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1 Introdu
tionWe 
onsider the maximum disjoint paths problem and its generalization, the 
all 
ontrolproblem, in the on-line setting. In the maximum disjoint paths problem, we are given asequen
e of 
onne
tion requests for some 
ommuni
ation network. Ea
h request 
onsists ofa pair of nodes, that wish to 
ommuni
ate over a path in the network. The request has tobe immediately 
onne
ted or reje
ted, and the goal is to maximize the number of 
onne
tedpairs, su
h that no two paths share an edge. In the 
all 
ontrol problem, ea
h requesthas additional bandwidth and bene�t spe
i�
ations (the bene�t is usually proportional tothe bandwidth). The goal is to maximize the total bene�t of the 
onne
ted pairs whilesatisfying the bandwidth 
onstraints (assuming ea
h edge has unit 
apa
ity).These 
lassi
al problems were extensively studied in re
ent years, sin
e they are appli-
able to routing and admission 
ontrol in high speed networks [2, 5, 7, 10, 16℄ and opti
alnetworks [1, 3, 4, 19℄.The algorithms we 
onsider are also preemptive, that is, they may, at any point of time,de
ide to stop an on-going 
all in the network. Of 
ourse, if a 
all is preempted, then it'sbene�t is not a

ounted in the total bene�t.We fo
us on the 
ase where the bene�t is proportional to the bandwidth. This 
orre-sponds to maximizing the total throughput of the network. Also, we 
onsider only the 
asewhere the network is a line, and thus the requested paths are intervals.The performan
e of the on-line algorithm is measured in terms of its approximationratio, 
alled the 
ompetitive ratio. A deterministi
 or randomized algorithm is de�ned tobe 
-
ompetitive, if for any sequen
e of requests its (expe
ted) bene�t is no less than 
 timesthe bene�t of the optimal o�ine algorithm.Our results. We present the �rst known 
onstant-
ompetitive algorithms for the maxi-mum disjoint paths problem and for the 
all 
ontrol problem on the line. This settles anopen problem of [12, 16℄. Moreover, to the best of our knowledge, all previous algorithmsfor any of these problems are 
(logn)-
ompetitive, where n is the number of verti
es in thenetwork (and obviously non-
ompetitive for the 
ontinuous line). Constant approximationratios were a
hieved only in o�-line settings (see e.g [14, 15℄ and their referen
es). Our algo-rithms are randomized and preemptive. Our results should be 
ontrasted with the 
(log n)lower bound for deterministi
 preemptive algorithms in [12℄, and the 
(logn) lower boundfor randomized non-preemptive algorithms [5, 6, 18℄. Also, non-
onstant lower bounds wereproved in [11℄ for randomized preemptive algorithms in various 
ases. However, these lowerbounds do not apply to the standard disjoint paths and 
all 
ontrol problems.The key new idea in our algorithms is re
ognizing middle intervals and using them ap-propriately. Spe
i�
ally, previous algorithms were based mainly on the values of the lengths(e.g. the lengths of the intervals). Our algorithms do not take the lengths into a

ount andde
ides based only on the topologi
al stru
ture of the intervals. Surprisingly, the only twoingredients required from the topologi
al stru
ture are the 
ontainment relations and themiddle intervals. In the way of 
onstru
ting our algorithm for the disjoint paths problem,we �rst design a 4-
ompetitive deterministi
 algorithm for requests of bandwidth 1=2. Thisalgorithm is used for establishing the randomized disjoint paths algorithm. Some te
h-niques of [4℄ are used for transforming the above deterministi
 algorithm to an algorithm1



for requests of bandwidth 1=k for k > 1.It is important to mention that our randomized algorithm for the disjoint paths problemdoes not su�er from the known undesired property of many randomized on-line 
all 
ontrolalgorithms, that high bene�t is attained only with very poor probability (see dis
ussionin [17℄). In fa
t, not only that our algorithm su

eeds with 
onstant probability, but thenumber of paths that the algorithm provides is quite 
on
entrated around its mean.For 
onstru
ting the general 
all 
ontrol algorithm, we �rst design a 
onstant-
ompetitivedeterministi
 algorithm for requests of arbitrary bandwidth limited by Æ < 1=2. A 
ru
ialingredient of this algorithm is to ignore \stu�ed intervals" - intervals that 
ontain a largemass of previous intervals. Then, we easily 
ombine this algorithm with the disjoint pathsalgorithm using randomization and establish the �nal algorithm.We note that our algorithms are history dependent, that is, the de
ision to a

ept or re-je
t a new 
all depends not only on the 
urrently a
tive 
alls, but also on previously reje
ted
alls. Attempting to remove this dependen
y, by modifying the algorithm in some naturalways, 
an be shown to result in non 
onstant-
ompetitive algorithms. It seems very inter-esting to �nd out whether there exist 
onstant-
ompetitive algorithms where ea
h de
isiondepends only on the 
urrently a
tive 
alls and maybe on additional bounded information.The 
onstants of most of our algorithms are not large (although we make no spe
i�
attempt to make them small). We also prove a lower bound of 2 for deterministi
 orrandomized algorithms for all the problems that we 
onsider.We note that our te
hniques 
an be easily applied to opti
al networks, that is, we 
anprovide 
onstant throughput 
ompetitive algorithm for one or more wavelengths in the linenetwork.Related work. The disjoint paths problem was 
onsidered by Garay et al. [12℄. Theyshowed an O(log n)-
ompetitive deterministi
 preemptive algorithm for the line network.They also showed that no deterministi
 preemptive algorithm 
an a
hieve a better 
ompet-itive ratio. Randomized non-preemptive algorithms for the line network were 
onsideredin [6, 18℄. They showed an O(log n)-
ompetitive algorithm and a mat
hing lower boundfor randomized non-preemptive algorithms. The randomized non-preemptive lower boundholds also for the 
all 
ontrol problem, even when requests are limited to a small fra
tionof the available bandwidth. Note that for general networks one 
an a
hieve logarithmi

