Beating the logarithmic lower bound: randomized preemptive
disjoint paths and call control algorithms *

Ran Adler f Yossi Azar

March 19, 2001

Abstract

We consider the mazimum disjoint paths problem and its generalization, the call
control problem, in the on-line setting. In the mazimum disjoint paths problem, we are
given a sequence of connection requests for some communication network. Each request
consists of a pair of nodes, that wish to communicate over a path in the network. The
request has to be immediately connected or rejected, and the goal is to maximize the
number of connected pairs, such that no two paths share an edge. In the call control
problem, each request has an additional bandwidth specification, and the goal is to
maximize the total bandwidth of the connected pairs (throughput), while satisfying
the bandwidth constraints (assuming each edge has unit capacity). These classical
problems are central in routing and admission control in high speed networks and in
optical networks.

We present the first known constant-competitive algorithms for both problems on
the line. This settles an open problem of Garay et al. and of Leonardi. Moreover,
to the best of our knowledge, all previous algorithms for any of these problems, are
Q(log n)-competitive, where n is the number of vertices in the network (and obviously
non-competitive for the continuous line). Our algorithms are randomized and preemp-
tive. Our results should be contrasted with the Q(logn) lower bounds for deterministic
preemptive algorithms of Garay et al. and the Q(logn) lower bounds for randomized
non-preemptive algorithms of Lipton and Tomkins and Awerbuch et al. Interestingly,
non-constant lower bounds were proved by Canetti and Irani for randomized preemptive
algorithms for related problems but not for these exact problems.

*A preliminary version of this paper appears in the proceedings of the 10th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), 1999, pp. 1-10. Corresponding author: Yossi Azar.

"Department of Computer Science, C/O Yossi Azar, Tel Aviv University, Tel-Aviv 69978, Israel.

tDepartment of Computer Science, Tel Aviv University, Tel-Aviv 69978, Israel. Research supported in
part by the ISIS consortium and the Israel Science Foundation. E-mail: azar@tau.ac.il.

1 Introduction

We consider the mazimum disjoint paths problem and its generalization, the call control
problem, in the on-line setting. In the maximum disjoint paths problem, we are given a
sequence of connection requests for some communication network. Each request consists of
a pair of nodes, that wish to communicate over a path in the network. The request has to
be immediately connected or rejected, and the goal is to maximize the number of connected
pairs, such that no two paths share an edge. In the call control problem, each request
has additional bandwidth and benefit specifications (the benefit is usually proportional to
the bandwidth). The goal is to maximize the total benefit of the connected pairs while
satisfying the bandwidth constraints (assuming each edge has unit capacity).

These classical problems were extensively studied in recent years, since they are appli-
cable to routing and admission control in high speed networks [2, 5, 7, 10, 16] and optical
networks [1, 3, 4, 19].

The algorithms we consider are also preemptive, that is, they may, at any point of time,
decide to stop an on-going call in the network. Of course, if a call is preempted, then it’s
benefit is not accounted in the total benefit.

We focus on the case where the benefit is proportional to the bandwidth. This corre-
sponds to maximizing the total throughput of the network. Also, we consider only the case
where the network is a line, and thus the requested paths are intervals.

The performance of the on-line algorithm is measured in terms of its approximation
ratio, called the competitive ratio. A deterministic or randomized algorithm is defined to
be c-competitive, if for any sequence of requests its (expected) benefit is no less than ¢ times
the benefit of the optimal offline algorithm.

Our results. We present the first known constant-competitive algorithms for the maxi-
mum disjoint paths problem and for the call control problem on the line. This settles an
open problem of [12, 16]. Moreover, to the best of our knowledge, all previous algorithms
for any of these problems are Q(logn)-competitive, where n is the number of vertices in the
network (and obviously non-competitive for the continuous line). Constant approximation
ratios were achieved only in off-line settings (see e.g [14, 15] and their references). Our algo-
rithms are randomized and preemptive. Our results should be contrasted with the Q(logn)
lower bound for deterministic preemptive algorithms in [12], and the Q(logn) lower bound
for randomized non-preemptive algorithms [5, 6, 18]. Also, non-constant lower bounds were
proved in [11] for randomized preemptive algorithms in various cases. However, these lower
bounds do not apply to the standard disjoint paths and call control problems.

The key new idea in our algorithms is recognizing middle intervals and using them ap-
propriately. Specifically, previous algorithms were based mainly on the values of the lengths
(e.g. the lengths of the intervals). Our algorithms do not take the lengths into account and
decides based only on the topological structure of the intervals. Surprisingly, the only two
ingredients required from the topological structure are the containment relations and the
middle intervals. In the way of constructing our algorithm for the disjoint paths problem,
we first design a 4-competitive deterministic algorithm for requests of bandwidth 1/2. This
algorithm is used for establishing the randomized disjoint paths algorithm. Some tech-
niques of [4] are used for transforming the above deterministic algorithm to an algorithm

for requests of bandwidth 1/k for k£ > 1.

It is important to mention that our randomized algorithm for the disjoint paths problem
does not suffer from the known undesired property of many randomized on-line call control
algorithms, that high benefit is attained only with very poor probability (see discussion
in [17]). In fact, not only that our algorithm succeeds with constant probability, but the
number of paths that the algorithm provides is quite concentrated around its mean.

For constructing the general call control algorithm, we first design a constant-competitive
deterministic algorithm for requests of arbitrary bandwidth limited by § < 1/2. A crucial
ingredient of this algorithm is to ignore “stuffed intervals” - intervals that contain a large
mass of previous intervals. Then, we easily combine this algorithm with the disjoint paths
algorithm using randomization and establish the final algorithm.

