
Minimizing Total Flow Time and Total Completion Time withImmediate DispathingNir Avrahami � Yossi Azar yFebruary 5, 2003AbstratWe onsider the problem of sheduling jobs arriving over time in a multiproessorsetting, with immediate dispathing, disallowing job migration. The goal is to minimizeboth the total ow time (total time in the system) and the total ompletion time.Previous studies have shown that while preemption (interrupt a job and later ontinueits exeution) is inherent to make a sheduling algorithm eÆient, migration (ontinue theexeution on a di�erent mahine) is not. Still, the urrent non-migratory online algorithmssu�er from a need for a entral queue of unassigned jobs whih is a "no option" in largeomputing system, suh as the Web.We introdue a simple online non-migratory algorithm IMD, whih employs immediatedispathing, i.e., it immediately assigns released jobs to one of the mahines. We show thatthe performane of this algorithm is within a logarithmi fator of the optimal migratoryo�ine algorithm, with respet to the total ow time, and within a small onstant fator ofthe optimal migratory o�ine algorithm, with respet to the total ompletion time. Thissolves an open problem suggested by Awerbuh et al [STOC99℄.1 IntrodutionAlmost all lassial work on sheduling of jobs released over time in a multiproessor settingassumes that unassigned jobs are held in a entral queue. The deision on assignment of a jobis not done upon its arrival but postponed until the dispather aquires enough information. Inmany ases, suh as in large omputing systems (e.g. the WEB), this is impossible sine the thenumber of unassigned jobs (with their assoiated data) may be large, requiring huge amountof resoures (e.g. memory). Moreover, the delay in transferring the job to the appropriatemahine may be large resulting in dramati deterioration of the performane. Hene, thearhiteture of many systems requires from the dispather to assign a job immediately uponits arrival to one of the mahines without maintaining a entral queue. Eah job is kept in thequeue of the mahine it was assigned to.�Department of Computer Siene, Tel Aviv University, Tel-Aviv, 69978, Israel. E-Mail: nirav�post.tau.a.il.yDepartment of Computer Siene, Tel Aviv University, Tel-Aviv, 69978, Israel. E-Mail: azar�post.tau.a.il.Researh supported in part by the Israel Siene Foundation and by the IST Program of the EU.1



In the lassial multiproessor sheduling problem, preemptive and non-preemptive shed-ules are often onsidered, in the ontext of minimizing the two most basi performane mea-sures, the total ow time (overall time the jobs are spending in the system) and total ompletiontime. These measures apture both the overall quality of servie of the system and fairnessof servie. Sine preemption was shown to be inherent to the problem of minimizing thetotal ow time (as noted below), while it is problemati in real multiproessors systems, anintermediate model whih disallows migration was onsidered. Current non-migratory onlinealgorithms, whih were devised to work in this model, tend to delay the assignment of jobs, inorder to avoid early ommitment to mahines, hene they are required to maintain a pool ofunassigned jobs. As already mentioned this may be "no option" in many arhitetures. Hene,the obvious question is whether one an devise an eÆient algorithm that dispathes eah jobto a mahines upon its release time. Note that this results in splitting the multiproessorsheduling problem into two axis: the assignment problem and the single mahine shedulingproblem. Our somewhat surprising result shows that we an atually ahieve almost the sameperformane for total ow time and for total ompletion time in the immediate dispathingmodel as in the model that maintains a entral queue.Our results: multiple proessors with immediate dispathing. We introdue asimple non-migratory online algorithm IMD, whih employs immediate dispathing, i.e., itimmediately assigns released jobs to one of the mahines. We show that:� The total ow time of algorithm IMD is within the O(minflogP; logng) fator of thetotal ow time of the optimal migratory o�ine algorithm. This solves an open problemsuggested by Awerbuh et al [2℄.� The total ompletion time of algorithm IMD is at most 7 times the total ompletiontime of the optimal migratory o�ine algorithm.