ompetitive ratios by deterministi
 algorithms for requests of small bandwidth [5℄, whileno poly-logarithmi
 
ompetitive ratio 
an be a
hieved for requests of full bandwidth evenby randomized algorithms [9℄. For spe
ial networks, e.g., trees, meshes, 
lasses of plannergraphs [6, 7, 15℄ it is possible to design logarithmi
 
ompetitive algorithms for the 
all 
on-trol problem without limiting the requested bandwidth. Nevertheless, we are not aware ofany 
onstant-
ompetitive algorithm for disjoint paths problems or 
all 
ontrol problem.Also, some work was done for di�erent measures of bene�t. For the disjoint pathsproblem on the line, [12℄ 
onsidered the 
ase where the bene�t of an interval is equal to itslength. Here 
onstant-
ompetitive ratio is a
hieved by deterministi
 preemptive algorithms.For the 
all 
ontrol problem on the line, [8℄ 
onsidered the 
ase where the bene�t of a 
allequals the produ
t of its length and its bandwidth. Here again, a 
onstant-
ompetitiveratio 
an be a
hieved by deterministi
 preemptive algorithms, with the additional 
onstraintthat the requested bandwidths are limited to Æ < 1. They also showed that deterministi
2



algorithms have very poor 
ompetitive ratio on the line, if a 
all may request the entirebandwidth (that is, Æ = 1). For general bene�ts, [11℄ showed that even with randomizedpreemptive algorithms, one 
annot a
hieve a 
onstant 
ompetitive ratio even on the line.More spe
i�
ally, they showed 
(plog �= log log�) lower bounds for randomized preemptivealgorithms, where � is the maximum among various varian
es in the parameters of di�erent
alls. Fortunately, the lower bounds are not appli
able to our problems.Stru
ture of the paper. In se
tion 2 we present some de�nitions. In se
tion 3 we de-s
ribe a 4-
ompetitive algorithm for requests of bandwidth 1=2. Then, in se
tion 4 we showhow to transform it to a randomized algorithm for the disjoint paths problem. In se
tion 5we transform the algorithm of se
tion 3 to an algorithm for requests of bandwidth 1=k.In se
tion 6 we design the general algorithm for 
all 
ontrol for any requested bandwidth,where we start by showing a deterministi
 algorithm for requests of bandwidth less than1=2.2 PreliminariesWe 
onsider a network G whi
h is a line, i.e. 
onsists of 
hain of links. We denote thesequen
e of 
all requests by � = �1; �2::�l. Call request i is 
hara
terized by a pair: (Ii; ri),where Ii is the requested path and ri is the requested bandwidth. The requested bandwidthis assumed to satisfy 0 < ri � 1.A valid set of 
alls is a set of 
alls C � �, whi
h satis�es the bandwidth 
onstraints forea
h of the links, that is: 8e 2 E(G) Xf�i2C j e2Iig ri � 1We fo
us on the 
ase where bi, the bene�t of a 
all, is proportional to its bandwidth (i.e.bi = ri). Thus maximizing the total bene�t 
orresponds to maximizing the total throughputof the network. For any set of 
alls C, we denote by B(C) the total bene�t of the 
alls(whi
h is equal to the total bandwidths of the 
alls).The performan
e of the on-line algorithm is measured in terms of its 
ompetitive ratio,de�ned as follows: let OPT � be an optimal valid set for the given request sequen
e, andlet ON � be the valid set of 
alls produ
ed by the on-line algorithm. Then randomized ONis �-
ompetitive if for all sequen
es � we have E(B(ON �)) � 1�B(OPT �).We denote the set of the �rst i requests by Si , and denote by Ai the set of a

epted
alls just before the arrival of request i + 1. We also denote S� = Sl, A� = Al, where l isthe sequen
e length. We omit the index i from Si and Ai when it is 
lear from the 
ontext.When all the requested bandwidths are equal, we 
an assume that bi = 1 for all i (insteadof bi = ri) and hen
e we write jCj instead of B(C) for a set of 
alls C.Sin
e our algorithms and bounds do not depend on the number of links, we may repla
ethe network by a 
ontinuous line, and repla
e ea
h dis
rete path by an open interval. Wedenote by left(I) and right(I) the left and right endpoint of an interval I respe
tively. Wewill often refer to the 
alls as intervals, ignoring the atta
hed bandwidth. We will also useinterval notations for 
alls, for example, we abuse the notation and use Si to denote the�rst i requested intervals. 3



For simpli
ity, we assume that S� has no identi
al intervals (if there are, we 
an extendthe 
ontainment relation by ordering identi
al intervals in the order of arrival).3 A deterministi
 algorithm for bandwidth 1=2In this se
tion we show a 
onstant 
ompetitive on-line algorithm for the 
ase where allrequested 
alls �i have ri = 1=2, that is, at most two 
alls are allowed to overlap for ea
hlink. Sin
e all the bene�ts are equal, we set all of them to 1.De�nition 3.1 Given a set S of intervals, an interval I is a middle interval of S if there aretwo intervals IL; IR 2 S su
h that left(IL) � left(I) � left(IR) � right(IL) � right(I) �right(IR).Informally, the idea of the algorithm is the following: when there is a \
ollision" betweenmore than two intervals, none of whi
h 
ontains the other, it reje
ts/preempts the middleinterval. Also, we need to reje
t 
alls that 
ontain previous 
alls, even if the previous 
allshave already been reje
ted or preempted. Note that the algorithm is history dependent.More formally, given a new 
all request, I, the pro
edure in �gure 1 des
ribes how thealgorithm de
ides whether to a

