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Abstract

We consider the classical problem of scheduling paralletiated machines. Each job is to
be processed by exactly one machine. Processing @gbmachine requires timep;;. The goal
is to find a schedule that minimizes thenorm. Previous work showed a 2-approximation algo-
rithm for the problem with respect to tifg, norm. For any fixed,, norm the previously known
approximation algorithm has a performanced¢f). We provide a 2-approximation algorithm
for any fixed?,, norm (p > 1). This algorithm uses convex programming relaxation. Vée al
give a+/2-approximation algorithm for thé, norm. This algorithm relies on convex quadratic
programming relaxation. To the best of our knowledge, thithe first time that general convex
programming techniques (apart from SDPs and CQPs) are ngbeé iarea of scheduling. We
show for any giver?, norm a PTAS for any fixed number of machines. We also consluer t
multidimensional generalization of the problem in whicle jbbs ared-dimensional. Here the
goal is to minimize the, norm of the generalized load vector, which is a matrix whiaeerbws
represent the machines and the columns represent the jobgsibn. For this problem we give a
(d + 1)-approximation algorithm for any fixe¢}, norm {p > 1).

1 Introduction

We consider the classical problem of scheduling jobs onlleatmrelated machines. Lenstra et. al
[14] and Shmoys and Tardos [16] provide®-approximation algorithm for minimizing the makespan
(¢sc norm). However, for thé, norm onlyé(p)-approximation algorithm was known (see [2]). We
provide a2-approximation algorithm for any,, norm. In addition we show a/2-approximation
algorithm for the/, norm.

Our approximation algorithms are based on convex prograigmalaxations. To the best of our
knowledge, this is the first time that general convex prognamy techniques (apart from SDPs and
CQPs) are used in the area of scheduling. Semidefinite progirg (SDP) and convex quadratic
programming (CQP) are special cases of convex programn@ryj. (Given any > 0 convex pro-
grams can be solved within an additive errorcafnder some requirements on the convex objective
function and on the feasible space. This can be done thrdwegllipsoid algorithm (Grotschel et. al
[9]) and more efficiently using interior-point methods (geg, Nesterov and Nemirovsky [15]).

Linear programming (LP) relaxations have been proved to bsedul tool in the design and
analysis of approximation algorithms for many graph and lwioatorial problems. There are several
applications of linear programming relaxations for maehétheduling problems, see, e.g., [14, 16,
10, 4, 5]. The importance of semidefinite programming is soeatetimes it leads to tighter relaxations
for many graph and combinatorial problems. Grotchel et[8lused semidefinite programming to
design a polynomial time algorithm for finding the largestd¢ set in a perfect graph. Goemans and
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Williamson [7] were the first to use semidefinite programmiakaxations in the design of approxi-
mation algorithms. They used semidefinite relaxationsiemrroblems MAXCUT, MAXDICUT and
MAX2SAT. Convex quadratic programming and semidefinitegpamming relaxations in the area of
scheduling were first used by Skutella [17]. He used convedtic programming relaxations to
design approximation algorithms for the problem of schieduuinrelated parallel machines so as to
minimize total weighted completion time of jobs.

Techniques: In the design of th@-approximation algorithm for scheduling jobs on unrelatea-
chines we formulate the problem as a convex program, whereltfective function is thé, norm

(p > 1). The obvious CP relaxation yields a large integrality gegppovercome this problem we mod-
ify the objective function of the CP. The new objective fuantyields a bounded gap. Our rounding
technique is based on the rounding technique of Shmoys amnlbg$or the generalized assignment
problem [16]. They used this rounding technique for the adsg, norm. However, they did not
need to use the extra property of not increasing the cogtrdstingly in our rounding method for the
¢, norm we need to use this extra property. We use their techriigan enhanced manner using the
additional term in the modified objective function of the gex program as the cost of the fractional
weighted matching of the bipartite graph they form. Then weat the property That there exists an
integral matching with no greater cost. This matching defthe schedule of the jobs. For thenorm
we use the same convex program together with randomizediirmyio obtain a,/2-approximation
algorithm. For any,, norm we also design a slightly better thafd-approximation algorithm for the
restricted assignment model by using a bootstrapping 22&pproximation algorithm. Additionally
we use convex programming relaxation in the design of a P6ABd problem.

