On-LineLoad Balancing of Temporary Tasks on Identical Machines

Yossi Azat
Tel-Aviv Univ.

Abstract

e prove an exact lower bound of 2 — % on the compet-
itiveratio of any deterministic algorithmfor load balancing
of temporary tasks on m identical machines. We also show
a lower bound of 2 — % for randomized algorithms for
small m and 2 — m%rl for general m. If in addition, we
restrict the sequence to polynomial length, then tlhelloovrvner

bound for randomized algorithmsbecomes 2 — O(<E2£%)
for general m.

1. Introduction

We consider the problem of non-preemptive on-line load

balancing of tasks om. identical machines. Tasks (jobs)

arrive at arbitrary times, where each task has a weight an
a duration. A task has to be assigned upon its arrival to ex-

actly one of the machines, thereby increasing|tiael on

this machine by its weight for the duration of the task. The
duration of each task becomes known only upon its termina-
tion (this is called temporary tasks of unknown durations).
Once a task has been assigned to a machine it cannot be r
assigned to another machine. The goal is to minimize the

maximum load over machines and time.

The problem of scheduling tasks on identical machines
was first introduced by Graham [11, 12]. He gave a greedy

algorithm "List Scheduling” which i2 — % competitive,

wherem is the number of machines. The upper bound was

proved for permanent tasks, i.e., tasks that start at aripitr
times but continue forever. Nevertheless,ihis% analysis
of the upper bound holds also for temporary tasks.

In this paper we show that his algorithm is optimal by
proving a matching lower bound. We show a lower bound of

2 — % on the competitive ratio of any deterministic on-line

*Dept. of Computer Science, Tel-Aviv University. Reseangpported
in part by Allon Fellowship and by a grant from the Israel $cie Foun-
dation. E-Mail: azar@math.tau.ac.il

tDept. of Computer Science, Tel-Aviv University.
lea@math.tau.ac.il

E-Mail:

d

Leah Epsteih
Tel-Aviv Univ.

algorithm for load balancing of temporary tasks on identi-
cal machines. We also show a lower boundof m%rl
on the competitive ratio of any randomized on-line algo-
rithm for the problem. In fact, forn = 2, 3,4 we can im-
prove the lower bound t — % which implies that "List
Scheduling” is also optimal in these cases. The randomized
lower bound for generak. requires a sequence of tasks of
super-polynomial length im. If we restrict the sequence

to have a polynomial length we prove a lower bound of

2 — O(*°81%8™) for any randomized algorithm.

logm

Recall that Graham [11, 12] considered only permanent
tasks. He showed that the greedy algorithm "List Schedul-
ing” does not perform better than— % Form = 2,3 the
algorithm is optimal [9]. However, the algorithm of Gra-
ham is not optimal (for alin > 4) [10, 8]. Bartal et al.
[5] were the first to show an algorithm whose competitive
ratio is strictly belowe < 2 (for all m). More precisely,
their algorithm achieves a competitive raticdof %. Later,
the algorithm was generalized by Karger, Phillips and Torng
[13] to yield an upper bound df.945. Very recently, Albers
[1] designedl.923 competitive algorithm and improved the
lower bound tal.852 (the previous lower bound for perma-
nent tasks wa$.8370 [6]). The best lower bound known

For randomized algorithms i$.582 (for large m) [7, 14].

For m = 2 the randomized competitive ratio is precisely
4/3 [5]. We show that in contrast to permanent tasks, the
simple algorithm of Graham turns out to be optimal for tem-
porary tasks. Moreover, even randomization cannot reduce
the competitive ratio belo® — o(1). Note that form = 2

our tight randomized lower bound3g2. We also prove the
same lower bound for the known duration case. This is in
contrast to the competitive ratio for permanent jobs that is
4/3.

To prove our randomized lower bound we introduce a
new technique that converts a lower bound for determinis-
tic algorithms to a lower bound for randomized algorithms.
More precisely, we show that a lower bound for determin-
istic algorithms that maintains a fixed value for the optimal
assignment is a lower bound for randomized algorithms.

