
All-Norm Approximation for Sheduling onIdential MahinesYossi Azar � Shai Taub yAbstratWe onsider the problem of assigning jobs to m idential mahines. The load of amahine is the sum of the weights of jobs assigned to it. The goal is to minimize the normof the resulting load vetor. It is known that for any �xed norm there is a PTAS. Onthe other hand, it is also known that there is no single assignment whih is optimal forall norms. We show that there exists one assignment whih simultaneously guaranteesa 1.388-approximation of the optimal assignments for all norms. This improves the 1.5approximation given by Chandra and Wong in 1975.1 IntrodutionThe problem of mahine sheduling is one of the most researhed problems in the area ofapproximation algorithms. The idential mahines model is de�ned by m parallel mahinesand n independent jobs, where eah job j has a non-negative weight wj . Eah job shouldbe assigned to one of the mahines, and the load of eah mahine i, li, is de�ned as thesum of weights of all jobs assigned to it. The goal of the problem is to get the best assign-ment. For eah spei� norm `p (p > 1), this is de�ned as the assignment that minimizesk(l1; : : : ; lm)kp = (Pmi=1 lpi )1=p. Spei�ally, for the ase of the `1 norm (makespan), thegoal is to minimize the maximum load of all the mahines. In this paper we desribe analgorithm that �nds an assignment that simultaneously provides a good approximation forall the optimal assignments of all the `p norms.It is well known that for any spei� norm, one an �nd for every " > 0 a polynomial timealgorithm for the problem that provides an approximation ratio of 1+" (PTAS). Hohbaumand Shmoys [11℄ showed that there is a PTAS of minimizing the makespan (`1). Later, itwas shown in [1℄, that there is a PTAS for every `p norm. However, this does not mean thatfor every positive " there exists an assignment that approximates the optimal assignmentof various norms simultaneously, up to a fator of 1 + ". Atually, in the same paper thereis an example that shows that optimal solutions for the `2 and `1 norms are ahievedfrom di�erent assignments. In the Appendix we generalize this example, and prove thatfor every two di�erent norms we an �nd an input for whih the optimal assignment of the�azar�tau.a.il. Shool of Computer Siene, Tel-Aviv University, Tel-Aviv, 69978, Israel. Researhsupported in part by the Israeli Ministry of industry and trade and by the Israel Siene Foundation.yshai ta�netvision.net.il. Shool of Computer Siene, Tel-Aviv University, Tel-Aviv, 69978, Israel.Researh supported in part by the Israeli Ministry of industry and trade.1



two norms di�er. By that we onlude that in general there is no assignment that 1 + "approximates the optimal assignments of both norms, for small enough ". Moreover, for anyset of di�erent `p norms there is an example in whih there is a di�erent optimal assignmentfor eah norm of the set.Now that we know that we annot �nd an approximation sheme (not neessarily poly-nomial time) even for two di�erent norms simultaneously, we want to �nd an algorithmwhih �nds an assignment that approximates the optimal assignments of all `p norms si-multaneously, with a small onstant approximation ratio.Chandra and Wong showed in [4℄, that the algorithm that sorts the jobs from the biggestweight to the smallest, and then sequentially greedily assigns eah job to the least loadedmahine, gives an approximation ratio of 1.5 for all norms simultaneously. In partiular,this algorithm gives an approximation ratio of 43 for the `1 norm (see [8℄), and 1.021 forthe `2 norm.Our results: Our main result is a polynomial time algorithm that provides an assignmentthat approximates the optimal assignment of all norms simultaneously within a fator of1.3875. This improves the 1.5 approximation ratio given in [4℄.As mentioned above we also show (in the Appendix) that for any two norms `p and`q there exists an input that has two di�erent optimal assignments for both norms, andmoreover, for any set of norms `p1 ; `p2 ; : : : ; `pk there is an input for whih all the optimalassignments of all these