1.1 Problem Definition

We havem parallel machines and independent jobs, where jghtakes positive integral processing
time p;; when processed by machineThe load of machine is the total processing time required fo
the jobs assigned to it. The cost of an assignment for an sgmyience of jobs is defined as the
norm of the load vector. Specifically, tifg, norm is the makespan (or maximum load) and ¢he
norm is the Euclidean norm, which is equivalent to the sunmefsigquares of the load vector. The goal
of an assignment algorithm is to assign all the jobs so as hinmiie the cost. Consider for example
the case where the weight of a job corresponds to its macikedcess frequency. Each job may see
a delay that is proportional to the load on the machine it $sgaed to. Then thaveragedelay over

all disk accesses is proportional to the sum of squares ahtiehines loads (namely tifg norm of
the corresponding machines load vector) whereamtisdmundelay is proportional to the maximum
load.

1.2 Our Results
We show the following results for scheduling jobs on unesdamachines:

¢ A 2-approximation polynomial algorithm for the general pevblfor any giver?, norm (p >
1). This improves the previoudp) approximation algorithm given in [2].

e A \/2-approximation polynomial algorithm for th& norm for the problem, improving the
previousl + /2 approximation algorithm given in [2].

e A PTAS for fixed number of machines for any givénnorm with space which is polynomial
in both 1 andm (and the input size).

We also consider a generalization of the problem and a dpmxsa of the problem and obtain the
following results:



e We consider the case in which jobs akelimensional and show @+ 1-approximation algo-
rithm.

e We consider the restricted assignment model where eachah bize and should be assigned
to one out of some subset of machines. For this problem we shelightly better than a
2-approximation algorithm for ang, norm.

1.3 Previous Results

Lenstra et. al [14] and Shmoys and Tardos [16] present@ehjpproximation algorithm for the
makespan, however their algorithm does not guarantee argtastt approximation ratio to optimal
solutions for any other norms (it is easy to come up with a petecexample to support that). For
any given/,, norm the only previous approximation algorithm for unrethtmnachines, presented by
Awerbuch et al. [2], has a performancedgh) (this algorithm was presented as an on-line algorithm).
Our main result is @-approximation polynomial algorithm for any givép norm(p > 1). Itis also
known that there is no approximation polynomial algorittonthe/., norm with ratio better the/2
(see [14]). In addition the problem 4P X -Hard for any fixedp (see [3]). These hardness results
hold for the restricted assignment model as well.

For the/; norm the only previous approximation algorithm for unrethimachines, presented
by Awerbuch et al. [2], has a performancelof- /2 (this algorithm was presented as an on-line
algorithm). We improve this result by providingy&-approximation polynomial algorithm for thg
norm.

Recall that for the/,, norm (p > 1) the problem of scheduling in the restricted assignmentehod
is APX-hard. Thus, there is no PTAS for the problem unlg3s<{ N P). However, if the number
of machines is fixed a PTAS can be achieved. We present a PTA®iyogiven norm and any fixed
number of machines with better space complexity then theAlSRiresented for the problem in [3].
Note that for minimizing the makespan Horowitz and Sahni [if&@sented a FPTAS for any fixed
number of machines. Lensted al.[14] suggested a PTAS for the same problem (i.e. minimizieg t
makespan) with better space complexity.

Our algorithm for the restricted assignment model has anoappation ratio of2 — Q(Zip). Pre-
viously, Azar et al. [3] presented an all-nogvrapproximation polynomial algorithm which provides
a2-approximation to all norms simultaneously. Their aldaritgives &2-approximation to any fixed
¢, norm. Our improved algorithm uses their algorithm recuisiv

For d-dimensional jobs we present(é+ 1)-approximation algorithm for any fixed dimensian
and any fixed,, norm (p > 1). This is in contrast to thé(p) algorithm that can be obtained from [2].

Other related results: Other scheduling models have also been studied. For théddemachines
model, where each job has an associated weight and can baexs$d any machine, Hochbaum and
Shmoys [12] presented a PTAS for the case of minimizing theesy@an. Later, Aloet al.[1] showed

a PTAS for any/,, norm in the identical machines model. For the related mashmodel, in which
each machine has a speed and the machine load equals the @i wkights assigned to it divided
by its speed, Hochbaum and Shmoys [11] presented a PTASHoage of minimizing the makespan.
Epstein and Sgall [6] showed a PTAS for afjynorm in the same model.