The problem of on-line load balancing of temporary

tasks was introduced by Azar, Broder and Karlin [2]. They least one machine (say with a load of at least., (see fig-
studied the restricted assignment case, i.e. each task caare 1). Now all jobs depart, except jobs on this machine,
be assigned only to a machine in a subset which may de-(figure 2).

pend on the task. They showed @i./m) lower bound

in contrast to th@®(log m) competitive ratio for permanent
tasks [4]. A matching upper bound was given in [3]. Load
balancing of temporary tasks was also studied for the glate
machines model. In this model the increase of the load on a
machine is the ratio of the weight of the task and the speed
of that machine. An algorithm which) competitive and

a lower bound o8 — o(1) were given by [3].

2. Notations

We denote the input sequence &y= o4, ...,0,. Each
evento; is an arrival or a departure of a job (task). We view
o as a sequence of times, the timgis the moment after
the st event happened. We denote the weight of jaty
wy, its arrival time bya; and its departure time (which is
unknown until it departs) by;. An on-line algorithm has
to assign a job upon its arrival without knowing the future
jobs and the durations of jobs that have not departed yet.
We compare the performance of on-line algorithms and the
optimal off-line algorithm that knows the sequence of jobs
and their durations in advance.

LetJ; = {jla; < oi < d;} be the active jobs at tims,.

For a given algorithmA (on-line or off-line) letA; be the
machine on which job is assigned. Let

o= Y, w
{7lA;=k,j€J:}

be the load on machink at timees;, which is the sum of
weights of all jobs assigned &g and active at thistime. The
cost of an algorithmi is the maximum load ever achieved
by any of the machines, i.eCs = maz;x l,j‘(i). The
competitive ratio ofA isr if for any sequenc€ 4 < r-Cope
whereC,,, is the cost of the optimal off-line algorithm.

3. Lower boundsfor deterministic algorithms

We start with a simple lower bound @f— 2. The

lower bound holds for the competitive ratio of any deter-
ministic algorithm even if the optimal value is fixed and

Figure 1. The on-line algorithm after the ar-
rival of the unit jobs

Figure 2. The on-line algorithm after the de-
parture of the unit jobs except m jobs on one
machine

Now m jobs of weightm arrive. Since machine has

- - 1) . .)
known in advance. Later we show the tight- - lower load m, the on-line has to assign two jobs of weighton

bound.

Theorem 3.1 Any deterministic on-line algorithmfor load
balancing of temporary tasks has a competitive ratio of at

one machine, or to assign one job of weighton the ma-
chinez. In both cases, the maximum load of the on-line is
at least2m. The off-line distributes thern large jobs and

least 2 — —2_. This is true even if the optimal value is them unit jobs that remained from the first phase evenly on
Lol i them machines, and thus has a loadnef+ 1. The other
known in advance (andism + 1). m ' + 1.

m(m — 1) unit jobs of the first phase are also distributed
Proof: We consider the following sequence. First artiv® evenly on then machines. The ratio between the costs of
unit jobs u; = 1). Since there arex machines, there is at ~ the two algorithms is at leagf™ = 2 — 2. []

The above lower bound can be improved as follows:

Theorem 3.2 Any deterministic on-line algorithmfor load
balancing of temporary tasks has the competitiveratio of at
least 2 — L.

Proof: We consider the following sequence. Finsfm—1)
unitjobs arrive {v; = 1). Since there are» machines, there
is at least one machine (saywith load at leastn— 1. Then
all jobs depart, except. — 1 jobs on this machine. Next
m — 1 jobs of loadm — 1 arrive. There are two possible
cases:

1. The on-line algorithm keeps at least one empty ma-
chine. In this case, the load of the on-line algorithm
on some machine is at lee&m — 1) since at least
two jobs of loadn — 1 were assigned to one machine,
or a job of loadm — 1 was assigned to the machine
z, (see figure 3).

