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O�-line version of the problem.The General-ized Steiner Problem (GSP) is de�ned as follows. Weare given a graph with non-negative weights and a setof pairs of vertices. The algorithm has to constructminimum weight subgraph such that the two nodesof each pair are connected by a path. This problem[AKR91, GW92] has recently received a lot of atten-tion in combinatorial optimization, networking, anddistributed computing communities.Agrawal et al and Goemans et al [AKR91, GW92]have shown a polynomial-time 2(1� 1n )-approximationalgorithm. However, these algorithms are inapplicablein either on-line or distributed environments.The special case of the GSP problem where allpairs of some subset of vertices have to be connectedis the Steiner Tree problem. It is one of the most noto-rious NP-hard problems [Kar72, Win92]. The prob-lem has been studies in a series of papers including[IW91, CV93, AA93, ABF93, WY93].On-line version of the problem.On-lineSteiner tree problem comes up in the context ofnetwork synchronization [AP90], mobile users track-ing [AP91], distributed paging and �le allocation[BFR92, ABF93, WY93, LRWY94], etc.On-line Generalized Steiner Problem (in contrastto on-line Steiner Tree) problem [WY93] capturesmore re�ned communication requirements, e.g., sit-uations where only partial (rather than global) syn-chronization is necessary. As pointed out in [AKR91],the on-line generalized Steiner problem can be viewedas the problem of minimizing the cost of building anetwork satisfying certain connectivity requirements,where new such requirements appear over time. Italso captures the aspect of communication aggrega-tion, namely the fact that in many situations, the costof communication protocol is measured by the num-



On-line Generalized Steiner Problem 69ber of edges used, rather than by the number of bitssent, which is certainly the case with long-term trunkreservation of telephone network. More formally, theproblem can be de�ned as followsInput:We consider an undirected weighted graphG(V;E;w) with jV j = n vertices and a weight functionw : E ! R+, assigning an arbitrary non-negativeweight w(e) to each edge e 2 E. Pairs of vertices ofG, p = fq; �qg appear on-line.Output:The algorithm has to construct sub-graph H such that for each pair q is connected to�q (i.e., there is a path between q; �q). The goal is toconstruct H of minimumweight.It is easy to see that H ought to be a forest oftrees.We comment that on-line GSP problem is alsoequivalent to the following problem. Pairs (j; v)arrives on-line where j is index of a set and v is avertex in G. The algorithm has to add v to the j'thgroup, so that all the vertices which belong to groupj are connected.Our result versus previous work.Westbrookand Yan [WY93] gave an algorithm for on-line GSPthat achieves O(pn logn) competitive ratio.In contrast, we showTheorem 1.1. The Min-Cost algorithm for theon-line generalized Steiner problem is O(log2 n) com-petitive.An 
(logn) lower bound on the competitivenessof any on-line alorithm for the generalized Steinerproblem follows from the lower bound on-line Steinertree, shown by Imaze and Waxman [IW91].1.2 Network Connectivity Leasing ProblemThe GSP problem can be generalized to NetworkConnectivity Leasing problem below. Imagine wecan either buy or lease network edges. The costof purchasing an edge is F times more expensivethan the cost of renting that edge. Once an edge isbought, it can be used for free to accommodate futurerequests. The special case of Connectivity Leasingproblem, in which all edges bought must form a tree, iscalledTree Leasing Problem. We comment this specialcase is essentially the �le replication problem [BS89,BFR92, ABF93, WY93, Kog93, AK94, LRWY94].