We note that our algorithms are history dependent, that is, the decision to accept or re-
ject a new call depends not only on the currently active calls, but also on previously rejected
calls. Attempting to remove this dependency, by modifying the algorithm in some natural
ways, can be shown to result in non constant-competitive algorithms. It seems very inter-
esting to find out whether there exist constant-competitive algorithms where each decision
depends only on the currently active calls and maybe on additional bounded information.

The constants of most of our algorithms are not large (although we make no specific
attempt to make them small). We also prove a lower bound of 2 for deterministic or
randomized algorithms for all the problems that we consider.

We note that our techniques can be easily applied to optical networks, that is, we can
provide constant throughput competitive algorithm for one or more wavelengths in the line
network.

Related work. The disjoint paths problem was considered by Garay et al. [12]. They
showed an O(logn)-competitive deterministic preemptive algorithm for the line network.
They also showed that no deterministic preemptive algorithm can achieve a better compet-
itive ratio. Randomized non-preemptive algorithms for the line network were considered
in [6, 18]. They showed an O(logn)-competitive algorithm and a matching lower bound
for randomized non-preemptive algorithms. The randomized non-preemptive lower bound
holds also for the call control problem, even when requests are limited to a small fraction
of the available bandwidth. Note that for general networks one can achieve logarithmic
competitive ratios by deterministic algorithms for requests of small bandwidth [5], while
no poly-logarithmic competitive ratio can be achieved for requests of full bandwidth even
by randomized algorithms [9]. For special networks, e.g., trees, meshes, classes of planner
graphs [6, 7, 15] it is possible to design logarithmic competitive algorithms for the call con-
trol problem without limiting the requested bandwidth. Nevertheless, we are not aware of
any constant-competitive algorithm for disjoint paths problems or call control problem.
Also, some work was done for different measures of benefit. For the disjoint paths
problem on the line, [12] considered the case where the benefit of an interval is equal to its
length. Here constant-competitive ratio is achieved by deterministic preemptive algorithms.
For the call control problem on the line, [8] considered the case where the benefit of a call
equals the product of its length and its bandwidth. Here again, a constant-competitive
ratio can be achieved by deterministic preemptive algorithms, with the additional constraint
that the requested bandwidths are limited to § < 1. They also showed that deterministic

algorithms have very poor competitive ratio on the line, if a call may request the entire
bandwidth (that is, 6 = 1). For general benefits, [11] showed that even with randomized
preemptive algorithms, one cannot achieve a constant competitive ratio even on the line.
More specifically, they showed 2(+/log 11/ log log 1) lower bounds for randomized preemptive
algorithms, where p is the maximum among various variances in the parameters of different
calls. Fortunately, the lower bounds are not applicable to our problems.

Structure of the paper. In section 2 we present some definitions. In section 3 we de-
scribe a 4-competitive algorithm for requests of bandwidth 1/2. Then, in section 4 we show
how to transform it to a randomized algorithm for the disjoint paths problem. In section 5
we transform the algorithm of section 3 to an algorithm for requests of bandwidth 1/k.
In section 6 we design the general algorithm for call control for any requested bandwidth,
where we start by showing a deterministic algorithm for requests of bandwidth less than
1/2.

2 Preliminaries

We consider a network G which is a line, i.e. consists of chain of links. We denote the
sequence of call requests by o = 01, 09..0;. Call request i is characterized by a pair: (I;,7;),
where I; is the requested path and r; is the requested bandwidth. The requested bandwidth
is assumed to satisfy 0 < r; < 1.

A walid set of calls is a set of calls C' C o, which satisfies the bandwidth constraints for
each of the links, that is:

Ve € E(G) > om<i1
{o:€C | e€l;}

We focus on the case where b;, the benefit of a call, is proportional to its bandwidth (i.e.
b; = r;). Thus maximizing the total benefit corresponds to maximizing the total throughput
of the network. For any set of calls C, we denote by B(C) the total benefit of the calls
(which is equal to the total bandwidths of the calls).

The performance of the on-line algorithm is measured in terms of its competitive ratio,
defined as follows: let OPT, be an optimal valid set for the given request sequence, and
let ON, be the valid set of calls produced by the on-line algorithm. Then randomized ON
is p-competitive if for all sequences o we have F(B(ON,)) > %B(OPT(,).

We denote the set of the first 7 requests by S; , and denote by A; the set of accepted
calls just before the arrival of request i + 1. We also denote S* = S, A* = A;, where [is
the sequence length. We omit the index 7 from S; and A; when it is clear from the context.
When all the requested bandwidths are equal, we can assume that b; = 1 for all 7 (instead
of b; = r;) and hence we write |C| instead of B(C) for a set of calls C.

Since our algorithms and bounds do not depend on the number of links, we may replace
the network by a continuous line, and replace each discrete path by an open interval. We
denote by left(I) and right(I) the left and right endpoint of an interval I respectively. We
will often refer to the calls as intervals, ignoring the attached bandwidth. We will also use
interval notations for calls, for example, we abuse the notation and use S; to denote the
first ¢ requested intervals.

For simplicity, we assume that S* has no identical intervals (if there are, we can extend
the containment relation by ordering identical intervals in the order of arrival).

3 A deterministic algorithm for bandwidth 1/2

In this section we show a constant competitive on-line algorithm for the case where all
requested calls o; have r; = 1/2, that is, at most two calls are allowed to overlap for each
link. Since all the benefits are equal, we set all of them to 1.

Definition 3.1 Given a set S of intervals, an interval I is a middle interval of S if there are
two intervals Iy, Ip € S such that left(I1) < left(I) < left(Ir) < right(I;) < right(I) <
right(Ig).

