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.ilAbstra
t. We provide the �rst strongly polynomial algorithms withthe best approximation ratio for all three variants of the unsplittable
ow problem (UFP ). In this problem we are given a (possibly dire
ted)
apa
itated graph with n verti
es andm edges, and a set of terminal pairsea
h with its own demand and pro�t. The obje
tive is to 
onne
t a subsetof the terminal pairs ea
h by a single 
ow path as to maximize the totalpro�t of the satis�ed terminal pairs subje
t to the 
apa
ity 
onstraints.Classi
al UFP , in whi
h demands must be lower than edge 
apa
ities,is known to have an O(pm) approximation algorithm. We provide thesame result with a strongly polynomial 
ombinatorial algorithm. Theextended UFP 
ase is when some demands might be higher than edge
apa
ities. For that 
ase we both improve the 
urrent best approximationratio and use strongly polynomial algorithms. We also use a lower boundto show that the extended 
ase is provably harder than the 
lassi
al 
ase.The last variant is the bounded UFP where demands are at most 1K ofthe minimum edge 
apa
ity. Using strongly polynomial algorithms hereas well, we improve the 
urrently best known algorithms. Spe
i�
ally,for K = 2 our results are better than the lower bound for 
lassi
al UFPthereby separating the two problems.1 Introdu
tionWe 
onsider the unsplittable 
ow problem (UFP ). We are given a dire
ted orundire
ted graph G = (V;E), jV j = n, jEj = m, a 
apa
ity fun
tion u on itsedges and a set of l terminal pairs of verti
es (sj ; tj) with a demand dj and pro�trj . A feasible solution is a subset S of the terminal pairs and a single 
ow pathfor ea
h su
h pair su
h that the 
apa
ity 
onstraints are fully met. The obje
tiveis to maximize the total pro�t of the satis�ed terminal pairs. The well-knownproblem of maximum edge disjoint path, denoted EDP , is the spe
ial 
ase whereall demands, pro�ts and 
apa
ities are equal to 1 (see [5℄).The EDP (and hen
e the UFP ) is one of Karp's original NP-
omplete prob-lems [6℄. An O(pm) approximation algorithm is known for EDP [7℄ (for addi-tional positive results see [12, 13℄). Most of the results for UFP deal with the? ? ? Resear
h supported in part by the Israel S
ien
e Foundation and by the US-IsraelBinational S
ien
e Foundation (BSF).



2
lassi
al 
ase where dmax � umin (the maximal demand is at most the mini-mal 
apa
ity). The most popular approa
h seems to be LP rounding [2, 10, 14℄with the best approximation ratio being O(pm) [2℄. A mat
hing lower boundof 
(m1=2��) for any � > 0 is shown in [5℄ for dire
ted graphs. Both before andafter the O(pm) result, there were attempts to a
hieve the same approximationratio using 
ombinatorial methods. Up to now however, these were found onlyfor restri
ted versions of the problem [5, 10℄ and were not optimal. Our 
ombi-natorial algorithm not only a
hieves the O(pm) result for 
lassi
al UFP but isalso the �rst strongly polynomial algorithm for that problem.The extended UFP is the 
ase where both demands and 
apa
ities are arbi-trary (spe
i�
ally, some demands might be higher than some 
apa
ities). Due toits 
omplexity, not many results addressed it. The �rst to atta
k the problem isa re
ent attempt by Guruswami et al. [5℄. We improve the best approximationratio through a strongly polynomial algorithm. By proving a lower bound for theextended UFP over dire
ted graphs we infer that this 
ase is really harder thanthe 
lassi
al UFP . Spe
i�
ally, for large demands we show that unless P = NPit is impossible to approximate extended UFP better than O(m1��) for any� > 0.Another interesting 
ase is the bounded UFP 
ase where dmax � 1Kumin(denoted K-bounded UFP ). It is a spe
ial 
ase of 
lassi
al UFP but betterapproximation ratios 
an be a
hieved. As a spe
ial 
ase, it 
ontains the half-disjoint paths problem where all the demands and pro�ts are equal to 12 and edge
apa
ities are all 1 [8℄. For K � logn, a 
onstant approximation is shown in [11℄by using randomized rounding. For K < logn, previous algorithms a
hieved anapproximation ratio of O(Kn 1K�1 ) ([2, 14℄ by using LP rounding and [3, 9℄ basedon [1℄). We improve the result to a strongly polynomial O(Kn 1K ) approximationalgorithm whi
h, as a spe
ial 
ase, is a O(pn) approximation algorithm for thehalf disjoint 
ase. Sin
e this ratio is better than the lower bound for 
lassi
alUFP , we a
hieve a separation between 
lassi
al UFP and bounded UFP . Theimprovement is a
hieved by splitting the requests into a low demand set anda high demand set. The sets are treated separately by algorithms similar tothose of [1℄ where in the 
ase of high demands the algorithm has to be slightlymodi�ed. We would like to note that in our approximation ratios involving n,we 
an repla
e n with D where D is an upper bound on the longest path everused (whi
h is obviously at most n).As a by-produ
t of our methods, we provide online algorithms for UFP .Here, the network is known but requests arrive one by one and a de
ision hasto be made without knowing whi
h requests follow. We show on-line algorithmswhose 
ompetitive ratio is somewhat worse than that of the o�-line algorithms.We also show that one of our algorithms is optimal in the on-line setting byslightly improving a lower bound of [1℄.We 
on
lude this introdu
tion with a short summary of the main results inthis paper. We denote by dmax the maximum demand and by umin the minimumedge 
apa
ity.