� For the measure of total ompletion time, preemption an be eliminated from algorithmIMD, resulting in algorithm IMD0 whih is at most 14 times the total ompletion timeof the optimal migratory o�ine algorithm.Existing work: total ow time. Surveys on approximation algorithms for shedulingan be found in [9, 12℄. In the non-preemptive ase it is impossible to ahieve a "reasonable"approximation for the total ow time. Spei�ally, even for one mahine one annot ahievean approximation fator of O(n 12��) unless NP = P where n is the number of jobs [11℄. Form > 1 it is impossible to ahieve O(n 13��) approximation fator unless NP = P [13℄. Thus,preemption really seems to be essential. Minimizing the total ow time on one mahine withpreemption an be done optimally in polynomial time using the natural algorithm shortestremaining proessing time (SRPT ) [3℄. For more than one mahine the preemptive problembeomes NP -hard [7℄. Leonardi and Raz [13℄ showed that SRPT ahieves logarithmi approx-imation for the multiproessor ase, showing a tight bound of O(log(minfn=m;Pg)) on m > 1mahines with n jobs, where P denotes the ratio between the proessing time of the longestand the shortest jobs. In the o�ine setting, it is not known if better approximation fatorsan be reahed. In fat, in the online setting SRPT is optimal, i.e., no algorithm an ahievea better bound up to a onstant fator [13℄. Note that SRPT requires migration. In additionit deides to assign a job from a entral pool only when a mahine beomes empty.2



Awerbuh et al [2℄ presented an online non-migratory algorithm, whih performs almostas well as the best known o�ine algorithm (SRPT ) for the preemptive problem that usesmigration. This algorithm performs by at most O(minflogP; log ng) fator of the optimaltotal ow time of any (possibly migratory) shedule. Chekuri et al. [5℄ designed a variant ofthe above algorithm whih slightly improves the performane ratio to O(minflogP; log(n=m)g)and mathes the performane bound of SRPT . The above algorithms overome the problem ofmigration. However, many jobs may be kept in a entral pool until it is justi�ed to assign themto mahines. Postponing the assignment jobs by the dispather and maintaining them in theentral pool is ruial for their algorithms. As already mentioned, non-immediate dispathingis not an option in many systems due to the sizes of the jobs and the delay in the network.Existing work: total ompletion time. For a single mahine with preemption SRPTis optimal. In the multiproessor setting SRPT is 2 ompetitive [14℄. Without preemption thebest online deterministi algorithm for a single mahine is 2 ompetitive [14, 10℄. Moreover,this is optimal [10℄. The best randomized algorithm is e=(e � 1) ompetitive [6℄ and this isoptimal [15℄. In the multiproessor setting (without preemption) the best algorithm is 2:89ompetitive [4, 8℄. In the o�ine problem a PTAS for minimizing the total ompletion timewas given for the preemptive and non-preemptive versions for a single and multiple mahine[1℄. All known algorithms for total ompletion time prior to our work require postponing thedeision of the assignment and hene maintain a entral pool.Tehniques. One may tempt to think that the natural approah for designing an imme-diate dispathing algorithm should be based on SRPT or the non-migratory algorithm witha entral queue. Spei�ally, we may try to predit for eah job upon its arrival on whihmahine those algorithms would have assigned the job and dispath the job immediately tothat mahine. The predition would be based on the given urrent information, i.e., the exatresidual size of all urrent jobs, assuming no additional jobs will arrive. Unfortunately, it ispossible to show that this approah results in algorithms with poor performane. Hene a newalgorithm had to be developed.In ontrast to previous algorithms (e.g SRPT ) our algorithm IMD prefers to ignore some ofthe given information, reduing the ommuniation traÆ and simplifying its implementation.The main idea of IMD is to assign eah job immediately on its release time so as to balanethe aumulative volume of all similar jobs from time zero until the urrent time. Hene, itignores the information of whih jobs were already ompleted and the urrent residual volumeof jobs left to be proessed. Moreover, algorithm IMD ignores the exat release times of thejobs and would produe the same assignment even for di�erent release times of the jobs as longas their relative arrival order is maintained. Hene, IMD maintains only a small amount ofinformation about previous assignments. Moreover, the lok of the dispather does not needto be synhronized with the loks of the proessors. Interestingly, by ignoring informationwe are able to show that the residual volume of jobs left to be proessed at any other giventime will almost be the same on any mahine, implying that the idle times are also balanedbetween the mahines.Sine on a single mahine SRPT is optimal, the best algorithm that uses immediate assign-ment will use SRPT on eah mahine separately, independently of the assignment strategy.Aside from the assignment strategy, whih is the ore of the algorithm, we also use a di�er-ent (less e�etive) sheduling approah for eah mahine separately, in order to simplify the3



