Strongly Polynomial Algorithms for the
Unsplittable Flow Problem

Yossi Azar! and Oded Regev?

! Dept. of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel.
azar@math.tau.ac.il ***
2 Dept. of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel.

odedr@math.tau.ac.il

Abstract. We provide the first strongly polynomial algorithms with
the best approximation ratio for all three variants of the unsplittable
flow problem (UFP). In this problem we are given a (possibly directed)
capacitated graph with n vertices and m edges, and a set of terminal pairs
each with its own demand and profit. The objective is to connect a subset
of the terminal pairs each by a single flow path as to maximize the total
profit of the satisfied terminal pairs subject to the capacity constraints.
Classical UF' P, in which demands must be lower than edge capacities,
is known to have an O(y/m) approximation algorithm. We provide the
same result with a strongly polynomial combinatorial algorithm. The
extended UF P case is when some demands might be higher than edge
capacities. For that case we both improve the current best approximation
ratio and use strongly polynomial algorithms. We also use a lower bound
to show that the extended case is provably harder than the classical case.
The last variant is the bounded UF P where demands are at most % of
the minimum edge capacity. Using strongly polynomial algorithms here
as well, we improve the currently best known algorithms. Specifically,
for K = 2 our results are better than the lower bound for classical UF' P
thereby separating the two problems.

1 Introduction

We consider the unsplittable flow problem (UFP). We are given a directed or
undirected graph G = (V, E), |V| = n, |E| = m, a capacity function u on its
edges and a set of I terminal pairs of vertices (s;,t;) with a demand d; and profit
rj. A feasible solution is a subset S of the terminal pairs and a single flow path
for each such pair such that the capacity constraints are fully met. The objective
is to maximize the total profit of the satisfied terminal pairs. The well-known
problem of maximum edge disjoint path, denoted ED P, is the special case where
all demands, profits and capacities are equal to 1 (see [5]).

The EDP (and hence the UF P) is one of Karp’s original NP-complete prob-
lems [6]. An O(y/m) approximation algorithm is known for EDP [7] (for addi-
tional positive results see [12, 13]). Most of the results for UF P deal with the

*** Research supported in part by the Israel Science Foundation and by the US-Israel
Binational Science Foundation (BSF).

classical case where dpay < Umin (the maximal demand is at most the mini-
mal capacity). The most popular approach seems to be LP rounding [2, 10, 14]
with the best approximation ratio being O(y/m) [2]. A matching lower bound
of 2(m'/?€) for any € > 0 is shown in [5] for directed graphs. Both before and
after the O(y/m) result, there were attempts to achieve the same approximation
ratio using combinatorial methods. Up to now however, these were found only
for restricted versions of the problem [5, 10] and were not optimal. Qur combi-
natorial algorithm not only achieves the O(y/m) result for classical UF P but is
also the first strongly polynomial algorithm for that problem.

The extended U F' P is the case where both demands and capacities are arbi-
trary (specifically, some demands might be higher than some capacities). Due to
its complexity, not many results addressed it. The first to attack the problem is
a recent attempt by Guruswami et al. [5]. We improve the best approximation
ratio through a strongly polynomial algorithm. By proving a lower bound for the
extended U F'P over directed graphs we infer that this case is really harder than
the classical U F'P. Specifically, for large demands we show that unless P = NP
it is impossible to approximate extended UF P better than O(m!'~¢) for any
€ > 0.

Another interesting case is the bounded UF P case where dy,q, < %umm
(denoted K-bounded UFP). It is a special case of classical UFP but better
approximation ratios can be achieved. As a special case, it contains the half-
disjoint paths problem where all the demands and profits are equal to % and edge
capacities are all 1 [8]. For K > logn, a constant approximation is shown in [11]
by using randomized rounding. For K < logn, previous algorithms achieved an
approximation ratio of O(K nﬁ) ([2, 14] by using LP rounding and [3, 9] based
on [1]). We improve the result to a strongly polynomial O(K n%) approximation
algorithm which, as a special case, is a O(y/n) approximation algorithm for the
half disjoint case. Since this ratio is better than the lower bound for classical
UFP, we achieve a separation between classical UF P and bounded UF P. The
improvement is achieved by splitting the requests into a low demand set and
a high demand set. The sets are treated separately by algorithms similar to
those of [1] where in the case of high demands the algorithm has to be slightly
modified. We would like to note that in our approximation ratios involving n,
we can replace n with D where D is an upper bound on the longest path ever
used (which is obviously at most n).