3{ Classi
al UFP (dmax � umin) - Strongly polynomial O(pm) approximationalgorithm.{ Extended UFP (arbitrary dmax, umin) - Strongly polynomial O(pm log(2+dmaxumin )) approximation algorithm; A lower bound of 
(m1��) and of
(m 12��qlog(2 + dmaxumin )) for dire
ted graphs.{ Bounded UFP (dmax � 1Kumin) - Strongly polynomial O(Kn 1K ) approxi-mation algorithm.2 NotationLet G = (V;E), jV j = n, jEj = m, be a (possibly dire
ted) graph and a 
apa
ityfun
tion u : E ! R+. An input request is a quadruple (sj ; tj ; dj ; rj) wherefsj ; tjg is the sour
e-sink terminal pair, dj is the demand and rj is the pro�t.The input is a set of the above quadruples for j 2 T = f1; :::; lg. Let D be abound on the length of any routing path; note that D is at most n.We denote by umin (umax) the minimum (maximum) edge 
apa
ity inthe graph. Similarly, we de�ne dmin, dmax, rmin and rmax to be the mini-mum/maximum demand/pro�t among all input requests. We de�ne two fun
-tions on sets of requests, S � T :r(S) =Xj2S rj d(S) =Xj2S djA feasible solution is a subset P � T and a route Pj from sj to tj for ea
h j 2 Psubje
t to the 
apa
ity 
onstraints, i.e., the total demand routed through an edgeis bounded by the its 
apa
ity. Some of our algorithms order the requests so wewill usually denote by Lj(e) the relative load of edge e after routing request j,that is, the sum of demands routed through e divided by u(e). Without loss ofgenerality, we assume that any single request 
an be routed. That is possible sin
ewe 
an just ignore unroutable requests. Note that this is not the dmax � uminassumption made in 
lassi
al UFP .Before des
ribing the various algorithms, we begin with a simple usefullemma:Lemma 1. Given a sequen
e fa1; :::; ang, a non-in
reasing non-negative se-quen
e fb1; :::; bng and two sets X;Y � f1; :::; ng, let X i = X \ f1; :::; ig andY i = Y \ f1; :::; ig. If for every 1 � i � nXj2Xi aj > �Xj2Y i ajthen Xj2X ajbj > �Xj2Y ajbj