norms di�er. This proves that an approximation sheme (notneessarily polynomial time) for the problem of approximating two out of several normssimultaneously, does not exist.Other related results: Goel et al. [7℄ introdued the de�nition of globally �-balane.Goel and Meyerson [6℄ showed that an assignment whih is globally �-balaned (de�nedlater) also �-approximates all optimal assignments for all norms (as well as �-approximatesthe optimal assignments for every onvex funtion on the loads of the mahines). They alsoonsidered the problem of �nding a globally �-balaned assignment for idential mahines.They showed how to �nd a PTAS for an assignment that is globally �-balaned with thebest (smallest) value of �, but did not give a bound of this �. In this paper we show thatthis � is atually bounded by 1:3875.Other sheduling models have also been studied: related mahines, restrited assignment(subset model) and unrelated mahines. In the related mahines model (i.e. mahines have�xed speeds) there is no assignment that approximates all norms simultaneously within aonstant fator [3℄. This obviously holds for the unrelated mahines model as well. The samepaper also shows an algorithm that simultaneously 2-approximates the optimal solutions ofall norms in the restrited assignment model (i.e. eah job arrives with a set of mahinesthat it an be assigned to). We note that more is known for approximating any �xed norm.For the related mahines model a PTAS was given by Hohbaum and Shmoys [10℄ for `1norm and by Epstein and Sgall [5℄ for any �xed `p norm. For the restrited assignmentmodel 2-approximation was ahieved by Lenstra et al. [13℄ for `1 norm and by [3℄ for anyother `p norm. Moreover, in these papers it was also shown that a PTAS does not exist for`1 as well as for any `p norm (p > 1). In the unrelated mahines model 2-approximationalgorithm was ahieved by [13℄ for `1 and a �(p) approximation ratio for any other `p norm[2℄ (see [12℄ and [14℄ for other related results).2



Paper struture: In setion 2 we repeat the de�nition of globally �-balane taken from[7℄ and explain its onnetion to the approximation of all norms showed in [6℄. We alsodesribe a tool used by the algorithm. In setion 3 we desribe the all-norm approximationalgorithm. In subsetion 3.1 we show how to easily handle the huge jobs, i.e., jobs whihare larger than the average load on the mahines. In subsetion 3.2 we show how to assignthe small jobs (de�ned later) after assigning the big ones without inreasing the imbalane.In subsetion 3.3 we show how to �nd a balaned assignment for the big jobs and by thatomplete the algorithm and its proof. In the appendix A we show that an approximationsheme for more than one norm does not exist.2 De�nitions and ObservationsWe use the de�nition of globally �-balane used in [7℄, to prove the all-norm approximation.We will briey repeat some de�nitions and a theorem that explain the importane of thisquantity.Let Sk(x) denote the sum of the loads of the k most loaded mahines in the assignment x,for 1 � k � m.De�nition 2.1 For � � 1, given two assignments x and y (not neessarily of the samejobs), we say that x is �-submajorized by y, if for every k (1 � k � m), Sk(x) � �Sk(y).This will be denoted by x <� y.De�nition 2.2 Assignment P is alled globally �-balaned if for any other feasible assign-ment P 0 of the same jobs, we have P <� P 0.The next theorem will de�ne our way of proving an all-norm approximation. The proofof the theorem is based on the basi theorem of Hardy et al. [9℄ (see [6℄).Theorem 2.1 If an assignment is globally �-balaned, then it �-approximates the optimalassignment of all `p norms (p � 1).The way to prove that an assignment P �-approximates the optimal assignment of eah`p norm, is to pik any other assignment P 0, and prove that P <� P 0. A useful tool usedby our algorithm is separating the problem into smaller problems. For that we de�ne theunion of assignments and prove lemmas using it.De�nition 2.3 Given an assignment P1 of n1 jobs on m1 mahines, and an assignmentP2 of n2 jobs on m2 mahines, the (disjoint) union of P1 and P2 (denoted by P1 [ P2) isthe assignment on m1+m2 mahines, that assigns the n1 jobs from P1 on m1 mahines asP1, and the n2 jobs from P2 on the m2 mahines as P2.It is easy to see that given two assignments, P1 on m1 mahines, and P2 on m2 mahines,we haveSk(P1) + Sl(P2) � Sk+l(P1 [ P2) (1)for every k, 1 � k � m1 and l, 1 � l � m2. 3