As a by-product of our methods, we provide online algorithms for UF P.
Here, the network is known but requests arrive one by one and a decision has
to be made without knowing which requests follow. We show on-line algorithms
whose competitive ratio is somewhat worse than that of the off-line algorithms.
We also show that one of our algorithms is optimal in the on-line setting by
slightly improving a lower bound of [1].

We conclude this introduction with a short summary of the main results in
this paper. We denote by d,,,, the maximum demand and by %,;, the minimum
edge capacity.

— Classical UFP (dpaz < Umin) - Strongly polynomial O(y/m) approximation
algorithm.

— Extended UFP (arbitrary dpmaz, Umin) - Strongly polynomial O(y/mlog(2 +
Imez)) approximation algorithm; A lower bound of 2(m'~€) and of

.Q(m%_E log(2 + i:‘:”

n

)) for directed graphs.

— Bounded UFP (dmaz < %umm) - Strongly polynomial O(Kn%) approxi-
mation algorithm.

2 Notation

Let G = (V, E), |V| =n, |E| = m, be a (possibly directed) graph and a capacity
function v : £ — RT. An input request is a quadruple (s;,t;,d;,r;) where
{s;j,t;} is the source-sink terminal pair, d; is the demand and r; is the profit.
The input is a set of the above quadruples for j € T = {1,...,1}. Let D be a
bound on the length of any routing path; note that D is at most n.

We denote by min (Umaz) the minimum (maximum) edge capacity in
the graph. Similarly, we define dmin, dmaz, Tmin and rmee to be the mini-
mum/maximum demand/profit among all input requests. We define two func-
tions on sets of requests, S C T

r(S)=>r; dS)=> d;

JjeES JjES

A feasible solution is a subset P C T" and a route P; from s; to t; for each j € P
subject to the capacity constraints, i.e., the total demand routed through an edge
is bounded by the its capacity. Some of our algorithms order the requests so we
will usually denote by L;(e) the relative load of edge e after routing request j,
that is, the sum of demands routed through e divided by u(e). Without loss of
generality, we assume that any single request can be routed. That is possible since
we can just ignore unroutable requests. Note that this is not the dmee < Umin
assumption made in classical UF'P.

Before describing the various algorithms, we begin with a simple useful
lemma:

Lemma 1. Given a sequence {a1,...,an}, a non-increasing non-negative se-
quence {by,...,b,} and two sets X,Y C {1,...,n}, let X' = X N{1,...,i} and
Yi=YnNn{l,...i}. If for every 1 <i<n

E a; >« E a;
JEX' JEY?

then

Z a,jb]' >« Z a]'b]'

JEX JEY

Proof. Denote b,,11 = 0. Since b; — bj;1 is non-negative,

Yoaihi= D (i —bir1) Y a

jeEX i=1,...,n JEX!
>« E (bl - bi+1) E a; =« E a]-bj
i=1,...,n Jjey: Jjey

3 Algorithms for UFP

3.1 Algorithm for Classical UF P

In this section we show a simple algorithm for classical UF P (the case in which
dmaz < Umin)- The algorithm’s approximation ratio is the same as the best
currently known algorithm. Later, we show that unlike previous algorithms, this
algorithm can be easily made strongly polynomial and that it can even be used
in the extended case.

We split the set of requests T' into two disjoint sets. The first, T3, consists
of requests for which d; < %min/2. The rest of the requests are in T». For each
request j and a given path P from s; to t; define

— Tj
dj zeEP ﬁ ,

a measure of the profit gained relative to the added network load.

