line cost
expended for adding a pair p. Clearly the off-
line optimum solution consists of set of connected
components. Each requested pair must be in the same
component. Let C' be some connected component and
weight(C) be the total weight of edges of C'. Let P(C')
be the set of pairs of vertices that belong to C'.

70

Let P,(C) = {p € P(()|Cost(p) > ¢}. Our proof
is based on the following lemma:

LEMMA 2.1. Using the above notation for a given
component C' and for every £ > 0,

weight(C) - logn

|P(C)] = O 0E T,

To complete the proof of Theorem 2.1 we sort the
costs Cost(p) of all pairsin p € P(C') in non-increasing
order. The above lemma 2.1 implies that the 2’th cost
in the order is O(weight(C)logn/i). Hence, the cost
that the on-line encountered for the set ' is bounded

as follows:
weight(C)
Z Cost(p) < Z O(flogn)
peEP(C) 1<i<n

=0 (weight(C)-log?n)

Summing up the above equation over all clusters
implies the theorem.

To complete the proof, we need to prove Lemma

2.1.

Proof. (of lemma 2.1): Given a weighted graph
G(V, E,w) and a subset of vertices S, a parameter
d > 0, and a subset Q C S C V, we say that @ is
a d-maximal-independent subset of S if the following
conditions hold:

e there exists a mapping Domy : S — @, so that,
for all v € S, distg (v, Domg(v)) < d.

e for all distinct members of u,v € Q,u # v,

dist(v, u) > d.

In other words, d-maximal-independent subset 1s
simply a maximal independent subset of S in a “power
d” graph where edges represent paths of length less or
equal than d between vertices in S.

Observe that a d-maximal-independent subset
can be constructed greedily, starting with empty set
@) and repeatedly adding to it yet (d-) undominated
vertices from S, (i.e., vertices u € S for which no node
v € @ such that dist(u,v) < d exists) until no more
such vertices exist.

Let Ve be the set of vertices of ', and let V; be
a d-maximal-independent subset of the set V. Now,

AWERBUCH AZAR AND BARTAL

for a specific £ > 0, We define the set of edges F 4.
and for each pair p = {u,v} € P;(C), such that u
and v are dominated respectively by u',v" € Vy (i.e.,
«’ = Domg(u), and v/ = Domg(v)), add an edge from
u’ to v'. For such a pair p = {u,v} we say that it
is a creating pair for the edge (v, v’). (Notice that
the definition of Ey 4 allows having parallel edges.)
Consider now the unweighted auxiliary graph G 4 =
(Vd, Ez,d)~

Observe that, by construction,
(2.1) [P(C)| = |E,al-

To complete the proof we now prove the following
two lemmas:

LEMMA 2.2. For any d < 2weight(C) the num-
ber of vertices in the auziliary graph Gy g can be upper
bounded as

(2.2) Wil < weight(C')

d/2

LEMMA 2.3. For ¢ = Q(d -logn), the number of
edges in auxtliary graph can be upper bounded as

(2.3) |Eeal = O(|Val)

Indeed, we pick d = ©(¢/logn) and get Lemma
2.1. Tt remains to prove Lemmas 2.2, 2.3.

Proof. (of Lemma 2.2): If |V4| = 1 the bound is
trivial. Hence we assume that |Vy] > 1. Consider
now the collection of d/2-spheres in the original
network around nodes in V. Each one of these nodes
is connected to a node outside the corresponding
sphere, since all nodes are in the same connected
component C'. Since these nodes are d-separated,
these spheres are digjoint, and the total cost sums up
to |Vg|d/2. This cost cannot exceed the total weight
of C, weight(C), and thus

weight(C)

(2.4) |Val < a7z

Proof. (of Lemma 2.3): The girth [Bol78] of a
graph 1s the length of a shortest cycle. It is proved
in [Bol78] that the number of edges in Gy 4 can be
upper-bounded as

o

H3GLo
(2.5) |Eeal = O(|Va] " #502))

ON-LINE GENERALIZED STEINER PROBLEM

where g(Gy 4) denotes the girth of G 4.
We prove the following proposition

ProPoSITION 2.1. The girth ¢(Geq) of Gog =
(Va, Er q) ts at least £/(2d).