Figure 4. The off-line algorithm after the ar-
rival of the m — 1 jobs of load m — 1

each machine except on which there arex—1 units
jobs. Now one additional (and final) job of weigtt
arrives. The on-line must assign it on one of the ma-
chines (figure 5), which results in a load 2f — 1.

We show that the off-line can assign the jobs, having
amaximum load ofn. At the first phase, the unitjobs
that do not depart, are assigned each to a different ma-
chine, the other jobs are distributed so that the load on
each machine is exacthys — 1. At the second phase
only m — 1 unit jobs, each on a different machine,
have remained, and the jobs of load— 1 are added

to those machines yielding loadafand keeping one
machine empty. At last the job of load is assigned

to the empty machine (figure 6). In this case, the com-
petitive ratio is at leag@2m — 1)/m =2 — 1/m.

Figure 3. The on-line state if it assigns two
jobs of weight m — 1 on one machine In both possible cases, the competitive ratio is at [2ast,
and thus any on-line algorithm has at least this ratio. m

At the first phase, the off-line assigns the— 1 unit
jobs which will not depart on one machine and dis-
tributes thelm — 1)? unit jobs that will depart evenly
on the othern — 1 machines. Then it assigns one job
of weightm — 1 on each of the other machines (see
figure 4), to have the maximum load=f— 1. In this
case, the ratio between the costs of the on-line and th
off-line algorithms is at leagt(m — 1) /(m — 1) = 2.

4. Lower boundsfor randomized algorithms

In this section we prove lower bounds for randomized
on-line algorithms. We start by proving a general theo-
rem that converts lower bounds for deterministic algorghm

eWith a fixed value for the optimal load to general lower
bounds for randomized algorithms. We represent any lower
bound for a deterministic algorithm by a tree. Each path in
the tree is one possible lower bound sequence. Each node in
2. The on-line algorithm does not keep an empty ma- the tree is a subsequence, and a child node of a node is one
chine, i.e., there is now one job of weight— 1 on possible way to continue the sequence (see figure 7). The

Figure 5. The on-line assigns the job of
weight m above a job of weight m — 1

size|T'| of atreeT is defined to be the number of leaves in

T (the number of possible sequences). We consider both th§, 5,4 the new valué”’
unknown duration case and the known duration case. In thevalueC

first case the duration of a job is known only when it departs

where in the second one the duration of a job is known upon
on

its arrival.

Theorem 4.1 Let r; (ry, respectively) be a deterministic
lower bound for temporary jobs with unknown (known, re-
spectively) durations, when the optimal value of the load
is known in advance. Then, r; (s, respectively) is also a
lower bound for randomized algorithms for temporary jobs
with unknown (known, respectively) durations.

Proof: Consider a lower bound tr&g for deterministic al-
gorithms with a fixed optimal load which is known in ad-
vance. We show how to convert it into a lower bound for
randomized algorithms. A lower bound for temporary jobs
with unknown durations, is converted into a lower bound
for randomized unknown durations, and a lower bound for
known durations is converted into a lower bound for ran-
domized known durations. We first slightly modify the
lower bound tree as follows: each possible sequence

T', is followed by the events that all the existing jobs de-

part. This can be done for unknown durations and also
for known durations. Note that the new tr#esatisfies
|T| = |T'|. Next we recall the adaptation of Yao's the-

orem for on-line algorithms. It states that a lower bound
for the competitive ratio of deterministic algorithms oryan
distribution on the input is also a lower bound for random-
ized algorithms and is given bi(Con/Copt). The main

Figure 6. The off-line assignment if the job of
weight m arrives

idea of the proof is to construct sequences in which on one
opt 1S the same as the known optimal

.p¢ Of the lower bound of the original tre€ and

on the other hand with high probability the new value of

is also the same as the val@g, for T'. To construct

the lower bound we choose uniform at random a leaf of the

treeT that corresponds to a sequence. Define this short se-

guence as a segment. Repeat the choice of segri®fkts

times, and concatenate the sequences to one long sequence.