Lemma 2.1 Let P1, Q1 be two di�erent assignments on m1 mahines (not neessarilyonsisting of the same jobs), and let P2, Q2 be two di�erent assignments on m2 mahines.If P1 <� Q1 and P2 <� Q2, then the assignment whih is the union of P1 and P2 on them1 +m2 mahines is �-submajorized by the assignment whih is the union of Q1 and Q2.Proof: Consider the k most loaded mahines in the union of P1 and P2. They inlude themost loaded mahines in P1 and P2. Assume they inlude l mahines from P1 and k � lmahines from P2. Then for every k, 1 � k � m1 +m2 we haveSk(P1 [ P2) = Sl(P1) + Sk�l(P2)� �Sl(Q1) + �Sk�l(Q2)� �Sk(Q1 [Q2)where the last inequality follows from (1).From the lemma above we an onlude by indution the following lemma:Lemma 2.2 Let Pi, Qi be two di�erent assignments on mi mahines, for 1 � i � k (notneessarily onsisting of the same jobs). If Pi <� Qi for every i, then [ki=1Pi <� [ki=1Qi onthe Pki=1mi mahines.3 All Norm ApproximationOur algorithm onsists of 4 phases. In the �rst phase, subsetion 3.1, we eliminate the hugejobs (jobs of weight larger than the average load of the mahines). In the seond phase,subsetion 3.2, we eliminate the small jobs (jobs of weight smaller than some onstantfration of the average load of the mahines). In the third phase we repeat the �rst phasefor the new huge jobs reated by eliminating the small jobs in the seond phase. Now,we are left only with big jobs, i.e., jobs whih are neither huge nor small. In the forthphase, subsetion 3.3, we solve the problem for the big jobs. This yields the main resultonluded in Theorem 3.4 whih states that our algorithm produes a globally 1.3875-balaned assignment.3.1 Handling Huge JobsWe apply normalization on the weights by dividing eah of the weights by Pni=1 wim . Thenwe get Pni=1wj = m, and the average load over all mahines is exatly 1.De�nition 3.1 An assignment P is alled "reasonable" if by removing any job from themahine it was assigned to, the load of that mahine beomes smaller than 1.Lemma 3.1 If assignment P is not reasonable, then there exists an assignment P 0, suhthat P 0 <1 P . 4



Proof: If P is not reasonable, then there exists a mahine A and a job j on A, suh that ifwe remove j from A, the total load of A is still not smaller than 1. We build the assignmentP 0 by assigning j to a mahine B whose load is less than 1 (suh a mahine must exist).The other jobs will be assigned in P 0 as they were assigned in P . Clearly, P 0 <1 P sinethe total load of A and B is the same in P and P 0, eah of the mahines A and B in P 0have smaller loads than the mahine A in P , and all the other mahines are unhanged.If P 0 is reasonable, we are done. If not, we will ontinue this proess with P 0 until we geta reasonable assignment. This proess must end sine we have a �nite number of possibleassignments, and in every step, the sum of squares of the loads of the mahines is redued.From this lemma it is lear that if we want to prove that an assignment P gives anapproximation of � for all norms, it is enough to pik any other reasonable assignmentP 0, and prove that P <� P 0.Clearly, in any reasonable assignment, a job whose weight is at least 1 is assigned to amahine by itself. Therefore, our algorithm has the following struture:all-norm algorithm(preliminary version)1. Normalize weights to get an average load of 1.2. While there are jobs of weight � 1 ("huge jobs") do(a) Assign eah of these jobs individually to a mahine and delete these jobs andmahines.