Picking F = 1, the problem reduces to thegeneralized Steiner problem. Note that for a singlelink network, this is exactly the ski rental problem(due to L. Rudolph, see [Kar92]).Our result versus previous work.Optimally-competitive algorithms are known for both ski rentalproblem [Kar92] and tree leasing problem [BFR92,ABF93]. This work does not apply to the generalcase of network connectivity leasing.We give a randomized connectivity leasing algo-rithm that follows as application of Theorem 1.1, us-ing a general technique ([Bar94]) that applies to alarge set of on-line problems.Theorem 1.2. There exists an O(log2 n) com-petitive randomized algorithm for the network connec-tivity leasing problem.2 On-line Generalized Steiner ProblemAlgorithmThe MinimumCost GSPAlgorithm:For twovertices u; v in a graph G let distG(u; v) denote the(weighted) length of a shortest path in G betweenthose vertices, i.e., the cost of the cheapest pathconnecting them, where the cost of a path (e1; : : : ; es)is P1�i�sw(ei). (We sometimes omit the subscriptG where no confusion arises.)Given an algorithm for the generalized Steinerproblem, at every stage we can associate a graphĜ(V;E; ŵ) such that ŵ di�ers from w in that everyedge, e of the subgraph H constructed by the algo-rithm at that stage has new weight ŵ(e) = 0.Min-Cost GSP Algorithm:For request p =fq; �qg connect q to �q thru the current minimum costpath in the graph Ĝ.Theorem 2.1. The Min-Cost GSP algorithm isO(log2 n) competitive.Proof. We denote by Cost(p) the on-line costexpended for adding a pair p. Clearly the o�-line optimum solution consists of set of connectedcomponents. Each requested pair must be in the samecomponent. Let C be some connected component andweight(C) be the total weight of edges ofC. Let P (C)be the set of pairs of vertices that belong to C.



70 Awerbuch Azar and BartalLet P`(C) = fp 2 P (C)jCost(p) � `g. Our proofis based on the following lemma:Lemma 2.1. Using the above notation for a givencomponent C and for every ` > 0,jP`(C)j = O(weight(C) � logn` ). To complete the proof of Theorem 2.1 we sort thecosts Cost(p) of all pairs in p 2 P (C) in non-increasingorder. The above lemma 2.1 implies that the i'th costin the order is O(weight(C) logn=i). Hence, the costthat the on-line encountered for the set C is boundedas follows:Xp2P (C)Cost(p) � X1�i�nO(weight(C)i logn)= O (weight(C) � log2 n)Summing up the above equation over all clustersimplies the theorem.To complete the proof, we need to prove Lemma2.1. Proof. (of lemma 2.1): Given a weighted graphG(V;E;w) and a subset of vertices S, a parameterd � 0, and a subset Q � S � V , we say that Q isa d-maximal-independent subset of S if the followingconditions hold:� there exists a mapping Domd : S ! Q, so that,for all v 2 S, distG(v;Domd(v)) � d.� for all distinct members of u; v 2 Q; u 6= v,dist(v; u) > d.In other words, d-maximal-independent subset issimply a maximal independent subset of S in a \powerd" graph where edges represent paths of length less orequal than d between vertices in S.Observe that a d-maximal-independent subsetcan be constructed greedily, starting with empty setQ and repeatedly adding to it yet (d-) undominatedvertices from S, (i.e., vertices u 2 S for which no nodev 2 Q such that dist(u; v) � d exists) until no moresuch vertices exist.Let VC be the set of vertices of C, and let Vd bea d-maximal-independent subset of the set VC . Now,

for a speci�c ` > 0, We de�ne the set of edges E`;d.and for each pair p = fu; vg 2 P`(C), such that uand v are dominated respectively by u0; v0 2 Vd (i.e.,u0 = Domd(u), and v0 = Domd(v)), add an edge fromu0 to v0. For such a pair p = fu; vg we say that itis a creating pair for the edge (u0; v0). (Notice thatthe de�nition of E`;d allows having parallel edges.)Consider now the unweighted auxiliary graph G`;d =(Vd; E`;d).Observe that, by construction,jP`(C)j = jE`;dj:(2.1)To complete the proof we now prove the followingtwo lemmas:Lemma 2.2. For any d � 2weight(C) the num-ber of vertices in the auxiliary graph G`;d can be upperbounded as jVdj � weight(C)d=2 :(2.2)Lemma 2.3. For ` = 
(d � logn), the number ofedges in auxiliary graph can be upper bounded asjE`;dj = O(jVdj)(2.3)Indeed, we pick d = �(`= logn) and get Lemma2.1. It remains to prove Lemmas 2.2, 2.3.Proof. (of Lemma 2.2): If jVdj = 1 the bound istrivial. Hence we assume that jVdj > 1. Considernow the collection of d=2-spheres in the originalnetwork around nodes in Vd. Each one of these nodesis connected to a node outside the correspondingsphere, since all nodes are in the same connectedcomponent C. Since these nodes are d-separated,these spheres are disjoint, and the total cost sums upto jVdjd=2. This cost cannot exceed the total weightof C, weight(C), and thusjVdj � weight(C)d=2(2.4)Proof. (of Lemma 2.3): The girth [Bol78] of agraph is the length of a shortest cycle. It is provedin [Bol78] that the number of edges in G`;d can beupper-bounded asjE`;dj = O(jVdj1+ O(1)g(G`;d) )(2.5)