Given a set of requests, we use simple bounds on the values of F. The lower
bound, denoted cin, is defined as ™2 and is indeed a lower bound on F'(j, P)
since P cannot be longer than n edges and the capacity of its edges must be at
least d;. The upper bound, denoted qq, is defined as W and is clearly
an upper bound on F'(j, P).

F(j, P)

PROUTE
run Routines(T1) and Routines(T3) and choose the better solution

Routines(S):
foreach k from |log amin] to [log amae |
run Routine;(2*,S) and choose the best solution

Routine; (a, S):
sort the requests in S according to a non-increasing order of r;/d;
foreach j € S in the above order

if 3 path P from s; to t; s.t. F(j,P) > a and Ve € P,L;_1(e) + ud(fa) <1
then route the request on P and for e € P set L;(e) = Lj_1(e) + 4;
else reject the request

u(e)

Theorem 1. Algorithm PROUTE is an O(y/m) approzimation algorithm for
classical UFP.

Proof. First, we look at the running time of the algorithm. The number of iter-
ations done in Routines is:
log 2ma2 _ Jog(nmaz Umaz)
Umin Tmin Qmin

which is polynomial. Routine; looks for a non overflowing path P with F(j, P) >
a. The latter condition is equivalent to) p ﬁe) < d%{ and thus a shortest
path algorithm can be used.

Consider an optimal solution routing requests in Q@ C T'. For each j € Q let
@; be the route chosen for j in the optimal solution. The total profit of either
QNT; or QNTy is at least @ Denote that set by Q' and its index by i’ € {1,2},
that is, @' = Q N Ty. Now consider the values given to « in Routine; and let
o' = 2% be the highest such that r({j € Q'|F(j,Q;) > &'}) > r(Q)/4. Tt is
clear that such an o' exists. From now on we limit ourselves to Routine; («',i')
and show that a good routing is obtained by it. Denote by P the set of requests
routed by Routinei(a',i') and for j € P denote by P; the path chosen for it.

Lot Q'hign = {j € QF(j,Q;) > o'} and Qrou = {j € QF(j,Q;) < 20')
be sets of higher and lower ‘quality’ routes in Q'. Note that the sets are not
disjoint and that the total profit in each of them is at least T(f) by the choice
of a’. From the definition of F,

d; d.;
Qo) = 30 FUQ) Y g5 <2 30 3 s

J€Q 10w e€Q; FEQ 10w €€Q;

d:

< 2a —7

jezgegj u(e)
d:
Sl X

e JEQIeEQ;

< 2a/ Z 1 =2ma’
e

where the last inequality is true since an optimal solution cannot overflow an
edge. Therefore,
r(Q) < 8ma'.

Now let Epequy = {e € E|Li(e) > 1} be a set of the heavy edges after
the completion of Routine;(a’,i"). We consider two cases. The first is when
| Eheavy| > v/m. According to the description of the algorithm, F'(j, P;) > o' for
every j € P. Therefore,

"P)= PGP Y 2

jeEP ecP;

where the last inequality follows from the assumption that more than /m edges
are loaded more than fourth their capacity. By combining the two inequalities
we get:

r(Q)
r(P

< 32vm = 0(vVm)

~—

which completes the first case.

From now on we consider the second case where |Epequy| < v/m. Denote by
R = Q};,, \ P- We compare the profit given by our algorithm to that found in R
by using Lemma 1. Since 2—; is a non increasing sequence, it is enough to bound
the total demand routed in prefixes of the two sets. For that we use the notation
RF = RN {1,..,k} and P* = PN {1,...,k} for k = 1,...,I. For each request
j € R¥ the algorithm cannot find any appropriate path. In particular, the path
Q; is not chosen. Since j € Q'pign, F(j,Q;) > o and therefore the reason the
path is not chosen is that it overflows one of the edges. Denote that edge by e;
and by E¥ = {e;|j € RF}.

