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1 IntrodutionWe onsider the maximum disjoint paths problem and its generalization, the all ontrolproblem, in the on-line setting. In the maximum disjoint paths problem, we are given asequene of onnetion requests for some ommuniation network. Eah request onsists ofa pair of nodes, that wish to ommuniate over a path in the network. The request has tobe immediately onneted or rejeted, and the goal is to maximize the number of onnetedpairs, suh that no two paths share an edge. In the all ontrol problem, eah requesthas additional bandwidth and bene�t spei�ations (the bene�t is usually proportional tothe bandwidth). The goal is to maximize the total bene�t of the onneted pairs whilesatisfying the bandwidth onstraints (assuming eah edge has unit apaity).These lassial problems were extensively studied in reent years, sine they are appli-able to routing and admission ontrol in high speed networks [2, 5, 7, 10, 16℄ and optialnetworks [1, 3, 4, 19℄.The algorithms we onsider are also preemptive, that is, they may, at any point of time,deide to stop an on-going all in the network. Of ourse, if a all is preempted, then it'sbene�t is not aounted in the total bene�t.We fous on the ase where the bene�t is proportional to the bandwidth. This orre-sponds to maximizing the total throughput of the network. Also, we onsider only the asewhere the network is a line, and thus the requested paths are intervals.The performane of the on-line algorithm is measured in terms of its approximationratio, alled the ompetitive ratio. A deterministi or randomized algorithm is de�ned tobe -ompetitive, if for any sequene of requests its (expeted) bene�t is no less than  timesthe bene�t of the optimal o�ine algorithm.Our results. We present the �rst known onstant-ompetitive algorithms for the maxi-mum disjoint paths problem and for the all ontrol problem on the line. This settles anopen problem of [12, 16℄. Moreover, to the best of our knowledge, all previous algorithmsfor any of these problems are 
(logn)-ompetitive, where n is the number of verties in thenetwork (and obviously non-ompetitive for the ontinuous line). Constant approximationratios were ahieved only in o�-line settings (see e.g [14, 15℄ and their referenes). Our algo-rithms are randomized and preemptive. Our results should be ontrasted with the 
(log n)lower bound for deterministi preemptive algorithms in [12℄, and the 
(logn) lower boundfor randomized non-preemptive algorithms [5, 6, 18℄. Also, non-onstant lower bounds wereproved in [11℄ for randomized preemptive algorithms in various ases. However, these lowerbounds do not apply to the standard disjoint paths and all ontrol problems.The key new idea in our algorithms is reognizing middle intervals and using them ap-propriately. Spei�ally, previous algorithms were based mainly on the values of the lengths(e.g. the lengths of the intervals). Our algorithms do not take the lengths into aount anddeides based only on the topologial struture of the intervals. Surprisingly, the only twoingredients required from the topologial struture are the ontainment relations and themiddle intervals. In the way of onstruting our algorithm for the disjoint paths problem,we �rst design a 4-ompetitive deterministi algorithm for requests of bandwidth 1=2. Thisalgorithm is used for establishing the randomized disjoint paths algorithm. Some teh-niques of [4℄ are used for transforming the above deterministi algorithm to an algorithm1



for requests of bandwidth 1=k for k > 1.It is important to mention that our randomized algorithm for the disjoint paths problemdoes not su�er from the known undesired property of many randomized on-line all ontrolalgorithms, that high bene�t is attained only with very poor probability (see disussionin [17℄). In fat, not only that our algorithm sueeds with onstant probability, but thenumber of paths that the algorithm provides is quite onentrated around its mean.For onstruting the general all ontrol algorithm, we �rst design a onstant-ompetitivedeterministi algorithm for requests of arbitrary bandwidth limited by Æ < 1=2. A ruialingredient of this algorithm is to ignore \stu�ed intervals" - intervals that ontain a largemass of previous intervals. Then, we easily ombine this algorithm with the disjoint pathsalgorithm using randomization and establish the �nal algorithm.We note that our algorithms are history dependent, that is, the deision to aept or re-jet a new all depends not only on the urrently ative alls, but also on previously rejetedalls. Attempting to remove this dependeny, by modifying the algorithm in some naturalways, an be shown to result in non onstant-ompetitive algorithms. It seems very inter-esting to �nd out whether there exist onstant-ompetitive algorithms where eah deisiondepends only on the urrently ative alls and maybe on additional bounded information.The onstants of most of our algorithms are not large (although we make no spei�attempt to