4Proof. Denote bn+1 = 0. Sin
e bj � bj+1 is non-negative,Xj2X ajbj = Xi=1;:::;n(bi � bi+1)Xj2Xi aj> � Xi=1;:::;n(bi � bi+1)Xj2Y i aj = �Xj2Y ajbj3 Algorithms for UFP3.1 Algorithm for Classi
al UFPIn this se
tion we show a simple algorithm for 
lassi
al UFP (the 
ase in whi
hdmax � umin). The algorithm's approximation ratio is the same as the best
urrently known algorithm. Later, we show that unlike previous algorithms, thisalgorithm 
an be easily made strongly polynomial and that it 
an even be usedin the extended 
ase.We split the set of requests T into two disjoint sets. The �rst, T1, 
onsistsof requests for whi
h dj � umin=2. The rest of the requests are in T2. For ea
hrequest j and a given path P from sj to tj de�neF (j; P ) = rjdjPe2P 1u(e) ;a measure of the pro�t gained relative to the added network load.Given a set of requests, we use simple bounds on the values of F . The lowerbound, denoted �min, is de�ned as rminn and is indeed a lower bound on F (j; P )sin
e P 
annot be longer than n edges and the 
apa
ity of its edges must be atleast dj . The upper bound, denoted �max, is de�ned as rmaxumaxdmin and is 
learlyan upper bound on F (j; P ).PROUTErun Routine2(T1) and Routine2(T2) and 
hoose the better solutionRoutine2(S):forea
h k from blog�min
 to dlog�maxerun Routine1(2k; S) and 
hoose the best solutionRoutine1(�; S):sort the requests in S a

ording to a non-in
reasing order of rj=djforea
h j 2 S in the above orderif 9 path P from sj to tj s.t. F (j; P ) > � and 8e 2 P;Lj�1(e) + dju(e) � 1then route the request on P and for e 2 P set Lj(e) = Lj�1(e) + dju(e)else reje
t the request



5Theorem 1. Algorithm PROUTE is an O(pm) approximation algorithm for
lassi
al UFP .Proof. First, we look at the running time of the algorithm. The number of iter-ations done in Routine2 is:log �max�min = log(nrmaxrmin umaxdmin )whi
h is polynomial. Routine1 looks for a non over
owing path P with F (j; P ) >�. The latter 
ondition is equivalent to Pe2P 1u(e) < rjdj� and thus a shortestpath algorithm 
an be used.Consider an optimal solution routing requests in Q � T . For ea
h j 2 Q letQj be the route 
hosen for j in the optimal solution. The total pro�t of eitherQ\T1 orQ\T2 is at least r(Q)2 . Denote that set byQ0 and its index by i0 2 f1; 2g,that is, Q0 = Q \ Ti0 . Now 
onsider the values given to � in Routine2 and let�0 = 2k0 be the highest su
h that r(fj 2 Q0jF (j;Qj) > �0g) � r(Q)=4. It is
lear that su
h an �0 exists. From now on we limit ourselves to Routine1(�0; i0)and show that a good routing is obtained by it. Denote by P the set of requestsrouted by Routine1(�0; i0) and for j 2 P denote by Pj the path 
hosen for it.Let Q0high = fj 2 Q0jF (j;Qj) > �0g and Q0low = fj 2 Q0jF (j;Qj) � 2�0gbe sets of higher and lower `quality' routes in Q0. Note that the sets are notdisjoint and that the total pro�t in ea
h of them is at least r(Q)4 by the 
hoi
eof �0. From the de�nition of F ,r(Q0low) = Xj2Q0 low F (j;Qj)Xe2Qj dju(e) � 2�0 Xj2Q0low Xe2Qj dju(e)� 2�0Xj2Q Xe2Qj dju(e)= 2�0Xe Xj2Qje2Qj dju(e)� 2�0Xe 1 = 2m�0where the last inequality is true sin
e an optimal solution 
annot over
ow anedge. Therefore, r(Q) � 8m�0:Now let Eheavy = fe 2 EjLl(e) � 14g be a set of the heavy edges afterthe 
ompletion of Routine1(�0; i0). We 
onsider two 
ases. The �rst is whenjEheavy j � pm. A

ording to the des
ription of the algorithm, F (j; Pj) > �0 forevery j 2 P . Therefore, r(P) =Xj2P F (j; Pj)Xe2Pj dju(e)