Proof. Assume that there is a cycle of length
r < ¢/(2d). Consider the order of arrival of the
edge creating pairs of the edges of the cycle. Let
p = (u,v) be the last pair in that order. By the
definition of an edge Cost(p) > ¢. However, since
all previous pairs already connected we can connect
u to v thru the “detour” path in the auxiliary graph.
The vertices on this path are “equivalence classes” of
vertices V¢, that are dominated by the same vertex
in Vg in the maximal independent set. The diameter
of such equivalence class in the original network is
at most 2d. Thus, the detour path in the auxiliary
graph induces a path in the original network of cost
of 2dr < ¢. This contradicts the definition of the
algorithm since 1t uses the minimum cost path.

This completes the proof of Lemma 2.3 and
lemma 2.1 and thus completes the proof Theorem 2.1.

It is worthwhile to mention that the bound ap-
pears in Lemma 2.3 (which is the heart of the proof)
is almost tight.
tight we construct a graph of girth ¢ = log n/loglogn

To see that the Lemma 1s almost

and has m = nlogn edges. Such a graph exists fol-
lows from [Bol78]. Then we replace each edge in the
graph by three serial edges. We associate a weight of
1 to the first and the last edges in each triplet and
a weight of ¢ to middle one. We get a sequence of
requests for connecting the two endpoint of all the
middle edges. It 1s easy to see inductively that the
current shortest path between each such pair is the
corresponding middle edges since every other path
contains at least 2g side edges and has totals weight
of at least 2g. Hence the cost of the on-line algorithm
is Q(gm) = Q(nlog”n/loglogn). On the other hand
if we can build a spanning tree which consists of all
the edges of size 1 and n — 1 edges of size ¢ and thus
has a weight of O(gn + m) = O(nlogn). Thus the
number of times that we paid a cost of g is ©O(m)
which is smaller only by a factor of loglogn from the
bound that the lemma implies. We note that it is still
possible that the competitive ratio of the algorithm is
better than what is proved.

71

3 Randomized Network
Leasing Algorithms

Connectivity

In this section we present a randomized algorithm
which is a generalization of the GSP algorithm to the
network connectivity leasing problem.

Define graph G as in previous section where edges
bought by the algorithm are assigned zero weight.

GSP-based Leasing Algorithm:For request
p = {q,q} connect ¢ to ¢ thru the current minimum
cost path in the graph G. With probability 1/2F buy
all non-bought edges in the path and otherwise lease.

THEOREM 3.1. The GSP-based randomized net-
work connectivity leasing algorithm is O(log2 n) com-
petitive against adaptive on-line adversaries.

The theorem is a consequence of a more general
theorem for task systems [BLS87].

A metrical forcing task system [MMS88] is an
on-line problem composed by a configurations metric
space and a set of tasks. At every time the algorithm
i1s associated with a configuration, and each task
defines a set of allowable tasks, that may be associated
with the algorithm after the arrival of that task.

Clearly, the generalized Steiner problem can be
viewed as a forcing task system, where configurations
are subgraphs of the graph, and a request sequence
defines the set of all allowable configurations to be
the set of subgraphs where every pair is connected by
a path.

Given a forcing task system, we define the “re-
laxed” version of the problem. In the matching F-
relazed task system a request may be served in every
configuration at the cost of the distance from that
configuration to the nearest allowable configuration
in the original problem. However changing configura-
tions is F' times more expensive.

Thus, the network connectivity leasing problem is
the F-relaxed version of GSP.

Theorem 3.1 is a corollary of the following
theorem of [Bar94] which is based on the natural
potential function [BFR92]:

THEOREM 3.2. Given a c-competitive algorithm
for a forcing metrical task system, there exists a
(3— %) - c-competitive algorithm for the associated F-
relazed task system.