ept it or reje
t it.Pro
edure: BW 12begin(1) if there is a J 2 S su
h that J � I then(2) reje
t I(3) elseif there is a J 2 A su
h that J � I(4) preempt all intervals J 0 2 A su
h that J 0 � I(5) a

ept I(6) elseif I is a middle interval in A[ fIg then(7) reje
t I(8) else(9) preempt middle intervals J 0 2 A [ fIg(10) a

ept I(11) end ifendFigure 1: Algorithm for bandwidth 1=2 
allsNote algorithm BW 12 in �gure 1 is history dependent be
ause of line (1). Modifyingthe algorithm to depend only on a
tive 
alls by repla
ing S by A in line (1) results in anon-
ompetitive algorithm 1. In order to prove that the algorithm BW 12 is valid (that is,it maintains a valid set A), we �rst observe the following immediate fa
t:1Let ai = (0;M � 3i); bi = (M � 3i � 1; 2M � 3i); 
i = (M � 3i � 2;M � 3i + 1) for 0 � i � M=3 � 1be intervals on the line (0; 2M) and 
onsider the sequen
e a0; b0; 
0; a1; b1; 
1; : : : ; aM=3�1; bM=3�1; 
M=3�1.Clearly OPT gets M=3 intervals by a

epting only 
i where the online ends up only with aM=3�1; bM=3�1; b0.4



Fa
t 3.2 Let S be a set of intervals. If there are no J1; J2 2 S su
h that J1 � J2, thenamong any 3 interse
ting intervals there is a middle interval.Lemma 3.3 At any time, ex
ept between the arrival of a new 
all and the 
ompletion ofinvoking steps (1)-(5) for it, there is no J2 2 A su
h that J1 � J2 and J1 2 S.Proof: Consider any two intervals J1 and J2. An in
lusion of J1 in J2 
an only be 
reatedwith the arrival of one of theses two intervals (the later one). If J1 arrives �rst, when J2arrives it fails 
ondition (1), and it is reje
ted. Otherwise, if J2 2 A when J1 arrives thenby 
ondition (3) J2 is preempted in step (4). In both 
ases, after invoking steps (1)-(5) su
hin
lusion is impossible.Lemma 3.4 The set A is a valid set of intervals.Proof: By indu
tion on the number of input intervals. Initially the 
laim holds for A =S = �. Assume A is valid, and now a new interval I arrives. If I is reje
ted, A is un
hanged.Otherwise, if step (4) is exe
uted, at least one interval J 0 � I is preempted, so that I 
an beallo
ated in the evi
ted bandwidth. Otherwise, step (9) is exe
uted. Let T = fJ 0jJ 0\I 6= �g.By lemma 3.3 ea
h of the intervals in T interse
ts exa
tly one endpoint of I. Thus we 
anpartition T to TL and TR, su
h that jTLj � 2 and jTRj � 2, sin
e A is valid. Let IR 2 TRand IL 2 TL. It follows from lemma 3.3 and lemma 3.2 that IR\ IL = �, otherwise I wouldbe a middle interval. Thus it is suÆ
ient to show that the allo
ation of I would not violatethe bandwidth limitation on the left endpoint of I, and use the symmetri
al 
laim for theright endpoint. If jTLj � 1 then I does not 
ause violation of the bandwidth 
onstraint onit's left side. Otherwise, let J1 and J2 denote the interse
ting intervals. By lemma 3.3 andlemma 3.2 one of the intervals J1 and J2 is a middle interval, it meets the 
ondition of (9),and it is preempted. Thus, I 
an be allo
ated in the evi
ted bandwidth.Corollary 3.51. At most 2 intervals are preempted when step (4) is exe
uted.2. At most 2 intervals are preempted when step (9) is exe
uted.Proof: Claim 1 is obvious. Claim 2 follows from the proof above.Let OPT (k)� be an optimal solution for � when bi = 1 and ri = 1k for all �i 2 �.Lemma 3.6 jOPT (k)� j � kjOPT (1)� j.Proof: We view the set of intervals as an interval graph, i.e., ea
h vertex of the graph 
orre-sponds to an interval and two verti
es are adja
ent if the 
orresponding intervals interse
ts.We use the fa
t that the 
lique number of an interval graph equals to its 
hromati
 number(see [13℄). Sin
e OPT (k)� is a valid set when all ri = 1k , the maximum 
lique size in OPT (k)�is no more than k. Thus OPT (k)� 
an be 
olored in k 
olors. Ea
h of the 
olor 
lasses is anindependent set of intervals, and one of them has size at least jOPT (k)� j=k. Now this set isalso valid when all ri = 1, resulting in: jOPT (k)� j=k � jOPT (1)� j as 
laimed.5



I1 I2 I3 I4C1 C2Figure 2: De�nition of 
ellsLemma 3.7 jBW 12 �j � 12 jOPT (1)� jProof: Let OPT (1)� be an optimal set of intervals for bandwidth equal to 1, as de�nedabove, and m = jOPT (1)� j. By de�nition, the set OPT (1)� is a set of pairwise disjointintervals. Let us denote the intervals by I1; I2 :: Im. We 
an also assume that no I 2 OPT (1)�
ontains an interval of S. De�ne the following intervals, referred to as \
ells", as follows:
ell j for 1 � j � bm2 
, denoted by Cj, is the interval (left(I2j�1)::right(I2j)). (See �gure2). Ifm is odd then we add another 
ell, Cbm2 
+1 = (left(Im);+1). We refer to 
ells 1::bm2 
as \regular", and to Cbm2 
+1, if it exists, as the \in�nite" 
ell. The following 
laim showsthat after a 
ertain point of time, 
ell Cj always 
ontains an interval, more spe
i�
ally,there will always be an interval J 2 A s.t. J � Cj . The 
laim 
ompletes the proof of thetheorem, sin
e the 
ells are disjoint.Claim 3.8 For regular 
ells, after the intervals I2j�1 and I2j have arrived, there is alwaysan interval J 2 A, s.t. J � Cj. If an in�nite 
ell exists, after Im arrives, there is alwaysan interval J 2 A s.t. J � Cbm2 
+1.Proof: First we 
onsider \regular" 
ells, and prove the 
laim by indu
tion on the numberof intervals that have arrived.� Initial step: Assume I2j�1 arrives after I2j . The proof is symmetri
al for the other
ase. If I2j�1 is a

