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Abstract

We prove an exact lower bound of 2� 1m on the compet-
itive ratio of any deterministic algorithm for load balancing
of temporary tasks on m identical machines. We also show
a lower bound of 2 � 1m for randomized algorithms for
small m and 2 � 2m+1 for general m. If in addition, we
restrict the sequence to polynomial length, then the lower
bound for randomized algorithms becomes 2�O( log logmlogm )
for general m.

1. Introduction

We consider the problem of non-preemptive on-line load
balancing of tasks onm identical machines. Tasks (jobs)
arrive at arbitrary times, where each task has a weight and
a duration. A task has to be assigned upon its arrival to ex-
actly one of the machines, thereby increasing theload on
this machine by its weight for the duration of the task. The
duration of each task becomes known only upon its termina-
tion (this is called temporary tasks of unknown durations).
Once a task has been assigned to a machine it cannot be re-
assigned to another machine. The goal is to minimize the
maximum load over machines and time.

The problem of scheduling tasks on identical machines
was first introduced by Graham [11, 12]. He gave a greedy
algorithm ”List Scheduling” which is2 � 1m competitive,
wherem is the number of machines. The upper bound was
proved for permanent tasks, i.e., tasks that start at arbitrary
times but continue forever. Nevertheless, his2� 1m analysis
of the upper bound holds also for temporary tasks.

In this paper we show that his algorithm is optimal by
proving a matching lower bound. We show a lower bound of2� 1m on the competitive ratio of any deterministic on-line�Dept. of Computer Science, Tel-Aviv University. Research supported
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algorithm for load balancing of temporary tasks on identi-
cal machines. We also show a lower bound of2 � 2m+1
on the competitive ratio of any randomized on-line algo-
rithm for the problem. In fact, form = 2; 3; 4 we can im-
prove the lower bound to2 � 1m , which implies that ”List
Scheduling” is also optimal in these cases. The randomized
lower bound for generalm requires a sequence of tasks of
super-polynomial length inm. If we restrict the sequence
to have a polynomial length we prove a lower bound of2�O( log logmlogm ) for any randomized algorithm.

Recall that Graham [11, 12] considered only permanent
tasks. He showed that the greedy algorithm ”List Schedul-
ing” does not perform better than2 � 1m . Form = 2; 3 the
algorithm is optimal [9]. However, the algorithm of Gra-
ham is not optimal (for allm � 4) [10, 8]. Bartal et al.
[5] were the first to show an algorithm whose competitive
ratio is strictly belowc < 2 (for all m). More precisely,
their algorithm achieves a competitive ratio of2� 170 . Later,
the algorithm was generalized by Karger, Phillips and Torng
[13] to yield an upper bound of1:945. Very recently, Albers
[1] designed1:923 competitive algorithm and improved the
lower bound to1:852 (the previous lower bound for perma-
nent tasks was1:8370 [6]). The best lower bound known
for randomized algorithms is1:582 (for large m) [7, 14].
For m = 2 the randomized competitive ratio is precisely4=3 [5]. We show that in contrast to permanent tasks, the
simple algorithm of Graham turns out to be optimal for tem-
porary tasks. Moreover, even randomization cannot reduce
the competitive ratio below2 � o(1). Note that form = 2
our tight randomized lower bound is3=2. We also prove the
same lower bound for the known duration case. This is in
contrast to the competitive ratio for permanent jobs that is4=3.

To prove our randomized lower bound we introduce a
new technique that converts a lower bound for determinis-
tic algorithms to a lower bound for randomized algorithms.
More precisely, we show that a lower bound for determin-
istic algorithms that maintains a fixed value for the optimal
assignment is a lower bound for randomized algorithms.

The problem of on-line load balancing of temporary



tasks was introduced by Azar, Broder and Karlin [2]. They
studied the restricted assignment case, i.e. each task can
be assigned only to a machine in a subset which may de-
pend on the task. They showed an
(pm) lower bound
in contrast to the�(logm) competitive ratio for permanent
tasks [4]. A matching upper bound was given in [3]. Load
balancing of temporary tasks was also studied for the related
machines model. In this model the increase of the load on a
machine is the ratio of the weight of the task and the speed
of that machine. An algorithm which is20 competitive and
a lower bound of3� o(1) were given by [3].