Informally, the idea of the algorithm is the following: when there is a “collision” between
more than two intervals, none of which contains the other, it rejects/preempts the middle
interval. Also, we need to reject calls that contain previous calls, even if the previous calls
have already been rejected or preempted. Note that the algorithm is history dependent.

More formally, given a new call request, I, the procedure in figure 1 describes how the
algorithm decides whether to accept it or reject it.

Procedure: BW1
begin
(1) if there is a J € S such that J C I then
(2) reject I
(3) elseif there is a J € A such that J D I
(4) preempt all intervals J' € A such that J' DT
(5) accept I
(6) elseif I is a middle interval in AU {I} then
(7) reject I
(8)
(9)
(10
(11

else
preempt middle intervals J' € AU {I}
) accept I

1
11) end if

Figure 1: Algorithm for bandwidth 1/2 calls

Note algorithm BW% in figure 1 is history dependent because of line (1). Modifying
the algorithm to depend only on active calls by replacing S by A in line (1) results in a
non-competitive algorithm !. In order to prove that the algorithm BW% is valid (that is,
it maintains a valid set A), we first observe the following immediate fact:

et a; = (0, M — 34),b; = (M —3i —1,2M — 3i),¢c; = (M —3i —2,M —3i+1) for 0 <i < M/3 -1
be intervals on the line (0,2M) and consider the sequence ao,bo, co,a1,b1,¢1, ..., ap/3—1,bar/s—1,Car/3—1-
Clearly OPT gets M /3 intervals by accepting only ¢; where the online ends up only with apr/3-1,bar/3-1, bo.

Fact 3.2 Let S be a set of intervals. If there are no Ji,Jo € S such that J; C Jo, then
among any 3 intersecting intervals there is a middle interval.

Lemma 3.3 At any time, except between the arrival of a new call and the completion of
invoking steps (1)-(5) for it, there is no Jy € A such that J C Jy and J; € S.

Proof: Consider any two intervals J; and Jo. An inclusion of J; in Jy can only be created
with the arrival of one of theses two intervals (the later one). If J; arrives first, when J5
arrives it fails condition (1), and it is rejected. Otherwise, if Jo € A when J; arrives then
by condition (3) Jo is preempted in step (4). In both cases, after invoking steps (1)-(5) such
inclusion is impossible. u

Lemma 3.4 The set A is a valid set of intervals.

Proof: By induction on the number of input intervals. Initially the claim holds for A =
S = ¢. Assume A is valid, and now a new interval I arrives. If I is rejected, A is unchanged.
Otherwise, if step (4) is executed, at least one interval J' D T is preempted, so that I can be
allocated in the evicted bandwidth. Otherwise, step (9) is executed. Let T' = {J'|J'NI # ¢}.
By lemma 3.3 each of the intervals in T' intersects exactly one endpoint of I. Thus we can
partition 7' to Ty, and Tg, such that |T7| < 2 and |Tg| < 2, since A is valid. Let Ir € Tg
and Iy, € Ty,. It follows from lemma 3.3 and lemma 3.2 that Ir N I;, = ¢, otherwise I would
be a middle interval. Thus it is sufficient to show that the allocation of I would not violate
the bandwidth limitation on the left endpoint of I, and use the symmetrical claim for the
right endpoint. If |T7,| < 1 then I does not cause violation of the bandwidth constraint on
it’s left side. Otherwise, let J; and Jo denote the intersecting intervals. By lemma 3.3 and
lemma 3.2 one of the intervals J; and .Jo is a middle interval, it meets the condition of (9),
and it is preempted. Thus, I can be allocated in the evicted bandwidth. [|

Corollary 3.5
1. At most 2 intervals are preempted when step (4) is executed.

2. At most 2 intervals are preempted when step (9) is executed.

Proof: Claim 1 is obvious. Claim 2 follows from the proof above. [|

Let OPTgk) be an optimal solution for ¢ when b; = 1 and r; = % for all o; € 0.

Lemma 3.6 |OPTY)| < kjoPT).

Proof: We view the set of intervals as an interval graph, i.e., each vertex of the graph corre-
sponds to an interval and two vertices are adjacent if the corresponding intervals intersects.
We use the fact that the clique number of an interval graph equals to its chromatic number

(see [13]). Since (9737',(,’“) is a valid set when all r; = %, the maximum clique size in OPTgk)

is no more than k£. Thus OPTgk) can be colored in k colors. Each of the color classes is an
independent set of intervals, and one of them has size at least |C’)737'Efk)|/ k. Now this set is

also valid when all r; = 1, resulting in: |(973'T¢(7k)|/ k< |OPT¢(71)| as claimed. |

Il I2 -[3 I4
01 02

Figure 2: Definition of cells

Lemma 3.7 [BW3 | > %|OPT§1)|

Proof: Let OPT&I) be an optimal set of intervals for bandwidth equal to 1, as defined
above, and m = |(’)737'¢(71)|. By definition, the set C’)PTgl) is a set of pairwise disjoint
intervals. Let us denote the intervals by Iy, I .. I,,,. We can also assume that no I € OPT&I)
contains an interval of S. Define the following intervals, referred to as “cells”, as follows:
cell j for 1 < j <[], denoted by Cj, is the interval (left(Izj 1)..right(l;)). (See figure
2). If m is odd then we add another cell, C|m |1 = (left(Im), +00). We refer to cells 1..| 5 |
as “regular”, and to CL% |+1, if it exists, as the “infinite” cell. The following claim shows
that after a certain point of time, cell C; always contains an interval, more specifically,
there will always be an interval J € A s.t. J C C; . The claim completes the proof of the
theorem, since the cells are disjoint.

Claim 3.8 For reqular cells, after the intervals Ioj 1 and I; have arrived, there is always
an interval J € A, s.t. J C Cj. If an infinite cell exists, after I, arrives, there is always
an interval J € A s.t. J C Clmyyg.