1.4 Paper Structure

In Section 3 we present our approximation algorithm for 4nyiorm. In Section 4 we present an
approximation algorithm for thé, norm. In section 5 we give for any givelp norm a slightly better
approximation algorithm for the restricted assignment ehobh section 6 we construct for any given
¢, norm a PTAS for any fixed number of machines. In Section 7 weiden the multidimensional



generalization of the problem and for this problem we preaarapproximation algorithm for arfy,
norm.

2 The Approximation Algorithm (p > 1)

2.1 Convex Programming Formulation

We define the following minimization problem in the unretateachines model, where there is a fixed
processing timg;; associated with each machine= 1,...,m and each joly = 1,...,n. Integer
solutions to the following convex program (CP1) give theimopd schedules.

szjzl for j=1,...,n

=1
n
injpij_ti:() for i=1,...,m
j=1

x5 >0 for j=1,...,n,i=1,...,m,
where for each machine= 1,...,m and each joly = 1,...,n the variabler;; denotes the relative
fraction of jobj on machine and for each machine= 1, ..., m the variablet; denotes the load of

machinei. We denote the optimum integer solution ®y>7”, which is the optimun¥,, norm to the
power ofp andOPT is the optimun¥,, norm. Because of solving convex program requirements, we
change the linear equality constraints of the convex pragi@linear inequality constraints, which
does not change the optimal solution value as follows

m

ZCEUZl for j=1,...,n

=1

n

injpij—tigo for izl,...,m

j=1

x5 >0 for j=1,...,n,i=1,....,m.

This CP relaxation has large integrality gap. To overconig pinoblem we modify the objective
function in a way which also helps us in our rounding techeigs follows. Ley(t) = >~ ¥ be

the original objective function. We call it th norm function. Let(x) = >, 377, @;;p}; be the
cost function. Our modified objective function f$x, 1) = g(1) + ¢(x) and the objective is

min f(X, 1).

We call the modified convex program (CP2).

Solvability of Convex Program: Convex program can be solved within an additive erroe af
polynomial time for any giverr > 0 when the feasible region is a convex compact set with non-
empty interior (i.e. nonzero volume) under some requirdmésee, e.g., [9, 15]). Specifically, it
can be solved for minimizing an objective function which @neex and differentiable if we have a
(polynomial time) separation oracle for the feasible set #re possibility to compute the objective
and its subgradient at a given point (in polynomial time). aitthese requirements hold we can use
for example the ellipsoid algorithm to solve the optimieatiminimization problem. To implement
the ellipsoid algorithm we use the separation oracle fofeélsible set and the fact that the objective
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function is convex and differentiable. Specifically, we campute the subgradient, at any given point
to obtain a separation half-space to exclude points thaiatri; the optimal set.

Since all the constraints in (CP2) are linear inequalitresfeasible region is convex. Moreover,
the separation oracle is easy to implement. Also it is easgéahat the feasible region has a positive
volume. The objective function is sum of convex functiond &ence convex. Moreover, it is easy to
compute its value and its subgradient at a given point. Heg(@®e2) is solvable in polynomial time
for any accuracy. We note that in the first proof we show howirecome the additive error efthat
results from solving the convex program. In all other progésassume that we get the exact solution
to the convex program, since we can easily overcome theiaglditror ofe as done in the first proof.

Lemma 2.1 Letx t be an optimum solution to (CP2), with valyiéx.t). Then
f(x.t) < 20PT?.

Proof: A possible feasible solution to (CP2) is the optimum integ@ution to (CP1) denoted by
Xg,1g. For this solutiong(ty) = OPTP?, c(X,) < OPT? and f(x,1) < f(Xq,1y), where the first
inequality follows from the fact that for a feasible integatution to (CP1) denoted by X' holds

g(t) =D ()P =D O @)’ = > aliph = c(x).
i=1 i=1 j=1 i=1 j=1
Hencef(x,1) < f(Xg,1y) = g(ty) + c(X) < 20PTP. This completes the proof. |

2.2 Convex Programming Rounding

Theorem 2.1 The fractional solution to (CP2) can be rounded in polyndntiene to an integral
assignment which gives a value which is at most twice of timam for the/,, norm.