epted, then the 
laim holds. Otherwise, I2j�1 is reje
ted and sin
eI2j�1 
ontains no other intervals, 
ondition (6) in the algorithm must hold. Let IR bea right interval, as in de�nition 3.1. It follows that left(Cj) = left(I2j�1) � left(IR).Sin
e IR interse
ts I2j�1 and I2j�1 lies to the left of I2j , left(IR) � left(I2j). Sin
eIR 2 A, by lemma 3.3 it does not 
ontain I2j , and thus right(IR) � right(I2j) =right(Cj). Hen
e, IR � Cj as 
laimed.� Indu
tion: Assume J � Cj is preempted when a new interval I arrives. If 
ondition(3) in the algorithm holds, then I � J � Cj satis�es the 
laim 
onditions. Otherwise,J is preempted due to the exe
ution of step (9) of the algorithm where J is a middleinterval. Thus there are intervals IL; IR 2 A that are not preempted at this step su
hthat left(IL) � left(J) � left(IR) � right(IL) � right(J) � right(IR) :6



Next we show that at least one of these intervals IL or IR is in Cj whi
h will 
ompletethe proof. First we note that sin
e J � Cj , we get right(IL) � right(Cj) andleft(Cj) � left(IR). Assume by 
ontradi
tion that IL 6� Cj and IR 6� Cj, i.e.,left(IL) < left(Cj) and right(Cj) < right(IR), then we get that IL [ IR � Cj �I2j�1 [ I2j . Sin
e IL \ IR 6= �, one of IL and IR 
ontains I2j�1 or I2j , whi
h isimpossible by lemma 3.3. Thus left(Cj) < left(IL) or right(IR) < right(Cj), yieldingIL � Cj or IR � Cj respe
tively, whi
h 
ompletes the proof.Now, for the \in�nite" 
ell the proof is similar, observing the fa
t that if J � Cbm2 
+1 isreje
ted or preempted, IR is always 
ontained in the 
ell.Theorem 3.9 BW 12 is 4-
ompetitive.Proof: By lemma 3.7 jBW 12 �j � 12 jOPT (1)� j. Now by lemma 3.6, jOPT (2)� j � 2jOPT (1)� j.4 A randomized algorithm for bandwidth 1Next we show how an algorithm for bandwidth 1=2, like BW 12 , 
an be used to 
onstru
ta randomized 
onstant-
ompetitive algorithm for bandwidth 1. A
tually, any deterministi
algorithm, with following properties 
an be used to 
onstru
t su
h an algorithm, as is provedby the sequel theorem.Consider a deterministi
 preemptive algorithm DET for 
all 
ontrol of requests of equalbandwidth (i.e., ri = 1k and bi = 1) that maintains a set of intervals D, with the followingproperties:� jDET� j � 1
 jOPT (1)� j.� There is a 
onstant d su
h that any newly a

epted interval I interse
ts at most dother intervals in D (after it has been a

epted).Theorem 4.1 Any algorithm DET with the above properties 
an be used to 
onstru
t arandomized algorithm for bandwidth 1 with 
ompetitive ratio 4d
.Proof: We 
onstru
t a randomized algorithm RAND. RAND maintains a valid set ofintervals (for bandwidth 1) denoted by R. R is initially empty. Let p satisfy 0 � p < 12 .We simulate DET on the ba
kground with the same sequen
e of intervals as RAND butea
h has bandwidth 1k instead of 1. The idea is that R 
ertainly reje
ts and preempts allintervals reje
ted and preempted by DET but also randomly reje
ts some intervals thatwere a

epted by DET . Spe
i�
ally, for any new interval I, we take the a
tions des
ribedin �gure 3 following the a
tions taken by DET for the same intervals (but with smallerbandwidth, i.e. ri = 1k ).It follows immediately that the algorithm is 
orre
t: initially R is valid, and wheneveran interval I is a

epted, by 
ondition (5), R remains valid.Let R� (respe
tively D�) denote the �nal set of intervals a

epted by RAND (respe
-tively DET ). We pro
eed to show that E(jR�j) � 14d
 � jOPT (1)� j.7



begin(1) preempt from R those intervals that were preempted by DET(2) if I was reje
ted by DET then(3) reje
t Ielse(4) toss a p-
oin(5) if 
oin shows \su

ess" and there is no J 2 R s.t. J \ I 6= � then(6) a

ept Ielse(7) reje
t Iend ifend ifendFigure 3: A randomized redu
tion from bandwidth 1 to an algorithm with the above prop-erties� Every interval I is a

epted by RAND with probability at most p, be
ause in orderfor an interval to get a

epted, the 
oin-toss in step (4) has to show \su

ess".� The set R satis�es R � D, sin
e every interval is a

epted by RAND only if it isa

epted by DET .� For all s 2 D�, s 2 R� if and only if s is a

epted by RAND: If s is a

epted byRAND, then it is never preempted by RAND, sin
e RAND preempts intervals onlyin step (1), only if DET preempts them.For s 2 S de�ne the indi
ator random variable �s to be 1 if s 2 R�, and 0 otherwise.By the above observations, for s 2 D� we haveE(�s) = Pr[s 2 R�℄ = Pr[s is a

epted by RAND℄:For s 2 D�, RAND a

epts s if and only if 
ondition (5) holds. By DET 's properties,s interse
ts at most d intervals in D when it is a

epted by DET , and thus it interse
tsat most d intervals in R � D. The probability that none of those intervals is a

epted byRAND is no less than (1� p)d, soPr[s is a

epted by RAND℄ � p(1� p)d � p(1� dp):Thus,E(jR�j) � E(Xs2D� �s) � Xs2D� p(1� dp) � p(1� dp) � jD�j � p(1� dp) � jOPT (1)� j
To 
omplete the proof, 
hoose p = 12d . 8