This defines a distribution on the set of possible long se-
guences. Since the off-line costs of all possible segments
are the same, the off-line cost of every resulting sequence i
Cope as well. For any deterministic algorithm, there exists
a leaf inT that has the on-line cost,,. With probabil-

ity at Ieastﬁ, the cost of the on-line algorithm on a spe-
cific segment (and thus for the whole sequencé),is. The
probability that the cosf,,, would not be achieved in one
segment is at mogt — ;77)!"1* < e~* and thus with prob-
ability at leastl — e~* the competitive ratio i€on/Copt
and otherwise it is at lea$t We calculate®; (Gea

where
. . Ccpt .
Cypi,andCy, , are respectively, the off-line and on-line costs

of the long sequence.

1
v (Cf’") > (1—ek)om ook
Copt opt
Since this is true for every,
C! C
C(I)pt o COPt

m(m-1) unit jobs arrive

ooo

m
(m(m-1)) possibilities

leave m-1 jobs on one machine

m-1 jobs of weight m-1 arrive

m
(m1) cases can be reduced into two

main possibilities

the load on each machine is m-1, a Job of
weight m arrives

two were placed on one machifie

Figure 7. The tree for the lower bound in The-
orem 3.2

which is exactly the competitive ratio of the lower bound of

the treeT'. [|

Corollary 4.2 Any randomized on-line algorithm for load
balancing of temporary tasks has a competitive ratio of at

2

Proof: The proof follows from Theorems 3.1 and 4.1. In

this case, there argn?)™ = m?™ different possibilities
for them? unit jobs to be placed, and there and™ leaves
in the lower bound tree. [|

We now improve the lower bound for small numbers of ma-

chines.

Theorem 4.3 Any randomized on-line algorithm for load
balancing of temporary tasks on two machines, has a com-

petitiveratio of at least 2 — 3 = 3.

We can extend this lower bound for the known duration
case, i.e., the duration of each job is known upon its arrival

Theorem 4.4 Any randomized on-line algorithm for load
balancing of temporary tasks on two machines has a com-
petitiveratio of at least 2 — 2 = 3 even if the durations of
the jobs are known uponitsarrival.

Proof: We again show a lower bound for deterministic al-
gorithms with fixed optimal load which &. The random-
ized lower bound follows from Theorem 4.1. We consider
the following sequence. At timé a unit job of duration

8 arrives. At timel a unit job of duratior arrives. Now
there are several cases. If the two jobs are on different ma-
chines, a job of weigh? and durationl arrives at time2.
Between time and time3 all the three jobs are present and
the on-line load i}, which yields the competitive ratio of
3/2. Otherwise, the two jobs are on one machine. In this
case a third unit job of duratioh arrives at time2. If it is
assigned to the same machine, the on-line load is already
3. Ifitis assigned to the other machine, we wait to tifne
that one unit job has already departed, and we have one unit
job on each machine. At that time a final job of weight
and duratiorl arrives, and the on-line load 8 It is easy

to check that the optimal load in each cas@ &nd thus the
competitive ratio i3/2. [|

We can extend the lower bound of Theorem 4.33f@and4
machines.

Theorem 4.5 Any randomized on-line algorithm for load
balancing of temporary tasks on m = 3,4 machines has a
competitiveratioof at least 2 — L, i.e, 5/3 for 3 machines,
and 7/4 for 4 machines.

Proof: We show lower bounds for deterministic algorithms
with fixed optimal load as before. Let = 3. Consider the
following sequence that maintains optimal off-line load of

Proof: We show a lower bound for deterministic algo- 3. Firsteight unit jobs arrive.

rithms, for which the value of the optimal load2s The-

orem 4.1 implies the same lower bound for randomized al-
gorithms. We consider the following sequence. First three
unit jobs arrive {w; = 1). The possible behaviors of the

algorithm can be divided into two cases.

1. All jobs are on one machine. In this caSg, = 3
and thus the competitive ratio is at leasi.

1. If there is a machine with at least five jobs then the
on-line load is at leasi. Thus we can assume that
there are at most four jobs on each machine.