2. Notations

We denote the input sequence by� = �1; :::; �r. Each
event�i is an arrival or a departure of a job (task). We view� as a sequence of times, the time�i is the moment after
the ith event happened. We denote the weight of jobj bywj, its arrival time byaj and its departure time (which is
unknown until it departs) bydj . An on-line algorithm has
to assign a job upon its arrival without knowing the future
jobs and the durations of jobs that have not departed yet.
We compare the performance of on-line algorithms and the
optimal off-line algorithm that knows the sequence of jobs
and their durations in advance.

Let Ji = fjjaj � �i < djg be the active jobs at time�i.
For a given algorithmA (on-line or off-line) letAj be the
machine on which jobj is assigned. LetlAk (i) = XfjjAj=k;j2Jigwj
be the load on machinek at time�i, which is the sum of
weights of all jobs assigned tok, and active at this time. The
cost of an algorithmA is the maximum load ever achieved
by any of the machines, i.e.,CA = maxi;k lAk (i). The
competitive ratio ofA isr if for any sequenceCA � r �Copt
whereCopt is the cost of the optimal off-line algorithm.

3. Lower bounds for deterministic algorithms

We start with a simple lower bound of2 � 2m+1 . The
lower bound holds for the competitive ratio of any deter-
ministic algorithm even if the optimal value is fixed and
known in advance. Later we show the tight2 � 1m lower
bound.

Theorem 3.1 Any deterministic on-line algorithm for load
balancing of temporary tasks has a competitive ratio of at
least 2 � 2m+1 . This is true even if the optimal value is
known in advance (and is m + 1).

Proof: We consider the following sequence. First arrivem2
unit jobs (wj = 1). Since there arem machines, there is at

least one machine (sayx) with a load of at leastm, (see fig-
ure 1). Now all jobs depart, exceptm jobs on this machine,
(figure 2).

m

Figure 1. The on-line algorithm after the ar-
rival of the unit jobs

m

Figure 2. The on-line algorithm after the de-
parture of the unit jobs except m jobs on one
machine

Now m jobs of weightm arrive. Since machinex has
loadm, the on-line has to assign two jobs of weightm on
one machine, or to assign one job of weightm on the ma-
chinex. In both cases, the maximum load of the on-line is
at least2m. The off-line distributes them large jobs and
them unit jobs that remained from the first phase evenly on
them machines, and thus has a load ofm + 1. The otherm(m � 1) unit jobs of the first phase are also distributed
evenly on them machines. The ratio between the costs of
the two algorithms is at least2mm+1 = 2� 2m+1 .



The above lower bound can be improved as follows:

Theorem 3.2 Any deterministic on-line algorithm for load
balancing of temporary tasks has the competitive ratio of at
least 2� 1m .

Proof: We consider the following sequence. Firstm(m�1)
unit jobs arrive (wj = 1). Since there arem machines, there
is at least one machine (sayx) with load at leastm�1. Then
all jobs depart, exceptm � 1 jobs on this machine. Nextm � 1 jobs of loadm � 1 arrive. There are two possible
cases:

1. The on-line algorithm keeps at least one empty ma-
chine. In this case, the load of the on-line algorithm
on some machine is at least2(m � 1) since at least
two jobs of loadm�1 were assigned to one machine,
or a job of loadm � 1 was assigned to the machinex, (see figure 3).

m-1

Figure 3. The on-line state if it assigns two
jobs of weight m � 1 on one machine

At the first phase, the off-line assigns them � 1 unit
jobs which will not depart on one machine and dis-
tributes the(m� 1)2 unit jobs that will depart evenly
on the otherm� 1 machines. Then it assigns one job
of weightm � 1 on each of the other machines (see
figure 4), to have the maximum load ofm�1. In this
case, the ratio between the costs of the on-line and the
off-line algorithms is at least2(m� 1)=(m� 1) = 2.