Proof: Given the fractional assignme#t;;} we will show how to construct the desired integral
assignment{z;;} in polynomial time. We use the same rounding algorithm usge&hmoys and
Tardos for the Generalized Assignment Problem [16]. Theywveldl how to convert a fractional
solution{z;; } to an integer solutiodz;; } which satisfies the following

ti < titaq

m

n m n
D2 dyey <)) wiicy,
i=1 j=1 i=1 j=1
whereg; is the size the largest job assigned to macliibg the integral assignme#t:;; } andc;; is
m n m n
the cost of jobj on machinei. We definec;; = pf;. Then we obtaid = > " wjjei; = > > aiph;
i=1 j=1 i=1 j=1
which is the cost term in the objective function of (CP2). New use the same rounding procedure

defined above with the linear cost function defined by thefmeftsc;;. Next we show that thé,
norm of the schedule constructed is at most twice of the aptim

m m m U "
9B = P (ita) 2T @ +a) =2 Qo+ )
i1 i1 i=1 1=1 =1
m m n

< Qo HFY Y dpl) <2+ YD wiwh)
i=1 =1

i=1 j=1 i=1 j=1
= 27 f(x,1) <271 (20PT? +¢) = 220PTP + 2P Le.
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The first inequality follows from the fact that the load on leacachine; is not greater them; + ¢;.
The second inequality foIIows from the |nequa|(ty+ y)P < 2P~1(zP 4 yP). The fourth inequality

follows from the fact thatzz%pfj < Zz%pm The last inequality follows from Lemma
=1 j=1 =1 j=1

2.1 and the fact that we get an optimal solution to (CP2) umtadditive error ofe. By choosing
€ = 55 we get

N 1
9(h) < 2°0PT" + 3.

Sinceg(t) andO PT? are positive integral numbers we obtain

(9(0)r < 20PT.
This completes the proof. [
The proof of the following theorem appears in the Appendix.
Theorem 2.2 The approximation ratio provided by the approximation aition is lower bounded by
2-0 (1“71’)
3 Approximation Algorithm ( p = 2)

The modified objective function of (CP2) for the case 2 is

mlnz t2 + Z Z xZ]pU,

i=1 j=1

which gives a convex quadratic program (CQP) that can besdalithin an additive error of in
polynomial time for any givers > 0. We use randomized rounding: each jpls assigned indepen-
dently at random to one of the machines with probabilitieegithrough the valuege;; }; notice that

> 25 = 1. We denote the obtained integral assignmen{y}.
i=1

Lemma 3.1 For the solution{z;;} obtained by randomized rounding:

E[ti sz] — Ti,j ng

Proof: We have
E[t7] — (E[t:])* = Var[i; Zwm — @,)D7 -

The first equality follows from the definition of the varianc€he second equality follows from the
linearity of expectation and the independence of the irtdiaandom variables;; andz; for j # k.
This completes the proof of the Lemma. [



Theorem 3.1 The fractional solution to (CQP) can be rounded in polyndntiilme to an integral
assignment which gives a value which is at mg8tof the optimum for thé, norm.

Proof: We have

m m m
E[g(i)] = E[fo]:ZE[fZQ]:Z +sz%] — Lij ng
1=1 1=1 i=1 i=1 j=1

m
= Zf?+Zqu %Pu<2t2+22%pz,]
i=1 j=1 i=1 j=1
= (xﬁ)gZOPTQ.

The second equality follows from the linearity of expeaiati The third equality follows from Lemma
3.1 and the last inequality follows from Lemma 2.1. Hence

(Elg®))? < V20PT.
This completes the proof. [

The randomized rounding algorithm can easily be derandeuirtiy the method of conditional proba-
bilities.

4  Slightly Better Approximation Algorithm for the Restrict ed Assign-
ment Model (p > 1)

Now we turn to the restricted assignment model. For impgtie 2-Approximation algorithm for the
restricted assignment model we can use either the appraomimalgorithm presented in the previous
section for unrelated machines with its rounding schemb@e@tApproximation algorithm presented
by Azar et al. [3] with its rounding scheme. When we use thé éilgorithm we denote by{; the
schedule that contains all the jobs assigned to each maekaept the biggest job assigned to each
machine. We denote b#f, the schedule consisting of the big jobs that are nalfin When using
the latter algorithm and its rounding scheme which has twasph, we denote b, the schedule
consisting of the jobs assigned in the first rounding phadenedenote by, the schedule consisting
of the jobs assigned in the second rounding phase. This glehadsigns only one job per machine.
We denote byO PT'(H;) the optimal schedule of the jobs ;. We denote byO PT the optimal
schedule. We have:

|OPT|" > [[Hi|”, 1)
|OPT|P = [|Hal”, )
|OPT|P = [[OPT(H)|” + [|Ha|[" - ©)