(b) Renormalize weights with the remaining jobs and the remaining mahines.3. Handle the remaining jobs and the remaining mahines.4. Insert the jobs and the mahines that were deleted in step 2a.Claim 3.1 If there exists an algorithm for jobs of weight smaller than 1 (where 1 is theaverage load of the mahines), that provides an assignment whih is globally �-balaned,then there is an algorithm that provides an assignment whih is globally �-balaned for anyinput.Proof: Use the above algorithm, where you plug into step 3 the algorithm that handles jobsof weight smaller than 1. We will prove that the above algorithm provides an assignmentwhih is globally �-balaned, by omparing for any given input, the assignment providedby this algorithm to any other reasonable assignment.For a given input, onsider the last round that step 2 was applied. Letm0 be the numberof mahines and N 0 the set of the remaining jobs at the beginning of that last round. Denoteby k0 be the number of jobs of weight larger than 1 ("huge jobs") at that last round. LetP 0 be the assignment provided by the above algorithm for the set of jobs N 0 , let P1 be theassignment of the k0 huge jobs on k0 mahines in P 0, and let P 02 be the assignment of theother jobs provided by the algorithm in step 3 on the other m0�k0 mahines (P 0 = P 01[P 02).Let Q0 be another reasonable assignment for the set of jobs N 0, let Q01 be Q0 for the k05



huge jobs (whih are, of ourse, assigned to separate k0 mahines), and let Q02 be Q0 on theother m0 � k0 mahines (Q0 = Q01 [ Q02). From the assumption of the laim, P 02 <� Q02.Clearly P 01 <1 Q01, and in partiular, P 01 <� Q01. Therefore, from Lemma 2.1, P 0 <� Q0.This omplete the proof for the last round of step 2. By repeating this argument for anyround of step 2 of the above algorithm (where the average load 1 is di�erent in eah suhround), we omplete the proof.3.2 Handling Small JobsWe �rst show that given n jobs, we an separate the jobs into big jobs and small jobs, sothat if we ould �nd a good assignment for the big jobs, we ould easily add the small jobswithout damaging the balane of the assignment.Theorem 3.1 Given n jobs, whose average load is normalized to 1, if there exists an as-signment P of all jobs whose weights are bigger than � (0 < � < 1), whih is globally(1 + �)-balaned, then adding the small jobs sequentially greedily in any order (eah job onthe urrent least loaded mahine) also reates a globally (1 + �)-balaned assignment.Proof: Let (P1; P2; : : : ; Pm) be the load vetor of the mahines ordered in non-inreasingorder in the assignment P of the big jobs (the jobs whose weights are bigger than �). LetQ be any other assignment of the big jobs, and (Q1; Q2; : : : ; Qm) be the load vetor of themahines in Q, ordered in non-inreasing order. Then from the assumption of the theorem,P <1+� Q : (2)Let P 0 be the assignment reated by adding the small jobs to P sequentially greedily, and let(P 01; P 02; : : : ; P 0m) be the load vetor of the mahines in P 0, ordered in non-inreasing order.Let Q0 be the assignment reated by adding the small jobs to Q in an arbitrary way, and let(Q01; Q02; : : : ; Q0m) be the load vetor of the mahines in Q0, ordered in non-inreasing order.Note that Q0 stands for an arbitrary assignment. Clearly, for every k, 1 � k � m:Qk � Q0k : (3)Let l (l � m) be the largest integer suh that Pk = P 0k for every k � l (if there is no suh l,we de�ne l = 0). Then for eah k � l we have:Sk(P 0) = kXi=1 P 0i = kXi=1 Pi � (1 + �) kXi=1Qi � (1 + �) kXi=1Q0i = (1 + �)Sk(Q0) : (4)The �rst inequality follows from (2) and the seond inequality follows from (3).Note that in the m� l least loaded mahines in P 0, the di�erene between the loads ofthe most loaded mahine and the least loaded mahine is at most � (otherwise, the last jobthat was greedily assigned to the most loaded mahine, should not have been assigned to it,sine it was not the least loaded mahine at that moment). Hene, the di�erene betweeneah of the loads of these mahines and their average load is at most �:P 0j � � + Pmi=l+1 P 0im� l 6