Using the theorem we get the following result:Theorem 4.2 There is a 16-
ompetitive randomized on-line algorithm for bandwidth 1.Proof: Use the algorithm BW 12 for theorem 4.1. The algorithm satis�es the propertiesabove with 
 = 2 (by lemma 3.7) and d = 2 (any a

epted interval interse
ts at most 2intervals in the valid set).5 A 
onstant 
ompetitive algorithm for bandwidth 1=kIn this se
tion we give a 
onstant 
ompetitive algorithm for the 
ase where all the intervalsrequest bandwidth of 1=k, for some �xed k � 2. We �rst note that by lemma 3.7 andlemma 3.6, the algorithm BW 12 is at most 2k-
ompetitive for this problem. Here, however,we present an algorithm whose 
ompetitive ratio does not depend on k.We apply a general method of [4℄ for bene�t problems, with adaptation to handle pre-emption, where the bene�t is gained by a

ommodating items in any of several (not ne
es-sarily identi
al) abstra
t \bins". That is, given a set of items, an algorithm has to maximizethe bene�t gained by a

epting items. To a

ept an item the algorithm has to a

ommodatethe item in one of several bins. Within ea
h bin there may be restri
tions as to the set ofitems that 
an be a

ommodated in it 
on
urrently. However, we assume total independen
ebetween the di�erent bins: If we have n bins, then for any i, if the set Zi 
an be a

epted inbin i with sets Z1; : : : ; Zi�1; Zi+1; : : : ; Zn, in the other bins, then the set Zi 
an be a

eptedto bin i also if the other bins 
ontain arbitrary other feasible sets Z 01; : : : ; Z 0i�1; Z 0i+1; : : : ; Z 0n.Given a �-
ompetitive on-line (deterministi
 or randomized) allo
ation algorithm A forone bin, the paper [4℄ shows how to build a �+ 1-
ompetitive on-line allo
ation algorithmA0 for multiple bins . We generalize the algorithm for the preemptive 
ase. We will use theterm preemptive allo
ation algorithm for algorithms, whi
h de
ide, for a new item, whetherto a

ept it or reje
t it, and may preempt old items when a new item is a

epted. We provethe following theorems:Theorem 5.1 Assume there are n totally independent abstra
t \bins", and an on-line al-gorithm has to assign items into one of the bins. Assume A is a �-
ompetitive preemptiveallo
ation algorithm for one bin. Then there is a �+ 1-
ompetitive preemptive allo
ationalgorithm for allo
ation into n bins.Proof: We des
ribe an algorithm A0 for n bins, in terms of a pro
edure Bi for 1 � i � n,whi
h maintains the i'th bin. Given a new item t the pro
edure Bi pro
eeds as des
ribedin �gure 4.Algorithm A0 
alls B1. It is easy to see, by indu
tion from n to 1, that pro
edure Biterminates, and thus A0 terminates. We 
laim that A0 is a �+ 1-
ompetitive algorithm forn bins.For 1 � i � n, let Oi denote the set of items a

epted into bin i by the optimal algorithmfor the problem with n bins, and let Ti denote the set of items a

epted into bin i, whi
hwere not preempted in step (9). 9



Pro
edure Bibegin(1) run A on t for bin i(2) if t was reje
ted then(3) if i < n then 
all Bi+1 on t(4) else reje
t telse(5) a

ept t into bin i(6) if items r1; r2::rm were preempted then(7) if i < n then(8) for ea
h 1 � j � m sequentially 
all Bi+1 on rj(9) else preempt r1; r2::rmend ifend ifendFigure 4: A pro
edure Bi for allo
ation into bin iBy 
onstru
tion of the algorithm, pro
edure Bi is presented with at least all the itemsin the set Oi n [j<iTj (not ne
essarily in the original order). Sin
e Bi uses A internally, itis � 
ompetitive, so it will gain at least:B(Ti) � 1� �B(Oi n ([j<iTj)) = 1�B(Oi)� 1�B(([j<iTj) \Oi) :It follows thatnXi=1B(Ti) � nXi=1 1�B(Oi)� nXi=1 1�B(([j<iTj) \Oi) � nXi=1 1�B(Oi)� 1�B([i�nTi)� nXi=1 1�B(Oi)� 1� nXi=1B(Ti) ;where the se
ond inequality follows sin
e the sets Oi are pairwise disjoint.Thus (1 + �)Pni=1B(Ti) �Pni=1B(Oi), and A0 is �+ 1-
ompetitive.Theorem 5.2 There is a 5-
ompetitive algorithm for bandwidth allo
ation of bandwidth 1kintervals for even k, and a 7-
ompetitive algorithm for odd k, k � 3.Proof: We partition the unit 
apa
ity line into a set of multiple lines ea
h with 
apa
ity 2k(ex
ept of one of 
apa
ity 3k for odd k) while preserving the total 
apa
ity. We 
onsider theproblem of allo
ation of 
alls of bandwidth 1k to the set of multiple lines ea
h with its own
apa
ity ( 2k or 3k ). Clearly, a feasible solution to the multiple lines 
an be 
onverted into afeasible solution to the unit 
apa
ity line by taking the union of the feasible sets of ea
h line.Moreover, a feasible solution for the unit 
apa
ity line 
an be partitioned into a solution to10