6 � �0Xj2P Xe2Pj dju(e)= �0Xe Xjje2Pj dju(e)= �0Xe Ll(e) � 14pm�0where the last inequality follows from the assumption that more than pm edgesare loaded more than fourth their 
apa
ity. By 
ombining the two inequalitieswe get: r(Q)r(P) � 32pm = O(pm)whi
h 
ompletes the �rst 
ase.From now on we 
onsider the se
ond 
ase where jEheavy j < pm. Denote byR = Q0high nP . We 
ompare the pro�t given by our algorithm to that found in Rby using Lemma 1. Sin
e rjdj is a non in
reasing sequen
e, it is enough to boundthe total demand routed in pre�xes of the two sets. For that we use the notationRk = R \ f1; :::; kg and Pk = P \ f1; :::; kg for k = 1; :::; l. For ea
h requestj 2 Rk the algorithm 
annot �nd any appropriate path. In parti
ular, the pathQj is not 
hosen. Sin
e j 2 Q0high, F (j;Qj) > �0 and therefore the reason thepath is not 
hosen is that it over
ows one of the edges. Denote that edge by ejand by Ek = fej jj 2 Rkg.Lemma 2. Ek � EheavyProof. Let ej 2 Ek be an edge with j 2 Rk, a request 
orresponding to it. We
laim that when the algorithm fails �nding a path for j, Lj(ej) � 14 . For the 
asei0 = 1, the 
laim is obvious sin
e the demand dj � umin=2 and in parti
ular,dj � u(ej)=2. Thus, the load of ej must be higher than u(ej)=2 for the pathQj to over
ow it. For the 
ase i0 = 2, we know that umin=2 < dj � umin.In 
ase u(ej) > 2umin, the only way to over
ow it with demands of size atmost dmax � umin is when the edge is loaded at least u(ej) � umin � u(ej)=2.Otherwise, u(ej) � 2umin and sin
e dj � umin � u(e) we know that the edge
annot be empty. Sin
e we only route requests from T2 the edge's load must beat least umin=2 � u(ej)=4.Sin
e ea
h request in Rk is routed through an edge of Ek in the optimalsolution, d(Rk) �Pe2Ek u(e). The highest 
apa
ity edge f 2 Ek is loaded morethan fourth its 
apa
ity sin
e it is in Eheavy and therefore d(PK) � u(f)4 . ByLemma 2, jEkj � jEheavy j < pm and hen
e,d(Rk) < pm � u(f) � 4pm � d(Pk):



7We use Lemma 1 by 
ombining the inequality above on the ratio of demandsand the nonin
reasing sequen
e rjdj . This yieldsXj2R rjdj dj � 4pmXj2P rjdj dj ;or, r(R) � 4pm � r(P):Sin
e Q0high = R [ P ,r(Q0high) = r(R) + r(P) � (1 + 4pm)r(P):Re
all that r(Q0high) � r(Q)=4 and thereforer(Q)r(P) � 4 + 16pm = O(pm)3.2 Strongly Polynomial AlgorithmRoutine1 is strongly polynomial. Routine2 however 
alls it log �max�min times.Therefore, it is polynomial but still not strongly polynomial. We add a pre-pro
essing step whose purpose is to bound the ratio �max�min . Re
all that l denotesthe number of requests.SPROUTE(T ):run Routine3(T1) and Routine3(T2) and 
hoose the better solutionRoutine3(S):For ea
h edge su
h that u(e) > l � dmax set u(e) to be l � dmax.Throw away requests whose pro�t is below rmaxl .Take the better out of the following two solutions:Route all requests in Stiny = fj 2 Sjdj � uminl g on any simple path.Run Routine2(S n Stiny).Theorem 2. Algorithm SPROUTE is a strongly polynomial O(pm) approxi-mation algorithm for 
lassi
al UFP .Proof. Consider an optimal solution routing requests in Q � S. Sin
e the de-mand of a single request is at most dmax, the total demand routed through agiven edge is at most l � dmax. Therefore, Q is still routable after the �rst pre-pro
essing phase. The total pro�t of requests whose pro�t is lower than rmaxlis rmax. In 
ase r(Q) > 2rmax, removing these requests still leaves the set Q0whose total pro�t is at least r(Q) � rmax � r(Q)2 . Otherwise, we take Q0 to bethe set 
ontaining the request of highest pro�t. Then, r(Q0) is rmax � r(Q)2 . Allin all, after the two prepro
essing phases we are left with an UFP instan
e forwhi
h there is a solution Q0 whose pro�t is at least r(Q)2 .