72

Formal definitions and proofs appear in ap-
pendix A.

4 Open Problems

We prove that the Min-Cost GSP algorithm is
O(log2 n) competitive, whereas the best known lower
bound which follows from the on-line Steiner tree
problem is Q(logn). The obvious open problem is
to close the gap. We conjecture that the Min-Cost
GSP algorithm achieves the best possible competitive
for the on-line GSP on arbitrary graphs.

For the network connectivity leasing problem we
have shown that there exists a randomized on-line al-
gorithm with competitive ratio within a constant fac-
tor from that of the Min-Cost GSP algorithm. We
believe that there exists a deterministic on-line con-
nectivity leasing algorithm with the same property.
Can a similar deterministic result be obtained in the
general framework of relaxed task systems 7

Acknowledgments

We thank Noga Alon for helpful discussions.

References

[AA93] N. Alon and Y. Azar. On-line steiner trees in
the euclhidean plane. Discrete and Computational
Geometry, 10:113-121, 1993.

[ABF93] Baruch Awerbuch, Yair Bartal, and Amos Fiat.
Competitive distributed file allocation. In Proc. 25th
ACM Symp. on Theory of Computing, pages 164—
173, May 1993.

[AK94] S. Albers and H. Koga. New on-line algorithms

In Proc. 4th
Scandinavian Workshop on Algorithmic Theory, July
1994.

[AKR91] A. Agrawal, P. Klein, and R. Ravi. When trees

collide: An approximation algorithm for the general-

for the page replication problem.

ized Steiner problem in networks. In Proceedings of
the 28rd ACM Symposium on Theory of Computing,
pages 134-144, 1991.

[AP90] Baruch Awerbuch and David Peleg. Network
synchronization with polylogarithmic overhead. In
Proc. 81st IFEFE Symp. on Found. of Comp. Science,
pages 514-522, 1990.

[AP91] Baruch Awerbuch and David Peleg. Concurrent
online tracing of mobile users. In Proc. of the An-

nual ACM SIGCOMM Symposium on Communica-

AWERBUCH AZAR AND BARTAL

tion Architectures and Protocols, Zurich, Switzer-
land, September 1991.

[Bar94] Yair Bartal. Competitive Analysis of Distributed
On-line Problems — Distributed Paging, Ph.D. The-
s28. Tel-Aviv University. Dept. of Computer Science.
September, 1994.

[BFR92] Yair Bartal, Amos Fiat, and Yuval Rabani.
Competitive algorithms for distributed data man-
agement. In Proc. 24th ACM Symp. on Theory of
Computing, pages 39-50, 1992.

[BLS87] A. Borodin, N. Linial, and M. Saks. An optimal
on-line algorithm for metrical task systems. In
Proc. of the 19th Ann. ACM Symp on Theory of
Computing, pages 373—-382, may 1987.

[Bol78] B. Bollobds. Extremal Graph Theory. Academic
Press, 1978.

[BS89] D.L. Black and D.D. Sleator.
gorithms for replication and migration problems.
Technical Report CMU-CS-89-201, Carnegie-Mellon,
1989.

[CV93] Rohit Chandra and Sundar Vishwanathan. Con-

structing reliable communication networks of small

Competitive al-

wight online. unpublished manuscript, Nov 1993.

[GW92] M. Goemans and D. Williamson.
proximation technique for constrained forest prob-
lems. In Proceedings of the 3rd Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 307-315,
1992.

[IW91] M. Imaze and B.M. Waxman. Dynamic steiner
tree problem. SIAM Journal on Discrete Mathemat-
ics, 4(3):369-384, august 1991.

[Kar72] R.M. Karp. Reducibility among Combinatorial
Problems, R.E. Miller and J.W. Thatcher (eds.),
Complexity of Computer Computations.
Press, 1972.

[Kar92] R.M. Karp.
algorithms: how much is it worth to know the
future?,”. In Proc. World Computer Congress, 1992.