2. The on-line algorithm does not keep an empty ma-
chine, i.e., there is now one job of weightm � 1 on

m-1

Figure 4. The off-line algorithm after the ar-
rival of the m � 1 jobs of load m � 1

each machine exceptx, on which there arem�1 units
jobs. Now one additional (and final) job of weightm
arrives. The on-line must assign it on one of the ma-
chines (figure 5), which results in a load of2m � 1.
We show that the off-line can assign the jobs, having
a maximum load ofm. At the first phase, the unit jobs
that do not depart, are assigned each to a different ma-
chine, the other jobs are distributed so that the load on
each machine is exactlym � 1. At the second phase
only m � 1 unit jobs, each on a different machine,
have remained, and the jobs of loadm � 1 are added
to those machines yielding load ofm and keeping one
machine empty. At last the job of loadm is assigned
to the empty machine (figure 6). In this case, the com-
petitive ratio is at least(2m � 1)=m = 2� 1=m.

In both possible cases, the competitive ratio is at least2� 1m ,
and thus any on-line algorithm has at least this ratio.

4. Lower bounds for randomized algorithms

In this section we prove lower bounds for randomized
on-line algorithms. We start by proving a general theo-
rem that converts lower bounds for deterministic algorithms
with a fixed value for the optimal load to general lower
bounds for randomized algorithms. We represent any lower
bound for a deterministic algorithm by a tree. Each path in
the tree is one possible lower bound sequence. Each node in
the tree is a subsequence, and a child node of a node is one
possible way to continue the sequence (see figure 7). The



m-1

Figure 5. The on-line assigns the job of
weight m above a job of weight m � 1

sizejT j of a treeT is defined to be the number of leaves inT (the number of possible sequences). We consider both the
unknown duration case and the known duration case. In the
first case the duration of a job is known only when it departs
where in the second one the duration of a job is known upon
its arrival.

Theorem 4.1 Let r1 (r2, respectively) be a deterministic
lower bound for temporary jobs with unknown (known, re-
spectively) durations, when the optimal value of the load
is known in advance. Then, r1 (r2, respectively) is also a
lower bound for randomized algorithms for temporary jobs
with unknown (known, respectively) durations.

Proof: Consider a lower bound treeT 0 for deterministic al-
gorithms with a fixed optimal load which is known in ad-
vance. We show how to convert it into a lower bound for
randomized algorithms. A lower bound for temporary jobs
with unknown durations, is converted into a lower bound
for randomized unknown durations, and a lower bound for
known durations is converted into a lower bound for ran-
domized known durations. We first slightly modify the
lower bound tree as follows: each possible sequence� 2T 0, is followed by the events that all the existing jobs de-
part. This can be done for unknown durations and also
for known durations. Note that the new treeT satisfiesjT j = jT 0j. Next we recall the adaptation of Yao’s the-
orem for on-line algorithms. It states that a lower bound
for the competitive ratio of deterministic algorithms on any
distribution on the input is also a lower bound for random-
ized algorithms and is given byE(Con=Copt). The main

m-1

Figure 6. The off-line assignment if the job of
weight m arrives

idea of the proof is to construct sequences in which on one
hand the new valueC0opt is the same as the known optimal
valueCopt of the lower bound of the original treeT and
on the other hand with high probability the new value ofC0on is also the same as the valueCon for T . To construct
the lower bound we choose uniform at random a leaf of the
treeT that corresponds to a sequence. Define this short se-
quence as a segment. Repeat the choice of segmentsjT jk
times, and concatenate the sequences to one long sequence.
This defines a distribution on the set of possible long se-
quences. Since the off-line costs of all possible segments
are the same, the off-line cost of every resulting sequence isCopt as well. For any deterministic algorithm, there exists
a leaf inT that has the on-line costCon. With probabil-
ity at least 1jT j , the cost of the on-line algorithm on a spe-
cific segment (and thus for the whole sequence) isCon. The
probability that the costCon would not be achieved in one
segment is at most(1� 1jT j )jT jk � e�k and thus with prob-

ability at least1 � e�k the competitive ratio isCon=Copt,
and otherwise it is at least1. We calculateE � C0onC0opt� whereC0opt,andC0on, are respectively, the off-line and on-linecosts
of the long sequence.E�C0onC0opt� � (1 � e�k)ConCopt + e�k :
Since this is true for everyk,E�C0onC0opt� � ConCopt ;



m(m-1) unit jobs arrive

leave m-1 jobs on one machine

m-1 jobs of weight m-1 arrive

two were placed on one machine the load on each machine is m-1, a job of

 weight m arrives
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main possibilities

(m-1)
m
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(m(m-1))
m
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Figure 7. The tree for the lower bound in The-
orem 3.2

which is exactly the competitive ratio of the lower bound of
the treeT .

