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Abstract

We consider the classical problem of scheduling parallel unrelated machines. Each job is to
be processed by exactly one machine. Processing jobj on machinei requires timepij . The goal
is to find a schedule that minimizes theℓp norm. Previous work showed a 2-approximation algo-
rithm for the problem with respect to theℓ∞ norm. For any fixedℓp norm the previously known
approximation algorithm has a performance ofθ(p). We provide a 2-approximation algorithm
for any fixedℓp norm (p > 1). This algorithm uses convex programming relaxation. We also
give a

√
2-approximation algorithm for theℓ2 norm. This algorithm relies on convex quadratic

programming relaxation. To the best of our knowledge, this is the first time that general convex
programming techniques (apart from SDPs and CQPs) are used in the area of scheduling. We
show for any givenℓp norm a PTAS for any fixed number of machines. We also consider the
multidimensional generalization of the problem in which the jobs ared-dimensional. Here the
goal is to minimize theℓp norm of the generalized load vector, which is a matrix where the rows
represent the machines and the columns represent the jobs dimension. For this problem we give a
(d + 1)-approximation algorithm for any fixedℓp norm (p > 1).

1 Introduction

We consider the classical problem of scheduling jobs on parallel unrelated machines. Lenstra et. al
[14] and Shmoys and Tardos [16] provided a2-approximation algorithm for minimizing the makespan
(ℓ∞ norm). However, for theℓp norm onlyθ(p)-approximation algorithm was known (see [2]). We
provide a2-approximation algorithm for anyℓp norm. In addition we show a

√
2-approximation

algorithm for theℓ2 norm.
Our approximation algorithms are based on convex programming relaxations. To the best of our

knowledge, this is the first time that general convex programming techniques (apart from SDPs and
CQPs) are used in the area of scheduling. Semidefinite programming (SDP) and convex quadratic
programming (CQP) are special cases of convex programming (CP). Given anyǫ > 0 convex pro-
grams can be solved within an additive error ofǫ under some requirements on the convex objective
function and on the feasible space. This can be done through the ellipsoid algorithm (Grötschel et. al
[9]) and more efficiently using interior-point methods (seee.g, Nesterov and Nemirovsky [15]).

Linear programming (LP) relaxations have been proved to be auseful tool in the design and
analysis of approximation algorithms for many graph and combinatorial problems. There are several
applications of linear programming relaxations for machine scheduling problems, see, e.g., [14, 16,
10, 4, 5]. The importance of semidefinite programming is thatsometimes it leads to tighter relaxations
for many graph and combinatorial problems. Grötchel et. al[8] used semidefinite programming to
design a polynomial time algorithm for finding the largest stable set in a perfect graph. Goemans and
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Williamson [7] were the first to use semidefinite programmingrelaxations in the design of approxi-
mation algorithms. They used semidefinite relaxations for the problems MAXCUT, MAXDICUT and
MAX2SAT. Convex quadratic programming and semidefinite programming relaxations in the area of
scheduling were first used by Skutella [17]. He used convex quadratic programming relaxations to
design approximation algorithms for the problem of scheduling unrelated parallel machines so as to
minimize total weighted completion time of jobs.
Techniques: In the design of the2-approximation algorithm for scheduling jobs on unrelatedma-
chines we formulate the problem as a convex program, where the objective function is theℓp norm
(p > 1). The obvious CP relaxation yields a large integrality gap.To overcome this problem we mod-
ify the objective function of the CP. The new objective function yields a bounded gap. Our rounding
technique is based on the rounding technique of Shmoys and Tardos for the generalized assignment
problem [16]. They used this rounding technique for the caseof ℓ∞ norm. However, they did not
need to use the extra property of not increasing the cost. Interestingly in our rounding method for the
ℓp norm we need to use this extra property. We use their technique in an enhanced manner using the
additional term in the modified objective function of the convex program as the cost of the fractional
weighted matching of the bipartite graph they form. Then we exploit the property That there exists an
integral matching with no greater cost. This matching defines the schedule of the jobs. For theℓ2 norm
we use the same convex program together with randomized rounding to obtain a

√
2-approximation

algorithm. For anyℓp norm we also design a slightly better than a2-approximation algorithm for the
restricted assignment model by using a bootstrapping of a2-approximation algorithm. Additionally
we use convex programming relaxation in the design of a PTAS to the problem.