On-line Generalized Steiner Problem 71where g(G`;d) denotes the girth of G`;d.We prove the following propositionProposition 2.1. The girth g(G`;d) of G`;d =(Vd; E`;d) is at least `=(2d).Proof. Assume that there is a cycle of lengthr < `=(2d). Consider the order of arrival of theedge creating pairs of the edges of the cycle. Letp = (u; v) be the last pair in that order. By thede�nition of an edge Cost(p) � `. However, sinceall previous pairs already connected we can connectu to v thru the \detour" path in the auxiliary graph.The vertices on this path are \equivalence classes" ofvertices VC , that are dominated by the same vertexin Vd in the maximal independent set. The diameterof such equivalence class in the original network isat most 2d. Thus, the detour path in the auxiliarygraph induces a path in the original network of costof 2dr < `. This contradicts the de�nition of thealgorithm since it uses the minimum cost path.This completes the proof of Lemma 2.3 andlemma 2.1 and thus completes the proof Theorem 2.1.It is worthwhile to mention that the bound ap-pears in Lemma 2.3 (which is the heart of the proof)is almost tight. To see that the Lemma is almosttight we construct a graph of girth g = logn= log lognand has m = n logn edges. Such a graph exists fol-lows from [Bol78]. Then we replace each edge in thegraph by three serial edges. We associate a weight of1 to the �rst and the last edges in each triplet anda weight of g to middle one. We get a sequence ofrequests for connecting the two endpoint of all themiddle edges. It is easy to see inductively that thecurrent shortest path between each such pair is thecorresponding middle edges since every other pathcontains at least 2g side edges and has totals weightof at least 2g. Hence the cost of the on-line algorithmis 
(gm) = 
(n log2 n= log logn). On the other handif we can build a spanning tree which consists of allthe edges of size 1 and n� 1 edges of size g and thushas a weight of O(gn + m) = O(n logn). Thus thenumber of times that we paid a cost of g is �(m)which is smaller only by a factor of log logn from thebound that the lemma implies. We note that it is stillpossible that the competitive ratio of the algorithm isbetter than what is proved.

3 Randomized Network ConnectivityLeasing AlgorithmsIn this section we present a randomized algorithmwhich is a generalization of the GSP algorithm to thenetwork connectivity leasing problem.De�ne graph Ĝ as in previous section where edgesbought by the algorithm are assigned zero weight.GSP-based Leasing Algorithm:For requestp = fq; �qg connect q to �q thru the current minimumcost path in the graph Ĝ. With probability 1=2F buyall non-bought edges in the path and otherwise lease.Theorem 3.1. The GSP-based randomized net-work connectivity leasing algorithm is O(log2 n) com-petitive against adaptive on-line adversaries.The theorem is a consequence of a more generaltheorem for task systems [BLS87].A metrical forcing task system [MMS88] is anon-line problem composed by a con�gurations metricspace and a set of tasks. At every time the algorithmis associated with a con�guration, and each taskde�nes a set of allowable tasks, that may be associatedwith the algorithm after the arrival of that task.Clearly, the generalized Steiner problem can beviewed as a forcing task system, where con�gurationsare subgraphs of the graph, and a request sequencede�nes the set of all allowable con�gurations to bethe set of subgraphs where every pair is connected bya path.Given a forcing task system, we de�ne the \re-laxed" version of the problem. In the matching F -relaxed task system a request may be served in everycon�guration at the cost of the distance from thatcon�guration to the nearest allowable con�gurationin the original problem. However changing con�gura-tions is F times more expensive.Thus, the network connectivity leasing problem isthe F -relaxed version of GSP.Theorem 3.1 is a corollary of the followingtheorem of [Bar94] which is based on the naturalpotential function [BFR92]:Theorem 3.2. Given a c-competitive algorithmfor a forcing metrical task system, there exists a(3� 1F ) � c-competitive algorithm for the associated F -relaxed task system.