8 Assume that the total pro�t in Q0 \Stiny is at least r(Q)4 . Sin
e the requestsin Stiny have a demand of at most uminl and there are at most l of them, they 
anall be routed on simple paths and the pro�t obtained is at least r(Q)4 . Otherwise,the pro�t in Q0 n Stiny is at least r(Q)4 and sin
e algorithm PROUTE is anO(pm) approximation algorithm, the pro�t we obtain is also within O(pm) ofr(Q).The prepro
essing phases by themselves are obviously strongly polynomial.Re
all that the number of iterations performed by Routine2 is log(n rmaxrmin umaxdmin ).The ratio of pro�ts is at most l by the se
ond prepro
essing phase. The �rstprepro
essing phase limits umax to k � dmax. So, the number of iterations is atmost log(nl2 dmaxdmin ). In 
ase S = T1, dmax � umin2 and dmin � uminl sin
e tinyrequests are removed. For S = T2, dmax � umin and dmin � umin=2. We end upwith at most O(log n+ log l) iterations whi
h is strongly polynomial.3.3 Algorithm for Extended UFPIn this se
tion we show that the algorithm 
an be used for the extended 
ase inwhi
h demands 
an be higher than the lowest edge 
apa
ity.Instead of using just two sets in SPROUTE, we de�ne a partition of theset of requests T into 2 + maxfdlog dmax=umine; 0g disjoint sets. The �rst, T1
onsists of requests for whi
h dj < umin=2. The set Ti for i > 1 is of requests forwhi
h 2i�3umin < dj � 2i�2umin. The algorithm is as follows:ESPROUTE(T ):for any 1 � i � 2 +maxfdlog dmax=umine; 0g su
h that Ti is not emptyrun Routine3(Ti) on the resulting graph
hoose the best solution obtainedThe proof of the following theorem is left to Appendix A.1:Theorem 3. Algorithm ESPROUTE is a strongly polynomial O(pm log(2 +dmaxumin )) approximation algorithm for extended UFP .4 Algorithms for K-bounded UFPIn the previous se
tion we 
onsidered the 
lassi
al UFP in whi
h dmax � umin.We also extended the dis
ussion to extended UFP . In this se
tion we show betteralgorithms for K-bounded UFP in whi
h dmax � 1Kumin where K � 2.4.1 Algorithms for Bounded DemandsIn this se
tion we present two algorithm for bounded UFP . The �rst deals withthe 
ase in whi
h the demands are in the range [uminK+1 ; uminK ℄. As a spe
ial 
ase, itprovides an O(pn) approximation algorithm for the half-disjoint paths problemwhere edge 
apa
ities are all the same and the demands are exa
tly half the edge
apa
ity. The se
ond is an algorithm for the K-bounded UFP where demandsare only bounded by uminK from above.



9EKROUTE(T ):� 2Dsort the requests in T a

ording to a non-in
reasing order of rj=djforea
h j 2 T in the above orderif 9 a path P from sj to tj s.t.Pe2P (�Lj�1(e) � 1) < Dthen route the request on P and for e 2 P set Lj(e) = Lj�1(e) + 1bK�u(e)umin 
else reje
t the requestBKROUTE(T ):� (2D)1+ 1K�1sort the requests in T a