2. Ifthere are at least two jobs on each machine then we
continue the sequence by a departure of two jobs so
that exactly two jobs remain on each machine. Now
one final job of size8 arrives and the on-line load is

2. Thereis at least one job on each machine. Inthis case, 5.

there is one machine with two jobs. We pick one of
these jobs and let it depart. Thus, we are left with
one job on each machine. Now a final job of weight
arrives, and the current load on the machine on which

itis assigned i8. Again the competitive ratio i.5 .

3. If there is at least one machine with at most one job
then there must be at least three jobs on each of the
other two machines, since there are at most four jobs
on each machine. Now two jobs depart, so that there
is one empty machine, and two machines, each with
three jobs. Now one job of sizzarrives.

e If it is assigned to one of the non-empty ma- 5. Sequences of polynomial length

chines then the on-line load s
e Ifitis assigned to the empty machine then two 1heorem 4.1 provides lower bounds that require-

unit jobs, one from each of the other two ma- large sequences. To get short sequences, we use the same
methods, but we examine the tree more carefully.

We first consider a base sequence. hdie an integer
h<m.

chine, depart. Thisresults in alo2dn all three
machines. One final job of weigBtcauses the
on-line the load o0b.

In each case the optimal algorithm can maintain maximum 1. mh unitjobs fu; = 1) arrive.

load3 and thus the competitive ratio is at legst 2. mh — m unit jobs chosen uniformly at random de-

We use the same idea to prove the lower bound for part. Thus a random se& of m exactly unit jobs
m = 4. Consider the following sequence that maintains an remains. Note that aﬂ mh) possible sets ofn re-
optimal off-line load of4. First16 unit jobs arrive. There maining jobs are equally likely.

are several cases: _))
3. Nowm jobs of weighth arrive.

1. If there is a machine with at least seven jobs then the .
on-line load is at least. 4. Alljobs depart.
_ . The off-line can distribute evenly the unit jobs ofS and

2. 1f the_re are at least three jobs on each machlne_thenthem larger jobs on then machines. Thus it maintains load
four jobs depa_lrt, so that there_are exaqtly th_ree jobs ¢ h+1 at the end of phase 3 and can easily maintain a load
on _each machine. Then afinal job o_fwelghstrrlves, of h at the end of phase 1. Let us calculate the expected
which causes the load gfto the on-line. maximum load of the on-line algorithm. In the first step,

3. If there is at least one job on each machine then weh€reé arenh unit jobs, thus there is (at least) one machine
continue as follows. First note that there is at least that contains at least jobs. Denote the set of the first

one machine with four jobs or more. Four jobs on this 10PS on that machine &. If §' 2 T' the load for the on-line
machine and one job on each of the other machines@ldorithm is at leas2h, at the end of phase 3. In this case,
remain and all other jobs depart. Now three jobs of the _rati(_) between the maximum Ioaq of the on-line _and the
weight3 arrive. off-lineis % =2- Ll Note thatS is a random variable
andT is a fixed set. Clearly, the probability of the event
e Iftwo jobs of weight3 assigned to one machine, S > Tis(7>)/(=).
or a job of weight3 assigned to the machine We use this sequence to prove the polynomial length
with load4 then the on-line load is at least lower bound for randomized algorithms.

e Otherwise, there are three machines with the Theorem 5.1 Any randomized on-line algorithm for load
same configuration: two jobs, one of which has halancing of temporary tasks has a competitive ratio of at
weight3, and the other has weight The fourth least 2 — O('°81%6™) even when the input sequence is of

logm

machine contains four unit jobs. Now four unit polynomial length in m.
job depart, one from each machine, which re- loxm .
sults in load3 to all machines. A final job of ~ Proof: We chooseh = ©(i5) such thar® < m

weight4 arrives and creates on-line loadof and repeat the base sequendetimes. _
Let us calculate the probability th&tnever containg".