[Kog93] H. Koga. Randomized on-line algorithms for the

General ap-

Plenum

“on-line algorithms bersus off-line

page replication problem. In Proc. of the 4th In-
ternational Symp. on Algorithms and Computation,
1993.

[LRWY94] C. Lund, N. Reingold, J. Westbrook, and
D. Yan. On-line distributed data management. In
Proc. of European Symp. on Algorithms, 1994.

[MMS88] M.S. Manasse, L.A. McGeoch, and D.D.
Sleator. Competitive algorithms or on-line problems.
In Proc. 20th ACM Symp. on Theory of Computing,
pages 322-333. ACM SIGACT, ACM, May 1988.

[Win92] P. Winter.

Steiner problem in networks: A

ON-LINE GENERALIZED STEINER PROBLEM

survey. Networks, 17(6):129-167, June 1992.

[WY93] J. Westbrook and D.K. Yan. Greedy algorithms
for the on-line steiner tree and generalized steiner
problems. In Workshop on Algorithms and Data
Structures, 1993.

A A General Theorem for Relaxed Task
Systems

In this section we give a general theorem in the
context of task systems ([BLS87]).
appears in [Bar94].

This section

DerINITION A.1. A task system, P, is an on-
line configuration problem where the cost function has
the following structure. Define the cost of a move
between configurations in Con, denoted dist(Cy,Cs)
(where C1,Cs € Con) (this is the move cost). As-
soctate with every request r and every configuration
C' the cost of serving v wn configuration C', denoted
task(C,r) (this is the task cost). The cost func-
tion of a task system is defined by: cost(Cy,Ca,r) =
dist(Cy, Cq)+task(Ca, r). For a task system, input re-
quests are usually called tasks. If the move cost func-
tion dist forms a metric space over Con, then the task
system 1s called metrical.

The following definition was also used in

[MMSSS]:

DEerFINITION A.2. A forcing task system, P,is a
task system such that for every request r and every
configuration C task(C,r) is either 0 or co. That is,
for every request v we may associate a set of allowable
configurations, C(r), in which it can be served.

Given a forcing task system we may define the
“relaxed” version of the problem, in which the request
may be served in every configuration at the cost of the
distance from that configuration to the nearest allow-
able configuration in the original problem. However
changing configurations is D times more expensive.

DerFINITION A.3. A D-relaxed task system, D-
P, with respect to a forcing task system P and some
parameter D > 1/2, is the lask system with cost,
distance, and task functions denoted cost’, dist’ and
task’ respectively. dist’ and task’ are defined as
follows: Given Cy,Cy € Con, dist'(Cy,C2) = D -
dist(Cy,Cy). Given C € Con and a request r,
task’(C,r) = mingiee(ry dist(C, C7).

73

According to the above definition file-replication
[BS89] can be viewed as the relaxed version of the
on-line Steiner tree problem, connectivity leasing in
networks i1s the relaxed version of the generalized
Steiner problem, file migration is the relaxed version
of the trivial 1-server problem, and similarly k-copy
migration (which is a special case of the k-server with
excursions problem [MMS88]) is the relaxed version
of the k-server problem.

In this section we show that the competitive ratio
for a metrical forcing task system, P, and the D-
relaxed task system, D-P, against adaptive on-line
adversaries, are within a constant factor.

Let Alg be a c-competitive algorithm for P, and
let D > 1/2. We show that Alg can be used to give
a competitive randomized algorithm for the relaxed
task system D-P.

Algorithm D-Alg.

Algorithm D-Alg simulates a version of algorithm Alg.
At all times, the configuration of D-Alg is equal to
that of the simulated version of Alg.

Let the current configuration of the algorithm be

B.

Upon receiving a request r, with probability
1/2D, feed Alg with new request r, and change the
configuration to the new (allowable) configuration B’

of Alg.
With probability 1 — 1/2D, the algorithm stays
in configuration B.