ording to a non-in
reasing order of rj=djforea
h j 2 Ti in the above orderif 9 a path P from sj to tj s.t.Pe2P (�Lj�1(e) � 1) < Dthen route the request on P and for e 2 P set Lj(e) = Lj�1(e) + dju(e)else reje
t the requestNote that algorithmEKROUTE uses a slightly di�erent de�nition of L. This`virtual' relative load allows it to outperform BKROUTE in instan
es wherethe demands are in the 
orre
t range.The proof of the following theorem 
an be found in Appendix A.2:Theorem 4. Algorithm EKROUTE is a strongly polynomial O(K � D 1K ) ap-proximation algorithm for UFP with demands in the range [uminK+1 ; uminK ℄. Algo-rithm BKROUTE is a strongly polynomial O(K � D 1K�1 ) approximation algo-rithm for K-bounded UFP .4.2 A Combined AlgorithmIn this se
tion we 
ombine the two algorithms presented in the previous se
tion:the algorithm for demands in the range [uminK+1 ; uminK ℄ and the algorithm for theK-bounded UFP . The result is an algorithm for the K-bounded UFP with anapproximation ratio of O(K �D 1K ).We de�ne a partition of the set of requests T into two sets. The �rst, T1,in
ludes all the requests whose demand is at most 1K+1 . The se
ond, T2, in
ludesall the requests whose demand is more than 1K+1 and at most 1K .CKROUTE(T ):Take the best out of the following two possible solutions:Route T1 by using BKROUTE and reje
t all requests in T2Route T2 by using EKROUTE and reje
t all requests in T1



10Theorem 5. Algorithm CKROUTE is a strongly polynomial O(K � D 1K ) ap-proximation algorithm for K-bounded UFP .Proof. Let Q denote an optimal solution in T . Sin
e BKROUTE is used withdemands bounded by 1K+1 its approximation ratio is O(KD 1K ). The same ap-proximation ratio is given by EKROUTE. Either T1 or T2 have an optimalsolution whose pro�t is at least r(Q)2 and therefore we obtain the 
laimed ap-proximation ratio.5 Lower BoundsIn this se
tion we show that in 
ases where the demands are mu
h larger thanthe minimum edge 
apa
ity UFP be
omes very hard to approximate, namely,
(m1��) for any � > 0. We also show how di�erent demand values relate to theapproximability of the problem. The lower bounds are for dire
ted graphs only.Theorem 6. [4℄ The following problem is NPC:2DIRPATH:INPUT: A dire
ted graph G = (V;E) and four nodes x; y; z; w 2 VQUESTION: Are there two edge disjoint dire
ted paths,one from x to y and the other from z to w in G ?Theorem 7. For any � > 0, extended UFP 
annot be approximated better than
(m1��).Proof. For a given instan
e A of 2DIRPATH with jAj edges and a small 
on-stant �, we 
onstru
t an instan
e of extended UFP 
omposed of l 
opies of A,A1; A2; :::; Al where l = jAjd 1� e. The instan
e Ai is 
omposed of edges of 
apa
ity2l�i. A spe
ial node y0 is added to the graph. Two edges are added for ea
h Ai,(yi�1; xi) of 
apa
ity 2l�i� 1 and (yi�1; zi) of 
apa
ity 2l�i. All l requests sharey0 as a sour
e node. The sink of request 1 � i � l is wi. The demand of requesti is 2l�i and its pro�t is 1. The above stru
ture is shown in the following �gurefor the hypotheti
al 
ase where l = 4. Ea
h diamond indi
ates a 
opy of A withx; y; z; w being its left, right, top and bottom 
orners respe
tively. The numberinside ea
h diamond indi
ates the 
apa
ity of A's edges in this 
opy.
87 8 43 4 21 2 10 1y0 w1 w2 w3 w4Fig. 1. The UFP instan
e for the 
ase l = 4We 
laim that for a given Y ES instan
e of 2DIRPATH the maximal pro�tgained from the extended UFP instan
e is l. We route request 1 � i � l through