make them small). We also prove a lower bound of 2 for deterministi orrandomized algorithms for all the problems that we onsider.We note that our tehniques an be easily applied to optial networks, that is, we anprovide onstant throughput ompetitive algorithm for one or more wavelengths in the linenetwork.Related work. The disjoint paths problem was onsidered by Garay et al. [12℄. Theyshowed an O(log n)-ompetitive deterministi preemptive algorithm for the line network.They also showed that no deterministi preemptive algorithm an ahieve a better ompet-itive ratio. Randomized non-preemptive algorithms for the line network were onsideredin [6, 18℄. They showed an O(log n)-ompetitive algorithm and a mathing lower boundfor randomized non-preemptive algorithms. The randomized non-preemptive lower boundholds also for the all ontrol problem, even when requests are limited to a small frationof the available bandwidth. Note that for general networks one an ahieve logarithmiompetitive ratios by deterministi algorithms for requests of small bandwidth [5℄, whileno poly-logarithmi ompetitive ratio an be ahieved for requests of full bandwidth evenby randomized algorithms [9℄. For speial networks, e.g., trees, meshes, lasses of plannergraphs [6, 7, 15℄ it is possible to design logarithmi ompetitive algorithms for the all on-trol problem without limiting the requested bandwidth. Nevertheless, we are not aware ofany onstant-ompetitive algorithm for disjoint paths problems or all ontrol problem.Also, some work was done for di�erent measures of bene�t. For the disjoint pathsproblem on the line, [12℄ onsidered the ase where the bene�t of an interval is equal to itslength. Here onstant-ompetitive ratio is ahieved by deterministi preemptive algorithms.For the all ontrol problem on the line, [8℄ onsidered the ase where the bene�t of a allequals the produt of its length and its bandwidth. Here again, a onstant-ompetitiveratio an be ahieved by deterministi preemptive algorithms, with the additional onstraintthat the requested bandwidths are limited to Æ < 1. They also showed that deterministi2



algorithms have very poor ompetitive ratio on the line, if a all may request the entirebandwidth (that is, Æ = 1). For general bene�ts, [11℄ showed that even with randomizedpreemptive algorithms, one annot ahieve a onstant ompetitive ratio even on the line.More spei�ally, they showed 
(plog �= log log�) lower bounds for randomized preemptivealgorithms, where � is the maximum among various varianes in the parameters of di�erentalls. Fortunately, the lower bounds are not appliable to our problems.Struture of the paper. In setion 2 we present some de�nitions. In setion 3 we de-sribe a 4-ompetitive algorithm for requests of bandwidth 1=2. Then, in setion 4 we showhow to transform it to a randomized algorithm for the disjoint paths problem. In setion 5we transform the algorithm of setion 3 to an algorithm for requests of bandwidth 1=k.In setion 6 we design the general algorithm for all ontrol for any requested bandwidth,where we start by showing a deterministi algorithm for requests of bandwidth less than1=2.2 PreliminariesWe onsider a network G whih is a line, i.e. onsists of hain of links. We denote thesequene of all requests by � = �1; �2::�l. Call request i is haraterized by a pair: (Ii; ri),where Ii is the requested path and ri is the requested bandwidth. The requested bandwidthis assumed to satisfy 0 < ri � 1.A valid set of alls is a set of alls C � �, whih satis�es the bandwidth onstraints foreah of the links, that is: 8e 2 E(G) Xf�i2C j e2Iig ri � 1We fous on the ase where bi, the bene�t of a all, is proportional to its bandwidth (i.e.bi = ri). Thus maximizing the total bene�t orresponds to maximizing the total throughputof the network. For any set of alls C, we denote by B(C) the total bene�t of the alls(whih is equal to the total bandwidths of the alls).The performane of the on-line algorithm is measured in terms of its ompetitive ratio,de�ned as follows: let OPT � be an optimal valid set for the given request sequene, andlet ON � be the valid set of alls produed by the on-line algorithm. Then randomized ONis �-ompetitive if for all sequenes � we have E(B(ON �)) � 1�B(OPT �).We denote the set of the �rst i requests by Si , and denote by Ai the set of aeptedalls just before the arrival of request i + 1. We also denote S� = Sl, A� = Al, where l isthe sequene length. We omit the index i from Si and Ai when it is lear from the ontext.When all the requested bandwidths are equal, we an assume that bi = 1 for all i (insteadof bi = ri) and hene we write jCj instead of B(C) for a set of alls C.Sine our algorithms and bounds do not depend on the number of links, we may replaethe network by a ontinuous line, and replae eah disrete path by an open interval. Wedenote by left(I) and right(I) the left and right endpoint of an interval I respetively. Wewill often refer to the alls as intervals, ignoring the attahed bandwidth. We will also useinterval notations for alls, for example, we abuse the notation and use Si to denote the�rst i requested intervals. 3