Corollary 4.2 Any randomized on-line algorithm for load
balancing of temporary tasks has a competitive ratio of at
least 2� 2m+1 .

Proof: The proof follows from Theorems 3.1 and 4.1. In
this case, there are(m2)m = m2m different possibilities
for them2 unit jobs to be placed, and there arem2m leaves
in the lower bound tree.

We now improve the lower bound for small numbers of ma-
chines.

Theorem 4.3 Any randomized on-line algorithm for load
balancing of temporary tasks on two machines, has a com-
petitive ratio of at least 2� 12 = 32 .

Proof: We show a lower bound for deterministic algo-
rithms, for which the value of the optimal load is2. The-
orem 4.1 implies the same lower bound for randomized al-
gorithms. We consider the following sequence. First three
unit jobs arrive (wj = 1). The possible behaviors of the
algorithm can be divided into two cases.

1. All jobs are on one machine. In this caseCon = 3
and thus the competitive ratio is at least1:5.

2. There is at least one job on each machine. In this case,
there is one machine with two jobs. We pick one of
these jobs and let it depart. Thus, we are left with
one job on each machine. Now a final job of weight2
arrives, and the current load on the machine on which
it is assigned is3. Again the competitive ratio is1:5 .

We can extend this lower bound for the known duration
case, i.e., the duration of each job is known upon its arrival.

Theorem 4.4 Any randomized on-line algorithm for load
balancing of temporary tasks on two machines has a com-
petitive ratio of at least 2 � 12 = 32 even if the durations of
the jobs are known upon its arrival.

Proof: We again show a lower bound for deterministic al-
gorithms with fixed optimal load which is2. The random-
ized lower bound follows from Theorem 4.1. We consider
the following sequence. At time0 a unit job of duration8 arrives. At time1 a unit job of duration3 arrives. Now
there are several cases. If the two jobs are on different ma-
chines, a job of weight2 and duration1 arrives at time2.
Between time2 and time3 all the three jobs are present and
the on-line load is3, which yields the competitive ratio of3=2. Otherwise, the two jobs are on one machine. In this
case a third unit job of duration5 arrives at time2. If it is
assigned to the same machine, the on-line load is already3. If it is assigned to the other machine, we wait to time5
that one unit job has already departed, and we have one unit
job on each machine. At that time a final job of weight2
and duration1 arrives, and the on-line load is3. It is easy
to check that the optimal load in each case is2 and thus the
competitive ratio is3=2.

We can extend the lower bound of Theorem 4.3 for3 and4
machines.

Theorem 4.5 Any randomized on-line algorithm for load
balancing of temporary tasks on m = 3; 4 machines has a
competitive ratio of at least 2� 1m , i.e., 5=3 for 3 machines,
and 7=4 for 4 machines.

Proof: We show lower bounds for deterministic algorithms
with fixed optimal load as before. Letm = 3. Consider the
following sequence that maintains optimal off-line load of3. First eight unit jobs arrive.

1. If there is a machine with at least five jobs then the
on-line load is at least5. Thus we can assume that
there are at most four jobs on each machine.

2. If there are at least two jobs on each machine then we
continue the sequence by a departure of two jobs so
that exactly two jobs remain on each machine. Now
one final job of size3 arrives and the on-line load is5.

3. If there is at least one machine with at most one job
then there must be at least three jobs on each of the
other two machines, since there are at most four jobs
on each machine. Now two jobs depart, so that there
is one empty machine, and two machines, each with
three jobs. Now one job of size2 arrives.



� If it is assigned to one of the non-empty ma-
chines then the on-line load is5.� If it is assigned to the empty machine then two
unit jobs, one from each of the other two ma-
chine, depart. This results in a load2 on all three
machines. One final job of weight3 causes the
on-line the load of5.

In each case the optimal algorithm can maintain maximum
load3 and thus the competitive ratio is at least53 .