11[y0; x1; y1; x2; y2; :::; yi�1; zi; wi℄. Note that the path from xj to yj and from zjto wj is a path in Aj given by the Y ES instan
e.For a NO instan
e, we 
laim that at most one request 
an be routed. Thatis be
ause the path 
hosen for a request i ends at wi. So, it must arrive fromeither zi or xi. The only edge entering xi is of 
apa
ity 2l�i � 1 so zi is theonly option. The instan
e Ai is a NO instan
e of 
apa
ity 2l�i through whi
ha request of demand 2l�i is routed form zi to wi. No other path 
an thereforebe routed through Ai so requests j > i are not routable. Sin
e i is arbitrary, we
on
lude that at most one request 
an be routed through the extended UFPinstan
e and its pro�t is 1.The gap 
reated is l = jAj 1� and the number of edges is l �(jAj+2) = O(l1+�).Hen
e, the gap is 
(m 11+� ) = 
(m1��0) and sin
e � is arbitrary we 
omplete theproof.Theorem 8. For any � > 0 extended UFP with any ratio dmax=umin � 2
annot be approximated better than 
(m 12��qblog(dmaxumin )
).Proof. Omitted.6 Online Appli
ationsSomewhat surprisingly, variants of the algorithms 
onsidered so far 
an be usedin the online setting with slightly worse bounds. For simpli
ity, we present herean algorithm for the unweighted K-bounded UFP in whi
h rj = dj for everyj 2 T .First note that for unweighted K-bounded UFP , both EKROUTE andBKROUTE 
an be used as online deterministi
 algorithms sin
e sorting therequests be
omes unne
essary. By splitting T into T1 and T2 as in CKROUTEwe 
an 
ombine the two algorithms:ONLINECKROUTE(T ):Choose one of the two routing methods below with equal probabilities:Route T1 by using BKROUTE and reje
t all requests in T2Route T2 by using EKROUTE and reje
t all requests in T1Theorem 9. Algorithm ONLINECKROUTE is an O(K � D 1K ) 
ompetitiveonline algorithm for unweighted K-bounded UFP .Proof. The expe
ted value of the total a

epted demand of the algorithm forany given input is the average between the total a

epted demands given by thetwo routing methods. Sin
e ea
h method is O(K �D 1K ) 
ompetitive on its partof the input, the theorem follows.Theorem 10. The 
ompetitive ratio of any deterministi
 on-line algorithm forthe K-bounded UFP is at least 
(K � n 1K ).Proof. Omitted.



127 Con
lusionUsing 
ombinatorial methods we showed algorithms for all three variants of theUFP problem. We improve previous results and provide the best approxima-tions for UFP by using strongly polynomial algorithms. Due to their relativesimpli
ity we believe that further analysis should lead to additional performan
eguarantees su
h as non linear bounds. Also, the algorithms might perform betterover spe
i�
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13A AppendixA.1 Proof of Theorem 3Proof. The proofs of Theorem 1 and of Theorem 2 hold also for the extended
ase. The only part whi
h has to be proved is Lemma 2. The following repla
esthe lemma:Lemma 3. Ek � EheavyProof. Let ej 2 Ek be an edge with j 2 Rk, a request 
orresponding to it. We
laim that when the algorithm fails �nding a path for j, Lj(ej) � 14 . For the
ase i0 = 1, the 
laim is obvious as before. For the 
ase i0 > 1, we know that2i0�3umin < dj � 2i0�2umin. In 
ase u(ej) > 2i0�1umin, the only way to over
owit with demands of size at most 2i0�2umin is when the edge is loaded at leastu(ej)� 2i0�2umin � u(ej)=2. Otherwise, u(ej) � 2i0�1umin and sin
e j is routedthrough this edge in the optimal solution dj � u(ej). Therefore, the edge 
annotbe empty. Sin
e we only route requests from Ti0 the edge's load must be at least2i0�3umin � u(ej)=4.The number of iterations ESPROUTE performs is at most l sin
e we ig-nore empty Ti's. For T1, the number of iterations of Routine2 is the same asin SPROUTE. For a set Ti, i > 1, the number of iterations of Routine2 islog(n rmaxrmin umaxdmin ). As before, the prepro
essing of Routine3 redu
es this numberto log(nl2 dmaxdmin ). Sin
e the ratio dmaxdmin is at most 2 in ea
h Ti, we 
on
lude thatESPROUTE is strongly polynomial.A.2 Proof of Theorem 4Proof. The �rst thing to note is that the algorithms never over
ow an edge. Forthe �rst algorithm, the demands are at most uminK and the only way to ex
eed anedge 
apa
ity is to route request j through an edge e that holds at least bK�u(e)umin 
requests. For su
h an edge, Lj�1(e) � 1 and �Lj�1(e) � 1 � �� 1 � D. For these
ond algorithm, it is suÆ
ient to show that in 
ase Lj�1(e) > 1� 1K for somee then �Lj�1(e)�1 � D; that is true sin
e �Lj�1(e)�1 � ((2D)1+ 1K�1 )1� 1K �1 =2D � 1 � D. Therefore, the algorithms never over
ow an edge.Now we lower bound the total demand a