the multiple lines as follows: re
all that an interval graph of maximum 
lique size k 
an be
olored with k 
olors; Given a solution to the unit 
apa
ity we 
olor the intervals with k
olors and assign intervals with two (or three) spe
i�
 
olors to ea
h line of 
apa
ity 2k (or3k ). Now, 
onsider the multiple lines problem. Clearly, it is an instan
e for allo
ation ofitems into abstra
t bins. Hen
e we use the previous theorem to allo
ate intervals to thebins, in the following way:� For even k, there are k2 \bins", ea
h 
onsists of 
apa
ity 2k , and we use algorithmBW 12 for allo
ation in ea
h bin. By lemma 3.7 BW 12 is 4-
ompetitive on ea
h bin, sowe get a 5-
ompetitive algorithm.� For odd k, there are bk2 
 \bins", bk2 
�1 of whi
h 
onsisting of 
apa
ity 2k , the remainingone 
onsisting of 
apa
ity 3k , and we use algorithm BW 12 for allo
ation in ea
h bin.As mentioned before, BW 12 is 6-
ompetitive on ea
h bin, so we get a 7-
ompetitivealgorithm.We also show a lower bound theorem for arbitrary bandwidth:Theorem 5.3 For any k no deterministi
 or randomized on-line algorithm 
an a
hieve
ompetitive ratio less than 2 for intervals with bandwidth = 1k .Proof: For an appropriate M , the adversary requests k 
alls in the interval (0;M + 1)(left side 
alls), and k more 
alls in the interval (M; 2M + 1) (right side 
alls). De�nethe \internal part" of the left side (right, respe
tively) to be (0;M) ((M + 1; 2M + 1),respe
tively).Sin
e all the 
alls overlap, in at least one of the sides (say right) the expe
ted numberof 
alls a

epted by the on-line algorithm is at most k2 . Then the adversary a

epts all thek 
alls in this (right) side and 
ontinues the 
onstru
tion re
ursively in the \internal part"of the opposite (left) side. Ex
ept of the last step of the re
ursion, the on-line algorithmwould preempt all the 
alls a

epted on the left side at ea
h step sin
e they 
ontain all later
alls.Repeating the 
onstru
tion re
ursively n times we 
on
lude that the number of 
allsa

epted by the on-line algorithm is at most k + (n� 1)k2 (in the last step of the re
ursionthe on-line algorithm 
an a

epts all 
alls) whereas the adversary a

epts kn 
alls, whi
hproves the 
laim (n 
an be as large as we want).6 A randomized algorithm for bandwidth � 1In this se
tion we 
onsider a generalized setting, in whi
h all requested 
alls �i have band-width ri � Æ, for some �xed Æ, Æ � 1, and the bene�t a

rued from the interval is it'sbandwidth i.e. bi = ri.First we show a deterministi
 
onstant-
ompetitive algorithm for the 
ase Æ < 12 , thenwe show how this algorithm 
an be used to 
onstru
t a randomized 
onstant 
ompetitivealgorithm for the 
ase Æ = 1. 11



6.1 A 
onstant 
ompetitive algorithm for Æ < 12As mentioned before, we now fo
us on the 
ase Æ < 12 . We �rst introdu
e some usefulde�nitions and notations. Let I be an interval, and S be an interval set.� S � I i� 8s 2 S; s � I.� S[I℄ = fs 2 S j s � Ig is the indu
ed subset of S on I. Note that S = S[I℄ i� S � I.� S[x℄ = fs 2 S j x 2 sg, the subset of intervals of S whi
h 
ontain x.In the algorithm for the bandwidth 1 
ase, we used the fa
t that there is an optimalsolution with no \
ontaining" intervals. We introdu
e the de�nition of \stu�ed" intervals,whi
h are intervals that 
ontain 
alls of large total bene�t. Su
h intervals, as shown in thesequel, 
an be ex
luded from 
onstant-fa
tor approximations to the optimum, sin
e they
an be repla
ed by non-\stu�ed" intervals in the approximation.De�nition 6.1 Let S be a set of intervals. Let 0 < � � 1.An interval K 2 S is stu�ed in S if B(S[K℄ n fKg) � �.De�nition 6.2 Let x be violation point of A. Let LR be the list of the intervals in A[x℄,ordered by as
ending order of their right-endpoint. Similarly, let LL be the list of the inter-vals, ordered by des
ending order of their left-endpoint.The right-
losest intervals of x in A, 	R(x), is the maximal pre�x of LR whi
h has totalbandwidth � 12 . The left-
losest intervals of x in A, 	L(x), is the maximal pre�x of LLwhi
h has total bandwidth � 12 .Figure 5 shows the deterministi
 algorithm STICKY whi
h handles an arriving intervalI. Pro
edure: STICKY(interval I)begin(1) if I is stu�ed in S then reje
t I and return(2) add I to A(3) while there are bandwidth violations do(4) pi
k a violation point, x(5) remove all the intervals K su
h that x 2 K andK =2 	L(x) [	R(x)end Figure 5: Algorithm for Æ < 12Lemma 6.3 Algorithm STICKY maintains a valid set A of intervals.Proof: When the algorithm terminates there are no bandwidth violations in A, by 
ondi-tion (3). The algorithm terminates, sin
e when an iteration of the loop in (5) is exe
uted,at least one interval is removed, and there is a �nite number of intervals.12