1.1 Problem Definition

We havem parallel machines andn independent jobs, where jobj takes positive integral processing
time pij when processed by machinei. The load of machine is the total processing time required for
the jobs assigned to it. The cost of an assignment for an inputsequence of jobs is defined as theℓp

norm of the load vector. Specifically, theℓ∞ norm is the makespan (or maximum load) and theℓ2

norm is the Euclidean norm, which is equivalent to the sum of the squares of the load vector. The goal
of an assignment algorithm is to assign all the jobs so as to minimize the cost. Consider for example
the case where the weight of a job corresponds to its machine disk access frequency. Each job may see
a delay that is proportional to the load on the machine it is assigned to. Then theaveragedelay over
all disk accesses is proportional to the sum of squares of themachines loads (namely theℓ2 norm of
the corresponding machines load vector) whereas themaximumdelay is proportional to the maximum
load.

1.2 Our Results

We show the following results for scheduling jobs on unrelated machines:

• A 2-approximation polynomial algorithm for the general problem for any givenℓp norm (p >
1). This improves the previousθ(p) approximation algorithm given in [2].

• A
√

2-approximation polynomial algorithm for theℓ2 norm for the problem, improving the
previous1 +

√
2 approximation algorithm given in [2].

• A PTAS for fixed number of machines for any givenℓp norm with space which is polynomial
in both 1

ǫ andm (and the input size).

We also consider a generalization of the problem and a special case of the problem and obtain the
following results:
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• We consider the case in which jobs ared-dimensional and show ad + 1-approximation algo-
rithm.

• We consider the restricted assignment model where each job has a size and should be assigned
to one out of some subset of machines. For this problem we showa slightly better than a
2-approximation algorithm for anyℓp norm.

1.3 Previous Results

Lenstra et. al [14] and Shmoys and Tardos [16] presented a2-approximation algorithm for the
makespan, however their algorithm does not guarantee any constant approximation ratio to optimal
solutions for any other norms (it is easy to come up with a concrete example to support that). For
any givenℓp norm the only previous approximation algorithm for unrelated machines, presented by
Awerbuch et al. [2], has a performance ofθ(p) (this algorithm was presented as an on-line algorithm).
Our main result is a2-approximation polynomial algorithm for any givenℓp norm(p > 1). It is also
known that there is no approximation polynomial algorithm for theℓ∞ norm with ratio better then3/2
(see [14]). In addition the problem isAPX-Hard for any fixedp (see [3]). These hardness results
hold for the restricted assignment model as well.

For theℓ2 norm the only previous approximation algorithm for unrelated machines, presented
by Awerbuch et al. [2], has a performance of1 +

√
2 (this algorithm was presented as an on-line

algorithm). We improve this result by providing a
√

2-approximation polynomial algorithm for theℓ2

norm.
Recall that for theℓp norm (p > 1) the problem of scheduling in the restricted assignment model

is APX-hard. Thus, there is no PTAS for the problem unless (P = NP ). However, if the number
of machines is fixed a PTAS can be achieved. We present a PTAS for any given norm and any fixed
number of machines with better space complexity then the FPTAS presented for the problem in [3].
Note that for minimizing the makespan Horowitz and Sahni [13] presented a FPTAS for any fixed
number of machines. Lenstraet al. [14] suggested a PTAS for the same problem (i.e. minimizing the
makespan) with better space complexity.

Our algorithm for the restricted assignment model has an approximation ratio of2 − Ω( 1
2p ). Pre-

viously, Azar et al. [3] presented an all-norm2-approximation polynomial algorithm which provides
a2-approximation to all norms simultaneously. Their algorithm gives a2-approximation to any fixed
ℓp norm. Our improved algorithm uses their algorithm recursively.

Ford-dimensional jobs we present a(d + 1)-approximation algorithm for any fixed dimensiond
and any fixedℓp norm (p > 1). This is in contrast to theθ(p) algorithm that can be obtained from [2].

Other related results: Other scheduling models have also been studied. For the identical machines
model, where each job has an associated weight and can be assigned to any machine, Hochbaum and
Shmoys [12] presented a PTAS for the case of minimizing the makespan. Later, Alonet al.[1] showed
a PTAS for anyℓp norm in the identical machines model. For the related machines model, in which
each machine has a speed and the machine load equals the sum ofjobs weights assigned to it divided
by its speed, Hochbaum and Shmoys [11] presented a PTAS for the case of minimizing the makespan.
Epstein and Sgall [6] showed a PTAS for anyℓp norm in the same model.