Lemma 2. E¥ C Eheavy

Proof. Let e; € E* be an edge with j € R¥, a request corresponding to it. We
claim that when the algorithm fails finding a path for j, L;(e;) > i. For the case
i’ = 1, the claim is obvious since the demand d; < wmin/2 and in particular,
d; < u(e;)/2. Thus, the load of e; must be higher than u(e;)/2 for the path
Q; to overflow it. For the case i’ = 2, we know that umin/2 < d; < Umin.
In case u(ej) > 2umin, the only way to overflow it with demands of size at
most dmazr < Uman 1S When the edge is loaded at least u(e;) — umin > ule;)/2.
Otherwise, u(e;) < 2Um;n and since d;j < Umin < u(e) we know that the edge
cannot be empty. Since we only route requests from T, the edge’s load must be
at least umin/2 > u(e;)/4.

Since each request in R* is routed through an edge of E* in the optimal
solution, d(R*) < 3. g u(e). The highest capacity edge f € E* is loaded more

than fourth its capacity since it is in Epeqy and therefore d(PX) > #. By
Lemma 2, |E¥| < |Epeqvy| < +/m and hence,

d(R*) < vm - u(f) < 4y/m - d(P").

We use Lemma 1 by combining the inequality above on the ratio of demands

and the nonincreasing sequence . This yields
T
—d; <4
> gdisavmy o
JER JjEP
or,

r(R) < 4y/m - r(P).
Since thigh =RUTP,

7(Qhign) = r(R) +r(P) < (14 4y/m)r(P).

Recall that r(Q'pign) > r(Q)/4 and therefore

Q) iy
Ty S 4+ 16vim = O(/m)

3.2 Strongly Polynomial Algorithm

Routine; is strongly polynomial. Routines however calls it log S=e= times.
Therefore, it is polynomial but still not strongly polynomial. We add a pre-
processing step whose purpose is to bound the ratio z::“: . Recall that [denotes
the number of requests.

SPROUTE(T):
run Routines(Ty) and Routines(T>) and choose the better solution

Routinesz(S):
For each edge such that u(e) > - dpqa. set u(e) to be l - dpaz-
Throw away requests whose profit is below ez,
Take the better out of the following two solutions:
Route all requests in Siiny = {j € S|d; < “=i=} on any simple path.
Run Routines(S \ Stiny)-

Theorem 2. Algorithm SPROUTE is a strongly polynomial O(\/m) approzi-
mation algorithm for classical UFP.

Proof. Consider an optimal solution routing requests in @ C S. Since the de-
mand of a single request is at most d,q., the total demand routed through a
given edge is at most [- dy,q,. Therefore, Q is still routable after the first pre-
processing phase. The total profit of requests whose profit is lower than ~=e=
i Trmaz- In case 7(Q) > 27,42, removing these requests still leaves the set Q'
@. Otherwise, we take Q' to be

the set containing the request of highest profit. Then, r(Q') is rpee > @ All
in all, after the two preprocessing phases we are left with an UF' P instance for
which there is a solution Q' whose profit is at least T(Q)

whose total profit is at least r(Q) — rmaz >

Assume that the total profit in Q' N Sy, is at least @. Since the requests
in Stiny have a demand of at most “=4= and there are at most [of them, they can

all be routed on simple paths and the profit obtained is at least T(Q . Otherwise,

the profit in Q' \ Siiny is at least = (Q) and since algorithm PROUTE is an
O(y/m) approximation algorithm, the proﬁt we obtain is also within O(y/m) of
r(Q).

The preprocessing phases by themselves are obviously strongly polynomial.
Recall that the number of iterations performed by Routines is log(nTmaez fmaz),
The ratio of profits is at most [by the second preprocessing phase. mThemﬁnrst
preprocessing phase limits Uy,qe t0 k - dpaz- S0, the number of iterations is at
most log(nIQZ:ﬁ). In case S = T, dmae < *5™ and dpin > “2= since tiny
requests are removed. For S = Ts, dinaz < Umin and dimin > Umin /2. We end up
with at most O(logn + logl) iterations which is strongly polynomial.