In the appendix, we prove the following theorem:Theorem 6.4 For � = 13 , algorithm STICKY is 
onstant 
ompetitive for Æ < 12 . Spe
i�-
ally, for Æ = 14 , the algorithm is 72-
ompetitive.We note that the algorithm does not need to know Æ in advan
e, as long as Æ < 12 .6.2 A randomized algorithm for Æ = 1Now we 
an 
onstru
t a randomized 
ompetitive algorithm for Æ = 1 by 
lassifying therequest series, and applying one of the previous algorithms on ea
h 
lass.More spe
i�
ally, the requests are 
lassi�ed into the following 2 
lasses:� All the requests with ri � 14 . Those requests are handled with the 16-
ompetitiverandomized algorithm, setting all ri = 1.� All the requests with ri < 14 . Those requests are handled by STICKY.The algorithm for Æ = 1 randomly 
hooses one of the 
lasses, ea
h with probability 12 , andhandles only requests of this 
lass by the appropriate algorithm.Theorem 6.5 The above algorithm is 144-
ompetitive.Proof: The �rst algorithm is 16*4-
ompetitive with respe
t to the requests of the �rst
lass, by lemma 3.6. The se
ond algorithm is 72-
ompetitive with respe
t to the requestsof the se
ond 
lass, by theorem 6.4. Let B be the value of the optimal algorithm for all therequests and let B1 and B2 be the optimal value restri
ted to requests of 
lass 1 and 
lass 2respe
tively. Clearly B � B1+B2. The bene�t gained by the on-line randomized algorithmis at least 12 � 164B1 + 12 � 172B2 � 1144 (B1 +B2) � 1144B whi
h 
ompletes the proof.Referen
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AppendixA STICKY is 
onstant 
ompetitiveIn this appendix we prove theorem 6.4.The following 
laim follows immediately from the fa
t that the bandwidth of ea
h in-terval is at most Æ:Claim A.1 Let A be an interval set. If Æ < 12 , then B(	R(x)) � 12 � Æ;B(	L(x)) � 12 � Æ,Lemma A.2 Let the intervals J1; J2 satisfy J1 � J2. If interval J1 is removed in step (5),then by the time step (5) is over, J2 =2 A.Proof: Let x;LL;LR be as in de�nition 6.2, at the moment J1 is removed in step (5).Now x 2 J1, x 2 J2, so if J2 2 A by the time J1 is being removed, J2 appears in LLand LR . Sin
e J1 � J2, J2 appears after J1 in both of the lists LL and LR , and sin
eJ1 =2 	L(x) [	R(x), J2 =2 	L(x) [	R(x), so J2 is now removed.De�nition A.3 For an interval set N , interval C � < is a 
ell of N , if it 
ontains twodisjoint intervals CL, CR (CL is the left one) su
h that B(N [CL℄) � 1 and B(N [CR℄) � 1.Next is a \subdivision" lemma, whi
h demonstrates how to split the original intervalset S into 
(B(OPT �)) 
ells, like the ones in the proof of lemma 3.7.Lemma A.4 Let N be a valid set of intervals. Then there exist at least B(N)2(2+Æ) � 32 pairwisedisjoint 
ells of N .Proof: Order the intervals of N from left to right by their left-endpoint. Now, s
anningthe list, pi
k minimal subsets fLigi�0 from the start of the list, su
h that B(Li) � 2. ThenB(Li) < 2 + Æ. Thus, there are at least bB(N)2+Æ 
 � B(N)2+Æ � 1 su
h subsets.Let xi be the left most left endpoint of the intervals in Li. By 
onstru
tion fxigj�0 isan as
ending sequen
e. Add a last element xlast =1 to the sequen
e.De�ne Ni = fn 2 Li j xi+1 =2 ng. Then B(Ni) � 1, otherwise N violates the bandwidth
onstraint on xi+1. Thus B(N [(xi; xi+1)℄) � 1.Now let C(i) = (x2i; x2(i+1)) for i � 0. By the above, C(i) satis�es the de�nition of a
ell of N , with the following subintervals: C(i)L = (x2i; x2i+1), and C(i)R = (x2i+1; x2i+2).By de�nition, the intervals C(i) are pairwise disjoint, and there are at least b B(N)(2+Æ)�12 
 �B(N)2(2+Æ) � 32 su
h intervals, as 
laimed.Lemma A.5 Let J � <, and let N be a set of intervals, with no stu�ed intervals of the�nal set S�. If B((St \ N)[J ℄) � 2� and there is K 2 At s.t. K � J (K 6= J), thenB(At[J ℄) � �.Proof: Suppose K � J , K 6= J is in At. Denote by t0 the time when K arrived. Sin
e Kwas not reje
ted in step (1), B((St0 \N)[J ℄) � B(St0 [J ℄) < �. Let N 0 = (St n St0) \N , the15



intervals of St \N whi
h arrived after t0. Then B(N 0[J ℄) � (2� � �) = �. By lemma A.2,if one of the intervals in N 0[J ℄ is removed, K is removed too, sin
e K stri
tly 
ontains allthe intervals of N 0[J ℄. Thus by time t none of the intervals in N 0[J ℄ was removed, andB(At[J ℄) � B(N 0[J ℄) � �.Lemma A.6 Let N be a valid set with no stu�ed intervals of S�, and let C be a 
ell of N .Assume � � 13 . Then B(A�[C℄) � minf12 � Æ; �g.Proof: Sin
e B(St\N) is non-de
reasing with t, let tr be the �rst time B((Str \N)[CR℄) �2�, and tl be the �rst time B((Stl \N)[CL℄) � 2�. Sin
e CL and CR are disjoint, tl 6= tr,and we 
an assume tr < tl. The proof for the other 
ase is symmetri
al.Now there are three 
ases:� No interval is removed from A[C℄ in time tl, or later.Let N 0 = (S� n Stl�1) \N . Sin
e N 
ontains no stu�ed intervals of S�, no interval ofN 0 
an be reje
ted in step (1). Thus all the intervals in N 0 are a