For simpliity, we assume that S� has no idential intervals (if there are, we an extendthe ontainment relation by ordering idential intervals in the order of arrival).3 A deterministi algorithm for bandwidth 1=2In this setion we show a onstant ompetitive on-line algorithm for the ase where allrequested alls �i have ri = 1=2, that is, at most two alls are allowed to overlap for eahlink. Sine all the bene�ts are equal, we set all of them to 1.De�nition 3.1 Given a set S of intervals, an interval I is a middle interval of S if there aretwo intervals IL; IR 2 S suh that left(IL) � left(I) � left(IR) � right(IL) � right(I) �right(IR).Informally, the idea of the algorithm is the following: when there is a \ollision" betweenmore than two intervals, none of whih ontains the other, it rejets/preempts the middleinterval. Also, we need to rejet alls that ontain previous alls, even if the previous allshave already been rejeted or preempted. Note that the algorithm is history dependent.More formally, given a new all request, I, the proedure in �gure 1 desribes how thealgorithm deides whether to aept it or rejet it.Proedure: BW 12begin(1) if there is a J 2 S suh that J � I then(2) rejet I(3) elseif there is a J 2 A suh that J � I(4) preempt all intervals J 0 2 A suh that J 0 � I(5) aept I(6) elseif I is a middle interval in A[ fIg then(7) rejet I(8) else(9) preempt middle intervals J 0 2 A [ fIg(10) aept I(11) end ifendFigure 1: Algorithm for bandwidth 1=2 allsNote algorithm BW 12 in �gure 1 is history dependent beause of line (1). Modifyingthe algorithm to depend only on ative alls by replaing S by A in line (1) results in anon-ompetitive algorithm 1. In order to prove that the algorithm BW 12 is valid (that is,it maintains a valid set A), we �rst observe the following immediate fat:1Let ai = (0;M � 3i); bi = (M � 3i � 1; 2M � 3i); i = (M � 3i � 2;M � 3i + 1) for 0 � i � M=3 � 1be intervals on the line (0; 2M) and onsider the sequene a0; b0; 0; a1; b1; 1; : : : ; aM=3�1; bM=3�1; M=3�1.Clearly OPT gets M=3 intervals by aepting only i where the online ends up only with aM=3�1; bM=3�1; b0.4



Fat 3.2 Let S be a set of intervals. If there are no J1; J2 2 S suh that J1 � J2, thenamong any 3 interseting intervals there is a middle interval.Lemma 3.3 At any time, exept between the arrival of a new all and the ompletion ofinvoking steps (1)-(5) for it, there is no J2 2 A suh that J1 � J2 and J1 2 S.Proof: Consider any two intervals J1 and J2. An inlusion of J1 in J2 an only be reatedwith the arrival of one of theses two intervals (the later one). If J1 arrives �rst, when J2arrives it fails ondition (1), and it is rejeted. Otherwise, if J2 2 A when J1 arrives thenby ondition (3) J2 is preempted in step (4). In both ases, after invoking steps (1)-(5) suhinlusion is impossible.Lemma 3.4 The set A is a valid set of intervals.Proof: By indution on the number of input intervals. Initially the laim holds for A =S = �. Assume A is valid, and now a new interval I arrives. If I is rejeted, A is unhanged.Otherwise, if step (4) is exeuted, at least one interval J 0 � I is preempted, so that I an bealloated in the evited bandwidth. Otherwise, step (9) is exeuted. Let T = fJ 0jJ 0\I 6= �g.By lemma 3.3 eah of the intervals in T intersets exatly one endpoint of I. Thus we anpartition T to TL and TR, suh that jTLj � 2 and jTRj � 2, sine A is valid. Let IR 2 TRand IL 2 TL. It follows from lemma 3.3 and lemma 3.2 that IR\ IL = �, otherwise I wouldbe a middle interval. Thus it is suÆient to show that the alloation of I would not violatethe bandwidth limitation on the left endpoint of I, and use the symmetrial laim for theright endpoint. If jTLj � 1 then I does not ause violation of the bandwidth onstraint onit's left side. Otherwise, let J1 and J2 denote the interseting intervals. By lemma 3.3 andlemma 3.2 one of the intervals J1 and J2 is a middle interval, it meets the ondition of (9),and it is preempted. Thus, I an be alloated in the evited bandwidth.Corollary 3.51. At most 2 intervals are preempted when step (4) is exeuted.2. At most 2 intervals are preempted when step (9) is exeuted.Proof: Claim 1 is obvious. Claim 2 follows from the proof above.Let OPT (k)� be an optimal solution for � when bi = 1 and ri = 1k for all �i 2 �.Lemma 3.6 jOPT (k)� j � kjOPT (1)� j.Proof: We view the set of intervals as an interval graph, i.e., eah vertex of the graph orre-sponds to an interval and two verties are adjaent if the orresponding intervals intersets.We use the fat that the lique number of an interval graph equals to its hromati number(see [13℄). Sine OPT (k)� is a valid set when all ri = 1k , the maximum lique size in OPT (k)�is no more than k. Thus OPT (k)� an be olored in k olors. Eah of the olor lasses is anindependent set of intervals, and one of them has size at least jOPT (k)� j=k. Now this set isalso valid when all ri = 1, resulting in: jOPT (k)� j=k � jOPT (1)� j as laimed.5