analysis of the ow time performane. The total ow time analysis basially ombines newideas with ideas used in [2, 5℄. The algorithm of [2℄ also uses lassi�ation of jobs to lasses.However, that lassi�ation is done aording to the residual sizes of the jobs at any given time,meaning that the lassi�ation of a job hanges along the proess. In ontrast, it is ruialfor our algorithm to use a di�erent lassi�ation, whih is similar to the group partition in [5℄,and is based on a job size on its arrival. Hene, our lassi�ation does not hange along theproess.As for the the total ompletion time, one should also notie that our algorithm takles theproblem using a tehnique that is substantially di�erent from the standard tehniques, suhas: SRPT , time partitioning into intervals (GreedyInterval) or by solving some migratoryshedule and onverting it into a non-migratory shedule.The model. We are given a set J of n jobs and a set of m idential mahines. Eah job jis assigned a pair (rj ; pj) where rj is the release time of the job and pj is its proessing time. Inour model the assignment of job j to some mahine should be immediate on its release time rj ,but it needn't be exeuted immediately on assignment. Our model allows preemption but doesnot allow migration. The sheduling algorithm deides whih of the jobs should be exeuted ateah time. Clearly a mahine an proess at most one job in any given time and a job annotbe proessed before its release time. For a given shedule de�ne Cj to be the ompletion timeof job j in this shedule. The ow time of job j for this shedule is Fj = Cj�rj. The total owtime F is Pj2J Fj , and the total ompletion time C is Pj2J Cj. The goal of the shedulingalgorithm is to minimize the total ow time (or ompletion time) for eah given instane ofthe problem. In the o�ine version of the problem all the jobs are known in advane. In theonline version of the problem eah job is introdued at its release time and the algorithm basesits deision only upon the jobs that were already released.2 De�nitions and NotationsWe start by giving a few de�nitions and notation, whih will be useful both for the algorithmde�nition and analysis.� We �rst de�ne the lass of a job j to be k, if its size on its arrival pj is in [2k; 2k+1).Note that the lassi�ation to lasses does not hange during the proess (similar to thegroup partition in [5℄). Denote by kmin and kmax the extremes of the jobs lasses.� T is used to denote the time period where all the m mahines are busy (non idle).� Denote by P the ratio of the longest job to the shortest one.� Several funtion of time are used:{ U(t) denotes the umulative sum of size of jobs arrived prior to t (sum of their sizeon their arrival).{ P (t) denotes the total volume of jobs that have already been proessed till time t.{ R(t) denotes the total remaining volume of jobs to be proessed at time t.{ (t) denotes the number of non-idle mahines at time t.4



{ Æ(t) denotes the number of jobs (with ri � t), whih are alive at time t (i.e., not�nished yet).{ n(t) denotes the number of jobs released by time t.{ (t) denotes the number of ompleted jobs by time t.{ J(t) denotes the set of jobs that were �nished by time t.We note that if a funtion is used without the time parameter t then it refers to thefuntion at the end of the shedule.� Several funtion modi�ers are used:{ For a generi funtion f , the notation fS refers to the value of f when the sheduler isS. We denote our sheduler by IMD, while the optimal migratory o�ine shedulerwill be denoted by OPT . We may omit this supersript when it refers to IMD.{ For a generi funtion f , the notations f=k, f<k et. refer to the funtion f restritedto the set of jobs that belong to the subsript lasses.{ For a generi funtion f , the notation f i refers to the funtion f restrited to the setof jobs that were assigned to the ith mahine. When the sheduler is OPT , fOPT;iis de�ned as the average 1mfOPT .{ For a generi funtion f , we use f ij as a short form of f i � f j.{ For a generi funtion f(t) we use �f(t) = f(t)� fOPT (t) denoting the di�erenebetween our sheduler and the optimal o�ine sheduler.{ For a generi funtion f(t) we use f(J; t) when the input set of jobs J is not learfrom the ontext.3 The AlgorithmReall from the above de�nitions that jobs are lassi�ed aording to their sizes. Job is oflass k if its size is between 2k and 2k+1. Also, by the de�nitions above U i=k(t) denotes thetotal umulative sum of the original size of jobs that arrived prior to t and were assigned tothe mahine i. Next we de�ne our immediate dispathing algorithm:Algorithm IMD:� On arrival time t of a new job of lass k, assign it to a mahine i with minimum U i=k(t).� Conduted SRPT on eah mahine separately.The algorithm IMD balanes the total volume of jobs of a spei� lass that were everassigned to the mahines. We note that the assignment deisions are independent of the exatrelease times of the previous jobs and only depend on their order. Hene, the assignmentdeisions are not based on the urrent status of the jobs in the queues of the mahines.