Proof: First we consider “regular” cells, and prove the claim by induction on the number
of intervals that have arrived.

e Initial step: Assume I;_; arrives after Io;. The proof is symmetrical for the other
case. If Ir; 1 is accepted, then the claim holds. Otherwise, I5; 1 is rejected and since
I;_1 contains no other intervals, condition (6) in the algorithm must hold. Let I be
a right interval, as in definition 3.1. It follows that left(C}) = left(Izj—1) < left(IR).
Since I intersects Io;_1 and Ip;_p lies to the left of Iy;, left(Ir) < left(I;). Since
Ir € A, by lemma 3.3 it does not contain Iy;, and thus right(Ir) < right(lz;) =
right(Cj). Hence, Ir C C; as claimed.

e Induction: Assume J C Cj is preempted when a new interval I arrives. If condition
(3) in the algorithm holds, then I C J C C} satisfies the claim conditions. Otherwise,
J is preempted due to the execution of step (9) of the algorithm where J is a middle
interval. Thus there are intervals Iy, Ir € A that are not preempted at this step such
that

left(Ir) <left(J) <left(Ir) < right(Ir) < right(J) < right(Ir) .

Next we show that at least one of these intervals I, or I is in C; which will complete
the proof. First we note that since J C Cj, we get right(I) < right(C;) and
left(C;) < left(Ir). Assume by contradiction that Iy, ¢ C; and Ir Z Cj, ie.,
left(Ir) < left(C;) and right(C;) < right(Igr), then we get that Iy Ulp O C; D
I)j_1UIy;. Since I, N Igr # ¢, one of Iy, and Ir contains I;_; or Iy;, which is
impossible by lemma 3.3. Thus left(C;) < left(Ir) or right(Ir) < right(C};), yielding
Iy, C Cj or Ig C Cj respectively, which completes the proof.

Now, for the “infinite” cell the proof is similar, observing the fact that if J C CL% |41 18
rejected or preempted, I is always contained in the cell. [|

Theorem 3.9 BW% 18 4-competitive.

Proof: By lemma 3.7 [BW§ _| > %|(’)777'g1)|. Now by lemma 3.6, |(’)737'E;2)| < 2|(’)737'E;1)|.
|

4 A randomized algorithm for bandwidth 1

Next we show how an algorithm for bandwidth 1/2, like BW% , can be used to construct
a randomized constant-competitive algorithm for bandwidth 1. Actually, any deterministic
algorithm, with following properties can be used to construct such an algorithm, as is proved
by the sequel theorem.

Consider a deterministic preemptive algorithm D ET for call control of requests of equal
bandwidth (i.e., ; = + and b; = 1) that maintains a set of intervals D, with the following

properties:
e [DET,| > LjoPT].

e There is a constant d such that any newly accepted interval I intersects at most d
other intervals in D (after it has been accepted).

Theorem 4.1 Any algorithm DET with the above properties can be used to construct a
randomized algorithm for bandwidth 1 with competitive ratio 4dc.

Proof: We construct a randomized algorithm RAND. RAND maintains a valid set of
intervals (for bandwidth 1) denoted by R. R is initially empty. Let p satisfy 0 < p < %
We simulate DET on the background with the same sequence of intervals as RAND but
each has bandwidth % instead of 1. The idea is that R certainly rejects and preempts all
intervals rejected and preempted by DET but also randomly rejects some intervals that
were accepted by DET. Specifically, for any new interval I, we take the actions described
in figure 3 following the actions taken by DET for the same intervals (but with smaller
bandwidth, i.e. r; = 1).

It follows immediately that the algorithm is correct: initially R is valid, and whenever
an interval I is accepted, by condition (5), R remains valid.

Let R* (respectively D*) denote the final set of intervals accepted by RAND (respec-

tively DET). We proceed to show that E(|R*[) > ;5 ¥ |(’)PT¢(71)|.

begin
(1) preempt from R those intervals that were preempted by DET
(2) if I was rejected by DET then
(3) reject I
else
(4) toss a p-coin
(5) if coin shows “success” and there is no J € R s.t. J NI # ¢ then

(6) accept T
else
(7) reject T
end if
end if
end

Figure 3: A randomized reduction from bandwidth 1 to an algorithm with the above prop-
erties

e Every interval I is accepted by RAN D with probability at most p, because in order
for an interval to get accepted, the coin-toss in step (4) has to show “success”.

e The set R satisfies R C D, since every interval is accepted by RAND only if it is
accepted by DET.

e For all s € D*, s € R* if and only if s is accepted by RAND: If s is accepted by
RAND, then it is never preempted by RAN D, since RAN D preempts intervals only
in step (1), only if DET preempts them.

For s € S define the indicator random variable x; to be 1 if s € R*, and 0 otherwise.
By the above observations, for s € D* we have

E(xs) = Pr[s € R*]| = Pr[s is accepted by RAND].

For s € D*, RAND accepts s if and only if condition (5) holds. By DET’s properties,
s intersects at most d intervals in D when it is accepted by DET, and thus it intersects
at most d intervals in R C D. The probability that none of those intervals is accepted by
RAND is no less than (1 — p)¢, so

Pr[s is accepted by RAND] > p(1 — p)? > p(1 — dp).
Thus,

(1)
B(R) > E(Y x0) > Y pll—dp) > p(L—dp) - [D*| > p(1 - dp) - 1P T2

seD* seD*

1

To complete the proof, choose p = 5.

Using the theorem we get the following result:
Theorem 4.2 There is a 16-competitive randomized on-line algorithm for bandwidth 1.