3.3 Algorithm for Extended UF P

In this section we show that the algorithm can be used for the extended case in
which demands can be higher than the lowest edge capacity.

Instead of using just two sets in SPROUTE, we define a partition of the
set of requests T into 2 + max{[logdmaz/tUmin],0} disjoint sets. The first, T
consists of requests for which d; < wmin/2. The set T; for i > 1 is of requests for
which 28 3wy, < dj < 28 2Uumipn. The algorithm is as follows:

ESPROUTE(T):

for any 1 <i < 2 + max{[logdaz/%min|,0} such that T} is not empty
run Routines(T;) on the resulting graph

choose the best solution obtained

The proof of the following theorem is left to Appendix A.1:

Theorem 3. Algorithm ESPROUTE is a strongly polynomial O(y/mlog(2
dmaz)y gpprozimation algorithm for extended UFP.

Umin

4 Algorithms for K-bounded U F P

In the previous section we considered the classical UF P in which dpq2 < Umin.
We also extended the discussion to extended U F' P. In this section we show better
algorithms for K-bounded UF P in which d,,4, < %umm where K > 2.

4.1 Algorithms for Bounded Demands

In this section we present two algorithm for bounded U F'P. The first deals with
the case in which the demands are in the range [}‘(mﬁ , “=in]. As a special case, it
provides an O(y/n) approximation algorithm for the half-disjoint paths problem
where edge capacities are all the same and the demands are exactly half the edge
capacity. The second is an algorithm for the K-bounded UF' P where demands

are only bounded by == from above.

EKROUTE(T):
uw+ 2D
sort the requests in 7' according to a non-increasing order of r;/d;
foreach j € T in the above order
if 3 a path P from s; to t; s.t.
Yeep(uhti —1) <D
then route the request on P and for e € P set L;(e) = L;j_1(e) + @

Ymin

else reject the request

BKROUTE(T):
1 (2D) T ET
sort the requests in 7' according to a non-increasing order of r;/d;
foreach j € T; in the above order
if 3 a path P from s; to ¢; s.t.

Seep(uhs -+ ~1) < D
then route the request on P and for e € P set L;(e) = Lj_;(e) +
else reject the request

u(e)

Note that algorithm EK ROUTE uses a slightly different definition of L. This
‘virtual’ relative load allows it to outperform BK ROUTUFE in instances where
the demands are in the correct range.

The proof of the following theorem can be found in Appendix A.2:

Theorem 4. Algorithm EKROUTE is a strongly polynomial O(K - D%) ap-

prozimation algorithm for UF'P with demands in the range [, dmin] Algo-

rithm BKROUTE is a strongly polynomial O(K - Dﬁ) approzimation algo-
rithm for K-bounded UFP.

4.2 A Combined Algorithm

In this section we combine the two algorithms presented in the previous section:
the algorithm for demands in the range [, #=i2] and the algorithm for the
K-bounded UF P. The result is an algorithm for the K-bounded UF P with an
approximation ratio of O(K - D¥).

We define a partition of the set of requests 7' into two sets. The first, 77,
includes all the requests whose demand is at most ﬁ The second, T5, includes
all the requests whose demand is more than ﬁ and at most %

CKROUTE(T):
Take the best out of the following two possible solutions:
Route T} by using BK ROUTE and reject all requests in T
Route T> by using EK ROUTE and reject all requests in T}

10

Theorem 5. Algorithm CKROUTE is a strongly polynomial O(K - D%) ap-
prozimation algorithm for K-bounded UFP.

Proof. Let () denote an optimal solution in T'. Since BK ROUTE is used with
demands bounded by ﬁ its approximation ratio is O(KD%). The same ap-
proximation ratio is given by EKROUTE. Either Ty or T> have an optimal
solution whose profit is at least "9 and therefore we obtain the claimed ap-

2
proximation ratio.