5



4 Total Flow Time AnalysisIn this setion we prove that the total ow time of algorithm IMD is within theO(minflogP; log ng) fator of the total ow time of the optimal migratory o�ine algorithm.We state a di�erent sheduling prinipal for eah single mahine (see [5℄), whih is learly lesse�etive than SRPT (see [3℄), and analyze it. This is done to simplify the analysis.The proessing on the ith mahine will be onduted aording to the following prinipal:Proess the job with the earliest arrival time among the set of jobs of the smallest lass k withun�nished jobs (Ri=k(t) > 0).We �rst observe the simple fat that the total ow time is the integral over time of thenumber of jobs that are alive (for example, see [13℄):Fat 4.1 For any sheduler S, F S = Zt ÆS(t)dt :We start the analysis fousing on the O(logP ) bound. In this part we are about to distin-guish between times where all the mahines are working (t 2 T ), and times where at least onemahine is idle (t =2 T ). For eah of these ases we bound the number of alive jobs ÆIMD(t)and �nally we will ompute the integral of Fat 4.1.At this stage we show that the total remaining proessing time (for eah lass) is almostthe same on the di�erent mahines at any given time.Observation 4.2 For any time t and any two mahines i and j we have jU ij=k(t)j � 2k+1 andhene also jU ij�k(t)j � 2k+2.Proof: The �rst inequality holds sine all the jobs of lass k are of size � 2k+1. The seondinequality follows obviously.Lemma 4.3 For any t, the di�erene between the volume of jobs that have already been pro-essed, on any two di�erent mahines i and j is bounded as follows: jP ij�k(t)j � 2k+2.Proof: Assume that t0 is the �rst time jP ij�k(t)j gets bigger than 2k+2, hene, jP ij�k(t0)j = 2k+2and for any small enough � > 0, jP ij�k(t0 + �)j > 2k+2. This means that exatly one of thesemahines proess jobs of lasses not bigger than k (otherwise the di�erene value does nothange), assume it's mahine i. Sine the algorithm always proesses a job from the smallestlass on eah mahine, mahine j must have already proessed all of the jobs of lasses � k byt0 while mahine i did not �nished to proess all the jobs of lasses � k. HeneU j�k(t0) = P j�k(t0) < P i�k(t0) < U i�k(t0)whih yields 2k+2 = jP ij�k(t0)j < jU ij�k(t0)j :This ontradits Observation 4.2. 6



Lemma 4.4 For any t, the di�erene between the residual volume of jobs that needs to beproessed, on any two di�erent mahines i and j is bounded as follows jRij�k(t)j � 2k+3Proof: Combining Observation 4.2, Lemma 4.3 and the fat that R(t) = U(t) � P (t) byde�nition, we get jRij�k(t)j � jU ij�k(t)j+ jP ij�k(t)j � 2k+3 :We handle the ase where at least one of the mahines is idle (t =2 T ), implying that theother mahines are not heavily loaded.Lemma 4.5 For any t =2 T , the number of jobs from the range [k1; k2℄ of lasses on anymahine i an be bounded as follows: Æi[k1;k2℄(t) � 9(k2 � k1 + 1).Proof: Sine t =2 T , there exists a mahine j, whih is idle (i.e., with Rj(t) = 0). Obviously forany k, Rj�k(t) = 0. By Lemma 4.4 we get that for any (non-idle) mahine i, Ri�k(t) � 2k+3,and obviously also Ri=k(t) � 2k+3 follows. Sine the algorithm proess the job with the earliestarrival time among a set of jobs from the same lass k, we an dedue that on mahine i, thereis at most one job from lass k with remaining proessing time < 2k. Hene, we bound thenumber of jobs of lass k at this time by Æi=k(t) � Ri=k(t)2k +1 � 8+1 = 9. The result follows.Corollary 4.6 For any t =2 T , the number of jobs in the whole system an be bounded asfollows: Æ(t) � 9(t)(log P + 2).Proof: The result follows immediately from Lemma 4.5 with k2 = kmax and k1 = kmin and thefat that the number of lasses kmax � kmin + 1 is smaller than logP + 2.Now, Assume none of the mahines is idle (t 2 T ), and let t̂ < t the earliest time s.t.