Proof: Use the algorithm BW% for theorem 4.1. The algorithm satisfies the properties
above with ¢ = 2 (by lemma 3.7) and d = 2 (any accepted interval intersects at most 2
intervals in the valid set).]

5 A constant competitive algorithm for bandwidth 1/k

In this section we give a constant competitive algorithm for the case where all the intervals
request bandwidth of 1/k, for some fixed & > 2. We first note that by lemma 3.7 and
lemma 3.6, the algorithm BW% is at most 2k-competitive for this problem. Here, however,
we present an algorithm whose competitive ratio does not depend on k.

We apply a general method of [4] for benefit problems, with adaptation to handle pre-
emption, where the benefit is gained by accommodating items in any of several (not neces-
sarily identical) abstract “bins”. That is, given a set of items, an algorithm has to maximize
the benefit gained by accepting items. To accept an item the algorithm has to accommodate
the item in one of several bins. Within each bin there may be restrictions as to the set of
items that can be accommodated in it concurrently. However, we assume total independence
between the different bins: If we have n bins, then for any i, if the set Z; can be accepted in
bin ¢ with sets Z1,...,7Z;-1, Zi+1,. .., Zn, in the other bins, then the set Z; can be accepted
to bin 7 also if the other bins contain arbitrary other feasible sets Z1,...,7Z; |, Z;,,,...,Z).

Given a p-competitive on-line (deterministic or randomized) allocation algorithm A for
one bin, the paper [4] shows how to build a p + 1-competitive on-line allocation algorithm
A’ for multiple bins . We generalize the algorithm for the preemptive case. We will use the
term preemptive allocation algorithm for algorithms, which decide, for a new item, whether
to accept it or reject it, and may preempt old items when a new item is accepted. We prove
the following theorems:

Theorem 5.1 Assume there are n totally independent abstract “bins”, and an on-line al-
gorithm has to assign items into one of the bins. Assume A is a p-competitive preemptive
allocation algorithm for one bin. Then there is a p + 1-competitive preemptive allocation
algorithm for allocation into n bins.

Proof: We describe an algorithm A’ for n bins, in terms of a procedure B; for 1 < i < n,
which maintains the 7’th bin. Given a new item ¢ the procedure B; proceeds as described
in figure 4.

Algorithm A’ calls B;. It is easy to see, by induction from n to 1, that procedure B;
terminates, and thus A’ terminates. We claim that A’ is a p + 1-competitive algorithm for
n bins.

For 1 <4 < n, let O; denote the set of items accepted into bin ¢ by the optimal algorithm
for the problem with n bins, and let T; denote the set of items accepted into bin ¢, which
were not preempted in step (9).

Procedure B;
begin
(1) run A on t for bin i
(2) if t was rejected then
(3) ifi <n then call B;1; ont
(4) else reject ¢
else

(5) accept t into bin ¢
(6) if items ry, 7.7, were preempted then
(7) if ¢ < n then
(8) for each 1 < j < m sequentially call B;;1 on r;
(9) else preempt 71, 79..7,
end if

end if

end

Figure 4: A procedure B; for allocation into bin 4

By construction of the algorithm, procedure B; is presented with at least all the items
in the set O; \ Uj<;Tj (not necessarily in the original order). Since B; uses A internally, it
is p competitive, so it will gain at least:

1 1 1
B(T;) > p - B(0; \ (Uj«iTy)) = ;B(Oz’) - ;B((Uj<iTj) No;) .
It follows that

S BT) > i%B(Oz)—i_B((Ug’aTj)ﬂOi)Zi_B(Oi)—%B(UKnT‘)
=1 =1 =1 =1
> ;;B(Oz) ;;B(Tz),

where the second inequality follows since the sets O; are pairwise disjoint.
Thus (1+p) X7, B(T;) > Y7, B(O;), and A’ is p + 1-competitive.
|

Theorem 5.2 There is a 5-competitive algorithm for bandwidth allocation of bandwidth %
intervals for even k, and a 7-competitive algorithm for odd k, k > 3.

Proof: We partition the unit capacity line into a set of multiple lines each with capacity %
(except of one of capacity % for odd k) while preserving the total capacity. We consider the
problem of allocation of calls of bandwidth % to the set of multiple lines each with its own
capacity (% or %) Clearly, a feasible solution to the multiple lines can be converted into a
feasible solution to the unit capacity line by taking the union of the feasible sets of each line.
Moreover, a feasible solution for the unit capacity line can be partitioned into a solution to

10

the multiple lines as follows: recall that an interval graph of maximum clique size k£ can be
colored with k colors; Given a solution to the unit capacity we color the intervals with k&
colors and assign intervals with two (or three) specific colors to each line of capacity % (or
)

Now, consider the multiple lines problem. Clearly, it is an instance for allocation of
items into abstract bins. Hence we use the previous theorem to allocate intervals to the
bins, in the following way:

e For even k, there are g “binsg”, each consists of capacity %, and we use algorithm
BW% for allocation in each bin. By lemma 3.7 B W% is 4-competitive on each bin, so
we get a b-competitive algorithm.

e For odd k, there are L%J “bins”, L%J —1 of which consisting of capacity %, the remaining
one consisting of capacity %, and we use algorithm BW% for allocation in each bin.
As mentioned before, BW% is 6-competitive on each bin, so we get a 7-competitive
algorithm.

We also show a lower bound theorem for arbitrary bandwidth:

Theorem 5.3 For any k no deterministic or randomized on-line algorithm can achieve
competitive ratio less than 2 for intervals with bandwidth = %

Proof: For an appropriate M, the adversary requests & calls in the interval (0, M + 1)
(left side calls), and k& more calls in the interval (M,2M + 1) (right side calls). Define
the “internal part” of the left side (right, respectively) to be (0, M) (M + 1,2M + 1),
respectively).