= � + m�Pli=1 P 0im� l (5)� � + m�Pli=1 Pim� lfor every j, l + 1 � j � m. The equality holds sine the sum of all the weights in P 0 isnormalized to be m, and the seond inequality follows from the de�nition of l.Note also that for any 1 � k � m� l,l+kXi=l+1Q0i � k Pmi=l+1Q0im� l ! = k m�Pli=1Q0im� l ! (6)where the inequality is follow from the fat that the sum of the k biggest values in thevetor (Q0l+1; Q0l+2; : : : ; Q0m) is not smaller than k times the average value in this vetor.The equality is true sine the sum of all the weights in Q0 is normalized to m.Now for every k (0 � k � m � l), we will ompare the sums of the l + k most loadedmahines in both assignments. The sum of the l+k most loaded mahines in our assignmentis: Sk+l(P 0) = k+lXi=1 P 0i= lXi=1 P 0i + l+kXi=l+1P 0i� lXi=1 Pi + k � + m�Pli=1 Pim� l ! (7)= �1� km� l� lXi=1 Pi + �k + kmm� l� �1� km� l� (1 + �) lXi=1Qi + (1 + �) kmm� l :The �rst inequality follows from (5) and the seond inequality follows from (2).The sum of the l + k most loaded mahines in the other assignment is:Sk+l(Q0) = k+lXi=1Q0i= lXi=1Q0i + l+kXi=l+1Q0i� lXi=1Q0i + k m�Pli=1Q0im� l ! (8)= �1� km� l� lXi=1Q0i + kmm� l7



� �1� km� l� lXi=1Qi + kmm� l :The �rst inequality follows from (6) and the seond inequality follows from (3).From (4), (7) and (8) we get Sk(P 0) � (1 + �)Sk(Q0) for every k, 1 � k � m. Sineany assignment an be omposed from an assignment Q of the big jobs by adding the smalljobs in some way, we onlude that our algorithm provides a globally (1 + �)-balanedassignment.By the above theorem, in order to get an assignment whih is (1 + �)-balaned, ouralgorithm is de�ned as follows:all-norm algorithm1. Normalize weights to get an average load of 1.2. While there are jobs of weight � 1 ("huge jobs") do:(a) Assign eah of these jobs individually to a mahine and delete these jobs andmahines.(b) Renormalize weights with the remaining jobs and the remaining mahines.3. Put the jobs of weight smaller than � ("small jobs") aside.4. Renormalize weights to get an average load of 1.5. While there are jobs of weight � 1 ("huge jobs") do:(a) Assign eah of these jobs individually to a mahine and delete these jobs andmahines.(b) Renormalize weights with the remaining jobs and the remaining mahines.6. Handle the jobs of weight between � and 1 ("big jobs"), as will be desribed later(subsetion 3.3).7. Insert the jobs and the mahines that were deleted in step 5a.8. Add the small jobs greedily sequentially.9. Insert the jobs and the mahines that were deleted in step 2a.Note that after eah of the steps 3 and 5a the average load of the mahines beomessmaller, and therefore after renormalization, there will be no jobs of weight smaller than �.Hene, step 3 should only be done one in order to get jobs of weight between � and 1, asrequired by step 6. Clearly, we have the following theorem:Theorem 3.2 If there exists an algorithm that provides an assignment whih is globally(1 + �)-balaned for an input whih onsists of jobs of weight between � and 1 (where 1 isthe average load of the mahines), then there is an algorithm that provides an assignmentwhih is globally (1 + �)-balaned for any input.8



Proof: Use the above algorithm, where you plug into step 6 the algorithm that handles jobsof weight between � and 1. From Claim 3.1 and Theorem 3.1, this algorithm provides anassignment whih is globally (1 + �)-balaned.Remark: Atually step 2a of the above algorithm may be omitted sine Theorem 3.1holds even if there are jobs of weight larger than 1. However, it is more natural to keepstep 2a, sine the assignments done in step 2a are part of every reasonable assignment.3.3 Handling Big JobsIn this subsetion we will show how to handle jobs of weight between � and 1 (step 6 of theall-norm algorithm).3.3.1 Treating a small number of big jobsAt �rst we show a spei� ase where the number of big jobs is at most 2m. Sine all jobsare of weight at most 1, we have at least m jobs. Let the number of jobs be 2m � k, forsome 0 � k � m.De�nition 3.2 Given 2m � k jobs (for a given k, 0 � k � m) of arbitrary weight (notneessarily at least �), "the snake assignment" assigns eah of the k largest jobs to a separatemahine, and for every i (1 � i � m�k) assigns the i+k'th largest job and the i'th smallestjob to a separate mahine. �� The snake assignment sorts the jobsin a non-inreasing order of weights,then assigns eah job to a mahinefrom the �rst mahine to the last,and then bakwards.Lemma 