epted by our algorithms. We denoteby Q the set of requests in the optimal solution and by P the requests a

eptedby either of our algorithm. For j 2 Q denote by Qj the path 
hosen for it in theoptimal solution and for j 2 P let Pj be the path 
hosen for it by our algorithm.We 
onsider pre�xes of the input so let Qk = Q\f1; :::; kg and Pk = P\f1; :::; kgfor k = 1; :::; l. We prove thatd(Pk) � Pe u(e)(�Lk(e) � 1)6KD� 1K :



14The proof is by indu
tion on k and the indu
tion base is trivial sin
e the aboveexpression is zero. Thus, it is suÆ
ient to show that for an a

epted request jPe2Pj u(e)(�Lj(e) � �Lj�1(e))6KD� 1K � dj :Note that for any e 2 Pj , Lj(e)�Lj�1(e) � 1K for both algorithms. In addition,for both algorithms Lj(e)�Lj�1(e) � 3 dju(e) where the fa
tor 3 is only ne
essaryfor EKROUTE where the virtual load is higher than the a
tual in
rease inrelative load. The worst 
ase is when K = 2, u(e) = (1:5 � �)umin and dj =( 13 + �)umin: the virtual load in
reases by 12 whereas dju(e) is about 29 . Looking atthe exponent,�Lj(e) � �Lj�1(e) = �Lj�1(e)(�Lj(e)�Lj�1(e) � 1)= �Lj�1(e)((� 1K )K(Lj(e)�Lj�1(e)) � 1)� �Lj�1(e)� 1KK(Lj(e)� Lj�1(e))� �Lj�1(e)� 1K 3K dju(e)where the �rst inequality is due to the simple relation xy � 1 � xy for 0 � y �1; 0 � x and that for e 2 Pj , Lj(e)� Lj�1(e) � 1K . Therefore,Xe2Pj u(e)(�Lj(e) � �Lj�1(e)) � Xe2Pj �Lj�1(e)� 1K 3Kdj= 3K� 1K dj Xe2Pj �Lj�1(e)= 3K� 1K dj(Xe2Pj(�Lj�1(e) � 1) + jPj j)� 3K� 1K (D +D)dj= 6KD� 1K djwhere the last inequality holds sin
e the algorithm routes the request throughPj and the length of Pj is at most D.The last step in the proof is to upper bound the total demand a

epted byan optimal algorithm. Denote the set of requests reje
ted by our algorithm anda

epted by the optimal one by Rk = Qk n P k. For j 2 Rk, we know thatPe2Qj (�Lj�1(e) � 1) � D sin
e the request is reje
ted by our algorithm. Hen
e,D � d(Rk) � Xj2Rk Xe2Qj dj(�Lj�1(e) � 1)� Xj2Rk Xe2Qj dj(�Lk(e) � 1)



15=Xe Xj2Rkje2Qj dj(�Lk(e) � 1)=Xe (�Lk(e) � 1) Xj2Rkje2Qj dj�Xe (�Lk(e) � 1)u(e);where the last inequality holds sin
e the optimal algorithm 
annot over
ow anedge.By 
ombining the two inequalities shown above,d(Qk) � d(Pk) + d(Rk) � d(Pk) + d(Pk)6KDD � 1K = (1 + 6K� 1K )d(Pk)The algorithm followed a non-in
reasing order of rjdj and by Lemma 1 we ob-tain the same inequality above for pro�ts. So, the approximation ratio of thealgorithm is 1 + 6K� 1K = O(K � � 1K )whi
h, by assigning the appropriate values of �, yields the desired results.