I1 I2 I3 I4C1 C2Figure 2: De�nition of ellsLemma 3.7 jBW 12 �j � 12 jOPT (1)� jProof: Let OPT (1)� be an optimal set of intervals for bandwidth equal to 1, as de�nedabove, and m = jOPT (1)� j. By de�nition, the set OPT (1)� is a set of pairwise disjointintervals. Let us denote the intervals by I1; I2 :: Im. We an also assume that no I 2 OPT (1)�ontains an interval of S. De�ne the following intervals, referred to as \ells", as follows:ell j for 1 � j � bm2 , denoted by Cj, is the interval (left(I2j�1)::right(I2j)). (See �gure2). Ifm is odd then we add another ell, Cbm2 +1 = (left(Im);+1). We refer to ells 1::bm2 as \regular", and to Cbm2 +1, if it exists, as the \in�nite" ell. The following laim showsthat after a ertain point of time, ell Cj always ontains an interval, more spei�ally,there will always be an interval J 2 A s.t. J � Cj . The laim ompletes the proof of thetheorem, sine the ells are disjoint.Claim 3.8 For regular ells, after the intervals I2j�1 and I2j have arrived, there is alwaysan interval J 2 A, s.t. J � Cj. If an in�nite ell exists, after Im arrives, there is alwaysan interval J 2 A s.t. J � Cbm2 +1.Proof: First we onsider \regular" ells, and prove the laim by indution on the numberof intervals that have arrived.� Initial step: Assume I2j�1 arrives after I2j . The proof is symmetrial for the otherase. If I2j�1 is aepted, then the laim holds. Otherwise, I2j�1 is rejeted and sineI2j�1 ontains no other intervals, ondition (6) in the algorithm must hold. Let IR bea right interval, as in de�nition 3.1. It follows that left(Cj) = left(I2j�1) � left(IR).Sine IR intersets I2j�1 and I2j�1 lies to the left of I2j , left(IR) � left(I2j). SineIR 2 A, by lemma 3.3 it does not ontain I2j , and thus right(IR) � right(I2j) =right(Cj). Hene, IR � Cj as laimed.� Indution: Assume J � Cj is preempted when a new interval I arrives. If ondition(3) in the algorithm holds, then I � J � Cj satis�es the laim onditions. Otherwise,J is preempted due to the exeution of step (9) of the algorithm where J is a middleinterval. Thus there are intervals IL; IR 2 A that are not preempted at this step suhthat left(IL) � left(J) � left(IR) � right(IL) � right(J) � right(IR) :6



Next we show that at least one of these intervals IL or IR is in Cj whih will ompletethe proof. First we note that sine J � Cj , we get right(IL) � right(Cj) andleft(Cj) � left(IR). Assume by ontradition that IL 6� Cj and IR 6� Cj, i.e.,left(IL) < left(Cj) and right(Cj) < right(IR), then we get that IL [ IR � Cj �I2j�1 [ I2j . Sine IL \ IR 6= �, one of IL and IR ontains I2j�1 or I2j , whih isimpossible by lemma 3.3. Thus left(Cj) < left(IL) or right(IR) < right(Cj), yieldingIL � Cj or IR � Cj respetively, whih ompletes the proof.Now, for the \in�nite" ell the proof is similar, observing the fat that if J � Cbm2 +1 isrejeted or preempted, IR is always ontained in the ell.Theorem 3.9 BW 12 is 4-ompetitive.Proof: By lemma 3.7 jBW 12 �j � 12 jOPT (1)� j. Now by lemma 3.6, jOPT (2)� j � 2jOPT (1)� j.4 A randomized algorithm for bandwidth 1Next we show how an algorithm for bandwidth 1=2, like BW 12 , an be used to onstruta randomized onstant-ompetitive algorithm for bandwidth 1. Atually, any deterministialgorithm, with following properties an be used to onstrut suh an algorithm, as is provedby the sequel theorem.Consider a deterministi preemptive algorithm DET for all ontrol of requests of equalbandwidth (i.e., ri = 1k and bi = 1) that maintains a set of intervals D, with the followingproperties:� jDET� j � 1 jOPT (1)� j.� There is a onstant d suh that any newly aepted interval I intersets at most dother intervals in D (after it has been aepted).Theorem 4.1 Any algorithm DET with the above properties an be used to onstrut arandomized algorithm for bandwidth 1 with ompetitive ratio 4d.Proof: We onstrut a randomized algorithm RAND. RAND maintains a valid set ofintervals (for bandwidth 1) denoted by R. R is initially empty. Let p satisfy 0 � p < 12 .We simulate DET on the bakground with the same sequene of intervals as RAND buteah has bandwidth 1k instead of 1. The idea is that R ertainly rejets and preempts allintervals rejeted and preempted by DET but also randomly rejets some intervals thatwere aepted by DET . Spei�ally, for any new interval I, we take the ations desribedin �gure 3 following the ations taken by DET for the same intervals (but with smallerbandwidth, i.e. ri = 1k ).It follows immediately that the algorithm is orret: initially R is valid, and wheneveran interval I is aepted, by ondition (5), R remains valid.Let R� (respetively D�) denote the �nal set of intervals aepted by RAND (respe-tively DET ). We proeed to show that E(jR�j) � 14d � jOPT (1)� j.7