We use the same idea to prove the lower bound form = 4. Consider the following sequence that maintains an
optimal off-line load of4. First 16 unit jobs arrive. There
are several cases:

1. If there is a machine with at least seven jobs then the
on-line load is at least7.

2. If there are at least three jobs on each machine then
four jobs depart, so that there are exactly three jobs
on each machine. Then a final job of weight4 arrives,
which causes the load of7 to the on-line.

3. If there is at least one job on each machine then we
continue as follows. First note that there is at least
one machine with four jobs or more. Four jobs on this
machine and one job on each of the other machines
remain and all other jobs depart. Now three jobs of
weight3 arrive.� If two jobs of weight3 assigned to one machine,

or a job of weight3 assigned to the machine
with load4 then the on-line load is at least7.� Otherwise, there are three machines with the
same configuration: two jobs, one of which has
weight3, and the other has weight1. The fourth
machine contains four unit jobs. Now four unit
job depart, one from each machine, which re-
sults in load3 to all machines. A final job of
weight4 arrives and creates on-line load of7.

4. If there is one empty machine and there are at most
six jobs on each machine then there are three ma-
chines each with at least four jobs. Next, four jobs
depart so that there are exactly four jobs on each of
the three machines. Now one job of weight3 arrives.
It should be assigned to the empty machines in order
not to create load7. Now three unit jobs depart, one
from each of the machines with load4. Consequently,
every machine has load3. Finally, one job of weight4 arrives and creates load7 for the on-line algorithm.

One can easily see that the optimal off-line algorithm can
maintain load4 in all the cases and thus the competitive
ratio is at least74 .

5. Sequences of polynomial length

Theorem 4.1 provides lower bounds that requirejT j � k
large sequences. To get short sequences, we use the same
methods, but we examine the tree more carefully.

We first consider a base sequence. Leth be an integerh � m.

1. mh unit jobs (wj = 1) arrive.

2. mh � m unit jobs chosen uniformly at random de-
part. Thus a random setS of m exactly unit jobs
remains. Note that all

� mhm �
possible sets ofm re-

maining jobs are equally likely.

3. Nowm jobs of weighth arrive.

4. All jobs depart.

The off-line can distribute evenly them unit jobs ofS and
them larger jobs on them machines. Thus it maintains load
of h+1 at the end of phase 3 and can easily maintain a load
of h at the end of phase 1. Let us calculate the expected
maximum load of the on-line algorithm. In the first step,
there aremh unit jobs, thus there is (at least) one machine
that contains at leasth jobs. Denote the set of the firsth
jobs on that machine asT . If S � T the load for the on-line
algorithm is at least2h, at the end of phase 3. In this case,
the ratio between the maximum load of the on-line and the
off-line is 2hh+1 = 2� 2h+1 . Note thatS is a random variable
andT is a fixed set. Clearly, the probability of the eventS � T is

� mh � hm � h �=� mhm �
.

We use this sequence to prove the polynomial length
lower bound for randomized algorithms.

Theorem 5.1 Any randomized on-line algorithm for load
balancing of temporary tasks has a competitive ratio of at
least 2 � O( log logmlogm ) even when the input sequence is of
polynomial length in m.

Proof: We chooseh = �( logmlog logm ) such that2hh � m
and repeat the base sequencemk times.

Let us calculate the probability thatS never containsT .
The probability thatS does not containT in one base se-
quence is 1 � � mh � hm � h �� mhm �= 1� (mh � h)!(m � h)! � m!(mh)!� 1� �1� hm�hhh� 1� 1� h2mhh� 1� 12hh :



The probability thatS never containsT is at most(1� 12hh )mk � (1� 1m )mk � e�k :
In this case the ratio is at least1, otherwise the ratio is2hh+1 = 2� 2h+1 . This implies as before thatE�ConCopt� � 2�O� log logmlogm � :
Note that the length of the sequence is polynomial inm as
required.

6. Concluding remarks

We proved2� o(1) lower bounds on the competitive ra-
tio of load balancing of temporary tasks. Note that there is
a small gap between the randomized lower bound and the
optimal deterministic one. One would like to know the ex-
act bound for randomized algorithms or at least if random-
ization helps at all to reduce the competitive ratio in these
problems. It follows from our results that randomization
may help slightly only form � 5. It is open if knowing the
durations of the tasks can help in reducing the competitive
ratio strictly below2 both for deterministic and randomized
algorithms.
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