[t̂; t) � T . De�ne tk to be the last time a job from a lass bigger than k was proessed in thisrange (in ase only jobs of lasses � k were proessed throughout [t̂; t) we set tk = t̂).Lemma 4.7 For t 2 T , �R�k(t) � �R�k(tk).Proof: By de�nition of tk, it is obvious that the algorithm proess only jobs whose lass is atmost k in the range [tk; t) on all mahines, therefore the o�ine algorithm annot proess abigger share of these jobs. Note also that the release of new jobs of lasses � k does not a�etthe value of �R�k, hene it may only derease in the range [tk; t).Lemma 4.8 For t 2 T , �R�k(tk) � m2k+3.Proof: From the de�nition of tk it follows that there exist a mahine i s.t. for every smallenough � > 0, Ri�k(tk � �) = 0. This is either the mahine that proessed the last job of lassbigger than k in the range [t̂; t) or alternatively the mahine that was last idle (in ase tk = t̂).Hene by Lemma 4.4, any other mahine j omplies with Rj�k(tk � �) � 2k+3, yielding also�Rj�k(tk � �) � 2k+3. Sine jobs whih arrive exatly at tk inrement R also for the o�inealgorithm, not a�eting �R, we get �R�k(tk) � m2k+37



Lemma 4.9 For t 2 T , �R�k(t) �m2k+3.Proof: Combining Lemmas 4.7 and 4.8 yields �R�k(t) � �R�k(tk) � m2k+3.Lemma 4.10 For t 2 T , for any mahine i, �Ri�k(t) � 2k+4.Proof: From Lemma 4.9 we have that: minj�Rj�k(t) � 2k+3. From Lemma 4.4 we derivealso: j�Rij�k(t)j = jRij�k(t)j � 2k+3. Combining the above yields �Ri�k(t) � minj�Rj�k(t) +j�Rij�k(t)j � 2k+4.Lemma 4.11 For any t 2 T , the number of jobs from the range [k1; k2℄ of lasses on anymahine i an be bounded as follows: Æi[k1;k2℄(t) � 9(k2 � k1 + 2) + 2ÆOPT;i�k2 (t).Proof: We ount the number of jobs on mahine i by lass, and bound it as follows:Æi[k1;k2℄(t) = k2Xj=k1 Æi=j(t)� k2Xj=k1f�Ri=j(t) +ROPT;i=j (t)2j + 1g= k2Xj=k1 �Ri�j(t)��Ri�j�1(t)2j + (k2 � k1 + 1) + k2Xj=k1 ROPT;i=j (t)2j� �Ri�k2(t)2k2 + k2�1Xj=k1 �Ri�j(t)2j+1 � �Ri�k1�1(t)2k1 + (k2 � k1 + 1) + 2ÆOPT;i[k1;k2℄(t)� 16 + k2�1Xj=k1 8 + ÆOPT;i�k1�1(t) + (k2 � k1 + 1) + 2ÆOPT;i[k1;k2℄(t)� 9(k2 � k1 + 2) + 2ÆOPT;i�k2 (t)where the seond line is due to the fat that there is at most one job on mahine i of eahlass k with a residual volume less than 2k. The fourth line is derived from the fat that theresidual of eah job of lass k is smaller than 2k+1 by de�nition. The �fth line is derived byapplying Lemma 4.10.Corollary 4.12 For any t 2 T , the number of jobs in the whole system an be bounded asfollows: Æ(t) � 9m(logP + 3) + 2ÆOPT (t).Proof: First note that kmax�kmin+2 � logP +3. Now we apply Lemma 4.11 with k2 = kmaxand k1 = kmin and sum over all the mahines, whih yields the result.We prove the O(logP ) approximation ratio.Theorem 4.13 F IMD = O(logP ) � FOPT , i.e., algorithm IMD has a logarithmi approx-imation fator, w.r.t the maximum ratio between jobs size, even when ompared to the best(possibly migratory) o�ine algorithm. 8



Proof: F IMD = Zt Æ(t)dt= Zt=2T Æ(t)dt + Zt2T Æ(t)dt� Zt=2T 9(2 + logP )(t)dt + Zt2T (9m(log P + 3) + 2ÆOPT (t))dt= 9(2 + logP ) Zt=2T (t)dt+ 9(logP + 3) Zt2T (t)dt+ 2 Zt2T ÆOPT (t)dt� 9(logP + 3) Zt (t)dt+ 2 Zt ÆOPT (t)dt� (29 + 9 log P ) � FOPTwhere the �rst equality is from the de�nition of F IMD. The seond equality is obtained bylooking at times in whih none of the mahines is idle and at times in whih at least onemahine is idle, separately. The third line uses Corollaries 4.6 and 4.12. The forth line istrue by de�nition of T . Finally, Rt IMD(t)dt is the total time spent proessing jobs by themahines whih is exatly the sum of all jobs. This sum is upper bounded by the total owtime of OPT sine eah job's ow time must be at least its proessing time.We now turn to prove the O(log n) bound. We start this part fousing on a single mahinei. We de�ne �ki to be the maximal lass of a job assigned to i throughout the proess. De�ne� ik to be the set of time units, in whih mahine i proessed a job of lass k.Lemma 4.14 The ow time of all jobs assigned to mahine i an be bounded as follows:F IMD;i � 18 �kiXj=kmin(�ki � j)ni=j2j + 18U i[kmin;�ki℄ + 2FOPT;iProof: We ompute the integral of Fat 4.1 aording to the time partition to � ik.F IMD;i = Zt Æi(t)dt= �kiXj=kmin Zt2� ij Æi[j;�ki℄(t)dt� �kiXj=kmin Zt2� ij f9(�ki � j + 2) + 2ÆOPT;i��ki (t)gdt� �kiXj=kmin 9(�ki � j + 2)U i=j + 2FOPT;i� 18 �kiXj=kmin(�ki � j)ni=j2j + 18U i[kmin;�ki℄ + 2FOPT;i9