72 Awerbuch Azar and BartalFormal de�nitions and proofs appear in ap-pendix A.4 Open ProblemsWe prove that the Min-Cost GSP algorithm isO(log2 n) competitive, whereas the best known lowerbound which follows from the on-line Steiner treeproblem is 
(logn). The obvious open problem isto close the gap. We conjecture that the Min-CostGSP algorithm achieves the best possible competitivefor the on-line GSP on arbitrary graphs.For the network connectivity leasing problem wehave shown that there exists a randomized on-line al-gorithm with competitive ratio within a constant fac-tor from that of the Min-Cost GSP algorithm. Webelieve that there exists a deterministic on-line con-nectivity leasing algorithm with the same property.Can a similar deterministic result be obtained in thegeneral framework of relaxed task systems ?AcknowledgmentsWe thank Noga Alon for helpful discussions.References[AA93] N. Alon and Y. Azar. On-line steiner trees inthe euclidean plane. Discrete and ComputationalGeometry, 10:113{121, 1993.[ABF93] Baruch Awerbuch, Yair Bartal, and Amos Fiat.Competitive distributed �le allocation. In Proc. 25thACM Symp. on Theory of Computing, pages 164{173, May 1993.[AK94] S. Albers and H. Koga. New on-line algorithmsfor the page replication problem. In Proc. 4thScandinavianWorkshop on Algorithmic Theory, July1994.[AKR91] A. Agrawal, P. Klein, and R. Ravi. When treescollide: An approximation algorithm for the general-ized Steiner problem in networks. In Proceedings ofthe 23rd ACM Symposium on Theory of Computing,pages 134{144, 1991.[AP90] Baruch Awerbuch and David Peleg. Networksynchronization with polylogarithmic overhead. InProc. 31st IEEE Symp. on Found. of Comp. Science,pages 514{522, 1990.[AP91] Baruch Awerbuch and David Peleg. Concurrentonline tracing of mobile users. In Proc. of the An-nual ACM SIGCOMM Symposium on Communica-

tion Architectures and Protocols, Zurich, Switzer-land, September 1991.[Bar94] Yair Bartal. Competitive Analysis of DistributedOn-line Problems | Distributed Paging, Ph.D. The-sis. Tel-Aviv University. Dept. of Computer Science.September, 1994.[BFR92] Yair Bartal, Amos Fiat, and Yuval Rabani.Competitive algorithms for distributed data man-agement. In Proc. 24th ACM Symp. on Theory ofComputing, pages 39{50, 1992.[BLS87] A. Borodin, N. Linial, and M. Saks. An optimalon-line algorithm for metrical task systems. InProc. of the 19th Ann. ACM Symp on Theory ofComputing, pages 373{382, may 1987.[Bol78] B. Bollob�as. Extremal Graph Theory. AcademicPress, 1978.[BS89] D.L. Black and D.D. Sleator. Competitive al-gorithms for replication and migration problems.Technical Report CMU-CS-89-201, Carnegie-Mellon,1989.[CV93] Rohit Chandra and Sundar Vishwanathan. Con-structing reliable communication networks of smallwight online. unpublished manuscript, Nov 1993.[GW92] M. Goemans and D. Williamson. General ap-proximation technique for constrained forest prob-lems. In Proceedings of the 3rd Annual ACM-SIAMSymposium on Discrete Algorithms, pages 307{315,1992.[IW91] M. Imaze and B.M. Waxman. Dynamic steinertree problem. SIAM Journal on Discrete Mathemat-ics, 4(3):369{384, august 1991.[Kar72] R.M. Karp. Reducibility among CombinatorialProblems, R.E. Miller and J.W. Thatcher (eds.),Complexity of Computer Computations. PlenumPress, 1972.[Kar92] R.M. Karp. \on-line algorithms bersus o�-linealgorithms: how much is it worth to know thefuture?,". In Proc. World Computer Congress, 1992.[Kog93] H. Koga. Randomized on-line algorithms for thepage replication problem. In Proc. of the 4th In-ternational Symp. on Algorithms and Computation,1993.[LRWY94] C. Lund, N. Reingold, J. Westbrook, andD. Yan. On-line distributed data management. InProc. of European Symp. on Algorithms, 1994.[MMS88] M.S. Manasse, L.A. McGeoch, and D.D.Sleator. Competitive algorithms or on-line problems.In Proc. 20th ACM Symp. on Theory of Computing,pages 322{333. ACM SIGACT, ACM, May 1988.[Win92] P. Winter. Steiner problem in networks: A