THEOREM A.1. Let P be a forcing metrical task
system, and let Alg be c-competitive algorithm for P
against adaptive on-line adversaries. Algorithm D-
Alg is (3 — %) - c-competitive for the D-relared task
system, D-P, against adaptive on-line adversaries,

for D> 1/2.

The proof makes use of the natural potential
function [BFR92], Up(h, A), a nonnegative function of
the algorithm history h and adversary configuration
A. For any forcing task system algorithm that is
c-competitive against adaptive on-line adversaries,
the natural potential function is a one-step potential
function, that is it has the following properties:

e When the adversary changes configuration, Up
increases by at most ¢ times its cost.

74

e When the on-line algorithm serves the request,
Up decreases by at least the expected on-line cost
for the request.

Proof. Let Up be the natural potential function
for Alg. We have that Up is a one-step potential
function. We use it to define a new one-step potential
function @ for algorithm 1D-Alg. Let A, be the history
of D-Alg. This history explicitly defines the history
of the current version of Alg that D-Alg simulates,
denoted ﬁn

Let o, be the sequence of requests already fed
to Alg since. Let A, denote the adversary’s current
configuration, let B, denote the on-line algorithm’s
current configuration. The potential function for D-

Alg is: ®(hy, Ap) = (3D — 1) - Up(hn, An).

Let r,, be last request in o,. Up is defined by

Up(hn, Ay) = _min {Up(h,, &) + ¢ - dist(A, A,)}.

A€eC(ry)

Clearly @ is nonnegative as Up is a potential
function.

Let A denote the configuration that minimizes
Up. Along the proof we will bound the change in Up
by extracting a new configuration A, € Clrnt1)-
The new value of Up may only increase if we use the
configuration A, instead of minimizing.

When analyzing the adversary cost we separate
between its configuration changes cost and its task
costs.

We view the process as if the adversary has made
its move from A, to A,y1 before the next request,
Tnt+1, has arrived, and only then we analyze the
change in the potential function due to the request.
Adversary Move.

When the adversary moves from configuration A4,
to configuration A, 11, we can bound the change in Up
by not changing A. Thus we obtain

A® = (3D-1)-ATUp
(3D — 1) - ¢ - (dist(A, Apy1) — dist(F, A,))

(3 - %) ce- D - dist(Ay, Any1).

IN A

Request Analysis.

Let the next request be r,41. We show that
the change in the potential is bounded above by a

AWERBUCH AZAR AND BARTAL

constant times the task cost of the adversary to serve
the request (not including its move cost) minus the
expected work done by D-Alg for serving the request
and for changing configuration.

The expected cost of algorithm D-Alg is

E(Costp_alg(hn, 7m+1))

o~

= % - D - E(Costaig(hn, 7m41))

2
+ (-5 'Beggil)diSt(Bm B)
< % -D- E(CostAlg(zn, nt1))

+ (1- %) . E(COStA]g(/ﬁna nt1))

o~

3051 E(Costalg(hn, rny1)).

Now we turn to analyzing the expected change in
®. To do that we bound the change in Up in the case
that r, 11 is fed to Alg, by choosing A, 11 € C(7n41)
to be the configuration A minimizing dist(A, A,41).

E(A®) = (3D—1) E(ATp)
< (3D =1)- 555 - [B(Up(hns1, Ans1)
— Up(hn,An))
+ ¢ (dist(ZnH,An_H)—dist(zn,AnH))]
< 5L [B(Up(hnyr, Anyr)
— Up(hn, Apy1))
+ (Up(hn, Apy1) — Up(hn, Ay,))

+ c- (diSt(An+1,An+1) — dlSt(Zn, An+1))]

Now using the properties of the natural potential
function for the task system P, implies

E(A®) < 32—51 e (dist(zn,znﬂ)
+ dist(Angr, Angr) — dist(A, Anyr))
— E(COStA]g(zna rn-|—1))]
< 3L 2c- dist(Anq1, Angr)

o~

— E(Costaig(hn, rnt1))]
= (38— %) ¢ task(Apt1, rni1)
— E(Costp_aig(hn, 1))