begin(1) preempt from R those intervals that were preempted by DET(2) if I was rejeted by DET then(3) rejet Ielse(4) toss a p-oin(5) if oin shows \suess" and there is no J 2 R s.t. J \ I 6= � then(6) aept Ielse(7) rejet Iend ifend ifendFigure 3: A randomized redution from bandwidth 1 to an algorithm with the above prop-erties� Every interval I is aepted by RAND with probability at most p, beause in orderfor an interval to get aepted, the oin-toss in step (4) has to show \suess".� The set R satis�es R � D, sine every interval is aepted by RAND only if it isaepted by DET .� For all s 2 D�, s 2 R� if and only if s is aepted by RAND: If s is aepted byRAND, then it is never preempted by RAND, sine RAND preempts intervals onlyin step (1), only if DET preempts them.For s 2 S de�ne the indiator random variable �s to be 1 if s 2 R�, and 0 otherwise.By the above observations, for s 2 D� we haveE(�s) = Pr[s 2 R�℄ = Pr[s is aepted by RAND℄:For s 2 D�, RAND aepts s if and only if ondition (5) holds. By DET 's properties,s intersets at most d intervals in D when it is aepted by DET , and thus it intersetsat most d intervals in R � D. The probability that none of those intervals is aepted byRAND is no less than (1� p)d, soPr[s is aepted by RAND℄ � p(1� p)d � p(1� dp):Thus,E(jR�j) � E(Xs2D� �s) � Xs2D� p(1� dp) � p(1� dp) � jD�j � p(1� dp) � jOPT (1)� jTo omplete the proof, hoose p = 12d . 8



Using the theorem we get the following result:Theorem 4.2 There is a 16-ompetitive randomized on-line algorithm for bandwidth 1.Proof: Use the algorithm BW 12 for theorem 4.1. The algorithm satis�es the propertiesabove with  = 2 (by lemma 3.7) and d = 2 (any aepted interval intersets at most 2intervals in the valid set).5 A onstant ompetitive algorithm for bandwidth 1=kIn this setion we give a onstant ompetitive algorithm for the ase where all the intervalsrequest bandwidth of 1=k, for some �xed k � 2. We �rst note that by lemma 3.7 andlemma 3.6, the algorithm BW 12 is at most 2k-ompetitive for this problem. Here, however,we present an algorithm whose ompetitive ratio does not depend on k.We apply a general method of [4℄ for bene�t problems, with adaptation to handle pre-emption, where the bene�t is gained by aommodating items in any of several (not nees-sarily idential) abstrat \bins". That is, given a set of items, an algorithm has to maximizethe bene�t gained by aepting items. To aept an item the algorithm has to aommodatethe item in one of several bins. Within eah bin there may be restritions as to the set ofitems that an be aommodated in it onurrently. However, we assume total independenebetween the di�erent bins: If we have n bins, then for any i, if the set Zi an be aepted inbin i with sets Z1; : : : ; Zi�1; Zi+1; : : : ; Zn, in the other bins, then the set Zi an be aeptedto bin i also if the other bins ontain arbitrary other feasible sets Z 01; : : : ; Z 0i�1; Z 0i+1; : : : ; Z 0n.Given a �-ompetitive on-line (deterministi or randomized) alloation algorithm A forone bin, the paper [4℄ shows how to build a �+ 1-ompetitive on-line alloation algorithmA0 for multiple bins . We generalize the algorithm for the preemptive ase. We will use theterm preemptive alloation algorithm for algorithms, whih deide, for a new item, whetherto aept it or rejet it, and may preempt old items when a new item is aepted. We provethe following theorems:Theorem 5.1 Assume there are n totally independent abstrat \bins", and an on-line al-gorithm has to assign items into one of the bins. Assume A is a �-ompetitive preemptivealloation algorithm for one bin. Then there is a �+ 1-ompetitive preemptive alloationalgorithm for alloation into n bins.Proof: We desribe an algorithm A0 for n bins, in terms of a proedure Bi for 1 � i � n,whih maintains the i'th bin. Given a new item t the proedure Bi proeeds as desribedin �gure 4.Algorithm A0 alls B1. It is easy to see, by indution from n to 1, that proedure Biterminates, and thus A0 terminates. We laim that A0 is a �+ 1-ompetitive algorithm forn bins.For 1 � i � n, let Oi denote the set of items aepted into bin i by the optimal algorithmfor the problem with n bins, and let Ti denote the set of items aepted into bin i, whihwere not preempted in step (9). 9



Proedure Bibegin(1) run A on t for bin i(2) if t was rejeted then(3) if i < n then all Bi+1 on t(4) else rejet telse(5) aept t into bin i(6) if items r1; r2::rm were preempted then(7) if i < n then(8) for eah 1 � j � m sequentially all Bi+1 on rj(9) else preempt r1; r2::rmend ifend ifendFigure 4: A proedure Bi for alloation into bin iBy onstrution of the algorithm, proedure Bi is presented with at least all the itemsin the set Oi n [j<iTj (not neessarily in the original order). Sine Bi uses A internally, itis � ompetitive, so it will gain at least:B(Ti) � 1� �B(Oi n ([j<iTj)) = 1�B(Oi)� 1�B(([j<iTj) \Oi) :It follows thatnXi=1B(Ti) � nXi=1 1�B(Oi)� nXi=1 1�B(([j<iTj) \Oi) � nXi=1 1�B(Oi)� 1�B([i�nTi)� nXi=1 1�B(Oi)� 1� nXi=1B(Ti) ;where the seond inequality follows sine the sets Oi are pairwise disjoint.Thus (1 + �)Pni=1B(Ti) �Pni=1B(Oi), and A0 is �+ 1-ompetitive.Theorem 5.2 There is a 5-ompetitive algorithm for bandwidth alloation of bandwidth 1kintervals for even k, and a 7-ompetitive algorithm for odd k, k � 3.Proof: We partition the unit apaity line into a set of multiple lines eah with apaity 2k(exept of one of apaity 3k for odd k) while preserving the total apaity. We onsider theproblem of alloation of alls of bandwidth 1k to the set of multiple lines eah with its ownapaity ( 2k or 3k ). Clearly, a feasible solution to the multiple lines an be onverted into afeasible solution to the unit apaity line by taking the union of the feasible sets of eah line.Moreover, a feasible solution for the unit apaity line an be partitioned into a solution to10