1.4 Paper Structure

In Section 3 we present our approximation algorithm for anyℓp norm. In Section 4 we present an
approximation algorithm for theℓ2 norm. In section 5 we give for any givenℓp norm a slightly better
approximation algorithm for the restricted assignment model. In section 6 we construct for any given
ℓp norm a PTAS for any fixed number of machines. In Section 7 we consider the multidimensional
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generalization of the problem and for this problem we present an approximation algorithm for anyℓp

norm.

2 The Approximation Algorithm ( p > 1)

2.1 Convex Programming Formulation

We define the following minimization problem in the unrelated machines model, where there is a fixed
processing timepij associated with each machinei = 1, . . . ,m and each jobj = 1, . . . , n. Integer
solutions to the following convex program (CP1) give the optimal schedules.

min
m

∑

i=1

tpi

m
∑

i=1

xij = 1 for j = 1, . . . , n

n
∑

j=1

xijpij − ti = 0 for i = 1, . . . ,m

xij ≥ 0 for j = 1, . . . , n , i = 1, . . . ,m,

where for each machinei = 1, . . . ,m and each jobj = 1, . . . , n the variablexij denotes the relative
fraction of jobj on machinei and for each machinei = 1, . . . ,m the variableti denotes the load of
machinei. We denote the optimum integer solution byOPT p, which is the optimumℓp norm to the
power ofp andOPT is the optimumℓp norm. Because of solving convex program requirements, we
change the linear equality constraints of the convex program to linear inequality constraints, which
does not change the optimal solution value as follows

m
∑

i=1

xij ≥ 1 for j = 1, . . . , n

n
∑

j=1

xijpij − ti ≤ 0 for i = 1, . . . ,m

xij ≥ 0 for j = 1, . . . , n , i = 1, . . . ,m.

This CP relaxation has large integrality gap. To overcome this problem we modify the objective
function in a way which also helps us in our rounding technique as follows. Letg(t

¯
) =

∑m
i=1 tpi be

the original objective function. We call it theℓp norm function. Letc(x
¯
) =

∑m
i=1

∑n
j=1 xijp

p
ij be the

cost function. Our modified objective function isf(x
¯
, t
¯
) = g(t

¯
) + c(x

¯
) and the objective is

min f(x
¯
, t
¯
).

We call the modified convex program (CP2).
Solvability of Convex Program: Convex program can be solved within an additive error ofǫ in
polynomial time for any givenǫ > 0 when the feasible region is a convex compact set with non-
empty interior (i.e. nonzero volume) under some requirements (see, e.g., [9, 15]). Specifically, it
can be solved for minimizing an objective function which is convex and differentiable if we have a
(polynomial time) separation oracle for the feasible set and the possibility to compute the objective
and its subgradient at a given point (in polynomial time). When these requirements hold we can use
for example the ellipsoid algorithm to solve the optimization minimization problem. To implement
the ellipsoid algorithm we use the separation oracle for thefeasible set and the fact that the objective
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function is convex and differentiable. Specifically, we cancompute the subgradient, at any given point
to obtain a separation half-space to exclude points that arenot in the optimal set.

Since all the constraints in (CP2) are linear inequalities the feasible region is convex. Moreover,
the separation oracle is easy to implement. Also it is easy tosee that the feasible region has a positive
volume. The objective function is sum of convex functions and hence convex. Moreover, it is easy to
compute its value and its subgradient at a given point. Hence, (CP2) is solvable in polynomial time
for any accuracy. We note that in the first proof we show how to overcome the additive error ofǫ that
results from solving the convex program. In all other proofswe assume that we get the exact solution
to the convex program, since we can easily overcome the additive error ofǫ as done in the first proof.

Lemma 2.1 Let x
¯
, t
¯

be an optimum solution to (CP2), with valuef(x
¯
, t
¯
). Then

f(x
¯
, t
¯
) ≤ 2OPT p.

Proof: A possible feasible solution to (CP2) is the optimum integersolution to (CP1) denoted by
x
¯0, t

¯0
. For this solutiong(t

¯0
) = OPT p, c(x

¯0) ≤ OPT p andf(x
¯
, t
¯
) ≤ f(x

¯0, t
¯0

), where the first
inequality follows from the fact that for a feasible integersolution to (CP1) denoted by x’

¯
, t’

¯
holds

g(t’
¯
) =

m
∑

i=1

(t′i)
p =

m
∑

i=1

(
n

∑

j=1

x′
ijpij)

p ≥
m

∑

i=1

n
∑

j=1

x′
ijp

p
ij = c(x’

¯
).