Now we apply the2-approximation algorithm for the jobs iH;, which returns a new schedulé;.
We define the schedulH returned by the algorithm as follows:

o) Hi+H | Hy + Ha||P < ||Hs + Hsl|?
Hy + Hj otherwise



Next we prove the approximation ratio of the approximatitgoathm. Lete > 0 to be determined.
We consider two cases: [[Hz||P < (1 — €)||OPT || then

=" [ Hy + Ha|[? < 207 (| Hy P + || He|1”)
2 H(|OPT|? + (1 = )| OPT|)

— - qoPT|?,

<
<

where the first inequality follows from the inequalify + y)? < 2P~1 (2P + yP). If |H|P >
(1 —¢)||OPT||P we obtain the following: It follows from (3) that

|OPT(H)|]” < e|OPT]”,

hence
[ Hs[|P < 2P|OPT(Hy)[[P < 2P€[|OPT|P .

We obtain

IH|? | Hz + Hs||P < 27 (|| Ha||P + || H3]1?)
2P~L(||OPT||P + 2P¢||OPT||P)

= 22711 4 2P¢)||OPTP .

We choose = 2P+, which gives

_ 1 13 1
AP < mar {212~ ooy, 28 o = @ - Horre
Hence
T N
|OPT| — 4p2p 2p2pP°

The following theorem summarize the result.

Theorem 4.1 For the restricted assignment model there ig a 219% approximation algorithm for
the/, norm that runs in polynomial time.

5 PTAS for any fixed number of machines and a giverd, norm

We describe a polynomial time approximation scheme for axgdfinumber of machines: and a
given/, norm, i.e. (1 + €)-approximation algorithm for any > 0 running in polynomial time. The
running time of the algorithm will be bounded by a functiomtts the product ofn + l)mQ/E and
a polynomial in the size of the input. By the hardness of axipration result presented in [3],
there is no approximation scheme (PTAS or FPTAS) for a givamnand any number of machines
unlessP = NP. Azar et al. [3] showed a fully polynomial time approximatischeme which
is a modification of the method presented initially by Horawand Sahni in [13]. Our PTAS is
a modification of the algorithm constructed by Lenstra et. [&4]. The significance of the new
algorithm is the improvement in space usage. The spacereggby the old scheme i3 + 1)"/¢
whereas the new scheme uses space that is polynomial ir%bmdm (and the input size).

For anye > 0 our algorithm is as follows: We consider a scheduling pnobla the unrelated
machines model, when there is a fixed processing tisnassociated with each machine- 1,...,m
and each joly = 1,...,n. We consider the decision version of the problem wjtimorm at mosf".



For any schedule for the instance with valliewe classify the assignment of a job to a machine
as either long or short, depending on whether or not the psirtg time in question is greater then
¢T'/m. No machine can handie /e or more long assignments before tiffie Thus, for any instance
there are less tham + 1)’”2/e schedules of long assignments.

Consider an instance with valdg that has a feasible schedule. ltgtbe the total processing
time on maching for that schedule. This schedule includes a partial scleediulong assignments.
Suppose that for machinethe long assignments amount to a total processing tjimend thus the
remaining jobs are completed within timk = ¢; — [;. We definet = €T'/m For assigning the
remaining jobs we solve the following convex program

m
min g t?
i=1

=
injzl for i=1,...,n

i=1

n

Zmijpij_ti‘i‘liﬁo for i=1,...,m

j=1

x5 >0 for j=1,...,n,i=1,...,m
zij =0 ifpj>t j=1,...,n,i=1,...,m

We present the following theorem, which is similar to a tleeoegiven in [16] and has the same proof.

Theorem 5.1 If the convex program has a feasible solution with value fees or equals t@?, then
there exists a schedule with norm at most’, such that each machinehas load of at most; + ¢.

We see that the convex program must have a feasible solstiotmat we can apply theorem 5.1.
The resulting integral solution yields a schedule of shesignments such that the total processing
time taken by short assignments to machine at mostt; — I; + €I'/m. Combining this with the
schedule of long assignments, we get a schedule where Hiditoé used by machingis at most
li +t; —l; + €T'/m = t; + €I'/m. For the/, norm we obtain

t: + €T /m]| < ||t]| + |[[eT/m|] < T + €T = (1 + €)T.

We try all possible schedules of long assignments. For egtoddsile of long assignments we solve
the convex program and apply theorem 5.1. If we obtained aedsdl using theorem 5.1, we return
this schedule which hak norm at most1 + €)7". Otherwise we answer 'no’. The following theorem
gives the result.