the multiple lines as follows: reall that an interval graph of maximum lique size k an beolored with k olors; Given a solution to the unit apaity we olor the intervals with kolors and assign intervals with two (or three) spei� olors to eah line of apaity 2k (or3k ). Now, onsider the multiple lines problem. Clearly, it is an instane for alloation ofitems into abstrat bins. Hene we use the previous theorem to alloate intervals to thebins, in the following way:� For even k, there are k2 \bins", eah onsists of apaity 2k , and we use algorithmBW 12 for alloation in eah bin. By lemma 3.7 BW 12 is 4-ompetitive on eah bin, sowe get a 5-ompetitive algorithm.� For odd k, there are bk2  \bins", bk2 �1 of whih onsisting of apaity 2k , the remainingone onsisting of apaity 3k , and we use algorithm BW 12 for alloation in eah bin.As mentioned before, BW 12 is 6-ompetitive on eah bin, so we get a 7-ompetitivealgorithm.We also show a lower bound theorem for arbitrary bandwidth:Theorem 5.3 For any k no deterministi or randomized on-line algorithm an ahieveompetitive ratio less than 2 for intervals with bandwidth = 1k .Proof: For an appropriate M , the adversary requests k alls in the interval (0;M + 1)(left side alls), and k more alls in the interval (M; 2M + 1) (right side alls). De�nethe \internal part" of the left side (right, respetively) to be (0;M) ((M + 1; 2M + 1),respetively).Sine all the alls overlap, in at least one of the sides (say right) the expeted numberof alls aepted by the on-line algorithm is at most k2 . Then the adversary aepts all thek alls in this (right) side and ontinues the onstrution reursively in the \internal part"of the opposite (left) side. Exept of the last step of the reursion, the on-line algorithmwould preempt all the alls aepted on the left side at eah step sine they ontain all lateralls.Repeating the onstrution reursively n times we onlude that the number of allsaepted by the on-line algorithm is at most k + (n� 1)k2 (in the last step of the reursionthe on-line algorithm an aepts all alls) whereas the adversary aepts kn alls, whihproves the laim (n an be as large as we want).6 A randomized algorithm for bandwidth � 1In this setion we onsider a generalized setting, in whih all requested alls �i have band-width ri � Æ, for some �xed Æ, Æ � 1, and the bene�t arued from the interval is it'sbandwidth i.e. bi = ri.First we show a deterministi onstant-ompetitive algorithm for the ase Æ < 12 , thenwe show how this algorithm an be used to onstrut a randomized onstant ompetitivealgorithm for the ase Æ = 1. 11



6.1 A onstant ompetitive algorithm for Æ < 12As mentioned before, we now fous on the ase Æ < 12 . We �rst introdue some usefulde�nitions and notations. Let I be an interval, and S be an interval set.� S � I i� 8s 2 S; s � I.� S[I℄ = fs 2 S j s � Ig is the indued subset of S on I. Note that S = S[I℄ i� S � I.� S[x℄ = fs 2 S j x 2 sg, the subset of intervals of S whih ontain x.In the algorithm for the bandwidth 1 ase, we used the fat that there is an optimalsolution with no \ontaining" intervals. We introdue the de�nition of \stu�ed" intervals,whih are intervals that ontain alls of large total bene�t. Suh intervals, as shown in thesequel, an be exluded from onstant-fator approximations to the optimum, sine theyan be replaed by non-\stu�ed" intervals in the approximation.De�nition 6.1 Let S be a set of intervals. Let 0 < � � 1.An interval K 2 S is stu�ed in S if B(S[K℄ n fKg) � �.De�nition 6.2 Let x be violation point of A. Let LR be the list of the intervals in A[x℄,ordered by asending order of their right-endpoint. Similarly, let LL be the list of the inter-vals, ordered by desending order of their left-endpoint.The right-losest intervals of x in A, 	R(x), is the maximal pre�x of LR whih has totalbandwidth � 12 . The left-losest intervals of x in A, 	L(x), is the maximal pre�x of LLwhih has total bandwidth � 12 .Figure 5 shows the deterministi algorithm STICKY whih handles an arriving intervalI. Proedure: STICKY(interval I)begin(1) if I is stu�ed in S then rejet I and return(2) add I to A(3) while there are bandwidth violations do(4) pik a violation point, x(5) remove all the intervals K suh that x 2 K andK =2 	L(x) [	R(x)end Figure 5: Algorithm for Æ < 12Lemma 6.3 Algorithm STICKY maintains a valid set A of intervals.Proof: When the algorithm terminates there are no bandwidth violations in A, by ondi-tion (3). The algorithm terminates, sine when an iteration of the loop in (5) is exeuted,at least one interval is removed, and there is a �nite number of intervals.12