3.2 For the ase where there are at most 2m jobs, \the snake assignment" S, is 1-submajorized by any assignment whih does not assign more than two jobs to eah mahine,and therefore is optimal in all norms.Proof: We will �rst show that it is enough to prove the lemma for the ase where thenumber of jobs is exatly 2m. In the general ase there are 2m� l jobs, where 1 � l � m.Any instane of 2m� l jobs an be transformed into an instane of 2m jobs by adding l zeroweighted jobs without hanging the loads (the lemma holds for arbitrary weights, inludingzero). Moreover, this does not a�et the snake assignment.Consider the ase where the number of jobs is exatly 2m. Here all the jobs are dividedinto pairs, and eah pair is assigned to a mahine separately. The proof is by indution onm. For m = 1 the laim is trivial. We will assume that the snake assignment is optimal form = k and prove it for m = k+ 1. Let R be an arbitrary assignment of these 2(k +1) jobs9



to k + 1 mahines by pairs. We want to prove that S <1 R. We will build an intermediateassignment IR and prove S <1 IR <1 R.If in R the biggest job is assigned to the same mahine as the smallest job, we will de�neIR to be R. Otherwise, we will look at the biggest job, whose weight is denoted by w1,and assume that in R it is assigned to a mahine denoted by A with a job whose weightis denoted by w2. The smallest job, whose weight is denoted by w3, is assigned in R toa mahine denoted by B with a job whose weight is denoted by w4. In IR, the job ofweight w1 will be assigned to A with the job of weight w3 and the job of weight w2 will beassigned to B with the job of weight w4. The assignments to the other mahines will be leftunhanged. Let P1 be the assignment IR on A[B, and let P2 be the assignment IR on theother mahines. Let Q1 be the assignment R on A[B, and let Q2 be the assignment R onthe other mahines. Sine w1 + w3 � w1 + w2 and w2 + w4 � w1 + w2, we have P1 <1 Q1.Clearly, P2 <1 Q2, and by Lemma 2.1 we onlude that IR <1 R.Next we show that S <1 IR. In IR the biggest job is assigned to the same mahine asthe smallest. The assignment to this mahine will be denoted by Q1. The other jobs areassigned to the other mahines arbitrarily. The assignment to the other k mahines willbe denoted by Q2 . In S, the biggest job is assigned to the same mahine as the smallest.The assignment to this mahine will be denoted by P1. The other jobs are assigned to theother mahines by the snake assignment. We will denote the assignment of S to the otherk mahines by P2. Clearly, P1 <1 Q1. From the indution assumption on k mahines,P2 <1 Q2, and from Lemma 2.1, S <1 IR, and therefore S <1 R. This onludes the asefor exatly 2m jobs.Theorem 3.3 The snake assignment S is globally 43 -balaned when there are no more than2m jobs, eah of weight between 13 and 1.Proof: Let P be another reasonable assignment. We need to prove that S < 43 P . We willuse an intermediate assignment IP , and prove that S <1 IP < 43 P . At �rst we notie thatin P there is no mahine with more than three jobs assigned to it (sine P is reasonable andthe weights of the jobs are at least 13). The algorithm to reate the intermediate assignmentis de�ned by:1. Initialize i := 1.2. While there is a mahine with three jobs assigned to it do:(a) Find suh a mahine, denoted by Ai.(b) Find another mahine, denoted by Bi, with only one job assigned to it (learlythere is suh a mahine).() Take the smallest job from Ai, whose weight is denoted by xi, and assign it toBi.(d) i := i+ 1.The output of this algorithm is the intermediate assignment IP . Note that all the Ai'sand Bi's are distint, and therefore the proess stops after at most m steps.10