5 Lower Bounds

In this section we show that in cases where the demands are much larger than
the minimum edge capacity UF P becomes very hard to approximate, namely,
2(m!~¢) for any € > 0. We also show how different demand values relate to the
approximability of the problem. The lower bounds are for directed graphs only.

Theorem 6. [}] The following problem is NPC':

2DIRPATH :
INPUT: A directed graph G = (V, E) and four nodes z,y,z,w € V
QUESTION: Are there two edge disjoint directed paths,

one from x to y and the other from z to w in G ¢

Theorem 7. For any € > 0, extended UF P cannot be approzimated better than
2(mr~e).

Proof. For a given instance A of 2DIRPATH with |A| edges and a small con-
stant €, we construct an instance of extended U F P composed of [copies of A,
AY A% Al where | = |A|[*]. The instance A’ is composed of edges of capacity
2!=i A special node 3° is added to the graph. Two edges are added for each A?,
(y*=1, 2%) of capacity 2!~ — 1 and (y*~!, 2%) of capacity 2/ ~%. All [requests share
y° as a source node. The sink of request 1 < i <1 is w*. The demand of request
i is 2!7% and its profit is 1. The above structure is shown in the following figure
for the hypothetical case where [= 4. Fach diamond indicates a copy of A with
z,y, z,w being its left, right, top and bottom corners respectively. The number
inside each diamond indicates the capacity of A’s edges in this copy.

Fig. 1. The UF P instance for the case [=4

We claim that for a given Y ES instance of 2DIRPAT H the maximal profit
gained from the extended U F' P instance is [. We route request 1 < ¢ <[through

11
[0, 2t vt 2%, y?, ..., y' 7L, 2%, wi]. Note that the path from z7 to y/ and from z7
to w’ is a path in A7 given by the Y ES instance.

For a NO instance, we claim that at most one request can be routed. That
is because the path chosen for a request i ends at w'. So, it must arrive from
either 2% or x*. The only edge entering z* is of capacity 2/~% — 1 so 2’ is the
only option. The instance A® is a NO instance of capacity 2!~ through which
a request of demand 2!~ is routed form z* to w'. No other path can therefore
be routed through A? so requests j > 4 are not routable. Since i is arbitrary, we
conclude that at most one request can be routed through the extended UFP
instance and its profit is 1.

The gap created is I = |A|¢ and the number of edges is [- (|4|+2) = O(I'F¢).
Hence, the gap is Q(m#) = 2(m'~¢) and since € is arbitrary we complete the
proof.

Theorem 8. For any € > 0 extended UFP with any ratio dpas/tmin > 2
cannot be approzimated better than 2(m3z =<,/ |log(d=ez)|).

Umin

Proof. Omitted.

6 Online Applications

Somewhat surprisingly, variants of the algorithms considered so far can be used
in the online setting with slightly worse bounds. For simplicity, we present here
an algorithm for the unweighted K-bounded UFP in which r; = d; for every
JeT.

First note that for unweighted K-bounded UF P, both EKROUTE and
BKROUTE can be used as online deterministic algorithms since sorting the
requests becomes unnecessary. By splitting T into 77 and T as in CK ROUTE
we can combine the two algorithms:

ONLINECKROUTE(T):
Choose one of the two routing methods below with equal probabilities:
Route T} by using BK ROUTE and reject all requests in T
Route T> by using EK ROUTE and reject all requests in T}

Theorem 9. Algorithm ONLINECKROUTE is an O(K - D%) competitive
online algorithm for unweighted K -bounded UF P.

Proof. The expected value of the total accepted demand of the algorithm for
any given input is the average between the total accepted demands given by the
two routing methods. Since each method is O(K - D%) competitive on its part
of the input, the theorem follows.

Theorem 10. The competitive ratio of any deterministic on-line algorithm for
1
the K -bounded UFP is at least 2(K -n¥x).

Proof. Omitted.