In the appendix, we prove the following theorem:Theorem 6.4 For � = 13 , algorithm STICKY is onstant ompetitive for Æ < 12 . Spei�-ally, for Æ = 14 , the algorithm is 72-ompetitive.We note that the algorithm does not need to know Æ in advane, as long as Æ < 12 .6.2 A randomized algorithm for Æ = 1Now we an onstrut a randomized ompetitive algorithm for Æ = 1 by lassifying therequest series, and applying one of the previous algorithms on eah lass.More spei�ally, the requests are lassi�ed into the following 2 lasses:� All the requests with ri � 14 . Those requests are handled with the 16-ompetitiverandomized algorithm, setting all ri = 1.� All the requests with ri < 14 . Those requests are handled by STICKY.The algorithm for Æ = 1 randomly hooses one of the lasses, eah with probability 12 , andhandles only requests of this lass by the appropriate algorithm.Theorem 6.5 The above algorithm is 144-ompetitive.Proof: The �rst algorithm is 16*4-ompetitive with respet to the requests of the �rstlass, by lemma 3.6. The seond algorithm is 72-ompetitive with respet to the requestsof the seond lass, by theorem 6.4. Let B be the value of the optimal algorithm for all therequests and let B1 and B2 be the optimal value restrited to requests of lass 1 and lass 2respetively. Clearly B � B1+B2. The bene�t gained by the on-line randomized algorithmis at least 12 � 164B1 + 12 � 172B2 � 1144 (B1 +B2) � 1144B whih ompletes the proof.Referenes[1℄ A. Aggarwal, A. Bar-Noy, D. Coppersmith, R. Ramaswami, B. Shieber, and M. Sudan.EÆient routing and sheduling algorithms for optial networks. In Pro. 5th ACM-SIAM Symp. on Disrete Algorithms, pages 412{423, 1994.[2℄ J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line routing of virtualiruits with appliations to load balaning and mahine sheduling. Journal of theACM, 44(3):486{504, 1997. Also in Pro. 25th ACM STOC, 1993, pp. 623-631.[3℄ Y. Aumann and Y. Rabani. Improved bounds for all optial routing. In Pro. 6thACM-SIAM Symp. on Disrete Algorithms, pages 567{576, 1995.[4℄ B. Awerbuh, Y. Azar, A. Fiat, S. Leonardi, and A. Rosen. On-line ompetitive algo-rithms for all admission in optial networks. In Pro. 4th Annual European Symposiumon Algorithms, pages 431{444, 1996.[5℄ B. Awerbuh, Y. Azar, and S. Plotkin. Throughput-ompetitive online routing. In34th IEEE Symposium on Foundations of Computer Siene, pages 32{40, 1993.13
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AppendixA STICKY is onstant ompetitiveIn this appendix we prove theorem 6.4.The following laim follows immediately from the fat that the bandwidth of eah in-terval is at most Æ:Claim A.1 Let A be an interval set. If Æ < 12 , then B(	R(x)) � 12 � Æ;B(	L(x)) � 12 � Æ,Lemma A.2 Let the intervals J1; J2 satisfy J1 � J2. If interval J1 is removed in step (5),then by the time step (5) is over, J2 =2 A.Proof: Let x;LL;LR be as in de�nition 6.2, at the moment J1 is removed in step (5).Now x 2 J1, x 2 J2, so if J2 2 A by the time J1 is being removed, J2 appears in LLand LR . Sine J1 � J2, J2 appears after J1 in both of the lists LL and LR , and sineJ1 =2 	L(x) [	R(x), J2 =2 	L(x) [	R(x), so J2 is now removed.De�nition A.3 For an interval set N , interval C � < is a ell of N , if it ontains twodisjoint intervals CL, CR (CL is the left one) suh that B(N [CL℄) � 1 and B(N [CR℄) � 1.Next is a \subdivision" lemma, whih demonstrates how to split the original intervalset S into 
(B(OPT �)) ells, like the ones in the proof of lemma 3.7.Lemma A.4 Let N be a valid set of intervals. Then there exist at least B(N)2(2+Æ) � 32 pairwisedisjoint ells of N .Proof: Order the intervals of N from left to right by their left-endpoint. Now, sanningthe list, pik minimal subsets fLigi�0 from the start of the list, suh that B(Li) � 2. ThenB(Li) < 2 + Æ. Thus, there are at least bB(N)2+Æ  � B(N)2+Æ � 1 suh subsets.Let xi be the left most left endpoint of the intervals in Li. By onstrution fxigj�0 isan asending sequene. Add a last element xlast =1 to the sequene.De�ne Ni = fn 2 Li j xi+1 =2 ng. Then B(Ni) � 1, otherwise N violates the bandwidthonstraint on xi+1. Thus B(N [(xi; xi+1)℄) � 1.Now let C(i) = (x2i; x2(i+1)) for i � 0. By the above, C(i) satis�es the de�nition of aell of N , with the following subintervals: C(i)L = (x2i; x2i+1), and C(i)R = (x2i+1; x2i+2).By de�nition, the intervals C(i) are pairwise disjoint, and there are at least b B(N)(2+Æ)�12  �B(N)2(2+Æ) � 32 suh intervals, as laimed.Lemma A.5 Let J � <, and let N be a set of intervals, with no stu�ed intervals of the�nal set S�. If B((St \ N)[J ℄) � 2� and there is K 2 At s.t. K � J (K 6= J), thenB(At[J ℄) � �.Proof: Suppose K � J , K 6= J is in At. Denote by t0 the time when K arrived. Sine Kwas not rejeted in step (1), B((St0 \N)[J ℄) � B(St0 [J ℄) < �. Let N 0 = (St n St0) \N , the15