On-line Generalized Steiner Problem 73survey. Networks, 17(6):129{167, June 1992.[WY93] J. Westbrook and D.K. Yan. Greedy algorithmsfor the on-line steiner tree and generalized steinerproblems. In Workshop on Algorithms and DataStructures, 1993.A A General Theorem for Relaxed TaskSystemsIn this section we give a general theorem in thecontext of task systems ([BLS87]). This sectionappears in [Bar94].Definition A.1. A task system, P, is an on-line con�guration problem where the cost function hasthe following structure. De�ne the cost of a movebetween con�gurations in Con, denoted dist(C1; C2)(where C1; C2 2 Con) (this is the move cost). As-sociate with every request r and every con�gurationC the cost of serving r in con�guration C, denotedtask(C; r) (this is the task cost). The cost func-tion of a task system is de�ned by: cost(C1; C2; r) =dist(C1; C2)+task(C2; r). For a task system, input re-quests are usually called tasks. If the move cost func-tion dist forms a metric space over Con, then the tasksystem is called metrical.The following de�nition was also used in[MMS88]:Definition A.2. A forcing task system, P,is atask system such that for every request r and everycon�guration C task(C; r) is either 0 or 1. That is,for every request r we may associate a set of allowablecon�gurations, C(r), in which it can be served.Given a forcing task system we may de�ne the\relaxed" version of the problem, in which the requestmay be served in every con�guration at the cost of thedistance from that con�guration to the nearest allow-able con�guration in the original problem. Howeverchanging con�gurations is D times more expensive.Definition A.3. A D-relaxed task system, D-P, with respect to a forcing task system P and someparameter D � 1=2, is the task system with cost,distance, and task functions denoted cost0, dist0 andtask0 respectively. dist0 and task0 are de�ned asfollows: Given C1; C2 2 Con, dist0(C1; C2) = D �dist(C1; C2). Given C 2 Con and a request r,task0(C; r) = minC02C(r) dist(C;C 0).

According to the above de�nition �le-replication[BS89] can be viewed as the relaxed version of theon-line Steiner tree problem, connectivity leasing innetworks is the relaxed version of the generalizedSteiner problem, �le migration is the relaxed versionof the trivial 1-server problem, and similarly k-copymigration (which is a special case of the k-server withexcursions problem [MMS88]) is the relaxed versionof the k-server problem.In this section we show that the competitive ratiofor a metrical forcing task system, P, and the D-relaxed task system, D-P, against adaptive on-lineadversaries, are within a constant factor.Let Alg be a c-competitive algorithm for P, andlet D � 1=2. We show that Alg can be used to givea competitive randomized algorithm for the relaxedtask system D-P.Algorithm D-Alg.AlgorithmD-Alg simulates a version of algorithmAlg.At all times, the con�guration of D-Alg is equal tothat of the simulated version of Alg.Let the current con�guration of the algorithm beB. Upon receiving a request r, with probability1=2D, feed Alg with new request r, and change thecon�guration to the new (allowable) con�guration B0of Alg.With probability 1 � 1=2D, the algorithm staysin con�guration B.Theorem A.1. Let P be a forcing metrical tasksystem, and let Alg be c-competitive algorithm for Pagainst adaptive on-line adversaries. Algorithm D-Alg is (3 � 1D ) � c-competitive for the D-relaxed tasksystem, D-P, against adaptive on-line adversaries,for D � 1=2.The proof makes use of the natural potentialfunction [BFR92], Up(h;A), a nonnegative function ofthe algorithm history h and adversary con�gurationA. For any forcing task system algorithm that isc-competitive against adaptive on-line adversaries,the natural potential function is a one-step potentialfunction, that is it has the following properties:� When the adversary changes con�guration, Upincreases by at most c times its cost.