Hencef(x
¯
, t
¯
) ≤ f(x

¯0, t
¯0

) = g(t
¯0

) + c(x
¯0) ≤ 2OPT p. This completes the proof.

2.2 Convex Programming Rounding

Theorem 2.1 The fractional solution to (CP2) can be rounded in polynomial time to an integral
assignment which gives a value which is at most twice of the optimum for theℓp norm.

Proof: Given the fractional assignment{xij} we will show how to construct the desired integral
assignment{x̂ij} in polynomial time. We use the same rounding algorithm used by Shmoys and
Tardos for the Generalized Assignment Problem [16]. They showed how to convert a fractional
solution{xij} to an integer solution{x̂ij} which satisfies the following

t̂i ≤ ti + qi
m

∑

i=1

n
∑

j=1

x̂ijcij ≤
m

∑

i=1

n
∑

j=1

xijcij ,

whereqi is the size the largest job assigned to machinei by the integral assignment{x̂ij} andcij is

the cost of jobj on machinei. We definecij = pp
ij. Then we obtain

m
∑

i=1

n
∑

j=1

xijcij =
m

∑

i=1

n
∑

j=1

xijp
p
ij

which is the cost term in the objective function of (CP2). Nowwe use the same rounding procedure
defined above with the linear cost function defined by the coefficientscij . Next we show that theℓp

norm of the schedule constructed is at most twice of the optimum

g(̂t
¯
) =

m
∑

i=1

t̂pi ≤
m

∑

i=1

(ti + qi)
p ≤ 2p−1

m
∑

i=1

(tpi + qp
i ) = 2p−1(

m
∑

i=1

tpi +

m
∑

i=1

qp
i )

≤ 2p−1(

m
∑

i=1

tpi +

m
∑

i=1

n
∑

j=1

x̂ijp
p
ij) ≤ 2p−1(

m
∑

i=1

tpi +

m
∑

i=1

n
∑

j=1

xijp
p
ij)

= 2p−1f(x
¯
, t
¯
) ≤ 2p−1 · (2OPT p + ǫ) = 2pOPT p + 2p−1ǫ.
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The first inequality follows from the fact that the load on each machinei is not greater thenti + qi.
The second inequality follows from the inequality(x + y)p ≤ 2p−1(xp + yp). The fourth inequality

follows from the fact that
m

∑

i=1

n
∑

j=1

x̂ijp
p
ij ≤

m
∑

i=1

n
∑

j=1

xijp
p
ij . The last inequality follows from Lemma

2.1 and the fact that we get an optimal solution to (CP2) up to an additive error ofǫ. By choosing
ǫ = 1

2p we get

g(̂t
¯
) ≤ 2pOPT p +

1

2
.

Sinceg(̂t
¯
) andOPT p are positive integral numbers we obtain

(g(̂t
¯
))

1

p ≤ 2OPT.

This completes the proof.

The proof of the following theorem appears in the Appendix.

Theorem 2.2 The approximation ratio provided by the approximation algorithm is lower bounded by

2 − O
(

ln p
p

)

.

3 Approximation Algorithm ( p = 2)

The modified objective function of (CP2) for the casep = 2 is

min
m

∑

i=1

t2i +
m

∑

i=1

n
∑

j=1

xijp
2
ij,

which gives a convex quadratic program (CQP) that can be solved within an additive error ofǫ in
polynomial time for any givenǫ > 0. We use randomized rounding: each jobj is assigned indepen-
dently at random to one of the machines with probabilities given through the values{xij}; notice that
m

∑

i=1

xij = 1. We denote the obtained integral assignment by{x̂ij}.

Lemma 3.1 For the solution{x̂ij} obtained by randomized rounding:

E[t̂2i ] − (E[t̂i])
2 =

n
∑

j=1

xi,j(1 − xi,j)p
2
i,j .

Proof: We have

E[t̂2i ] − (E[t̂i])
2 = V ar[t̂i] =

n
∑

j=1

xi,j(1 − xi,j)p
2
i,j.