12

7

Conclusion

Using combinatorial methods we showed algorithms for all three variants of the
UFP problem. We improve previous results and provide the best approxima-
tions for UF P by using strongly polynomial algorithms. Due to their relative
simplicity we believe that further analysis should lead to additional performance
guarantees such as non linear bounds. Also, the algorithms might perform better
over specific networks. It is interesting to note that no known lower bound exists
for the half-disjoint case and we leave that as an open question.

References

[1]
2]

(3]

[4]
[5]

[7]
(8]

[10]

[11]

[12]

[13]

[14]

B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive online routing. In
34th IEEE Symposium on Foundations of Computer Science, pages 32—40, 1993.
A. Baveja and A. Srinivasan. Approximation algorithms for disjoint paths and
related routing and packing problems. To appear in Mathematics ofOperations
Research.

A. Borodin and R. El-Yaniv. Online computation and competitive analysis (cam-
bridge university press, 1998). SIGACTN: SIGACT News (ACM Special Interest
Group on Automata and Computability Theory), 29, 1998.

S. Fortune, J. Hopcroft, and J. Wyllie. The directed homeomorphism problem.
Theoretical Computer Science, 10:111-121, 1980.

V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yannakakis. Near-
optimal hardness results and approximation algorithms for edge-disjoint paths and
related problems. Proc. of STOC 99, pages 19-28.

R.M. Karp. Reducibility among Combinatorial Problems, R.E. Miller and
J.W. Thatcher (eds.), Complexity of Computer Computations. Plenum Press,
1972.

J. Kleinberg. Approzimation Algorithms for Disjoint Paths Problems. PhD thesis,
Massachusetts Institue of Technology, 1996.

J. Kleinberg. Decision algorithms for unsplittable flow and the half-disjoint paths
problem. In Proceedings of the 30th Annual ACM Symposium on Theory of Com-
puting (STOC ’98), pages 530-539, New York, May 23-26 1998. ACM Press.

J. Kleinberg and E. Tardos. Approximations for the disjoint paths problem in
high-diameter planar networks. Proc. of STOC ’95, pages 26-35.

S. Kolliopoulos and C. Stein. Approximating disjoint-path problems using greedy
algorithms and packing integer programs. In IPCO: 6th Integer Programming and
Combinatorial Optimization Conference, 1998.

P. Raghavan and C.D. Thompson. Provably good routing in graphs: Regular
arrays. In Proc. 17th ACM Symp. on Theory of Computing, May 1985.

N. Robertson and P. D. Seymour. An outline of a disjoint paths algorithm. In
Paths, Flows and VLSI Design, Algorithms and Combinatorics, volume 9, pages
267-292, 1990.

N. Robertson and P. D. Seymour. Graph minors. XIII. the disjoint paths problem.
JCTB: Journal of Combinatorial Theory, Series B, 63, 1995.

A. Srinivasan. Improved approximations for edge-disjoint paths, unsplittable flow,
and related routing problems. In Proc. 38th IEEE Symp. on Found. of Comp.
Science, pages 416-425.

13
A Appendix

A.1 Proof of Theorem 3

Proof. The proofs of Theorem 1 and of Theorem 2 hold also for the extended
case. The only part which has to be proved is Lemma 2. The following replaces
the lemma:

Lemma 3. E¥ C Eheavy

Proof. Let e; € E* be an edge with j € R¥, a request corresponding to it. We
claim that when the algorithm fails finding a path for j, L;(e;) > 1. For the
case i’ = 1, the claim is obvious as before. For the case i’ > 1, we know that
28 By i < dj < 2i' =2y, .. In case u(e;) > 21 ~1yy,.in, the only way to overflow
it with demands of size at most 2il’2umm is when the edge is loaded at least
u(ej) — 2" 2umin > u(ej)/2. Otherwise, u(e;) < 2¢ " tuym and since j is routed
through this edge in the optimal solution d; < u(e;). Therefore, the edge cannot
be empty. Since we only route requests from 7T the edge’s load must be at least

27 B Umin > ule;) /4.

The number of iterations ESPROUTE performs is at most [since we ig-
nore empty T;’s. For Ty, the number of iterations of Routines is the same as
in SPROUTE. For a set T;, i > 1, the number of iterations of Routines is
log(njﬂ’::—j:‘é:—;). As before, the preprocessing of Routines reduces this number
to log(nl2gm#). Since the ratio gm# is at most 2 in each T;, we conclude that
ESPROUTE is strongly polynonﬁgl.