4. If there is one empty machine and there are at mostThe probability thatS does not contaif” in one base se-
six jobs on each machine then there are three ma-quence is

chines each with at least four jobs. Next, four jobs nn
depart so that there are exactly four jobs on each of 1 — (m—h)
the three machines. Now one job of weigtdrrives. (g)
It should be assigned to the empty machines in order (mh —h)! m!
not to create load. Now three unit jobs depart, one = 1- (m—R)! (mh)!
from each of the machines with loadConsequently, NS
every machine has loa@ Finally, one job of weight < 1— (1 - H)
4 arrives and creates logdor the on-line algorithm. - ht
h2
One can easily see that the optimal off-line algorithm can < 1- S
maintain load4 in all the cases and thus the competitive 1h
ratio is at least.. n < o

The probability thafS never containg" is at most [7] B. Chen, A. van Vliet, and G. Woeginger. A lower bound
for randomized on-line scheduling algorithrmgsformation

(1- L)mk <(1- i)mk <e k. Processing Letters, 51:219-222,1994.
2h- — m — [8] B. Chen, A. van Vliet, and G. Woeginger. New lower and
) o) o upper bounds for on-line schedulin@perations Research
In this case the ratio is at lea$t otherwise the ratio is Letters, 16:221-230, 1994.
% =2- ﬁ This implies as before that [9] U. Faigle, W. Kern, and G. Turan. On the performance of
online algorithms for partition problemg#cta Cybernetica,
Con loglogm 9:107-119, 1989.
E (C) >2-0 (W) : [10] G. Galambos and G. Woeginger. An on-line scheduling
opt & heuristic with better worst case ratio than graham’s list
Note that the length of the sequence is polynomiahims scheduling. Sam Journal on Computing, 22(2):349-355,
required. [| 1993.

[11] R. Graham. Bounds for certain multiprocessor anorsalie
Bell System Technical Journal, 45:1563—-1581, 1966.

6. Concluding remarks [12] R. Graham. Bounds on multiprocessing timing anomalies
SIAM J. Appl. Math, 17:263—-269, 1969.

[13] D. Karger, S. Phillips, and E. Torng. A better algorithm

We proved2 — o(1) lower bounds on the competitive ra- for an ancient scheduling problem. fnoc. 5th ACM-S AM

tio of load balancing of temporary_tasks. Note that there is Symp. on Discrete Algorithms, 1994.

a small gap between the randomized lower bound and the[14] J. Sgall. On-line scheduling on parallel machines. hfec
optimal deterministic one. One would like to know the ex- nical Report Technical Report CMU-CS-94-144, Carnegie-
act bound for randomized algorithms or at least if random- Mellon University, Pittsburgh, PA, USA, 1994,

ization helps at all to reduce the competitive ratio in these
problems. It follows from our results that randomization
may help slightly only forn > 5. It is open if knowing the
durations of the tasks can help in reducing the competitive
ratio strictly below?2 both for deterministic and randomized
algorithms.

7. Acknowledgments

We would like to thank Allan Borodin for many helpful
discussions.

References

[1] S. Albers. Better bounds for on-line scheduling. Rroc.
29th ACM Symp. on Theory of Computing, 1997. To appear.

[2] Y.Azar, A. Broder, and A. Karlin. On-line load balancirig
Proc. 33rd IEEE Symp. on Found. of Comp. Science, pages
218-225, Oct. 1992.

[3] Y. Azar, B. Kalyanasundaram, S. Plotkin, K. Pruhs, and
O. Waarts. On-line load balancing of temporary tasks. In
Proc. Workshop on Algorithms and Data Structures, pages
119-130, Aug. 1993.

[4] Y. Azar, J. Naor, and R. Rom. The competitiveness of on-
line assignment. IProc. 3rd ACM-SIAM Symp. on Discrete
Algorithms, pages 203-210, 1992.

[5] Y. Bartal, A. Fiat, H. Karloff, and R. Vohra. New algoritis
for an ancient scheduling problem. Bnoc. 24th ACM Sym-
posium on Theory of Algorithms, pages 51-58, 1992. To
appear inJournal of Computer and System Sciences.

[6] Y. Bartal, H. Karloff, and Y. Rabani. A better lower bound
for on-line scheduling. Information Processing Letters,
50:113-116, 1994.