Theorem 5.2 The described algorithm is a PTAS that requires time bourmed polynomial inm,
log 1/¢, and the input size.

6 Approximation Scheme for Multidimensional Jobs { > 1)

We generalize the problem, by defining multidimensionalsjolhn the new problem we consider
scheduling parallel unrelated machines. Each jabdémensional and has to be processed by exactly
one machine. Processing jglbn machine in dimensionk requires timep;;. The goal is to find a
schedule that minimizes thfg norm of the generalized load vector, which is a matrix wheeerows
represent the machines and the columns represent the jokession.



6.1 Convex Programming Formulation

Integer solutions to the following convex program (CP3)edive optimal schedules, where the value
1
of the/,, norm of the optimal schedule B .

i=1 k=1

m
sz‘j>1 for j=1,...,n
=1
n
lejplkj—tik;<0 for i=1, ,m, k=1, ,d
i=1

m d n
=3 > wiplhy <T

i=1 k=1 j=1
1’2]>0 for j=1,...,n,i=1, ,m

We call the functior:(x) the cost function.

6.2 Convex Programming Rounding

1
Theorem 6.1 If (CP3) has a feasible solution with), norm value at mosf'», then the fractional
solution to (CP3) can be rounded in polynomial time to angraassignment which gives a value

which is at mostd + I)T% for the £, norm.

Proof: Given the fractional assignmefit;; } we will show how to construct the desired integral as-

signment{z;; } in polynomial time. We move to the 1-dimensional problem bfiring 1-dimensional
d d

jobs p;; = Zpl-kj. The load of machine denoted byt; is t; = thk- Now for the new 1-

k=1 k=1
dimensional problem instance, we use the fractional soiutbtained for the d-dimensional instance

and we perform the same rounding procedure we used for timdndional case, but now We define

m n m n d
cij = Yoh_y Dl;- Then we obtaind > " mijcij = > > xi; »_ pl; which is the cost function
=1 j=1 =1 j=1 k=1
c(x). After performing the rounding we return to the originatlimensional jobs. Left;;.} be the
load of machine in dimensionk after the rounding, lefg; } be the processing time in dimensibof
the largest job that was matched to machibg the integral assignmetit;; } and lett}, = ¢, — gi.
We obtain the following:

[ile

et ally < 1 + 1l < l1d -t + 1l
1 1 1
— dlit], + llall, < dTF +T% = (d+ DT,

d
Lett, = Zt;k. The second inequality follows from the fact that after tbanding¢, < t;, the

k=1
pigeonhole principle and the convexity of thenorm. The last inequality follows from the fact that
f@) <T,c(x) <T and the fact that(X) < ¢(x). This completes the proof. ]
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A Appendix

A.1 Proof of Theorem 2.2

Letm — oo. We construct problem instance for the identical machineslgh We consider the
machines as points in the intervdl, 1], each machine is represented by a poirt (0, 1], and the
load of the machines is represented as a funcfign in that interval. LelD < o < 1. We consider
the following instance. There are infinitesimally small gotif total volumel — « and unit jobs of
total volumeca. The optimal schedule ha norm 1 and there is no better fractional assignment.
The optimal algorithm assigns the unit jobs of total volumevenly toa machines and assigns the
infinitesimally small jobs of total volumé — o evenly to the othet — o machines. Suppose that the
fractional schedule is as follows: The infinitesimally shjabs of total volumel — « are assigned
evenly to all the machines and the unit jobs of total volumare also assigned evenly to all the
machines ¢ fraction of a unit job is assigned to each machine). Roundig fractional solution
gives the following schedule: The infinitesimally small §ofif total volumel — « are assigned evenly
to all the machines and the unit jobs of total volumeare assigned evenly t® machines (one unit
job is assigned to each of these machines). Aand Opt be thé, norms of the approximation and
off-line algorithms respectively and |ét be the approximation ratio of the algorithm.

AP = a2—a)lP+(1-a)l-alf =a2—-a)+(1-a)Pt?
Opt? = al’+(1—-a)l?=1
cr > <int> =a(2-a)P+ (1 —a)Pt!

We choosey = 1—1) and we obtain

cr >

|
N
o
|
| =
S~
=
+
N
—
|
N =
~
kS
_|_
—
v
| =
N
)
|
N =
~
kS

Hence

@ = () o) () () () o)

where the second inequality follows from the inequadityy > 1 — x. This completes the proof.
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