where the seond equality is by de�nition of � ik. The third line is derived from Lemmas 4.5and 4.11. The fourth line is by j� ikj = U i=k. The �fth line is sine the jobs of lass k are smallerthan 2k+1.To ontinue, we use a tehnial lemma proved in [2℄ with its proof.Lemma 4.15 Given a sequene a1; a2; ::: of non-negative numbers suh that Pi�1 ai � A andPi�1 2iai � B then Pi�1 iai � A log(4B=A).Proof: De�ne a seond sequene, bi = Pj�i aj for i � 1. Then it is known that A � b1 �b2 �� : : : bi. Also, it is known that Pi�1 2iai = Pi�1 2i(bi � bi+1) = 12Pi�1 2ibi + b1. Thisimplies that Pi�1 2ibi � 2B.The sum we are trying to upper bound is Pi�1 bi. This an be viewed as an optimizationproblem where we try to maximize Pi�1 bi subjet to Pi�1 2ibi � 2B and bi � A for i � 1.This orresponds to the maximization of a ontinuous funtion in a ompat domain and anyfeasible point where bi < A; bi+1 > 0 is dominated by the point we get by replaing bi; bi+1 withbi + 2�; bi+1 � �. Therefore, it is upper bounded by assigning bi = A for 1 � i � k and bi = 0for i > k where k is large enough suh that Pi�1 2ibi � 2B. A hoie of k = dlog(2B=A)e isadequate and the sum is upper bounded by kA from whih the result follows.Lemma 4.16 For any mahine i, P�kij=kmin(�ki � j)ni=j2j � U i log(4ni)Proof: We exhange variables by l = �ki � j and de�ne Il = ni=�ki�l2�ki�l = ni=j2j . Note thatP�ki�kminl=0 Il � U i and also P�ki�kminl=0 2lIl =P�ki�kminl=0 2lni�ki�l2�ki�l = ni2�ki .We apply Lemma 4.15 to our problem using al = Il, l = 0; : : : ; �ki � kmin, A = U i andB = ni2�ki and obtain P�kij=kmin(�ki � j)ni=j2j =P�ki�kminl=0 lIl � U i log(4ni2�kiU i ) = U i log(4ni) dueto the fat that 2�ki � U i by de�nition of �ki.We prove the O(log n) approximation ratio.Theorem 4.17 F IMD = O(log n) �FOPT , i.e., algorithm IMD has a logarithmi approxima-tion fator, w.r.t the number of jobs n, even when ompared to the best (possibly migratory)o�ine algorithm.Proof: We sum over the di�erent mahines ontribution to the total ow.F IMD = mXi=1 F IMD;i� mXi=1f18 �kiXj=kmin(�ki � j)ni=j2j + 18U i[kmin;�ki℄ + 2FOPT;ig� 18 mXi=1U i log(4ni) + 18U + 2FOPT� O(logn) mXi=1 U i + 20FOPT = O(log n)FOPTwhere the seond line is due to Lemma 4.14 and the third line is due to Lemma 4.16.10



5 Total Completion Time AnalysisWe prove that the total ompletion time of algorithm IMD is at most 7 times the totalompletion time of the optimalmigratory o�ine algorithm. Later we show how to eliminate thepreemption and onstrut an algorithm IMD0 whih is at most 14 times the total ompletiontime of the optimal migratory o�ine algorithm. The analysis of this setion appears in theAppendix.6 ConlusionsIn this paper we onsidered the problem of �nding a preemptive shedule that optimizes boththe total ow time and the total ompletion time of a set of jobs released over time, when theassignment of jobs to mahines should be immediate disallowing job migration. We presenteda new online algorithm that is still within a logarithmi fator of the best (possibly migratory)o�ine algorithm with respet to the total ow time. This algorithm also ahieves a smallonstant approximation fator of the best o�ine algorithm with respet to the total ompletiontime.Referenes[1℄ F. N. Afrati, E. Bampis, C. Chekuri, D. R. Karger, C. Kenyon, S. Khanna, I. Milis,M. Queyranne, M. Skutella, C. Stein, and M. Sviridenko. Approximation shemes forminimizing average weighted ompletion time with release dates. In IEEE Symposium onFoundations of Computer Siene, pages 32{44, 1999.[2℄ B. Awerbuh, Y. Azar, S. Leonardi, and O. Regev. Minimizing the ow time withoutmigration. In Pro. 31st ACM Symp. on Theory of Computing, pages 198{205, 1999.[3℄ K.R. Baker. Introdution to Sequening and Sheduling. Wiley, 1974.[4℄ S. Chakrabarti, C. A. Phillips, A. S. Shulz, D. B. Shmoys, C. Stein, and J. Wein. Improvedsheduling algorithms for minsum riteria. In Pro. 23rd International Colloquium onAutomata, Languages and Programming, pages 646{657, 1996.[5℄ C. Chekuri, S. Khanna, and A. Zhu. Algorithms for minimizing weighted ow time. InPro. 33rd ACM Symp. on Theory of Computing, pages 84{93, 2001.[6℄ C. Chekuri, R. Motwani, B. Natarajan, and C. Stein. Approximation tehniques foraverage ompletion time sheduling. In Pro. 8th ACM-SIAM Symposium on DisreteAlgorithms, pages 609{618, 1997.[7℄ J. Du, J. Y. T. Leung, and G. H. Young. Minimizing mean ow time with release timeonstraint. Theoretial Computer Siene, 75(3):347{355, 1990.[8℄ L. Hall, D. Shmoys, and J. Wein. Sheduling to minimize average ompletion time: O�-lineand on-line algorithms. In Pro. of 7th ACM-SIAM Symposium on Disrete Algorithms,pages 142{151, 1996. 11