A.2 Proof of Theorem 4

Proof. The first thing to note is that the algorithms never overflow an edge. For
the first algorithm, the demands are at most “2 and the only way to exceed an
edge capacity is to route request j through an edge e that holds at least L%(:)J
requests. For such an edge, L; 1(e) > 1 and p%i-1(®) — 1>y —1 > D. For the
second algorithm, it is sufficient to show that in case L;_q(e) > 1 — % for some
e then p%-1(¢) —1 > D; that is true since pLi-1(¢) —1 > ((2D)1+ﬁ)1’% —-1=
2D — 1 > D. Therefore, the algorithms never overflow an edge.

Now we lower bound the total demand accepted by our algorithms. We denote
by Q the set of requests in the optimal solution and by P the requests accepted
by either of our algorithm. For j € Q denote by @; the path chosen for it in the
optimal solution and for j € P let P; be the path chosen for it by our algorithm.
We consider prefixes of the input so let QF = On{1,....k} and P* = Pn{1, ..., k}
for k =1, ...,1. We prove that

> ule)(uhr) — 1)
6K Dpx '

d(P*) >

14

The proof is by induction on k£ and the induction base is trivial since the above
expression is zero. Thus, it is sufficient to show that for an accepted request j

>eep, ule)(uhi) — pliza(e)
6KDux

<d;.
Note that for any e € P;, Lj(e) — Lj_1(e) < & for both algorithms. In addition,
for both algorithms L;(e) —L;j_1(e) < 3% where the factor 3 is only necessary

for EKROUTE where the virtual load is higher than the actual increase in
relative load. The worst case is when K = 2, u(e) = (1.5 — €)tmn and d; =

(% + €)Umin: the virtual load increases by % whereas % is about %. Looking at
the exponent,

MLj(e) _ 'uLj—l(e) - ML1—1(e)

where the first inequality is due to the simple relation ¥ — 1 < zy for 0 <y <
1,0 < z and that for e € P}, L;j(e) — Lj_1(e) < % Therefore,

e i — € i — € L
Z ue)(pli®) — pli-ile) < Z pki-1 @y 3K d;
eEPj eer

= 3[(”%(1]. Z pli-1(®)
e€P;

= 3Kuwd;(Y (u"1) = 1) + [Py
e€P;

< 3Ku* (D + D)d;

= 6K Du*d;
where the last inequality holds since the algorithm routes the request through
P; and the length of P; is at most D.

The last step in the proof is to upper bound the total demand accepted by

an optimal algorithm. Denote the set of requests rejected by our algorithm and

accepted by the optimal one by R¥ = Q% \ P*. For j € R*, we know that
Zeer (,uLﬂ'*l(e) — 1) > D since the request is rejected by our algorithm. Hence,

D-d(RF) < 30 Y diul O - 1)

JERF e€Q;

<D di(pt -

JER* e€EQ;

15

=2 > G-

e jeERF|ecQ);

DRI S

JERk|e€Q;

< (WO — 1yufe),

where the last inequality holds since the optimal algorithm cannot overflow an
edge.
By combining the two inequalities shown above,

A(Q") < d(P*) + d(B) < d(P*) + (P PP uk = (14 6Kk)a(PY)

The algorithm followed a non-increasing order of % and by Lemma 1 we ob-
tain the same inequality above for profits. So, the Japproximation ratio of the
algorithm is))

1+6Kux =0(K - ux)

which, by assigning the appropriate values of u, yields the desired results.