Since all the calls overlap, in at least one of the sides (say right) the expected number
of calls accepted by the on-line algorithm is at most % Then the adversary accepts all the
k calls in this (right) side and continues the construction recursively in the “internal part”
of the opposite (left) side. Except of the last step of the recursion, the on-line algorithm
would preempt all the calls accepted on the left side at each step since they contain all later
calls.

Repeating the construction recursively n times we conclude that the number of calls
accepted by the on-line algorithm is at most & + (n — 1) (in the last step of the recursion
the on-line algorithm can accepts all calls) whereas the adversary accepts kn calls, which
proves the claim (n can be as large as we want).]

6 A randomized algorithm for bandwidth <1

In this section we consider a generalized setting, in which all requested calls ¢; have band-
width r; < 6, for some fixed §, § < 1, and the benefit accrued from the interval is it’s
bandwidth i.e. b; = r;.

First we show a deterministic constant-competitive algorithm for the case § < %, then
we show how this algorithm can be used to construct a randomized constant competitive
algorithm for the case § = 1.

11

6.1 A constant competitive algorithm for ¢ < 1

As mentioned before, we now focus on the case § < % We first introduce some useful

definitions and notations. Let I be an interval, and S be an interval set.
e SCIiffVse S, sCl.
o S[I|={s€ S |sCI}isthe induced subset of S on I. Note that S = S[I]iff S C I.
e Siz] ={s €S|z € s}, the subset of intervals of S which contain z.

In the algorithm for the bandwidth 1 case, we used the fact that there is an optimal
solution with no “containing” intervals. We introduce the definition of “stuffed” intervals,
which are intervals that contain calls of large total benefit. Such intervals, as shown in the
sequel, can be excluded from constant-factor approximations to the optimum, since they
can be replaced by non-“stuffed” intervals in the approximation.

Definition 6.1 Let S be a set of intervals. Let 0 < A < 1.
An interval K € S is stuffed in S if B(S[K]\ {K}) > .

Definition 6.2 Let x be violation point of A. Let L be the list of the intervals in Alz],
ordered by ascending order of their right-endpoint. Similarly, let L be the list of the inter-
vals, ordered by descending order of their left-endpoint.

The right-closest intervals of x in A, Vg (z), is the maximal prefix of Lr which has total
bandwidth < % The left-closest intervals of = in A, ¥ (x), is the maximal prefiz of Lr,
which has total bandwidth < %

Figure 5 shows the deterministic algorithm STICKY which handles an arriving interval
I.

Procedure: STICKY (interval I)
begin
(1) if I is stuffed in S then reject I and return
(2) add I to A
(3) while there are bandwidth violations do
(4) pick a violation point, =
(5) remove all the intervals K such that z € K and
K ¢ \IJL(ZE) U \IJR(ZE)

Figure 5: Algorithm for § < 3

Lemma 6.3 Algorithm STICKY maintains a valid set A of intervals.

Proof: When the algorithm terminates there are no bandwidth violations in A, by condi-
tion (3). The algorithm terminates, since when an iteration of the loop in (5) is executed,
at least one interval is removed, and there is a finite number of intervals. [|

12

In the appendix, we prove the following theorem:

Theorem 6.4 For A = %, algorithm STICKY is constant competitive for § <

cally, for § = i, the algorithm is 72-competitive.

Specifi-

N[

N[

We note that the algorithm does not need to know 4 in advance, as long as § <

6.2 A randomized algorithm for 6 =1

Now we can construct a randomized competitive algorithm for § = 1 by classifying the
request series, and applying one of the previous algorithms on each class.
More specifically, the requests are classified into the following 2 classes:

e All the requests with r; > i. Those requests are handled with the 16-competitive
randomized algorithm, setting all r; = 1.

e All the requests with r; < i. Those requests are handled by STICKY.

The algorithm for § = 1 randomly chooses one of the classes, each with probability %, and
handles only requests of this class by the appropriate algorithm.

Theorem 6.5 The above algorithm is 144-competitive.

Proof: The first algorithm is 16*4-competitive with respect to the requests of the first
class, by lemma 3.6. The second algorithm is 72-competitive with respect to the requests
of the second class, by theorem 6.4. Let B be the value of the optimal algorithm for all the
requests and let By and By be the optimal value restricted to requests of class 1 and class 2
respectively. Clearly B < Bj+ By. The benefit gained by the on-line randomized algorithm

is at least % . 6—1431 + % . %BQ > ﬁ(Bl + Bs) > EIALB which completes the proof.]

References

[1] A. Aggarwal, A. Bar-Noy, D. Coppersmith, R. Ramaswami, B. Schieber, and M. Sudan.
Efficient routing and scheduling algorithms for optical networks. In Proc. 5th ACM-
SIAM Symp. on Discrete Algorithms, pages 412-423, 1994.

[2] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line routing of virtual
circuits with applications to load balancing and machine scheduling. Journal of the
ACM, 44(3):486-504, 1997. Also in Proc. 25th ACM STOC, 1993, pp. 623-631.

[3] Y. Aumann and Y. Rabani. Improved bounds for all optical routing. In Proc. 6th
ACM-STAM Symp. on Discrete Algorithms, pages 567-576, 1995.

[4] B. Awerbuch, Y. Azar, A. Fiat, S. Leonardi, and A. Rosen. On-line competitive algo-
rithms for call admission in optical networks. In Proc. 4th Annual European Symposium,
on Algorithms, pages 431-444, 1996.

[5] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive online routing. In
34th IEEE Symposium on Foundations of Computer Science, pages 32—-40, 1993.