[9℄ L.A. Hall. Approximation algorithms for sheduling. In D.S. Hohbaum, editor, Approx-imation algorithms for NP-hard problems, pages 1{45. PWS publishing ompany, 1997.[10℄ J. A. Hoogeveen and Arjen P. A. Vestjens. Optimal on-line algorithms for single-mahinesheduling. In Pro. 5th Conf. Integer Programming and Combinatorial Optimization,pages 404{414, 1996.[11℄ H. Kellerer, T. Tautenhahn, and G. J. Woeginger. Approximability and nonapproxima-bility results for minimizing total ow time on a single mahing. In Proeedings of theTwenty-Eighth Annual ACM Symposium on the Theory of Computing, pages 418{426,Philadelphia, Pennsylvania, 1996.[12℄ E.L. Lawler, J.K Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. Sequening andsheduling: algorithms and omplexity. In Handbooks in operations researh and manage-ment siene, volume 4, pages 445{522. North Holland, 1993.[13℄ S. Leonardi and D. Raz. Approximating total ow time on parallel mahines. In Pro-eedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages110{119, El Paso, Texas, 1997.[14℄ C. Phillips, C. Stein, and J. Wein. Minimizing average ompletion time in the preseneof release dates. In Pro. 4th Workshop on Algorithms and Data Strutures, pages 86{97,1995.[15℄ L. Stougie and A. Vestjens. Randomized on-line sheduling: How low an't you go, 1997.7 Appendix: Total Completion Time AnalysisIn this setion we prove the ratio of 7 for algorithm IMD and 14 for the non-preemptivealgorithm IMD0. We start by de�ning a fair shedule. We say that a shedule S is fair, if forany two jobs i and j with pi = pj, i �nishes before j if and only if ri � rj . We now argue thatthere is a fair optimal shedule.Lemma 7.1 For any shedule S, there exist another shedule S0, whih is fair and whih isnot worse than S, with respet to the total ompletion time.Proof: We transform the shedule S into S0 in stages. At eah stage we hoose a pair of jobsi and j, with pi = pj and ri < rj, whih is not sheduled fairly, i.e., job j �nishes before job i.We denote by T1 the time period when only one of these jobs was proessed. Let T1;i be thetime period when only job i was proessed and let T1;j be the time period when only job j wasproessed. We assign the �rst jT1;ij time units of T1 to job i and the last jT1;j j units of T1 tojob j. First note that this assignment is feasible, moreover this pair is sheduled fairly, whileonly improving the ompletion time of the �rst job to be ompleted of the two (the seondjob ompletion time remains unhanged). After a �nite number of stages this proess stops,yielding S0.Corollary 7.2 For any input jobs set J , there is a fair optimal shedule.12



Proof: By Lemma 7.1 there is another shedule S0, whih is not worse than OPT with respetto the total ompletion time that is also fair. Obviously S0 is also optimal.By Corollary 7.2, we an hoose OPT to denote an optimal o�ine algorithm, whih yieldsa shedule that is fair.Reall that the input set of jobs is J = f(rj ; pj)gnj=1. We ompare the performane of IMDand OPT on J by examining the performane of OPT when running on another input set Ĵ .We de�ne this set by Ĵ = f(2rj ; 2kj+1)gnj=1, where kj is the lass of the jth job in J .Lemma 7.3 For any input set of jobs J , COPT (Ĵ) � 2COPT (J).Proof: Let J2 = f(2rj ; 2pj)gnj=1. It is lear that any shedule on J an be translated by simplesaling to a shedule on J2 and vie versa, hene COPT (J2) = 2COPT (J). On the other handwe have that 2kj+1 � 2pj , therefore any shedule on J2 is also a valid shedule on Ĵ yieldingCOPT (Ĵ) � COPT (J2). Combining the