The first equality follows from the definition of the variance. The second equality follows from the
linearity of expectation and the independence of the indicator random variableŝxij andx̂ik for j 6= k.
This completes the proof of the Lemma.
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Theorem 3.1 The fractional solution to (CQP) can be rounded in polynomial time to an integral
assignment which gives a value which is at most

√
2 of the optimum for theℓp norm.

Proof: We have

E[g(̂t
¯
)] = E[

m
∑

i=1

t̂2i ] =
m

∑

i=1

E[t̂2i ] =
m

∑

i=1

(E[t̂i])
2 +

m
∑

i=1

n
∑

j=1

xi,j(1 − xi,j)p
2
i,j

=

m
∑

i=1

t2i +

m
∑

i=1

n
∑

j=1

xi,j(1 − xi,j)p
2
i,j ≤

m
∑

i=1

t2i +

m
∑

i=1

n
∑

j=1

xi,jp
2
i,j

= f(x
¯
, t
¯
) ≤ 2OPT 2.

The second equality follows from the linearity of expectation. The third equality follows from Lemma
3.1 and the last inequality follows from Lemma 2.1. Hence

(E[g(̂t
¯
)])

1

2 ≤
√

2OPT.

This completes the proof.

The randomized rounding algorithm can easily be derandomized by the method of conditional proba-
bilities.

4 Slightly Better Approximation Algorithm for the Restrict ed Assign-
ment Model (p > 1)

Now we turn to the restricted assignment model. For improving the 2-Approximation algorithm for the
restricted assignment model we can use either the approximation algorithm presented in the previous
section for unrelated machines with its rounding scheme or the 2-Approximation algorithm presented
by Azar et al. [3] with its rounding scheme. When we use the first algorithm we denote byH1 the
schedule that contains all the jobs assigned to each machineexcept the biggest job assigned to each
machine. We denote byH2 the schedule consisting of the big jobs that are not inH1. When using
the latter algorithm and its rounding scheme which has two phases, we denote byH1 the schedule
consisting of the jobs assigned in the first rounding phase and we denote byH2 the schedule consisting
of the jobs assigned in the second rounding phase. This schedule assigns only one job per machine.
We denote byOPT (H1) the optimal schedule of the jobs inH1. We denote byOPT the optimal
schedule. We have:

‖OPT‖p ≥ ‖H1‖p , (1)

‖OPT‖p ≥ ‖H2‖p , (2)

‖OPT‖p ≥ ‖OPT (H1)‖p + ‖H2‖p . (3)

Now we apply the2-approximation algorithm for the jobs inH1, which returns a new scheduleH3.
We define the scheduleH returned by the algorithm as follows:

H =

{

H1 + H2 ‖H1 + H2‖p ≤ ‖H2 + H3‖p

H2 + H3 otherwise
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Next we prove the approximation ratio of the approximation algorithm. Letǫ > 0 to be determined.
We consider two cases: If‖H2‖p ≤ (1 − ǫ)‖OPT‖p then

‖H‖p ≤ ‖H1 + H2‖p ≤ 2p−1(‖H1‖p + ‖H2‖p)

≤ 2p−1(‖OPT‖p + (1 − ǫ)‖OPT‖p)

= 2p−1(2 − ǫ)‖OPT‖p ,

where the first inequality follows from the inequality(x + y)p ≤ 2p−1(xp + yp). If ‖H2‖p >
(1 − ǫ)‖OPT‖p we obtain the following: It follows from (3) that

‖OPT (H1)‖p ≤ ǫ‖OPT‖p ,

hence
‖H3‖p ≤ 2p‖OPT (H1)‖p ≤ 2pǫ‖OPT‖p .

We obtain

‖H‖p ≤ ‖H2 + H3‖p ≤ 2p−1(‖H2‖p + ‖H3‖p)

≤ 2p−1(‖OPT‖p + 2pǫ‖OPT‖p)

= 2p−1(1 + 2pǫ)‖OPT‖p .

We chooseǫ = 2p+1, which gives

‖H‖p ≤ max

{

2p−1(2 − 1

2p+1
), 2p−1 3

2

}

‖OPT‖p = (2p − 1

4
)‖OPT‖p.

Hence
‖H‖

‖OPT‖ ≤ 2(1 − 1

4p2p
) = 2 − 1

2p2p
.

The following theorem summarize the result.

Theorem 4.1 For the restricted assignment model there is a2 − 1
2p2p approximation algorithm for

theℓp norm that runs in polynomial time.