13

[6]

[10]

[11]

[12]

[13]
[14]

B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén. Competitive non-preemptive call
control. In Proc. of 5th ACM-SIAM Symposium on Discrete Algorithms, pages 312—
320, 1994.

Baruch Awerbuch, Rainer Gawlick, Tom Leighton, and Yuval Rabani. On-line admis-
sion control and circuit routing for high performance computation and communication.
In Proc. 35th IEEE Symp. on Found. of Comp. Science, pages 412-423, 1994.

A. Bar-Noy, R. Canetti, S. Kutten, Y. Mansour, and B. Schieber. Bandwidth allocation
with preemption. In Proc. 27th ACM Symp. on Theory of Computing, pages 616-625,
1995.

Y. Bartal, A. Fiat, and S. Leonardi. Lower bounds for on-line graph problems with
application to on-line circuit and optical routing. In Proc. 28th ACM Symp. on Theory
of Computing, pages 531-540, 1996.

A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

R. Canetti and S. Irani. Bouding the power of preemption in randomized scheduling.
In Proc. 27th ACM Symp. on Theory of Computing, pages 606—615, 1995.

Juan Garay, Inder Gopal, Shay Kutten, Yishay Mansour, and Moti Yung. Efficient
on-line call control algorithms. Journal of Algorithms, 23:180-194, 1997. Also in Proc.
2’nd Annual Israel Conference on Theory of Computing and Systems, 1993.

M. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.

J. Kleinberg and E. Tardos. Approximations for the disjoint paths problem in high-
diameter planar networks. In Proc. 27th ACM Symp. on Theory of Computing, pages
26-35, 1995.

J. Kleinberg and E. Tardos. Disjoint paths in densely embedded graphs. In Proc. 36th
IEEE Symp. on Found. of Comp. Science, pages 5261, 1995.

S. Leonardi. On-line network routing. In A. Fiat and G. Woeginger, editors, Online
Algorithms - The State of the Art, chapter 11, pages 242-267. Springer, 1998.

S. Leonardi, A. Marchetti-Spaccamela, A. Presciutti, and A. Rosén. On-line random-
ized call control revisited. In Proc. 9th ACM-SIAM Symp. on Discrete Algorithms,
pages 323-332, 1998.

R. J. Lipton and A. Tomkins. Online interval scheduling. In Proc. of the 5th ACM-
STAM Symposium on Discrete Algorithms, pages 302-311, 1994.

P. Raghavan and E. Upfal. Efficient routing in all-optical networks. In Proc. 26th ACM
Symp. on Theory of Computing, pages 134-143, 1994.

14

Appendix

A STICKY is constant competitive

In this appendix we prove theorem 6.4.
The following claim follows immediately from the fact that the bandwidth of each in-
terval is at most 0:

Claim A.1 Let A be an interval set. If § < 3, then B(¥g(z)) > 2 — 6, B(¥r(z)) > 3 — 4,

Lemma A.2 Let the intervals Jy, Jo satisfy Ji C Jo. If interval Jy is removed in step (5),
then by the time step (5) is over, Jo ¢ A.

Proof: Let z,L,Lr be as in definition 6.2, at the moment J; is removed in step (5).
Now z € Ji, z € Jy, so if Jy € A by the time J; is being removed, Jy appears in Ly,
and Lr . Since J; C Jo, Jo appears after J; in both of the lists £ and Lr , and since
J1 ¢ V() UVR(z), Jo & Yi(z) UTVR(z), so Ja is now removed.]

Definition A.3 For an interval set N, interval C C R is a cell of N, if it contains two
disjoint intervals Cr, Cr (Cr is the left one) such that B(N[Cg]) > 1 and B(N[CR]) > 1.

Next is a “subdivision” lemma, which demonstrates how to split the original interval
set S into Q(B(OPT,)) cells, like the ones in the proof of lemma 3.7.

Lemma A.4 Let N be a valid set of intervals. Then there exist at least BWN) % pairwise

2(2+9)
disjoint cells of N.

Proof: Order the intervals of N from left to right by their left-endpoint. Now, scanning
the list, pick minimal subsets {L;};>o from the start of the list, such that B(L;) > 2. Then
B(L;) < 2+ 4. Thus, there are at least L%J > % — 1 such subsets.

Let x; be the left most left endpoint of the intervals in L;. By construction {z;};>0 is
an ascending sequence. Add a last element z;,5 = 0o to the sequence.
Define N; = {n € L; | z;+1 ¢ n}. Then B(N;) > 1, otherwise N violates the bandwidth
constraint on z;11. Thus B(N|[(z;, zi+1)]) > 1.

Now let C() = (72, To(i11)) for @ > 0. By the above, C satisfies the definition of a
cell of N, with the following subintervals: Cg) = (w2i,22+1), and Cg) = (z2i41,%2i+2)-

B(N)

By definition, the intervals C@ are pairwise disjoint, and there are at least L@J >
B(N) 3 |

o) " 2 such intervals, as claimed.

Lemma A.5 Let J C R, and let N be a set of intervals, with no stuffed intervals of the
final set S*. If B((S: N N)[J]) > 2X and there is K € Ay s.t. K O J (K # J), then
B(AJ]) > A.

Proof: Suppose K D J, K # .J is in A;. Denote by #' the time when K arrived. Since K
was not rejected in step (1), B((Sy N N)[J]) < B(Sy[J]) < A. Let N' = (S;\ S¢) N N, the

15

intervals of S; N N which arrived after ¢'. Then B(N'[J]) > (2A — A\) = A. By lemma A.2,
if one of the intervals in N'[J] is removed, K is removed too, since K strictly contains all
the intervals of N'[J]. Thus by time ¢ none of the intervals in N'[.J] was removed, and
BALT) > B(N') > .