epted, and neverremoved, so B(A�[C℄) � B(N 0[CL℄) � 1� 2� � �, whi
h 
ompletes the proof.� Interval J is removed from A[C℄ at time tl.Denote by x the violation point that 
aused the removal of J . Then x 2 CL, sin
ex is in the last arriving interval, whi
h belongs to N [CL℄, by the assumption. Nowexamine the intervals in 	L(x). Sin
e J was removed, by the de�nition of 	L(x) weget 8l 2 	L(x); right(CL) � x � left(l) � left(J). Now, if there is an intervall 2 	L(x) su
h that right(l) > right(CR), l stri
tly 
ontains CR, and by lemma A.5,B(A[C℄) � B(A[CR℄) � � holds. Otherwise, all the intervals in 	L(x) are 
ontainedin C, so B(A[C℄) � B(	L(x)) � 12 � Æ holds.� Interval J is removed from A[C℄ after time tl.Denote by x 2 C the violation point that 
aused the removal of J . Then x 2 J � C.Now examine the intervals in 	L(x) and 	R(x). Sin
e J was removed, by the de�nitionof 	L(x) and 	R(x), we get that 8r 2 	R(x); right(r) � right(J) � right(C) and8l 2 	L(x); left(l) � left(J) � left(C). If there is an interval l 2 	L(x) andan interval r 2 	R(x) su
h that left(r) < left(C) and right(l) > right(C), thenone of the intervals l or r would stri
tly 
ontain one of the intervals CL or CR,and then by lemma A.5, either B(A[CL℄) � � or B(A[CR℄) � �. Otherwise, either8r 2 	R(x); left(r) � left(C) or 8l 2 	L(x); right(l) � right(C). In either 
ase,	R(x) � C and B(	R(x)) � 12 � Æ or 	L(x) � C and B(	L(x)) � 12 � Æ, whi
h
ompletes the proof.Lemma A.7 For � � 1� Æ let T = ft 2 S j t is stu�ed in Sg, and let S0 = S n T .Let O = OPT �, and O0 be an optimal subset of S'. Then B(O0) � �1+� � B(O), and thebound is tight.Proof: We 
onstru
t a valid set N � S0, su
h that B(N ) satis�es the above inequality.Sin
e for t 2 T , B(S[t℄) � �, there is a subset Ft � S[t℄ su
h that � � B(Ft) < �+ Æ.16



De�ne the mapping F � : T ! 2S0 by the following re
ursive de�nition:F �(t) = ( Ft if Ft � S0F �(t0) otherwise, for some t0 2 Ft \ TSin
e T is �nite, and there are no identi
al intervals, F � is well de�ned. By de�nition,F �(t) � t and � � B(F �(t)) � �+ Æ.Let U be a (maximum size) set of pairwise-disjoint intervals in T \O de�ned as follows:order all the intervals in T \O from left to right by their left endpoint, and keep adding thenext interval with the left-most right endpoint, whi
h does not interse
t previously addedintervals, until the intervals are exhausted.By 
onstru
tion, every interval of T \ O interse
ts the right endpoint of some intervalin U . For u 2 U , denote by Tu the set of intervals t 2 T \ O for whi
h u is the left-most interval su
h that t interse
ts the right endpoint of u. Then O \ T = Su2U Tu, andB(O \ T ) =Pu2U B(Tu), where the union above is disjoint.Now de�ne N 0 = Su2U F �(u). It is 
lear that N 0 � S0. N 0 is valid, sin
e F �(u) � u,u 2 U are disjoint, and B(F �(u)) � �+ Æ � 1. Sin
e Tu is a subset of a valid set, andright(u) 2 \v2Tvv, we have B(Tu) � 1 � 1�B(F �(u)). ThusB(O \ T ) = Xu2U B(Tu) �Xu2U 1�B(F �(u)) � 1�B(N 0)where the last inequality follows from the fa
t F �(u) � u are disjoint. Let N = N 0 ifB(N 0) > B(O \ S0) or N = O \ S0 otherwise. We 
laim that B(N ) � ��+1B(O).To prove the 
laim, assume B(O \ S0) = �B(O), and thus B(O \ T ) = (1 � �)B(O).Then B(N ) � maxf�B(O); (1 � �)�B(O)g, whi
h attains it's minimal value for � = ��+1 ,for whi
h B(N ) � ��+1B(O), as 
laimed.The following set S shows an upper bound of �1+� for B(O0)B(O) : for small �, pi
k �� disjointintervals of bandwidth �, and one more interval of bandwidth 1 � � whi
h 
ontains all theother intervals. Then: B(O0)B(O) = ��+ 1� � �!0! ��+ 1Proof of theorem 6.4:Let S0; O0 be as in lemma A.7. Then B(O0) � �1+�B(OPT �). By lemma A.4, there exist atleast B(O0)2(2+Æ)� 32 pairwise disjoint 
ells C 2 C of O0. By lemma A.6, B(A[C℄) � minf12 � Æ; �gfor ea
h su
h 
ell, so summing over all 
ells we get:B(A) � XC2CB(A[C℄) � minf12 � Æ; �g � ( �1+�B(OPT �)2(2 + Æ) � 32)Thus 
hoosing � = 13 , the 
ompetitive ratio of the algorithm is 8(2+Æ)minf 12�Æ; 13g , i.e., for Æ � 16 thealgorithm is 24(2 + Æ)-
ompetitive, and for 16 � Æ < 12 the algorithm is 8(2+Æ)12�Æ -
ompetitive.Spe
i�
ally, the algorithm is 72-
ompetitive for Æ = 14 .17