above arguments yields COPT (Ĵ) � COPT (J2) =2COPT (J).We now observe that the total ompletion time an be omputed as an integral over timeof the number of jobs that were not ompleted yet:Observation 7.4 For any sheduler S, CS = Rt n� S(J; t)dt :In view of this observation, we turn to show that for any t, algorithm IMD ompletes bytime 3:5t at least the amount of jobs ompleted by OPT by time t when it runs on Ĵ .Reall that JOPT (Ĵ ; t) is the set of jobs that OPT �nishes by time t when the input set ofjobs is Ĵ . We denote the orresponding jobs from J by J�(t).Lemma 7.5 For any time t, OPT (Ĵ ; t) = IMD(J�(t); 3:5t).Proof: First note that by de�nition OPT (Ĵ ; t) = jJOPT (Ĵ ; t)j = jJ�(t)j, furthermore, it is learthat for any other time t0, jJ�(t)j � IMD(J�(t); t0), hene OPT (Ĵ ; t) � IMD(J�(t); 3:5t). Itis left to prove that OPT (Ĵ ; t) � IMD(J�(t); 3:5t).Note that all the jobs in J�(t) are released before time t2 . By de�nition all the jobs inJ�(t) are smaller than their orresponding jobs in JOPT (Ĵ ; t), onsequently U(J�(t); t2) �U(JOPT (Ĵ ; t); t). By standard averaging argument, we dedue that minifU i(J�(t); t2)g �1mU(JOPT (Ĵ ; t); t) � t.Let klow and khigh be the extreme lasses of jobs in J�(t). Hene, the biggest job inJOPT (Ĵ ; t) is of size 2khigh+1. Sine OPT �nishes its orresponding job by time t, we also havethat 2khigh+1 � t.Applying lemma 4.2, we bound the total volume di�erene between the mahines as follows:U i(J�(t); t2) = U i�khigh(J�(t); t2) � U j�khigh(J�(t); t2 ) + 2khigh+2 � U j(J�(t); t2) + 2khigh+2 :Combining the above arguments yields:maxi fU i(J�(t); t2)g � mini fU i(J�(t); t2)g+ 2khigh+2 � t+ 2t = 3t :13



Thus, algorithm IMD �nishes to proess all the jobs of J�(t) before time 3:5t, even if itstarts proessing jobs only at time t2 . Therefore, OPT (Ĵ ; t) � IMD(J�(t); 3:5t). This provesthe lemma.Lemma 7.6 For any time t, IMD(J�(t); t) � IMD(J; t).Proof: Note that not only J�(t) � J , but J�(t) is lass-wise pre�x of J , i.e. the arrival timeof any job of lass k in J�(t) is at most the arrival time of any job of this lass in J n J�(t)(by our hoie of a fair OPT shedule). Hene, the assignment of the jobs in J�(t) by IMDremains the same, when it runs on J . Therefore the job set that IMD assigns to eah mahinewhen running on J is a superset of the jobs it assigned when it ran only on J�(t). Note thatalgorithm IMD uses SRPT on eah mahine in order to shedule the input jobs, moreover itis well known that SRPT (J1; t) � SRPT (J2; t) for any t and J1 � J2 (see [14℄), hene, for anytime t, eah mahine ompletes at least the same number of jobs it ompleted on J�(t) . Thelemma follows.Corollary 7.7 For any time t, OPT (Ĵ ; t) � IMD(J; 3:5t).Proof: Combining Lemmas 7.5 and 7.6 yields OPT (Ĵ ; t) = IMD(J�(t); 3:5t) � IMD(J; 3:5t).Lemma 7.8 CIMD(J) � 3:5 � COPT (Ĵ).Proof: We ompute the total ompletion time.CIMD(J) = Zt n� IMD(J; t)dt = Zu[n� IMD(J; 3:5u)℄3:5du� 3:5 Zu n� OPT (Ĵ ; u)du = 3:5 � COPT (Ĵ)where the �rst and the last equalities are by Observation 7.4. The seond equality is obtainedby the variables hange 3:5u = t. The inequality is due to Corollary 7.7.We turn to prove the main result of this setion.Theorem 7.9 CIMD(J) � 7�COPT (J), i.e., algorithm IMD has a small onstant approxima-tion fator even when ompare to the best (possibly migratory) o�ine algorithm, with respetto the total ompletion time.Proof: Combining Lemmas 7.3 and 7.8 yields: CIMD(J) � 3:5 � COPT (Ĵ) � 7 � COPT (J) :Note that the preemptive algorithm IMD an be onverted into a non-preemptive algo-rithm IMD0 by applying some single mahine 'preemptive to non-preemptive' onversion toeah of the mahines separately. Suh a onversion algorithm was introdued in [14℄, whihbasially list-shedules the jobs aording to their ompletion time in the preemptive shedule.This onversion results in losing only a onstant fator of 2 in our approximation, resulting ina non-preemptive shedule generated using immediate dispathing, with a 14 approximationfator of the best possibly migratory o�ine algorithm with respet to the total ompletiontime. 14