Lemma A.6 Let N be a valid set with no stuffed intervals of S*, and let C be a cell of N.
Assume A < +. Then B(A*[C]) > min{i —,\}.

Proof: Since B(S;NN) is non-decreasing with ¢, let ¢, be the first time B((S;. " N)[Cg]) >
2, and ¢; be the first time B((Sy, N N)[C1]) > 2X. Since Cy, and Cf are disjoint, t; # t,,
and we can assume t, < t;. The proof for the other case is symmetrical.

Now there are three cases:

e No interval is removed from A[C] in time t;, or later.
Let N' = (8*\ S;,—1) N N. Since N contains no stuffed intervals of S*, no interval of
N' can be rejected in step (1). Thus all the intervals in N’ are accepted, and never
removed, so B(A*[C]) > B(N'[C1]) > 1 —2X > A, which completes the proof.

e Interval J is removed from A[C] at time 1;.

Denote by x the violation point that caused the removal of J. Then z € Cf, since
z is in the last arriving interval, which belongs to N[Cf], by the assumption. Now
examine the intervals in ¥y, (x). Since J was removed, by the definition of Uy, (x) we
get VI € Ur(x), right(Cr) > = > left(l) > left(J). Now, if there is an interval
[€ Uy (x) such that right(l) > right(CRr), [strictly contains Cg, and by lemma A.5,
B(A[C]) > B(A[CR]) > X holds. Otherwise, all the intervals in ¥y (z) are contained
in C, so B(A[C]) > B(¥(z)) > 5 — ¢ holds.

e Interval J is removed from A[C] after time t;.

Denote by x € C' the violation point that caused the removal of J. Then z € J C C.
Now examine the intervals in ¥z, (x) and ¥ g(x). Since J was removed, by the definition
of Uy (x) and ¥r(x), we get that Vr € Ug(x), right(r) < right(J) < right(C) and
VI € Yp(x), left(l) > left(J) > left(C). If there is an interval [€ ¥y (zr) and
an interval r € Wr(z) such that left(r) < left(C) and right(l) > right(C), then
one of the intervals [or r would strictly contain one of the intervals Cr or Cp,
and then by lemma A.5, either B(A[C1]) > A or B(A[Cg]) > A. Otherwise, either
Vr € Ug(z), left(r) > left(C) or VI € Y (x), right(l) < right(C). In either case,
TUp(z) C C and B(¥g(z)) > 5 —6 or ¥y(z) C C and B(¥y(z)) > 5 — 6, which
completes the proof.

Lemma A.7 For A\<1—0letT ={t € S|t is stuffed in S}, and let S’ =S\ T.
Let O = OPT,, and O" be an optimal subset of S’. Then B(O') > 1%\ - B(0O), and the
bound s tight.

Proof: We construct a valid set N' C S, such that B(N) satisfies the above inequality.
Since for t € T, B(S[t]) > A, there is a subset F; C S[t] such that A < B(F;) < A+ 0.

16

Define the mapping F* : T — 25 by the following recursive definition:

() = F, if ;C S
| F*(#) otherwise, for some #' € F;NT

Since T is finite, and there are no identical intervals, F'* is well defined. By definition,
F*(t) c t and A < B(F*(t)) < A+ 6.

Let U be a (maximum size) set of pairwise-disjoint intervals in 7'N O defined as follows:

order all the intervals in "N O from left to right by their left endpoint, and keep adding the
next interval with the left-most right endpoint, which does not intersect previously added
intervals, until the intervals are exhausted.
By construction, every interval of T' N O intersects the right endpoint of some interval
in U. For uw € U, denote by T, the set of intervals ¢ € T'N O for which wu is the left-
most interval such that ¢ intersects the right endpoint of u. Then O NT = U,y Tu, and
B(ONT) =73 ,c B(T,), where the union above is disjoint.

Now define N’ = U,y F*(u). It is clear that N7 C . N’ is valid, since F*(u) C u,
u € U are disjoint, and B(F*(u)) < A+ d < 1. Since Ty, is a subset of a valid set, and
right(u) € Nyer,v, we have B(T,) < 1 < +B(F*(u)). Thus

1
B(ONT) B(T, ~B(F*(u ZB(N'
g{ g{ < $BW)
where the last inequality follows from the fact F*(u) C u are disjoint. Let N = N’ if
B(N") > B(ONS') or N = 0N S otherwise. We claim that B(N) > 27B(0).
To prove the claim, assume B(O N S") = aB(0), and thus B(ONT) = (1 — a)B(0).
Then B(N) > max{aB(0), (1 — a)AB(0)}, which attains it’s minimal value for @ = 2

A1
for which B(N) > 327 B(0), as claimed.
(

The following set S shows an upper bound of ; + o for B(O)) for small e, p1ck disjoint
intervals of bandwidth €, and one more interval of bandwidth 1 — ¢ which contams all the
other intervals. Then:

B (Ol) _ A ej>0 A
B(O) X+1—-¢ "A+1

Proof of theorem 6.4:

Let S, O be as in lemma A.7. Then B(0') > 1_|)j/\B((9PTg). By lemma A.4, there exist at

least (522) 3 pairwise disjoint cells C' € C of 0. By lemma A.6, B(A[C]) > min{3 — 6, A}

for each such cell, so summing over all cells we get:

A
B(OPT,) 3
A) >3~ B(A[C]) > min{5 — 4,2} - (1“— -5
S 2(2+9) 2
Thus choosing A = % the competitive ratio of the algorithm is (2_%(?}, ie., ford < i s the
’3
algorithm is 24(2 + 6)-competitive, and for 5<6< % the algorithm is %rg)—competltlve.
2

Specifically, the algorithm is 72-competitive for § = i. [|

17