74 Awerbuch Azar and Bartal� When the on-line algorithm serves the request,Up decreases by at least the expected on-line costfor the request.Proof. Let Up be the natural potential functionfor Alg. We have that Up is a one-step potentialfunction. We use it to de�ne a new one-step potentialfunction � for algorithmD-Alg. Let hn be the historyof D-Alg. This history explicitly de�nes the historyof the current version of Alg that D-Alg simulates,denoted bhn.Let �n be the sequence of requests already fedto Alg since. Let An denote the adversary's currentcon�guration, let Bn denote the on-line algorithm'scurrent con�guration. The potential function for D-Alg is: �(hn; An) = (3D � 1) �Up(bhn; An).Let rn be last request in �n. Up is de�ned byUp(bhn; An) = minA2C(rn )fUp(bhn; A) + c � dist(A;An)g:Clearly � is nonnegative as Up is a potentialfunction.Let A denote the con�guration that minimizesUp. Along the proof we will bound the change in Upby extracting a new con�guration An+1 2 C(rn+1).The new value of Up may only increase if we use thecon�guration An+1 instead of minimizing.When analyzing the adversary cost we separatebetween its con�guration changes cost and its taskcosts.We view the process as if the adversary has madeits move from An to An+1 before the next request,rn+1, has arrived, and only then we analyze thechange in the potential function due to the request.Adversary Move.When the adversary moves from con�guration Anto con�gurationAn+1, we can bound the change in Upby not changing A. Thus we obtain�� = (3D � 1) ��Up� (3D � 1) � c � (dist(A;An+1) � dist(A;An))� (3 � 1D ) � c �D � dist(An; An+1):Request Analysis.Let the next request be rn+1. We show thatthe change in the potential is bounded above by a

constant times the task cost of the adversary to servethe request (not including its move cost) minus theexpected work done by D-Alg for serving the requestand for changing con�guration.The expected cost of algorithm D-Alg isE(CostD�Alg(hn; rn+1))= 12D �D � E(CostAlg(bhn; rn+1))+ (1� 12D ) � minB2C(rn+1 ) dist(Bn; B)� 12D �D � E(CostAlg(bhn; rn+1))+ (1� 12D ) � E(CostAlg(bhn; rn+1))= 3D�12D � E(CostAlg(bhn; rn+1)):Now we turn to analyzing the expected change in�. To do that we bound the change in Up in the casethat rn+1 is fed to Alg, by choosing An+1 2 C(rn+1)to be the con�guration A minimizing dist(A;An+1).E(��) = (3D � 1) � E(�Up)� (3D � 1) � 12D � [E(Up(bhn+1; An+1)� Up(bhn; An))+ c � (dist(An+1; An+1) � dist(An; An+1))]� 3D�12D � [E(Up(bhn+1; An+1)� Up(bhn; An+1))+ (Up(bhn; An+1)� Up(bhn; An))+ c � (dist(An+1; An+1) � dist(An; An+1))]:Now using the properties of the natural potentialfunction for the task system P, impliesE(��) � 3D�12D � [c � (dist(An; An+1)+ dist(An+1; An+1) � dist(A;An+1))� E(CostAlg(bhn; rn+1))]� 3D�12D � [2c � dist(An+1; An+1)� E(CostAlg(bhn; rn+1))]= (3� 1D ) � c � task(An+1; rn+1)� E(CostD�Alg(hn; rn+1)):