5 PTAS for any fixed number of machines and a givenℓp norm

We describe a polynomial time approximation scheme for any fixed number of machinesm and a
givenℓp norm, i.e.(1 + ǫ)-approximation algorithm for anyǫ > 0 running in polynomial time. The
running time of the algorithm will be bounded by a function that is the product of(n + 1)m

2/ǫ and
a polynomial in the size of the input. By the hardness of approximation result presented in [3],
there is no approximation scheme (PTAS or FPTAS) for a given norm and any number of machines
unlessP = NP . Azar et al. [3] showed a fully polynomial time approximation scheme which
is a modification of the method presented initially by Horowitz and Sahni in [13]. Our PTAS is
a modification of the algorithm constructed by Lenstra et. al[14]. The significance of the new
algorithm is the improvement in space usage. The space required by the old scheme is(n + 1)m/ǫ

whereas the new scheme uses space that is polynomial in both1
ǫ andm (and the input size).

For anyǫ > 0 our algorithm is as follows: We consider a scheduling problem in the unrelated
machines model, when there is a fixed processing timepij associated with each machinei = 1, . . . ,m
and each jobj = 1, . . . , n. We consider the decision version of the problem withℓp norm at mostT .
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For any schedule for the instance with valueT , we classify the assignment of a job to a machine
as either long or short, depending on whether or not the processing time in question is greater then
ǫT/m. No machine can handlem/ǫ or more long assignments before timeT . Thus, for any instance
there are less than(n + 1)m

2/ǫ schedules of long assignments.
Consider an instance with valueT that has a feasible schedule. Letti be the total processing

time on machinei for that schedule. This schedule includes a partial schedule of long assignments.
Suppose that for machinei the long assignments amount to a total processing timeli, and thus the
remaining jobs are completed within timedi = ti − li. We definet = ǫT/m For assigning the
remaining jobs we solve the following convex program

min
m

∑

i=1

tpi

m
∑

i=1

xij ≥ 1 for j = 1, . . . , n

n
∑

j=1

xijpij − ti + li ≤ 0 for i = 1, . . . ,m

xij ≥ 0 for j = 1, . . . , n , i = 1, . . . ,m
xij = 0 if pij > t j = 1, . . . , n , i = 1, . . . ,m

We present the following theorem, which is similar to a theorem given in [16] and has the same proof.

Theorem 5.1 If the convex program has a feasible solution with value lessthen or equals toT p, then
there exists a schedule withℓp norm at mostT , such that each machinei has load of at mostti + t.

We see that the convex program must have a feasible solution,so that we can apply theorem 5.1.
The resulting integral solution yields a schedule of short assignments such that the total processing
time taken by short assignments to machinei is at mostti − li + ǫT/m. Combining this with the
schedule of long assignments, we get a schedule where the total time used by machinei is at most
li + ti − li + ǫT/m = ti + ǫT/m. For theℓp norm we obtain

‖ti + ǫT/m‖ ≤ ‖ti‖ + ‖ǫT/m‖ ≤ T + ǫT = (1 + ǫ)T.

We try all possible schedules of long assignments. For each schedule of long assignments we solve
the convex program and apply theorem 5.1. If we obtained a schedule using theorem 5.1, we return
this schedule which hasℓp norm at most(1+ ǫ)T . Otherwise we answer ’no’. The following theorem
gives the result.

Theorem 5.2 The described algorithm is a PTAS that requires time boundedby a polynomial inm,
log 1/ǫ, and the input size.

6 Approximation Scheme for Multidimensional Jobs (p > 1)

We generalize the problem, by defining multidimensional jobs. In the new problem we consider
scheduling parallel unrelated machines. Each job isd-dimensional and has to be processed by exactly
one machine. Processing jobj on machinei in dimensionk requires timepikj. The goal is to find a
schedule that minimizes theℓp norm of the generalized load vector, which is a matrix where the rows
represent the machines and the columns represent the jobs dimension.

9



6.1 Convex Programming Formulation

Integer solutions to the following convex program (CP3) give the optimal schedules, where the value

of theℓp norm of the optimal schedule isT
1

p .

min f(t
¯
) =

m
∑

i=1

d
∑

k=1

tpik

m
∑

i=1

xij ≥ 1 for j = 1, . . . , n

n
∑

j=1

xijpikj − tik ≤ 0 for i = 1, . . . ,m , k = 1, . . . , d

c(x
¯
) =

m
∑

i=1

d
∑

k=1

n
∑

j=1

xijp
p
ikj ≤ T

xij ≥ 0 for j = 1, . . . , n , i = 1, . . . ,m

We call the functionc(x
¯
) the cost function.