intervals of St \N whih arrived after t0. Then B(N 0[J ℄) � (2� � �) = �. By lemma A.2,if one of the intervals in N 0[J ℄ is removed, K is removed too, sine K stritly ontains allthe intervals of N 0[J ℄. Thus by time t none of the intervals in N 0[J ℄ was removed, andB(At[J ℄) � B(N 0[J ℄) � �.Lemma A.6 Let N be a valid set with no stu�ed intervals of S�, and let C be a ell of N .Assume � � 13 . Then B(A�[C℄) � minf12 � Æ; �g.Proof: Sine B(St\N) is non-dereasing with t, let tr be the �rst time B((Str \N)[CR℄) �2�, and tl be the �rst time B((Stl \N)[CL℄) � 2�. Sine CL and CR are disjoint, tl 6= tr,and we an assume tr < tl. The proof for the other ase is symmetrial.Now there are three ases:� No interval is removed from A[C℄ in time tl, or later.Let N 0 = (S� n Stl�1) \N . Sine N ontains no stu�ed intervals of S�, no interval ofN 0 an be rejeted in step (1). Thus all the intervals in N 0 are aepted, and neverremoved, so B(A�[C℄) � B(N 0[CL℄) � 1� 2� � �, whih ompletes the proof.� Interval J is removed from A[C℄ at time tl.Denote by x the violation point that aused the removal of J . Then x 2 CL, sinex is in the last arriving interval, whih belongs to N [CL℄, by the assumption. Nowexamine the intervals in 	L(x). Sine J was removed, by the de�nition of 	L(x) weget 8l 2 	L(x); right(CL) � x � left(l) � left(J). Now, if there is an intervall 2 	L(x) suh that right(l) > right(CR), l stritly ontains CR, and by lemma A.5,B(A[C℄) � B(A[CR℄) � � holds. Otherwise, all the intervals in 	L(x) are ontainedin C, so B(A[C℄) � B(	L(x)) � 12 � Æ holds.� Interval J is removed from A[C℄ after time tl.Denote by x 2 C the violation point that aused the removal of J . Then x 2 J � C.Now examine the intervals in 	L(x) and 	R(x). Sine J was removed, by the de�nitionof 	L(x) and 	R(x), we get that 8r 2 	R(x); right(r) � right(J) � right(C) and8l 2 	L(x); left(l) � left(J) � left(C). If there is an interval l 2 	L(x) andan interval r 2 	R(x) suh that left(r) < left(C) and right(l) > right(C), thenone of the intervals l or r would stritly ontain one of the intervals CL or CR,and then by lemma A.5, either B(A[CL℄) � � or B(A[CR℄) � �. Otherwise, either8r 2 	R(x); left(r) � left(C) or 8l 2 	L(x); right(l) � right(C). In either ase,	R(x) � C and B(	R(x)) � 12 � Æ or 	L(x) � C and B(	L(x)) � 12 � Æ, whihompletes the proof.Lemma A.7 For � � 1� Æ let T = ft 2 S j t is stu�ed in Sg, and let S0 = S n T .Let O = OPT �, and O0 be an optimal subset of S'. Then B(O0) � �1+� � B(O), and thebound is tight.Proof: We onstrut a valid set N � S0, suh that B(N ) satis�es the above inequality.Sine for t 2 T , B(S[t℄) � �, there is a subset Ft � S[t℄ suh that � � B(Ft) < �+ Æ.16



De�ne the mapping F � : T ! 2S0 by the following reursive de�nition:F �(t) = ( Ft if Ft � S0F �(t0) otherwise, for some t0 2 Ft \ TSine T is �nite, and there are no idential intervals, F � is well de�ned. By de�nition,F �(t) � t and � � B(F �(t)) � �+ Æ.Let U be a (maximum size) set of pairwise-disjoint intervals in T \O de�ned as follows:order all the intervals in T \O from left to right by their left endpoint, and keep adding thenext interval with the left-most right endpoint, whih does not interset previously addedintervals, until the intervals are exhausted.By onstrution, every interval of T \ O intersets the right endpoint of some intervalin U . For u 2 U , denote by Tu the set of intervals t 2 T \ O for whih u is the left-most interval suh that t intersets the right endpoint of u. Then O \ T = Su2U Tu, andB(O \ T ) =Pu2U B(Tu), where the union above is disjoint.Now de�ne N 0 = Su2U F �(u). It is lear that N 0 � S0. N 0 is valid, sine F �(u) � u,u 2 U are disjoint, and B(F �(u)) � �+ Æ � 1. Sine Tu is a subset of a valid set, andright(u) 2 \v2Tvv, we have B(Tu) � 1 � 1�B(F �(u)). ThusB(O \ T ) = Xu2U B(Tu) �Xu2U 1�B(F �(u)) � 1�B(N 0)where the last inequality follows from the fat F �(u) � u are disjoint. Let N = N 0 ifB(N 0) > B(O \ S0) or N = O \ S0 otherwise. We laim that B(N ) � ��+1B(O).To prove the laim, assume B(O \ S0) = �B(O), and thus B(O \ T ) = (1 � �)B(O).Then B(N ) � maxf�B(O); (1 � �)�B(O)g, whih attains it's minimal value for � = ��+1 ,for whih B(N ) � ��+1B(O), as laimed.The following set S shows an upper bound of �1+� for B(O0)B(O) : for small �, pik �� disjointintervals of bandwidth �, and one more interval of bandwidth 1 � � whih ontains all theother intervals. Then: B(O0)B(O) = ��+ 1� � �!0! ��+ 1Proof of theorem 6.4:Let S0; O0 be as in lemma A.7. Then B(O0) � �1+�B(OPT �). By lemma A.4, there exist atleast B(O0)2(2+Æ)� 32 pairwise disjoint ells C 2 C of O0. By lemma A.6, B(A[C℄) � minf12 � Æ; �gfor eah suh ell, so summing over all ells we get:B(A) � XC2CB(A[C℄) � minf12 � Æ; �g � ( �1+�B(OPT �)2(2 + Æ) � 32)Thus hoosing � = 13 , the ompetitive ratio of the algorithm is 8(2+Æ)minf 12�Æ; 13g , i.e., for Æ � 16 thealgorithm is 24(2 + Æ)-ompetitive, and for 16 � Æ < 12 the algorithm is 8(2+Æ)12�Æ -ompetitive.Spei�ally, the algorithm is 72-ompetitive for Æ = 14 .17