6.2 Convex Programming Rounding

Theorem 6.1 If (CP3) has a feasible solution withℓp norm value at mostT
1

p , then the fractional
solution to (CP3) can be rounded in polynomial time to an integral assignment which gives a value

which is at most(d + 1)T
1

p for theℓp norm.

Proof: Given the fractional assignment{xij} we will show how to construct the desired integral as-
signment{x̂ij} in polynomial time. We move to the 1-dimensional problem by defining 1-dimensional

jobs pij =

d
∑

k=1

pikj. The load of machinei denoted byti is ti =

d
∑

k=1

tik. Now for the new 1-

dimensional problem instance, we use the fractional solution obtained for the d-dimensional instance
and we perform the same rounding procedure we used for the 1-dimensional case, but now We define

cij =
∑d

k=1 pp
ikj. Then we obtain

m
∑

i=1

n
∑

j=1

xijcij =

m
∑

i=1

n
∑

j=1

xij

d
∑

k=1

pp
ikj which is the cost function

c(x
¯
). After performing the rounding we return to the originald-dimensional jobs. Let{t̂ik} be the

load of machinei in dimensionk after the rounding, let{q̂ik} be the processing time in dimensionk of
the largest job that was matched to machinei by the integral assignment{x̂ij} and lett′ik = t̂ik − q̂ik.
We obtain the following:

‖̂t‖̄p = ‖t’
¯

+ q̂
¯
‖p ≤ ‖t’ ‖̄p + ‖q̂

¯
‖p ≤ ‖d · t‖̄p + ‖q̂

¯
‖p

= d‖t‖̄p + ‖q̂
¯
‖p ≤ dT

1

p + T
1

p = (d + 1)T
1

p .

Let t′i =

d
∑

k=1

t′ik. The second inequality follows from the fact that after the rounding t′i ≤ ti, the

pigeonhole principle and the convexity of theℓp norm. The last inequality follows from the fact that
f(t

¯
) ≤ T , c(x

¯
) ≤ T and the fact thatc(x̂

¯
) ≤ c(x

¯
). This completes the proof.
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A Appendix

A.1 Proof of Theorem 2.2

Let m → ∞. We construct problem instance for the identical machines model. We consider the
machines as points in the interval(0, 1], each machine is represented by a pointt ∈ (0, 1], and the
load of the machines is represented as a functionf(t) in that interval. Let0 < α < 1. We consider
the following instance. There are infinitesimally small jobs of total volume1 − α and unit jobs of
total volumeα. The optimal schedule hasℓp norm 1 and there is no better fractional assignment.
The optimal algorithm assigns the unit jobs of total volumeα evenly toα machines and assigns the
infinitesimally small jobs of total volume1− α evenly to the other1− α machines. Suppose that the
fractional schedule is as follows: The infinitesimally small jobs of total volume1 − α are assigned
evenly to all the machines and the unit jobs of total volumeα are also assigned evenly to all the
machines (α fraction of a unit job is assigned to each machine). Roundingthis fractional solution
gives the following schedule: The infinitesimally small jobs of total volume1−α are assigned evenly
to all the machines and the unit jobs of total volumeα are assigned evenly toα machines (one unit
job is assigned to each of these machines). LetA and Opt be theℓp norms of the approximation and
off-line algorithms respectively and letC be the approximation ratio of the algorithm.

Ap = α(2 − α)p + (1 − α)(1 − α)p = α(2 − α)p + (1 − α)p+1

Optp = α1p + (1 − α)1p = 1

Cp ≥
(

A

Opt

)p

= α(2 − α)p + (1 − α)p+1

We chooseα = 1
p and we obtain

Cp ≥ 1

p

(

2 − 1

p

)p

+

(

1 − 1

p

)p+1

≥ 1

p

(

2 − 1

p

)p

.

Hence

C ≥
(

1

p

)
1

p

(

2 − 1

p

)

= e−
ln p

p

(

2 − 1

p

)

≥
(

1 − ln p

p

)(

2 − 1

p

)

= 2 − O

(

ln p

p

)

,

where the second inequality follows from the inequalitye−x ≥ 1 − x. This completes the proof.
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