From the previous lemma it is lear that S <1 IP , sine S is optimal among all assignmentsthat do not assign more than two jobs to a mahine.We only have to prove now that IP < 43 P . This will be done by observing step i ofthe algorithm for reating IP . Let Pi be the assignment P on Ai [ Bi and let IP i be theassignment IP on Ai[Bi. We want to prove that IP i < 43 Pi. Of ourse, one the sum of theloads in both assignments is the same, we only have to ompare the mahine whose loadis the bigger of the two. In Pi the mahine with the biggest load is the one with the threejobs (sine all the weight are between 13 and 1). If the most loaded mahine in IP i is theone that had the three jobs before the transformation, then IP i <1 Pi. Otherwise, the mostloaded mahine in IP i is the one that had one job assigned to it before the transformation.Consider the job of weight xi. In Pi it was assigned to a mahine whose load was no lessthan 3xi. In IP i it is assigned to a mahine whose load is no more than 1 + xi. The ratiobetween the loads of these mahines is 1+xi3xi (whih is not more than 43 , sine xi � 13). ThenIP i < 43 Pi, and this is true for every Ai,Bi.Suppose the algorithm stopped after k iterations, then by Lemma 2.2, sine all Ai's and Bi'sare distint, [ki=1IP i < 43 [ki=1Pi. Denote the set of mahines not hanged by the algorithmby J . Clearly, P and IP are the same on J . Let PJ be the assignment P on J , and let IPJbe the assignment IP on J . Then IPJ <1 PJ . From Lemma 2.1:IP = �[ki=1IP i� [ IPJ < 43 �[ki=1Pi� [ PJ = P : (9)Therefore, S < 43 P .3.3.2 Treating big jobs - the general aseReall that all jobs are between � and 1, and assume that 13 � � < 12 . Then no reasonableassignment has more than three jobs on one mahine. We may also assume that there aremore than 2m jobs. Otherwise, we have an assignment whih is globally 43 -balaned. Sothere are 2m+ k jobs to assign, where 1 � k � m.Claim 3.2 If three jobs are assigned to one mahine in a reasonable assignment, then noneof them has a weight bigger than 1� �.Proof: If the laim is not true, then one of the jobs has a weight bigger than 1��. So thereare two jobs with a total weight bigger than 1, whih is not a reasonable assignment.For the same reason the next laim is also true:Claim 3.3 If three jobs are assigned to one mahine in a reasonable assignment, then atmost one job has a weight bigger than 0:5.Claim 3.4 There are at least 3k jobs of weight smaller than 0:5.Proof: Suppose there are less than 3k jobs of weight smaller than 0:5. Then there are atleast 2m�2k+1 jobs of weight bigger than 0:5. The other jobs have weight of at least �, andthe sum of all weights of all jobs � 0:5(2m� 2k+1)+�(3k� 1) � m�k+0:5+k� 13 > m.This is a ontradition to the fat that the sum of all weights is m.11



The "big jobs" algorithm: (step 6 of the all-norm algorithm)1. Initialize pool of jobs to inlude all big jobs.2. Do k times:(a) Take the job of biggest weight smaller than 1�� from the pool of jobs and assignit to a new mahine.(b) Take the two jobs of biggest weight smaller than 0:5 from the pool of jobs andassign them both to the mahine used in the preeding Step (a).3. Now assign the remaining 2m�2k jobs to the remaining m�k mahines by the snakeassignment.Lemma 3.3 The "big jobs" algorithm provides an assignment whih is globally max(2��3� ; 43)-balaned, for 13 � � < 12 .Proof: As an be seen above, the algorithm takes the largest possible triplets in any rea-sonable assignment, leaving the small jobs to the pairs. Let P be the assignment reatedby the algorithm and let Pi (1 � i � k) be the assignment to one mahine reated by theiteration i of the loop in the algorithm. Let Prem be the assignment of the algorithm to theremaining mahines.Every reasonable assignment must have at least k triplets of jobs assigned to one mahine.Let Q be any reasonable assignment, and let Qi (1 � i � k) be any k di�erent sub-assignments of Q to one mahine, eah mahine having a triplet assigned to it. Let Qrembe the sub-assignment of Q to the remaining mahines. So by omparing eah Pi to Qi, weget a ratio of 0:5+0:5+(1��)�+�+� = 2��3� . By Lemma 2.2, we get [ki=1Pi < 2��3� [ki=1Qi. If we nowompare the rest of the m� k mahines we will see that in our assignment these mahinesinlude the smallest jobs possible (sine the largest possible jobs went to the triplets). Inany other reasonable assignment these m�k mahines will inlude these jobs or bigger ones(bigger in the sense of omparing the values in the vetor of the sorted weights one by one).Even if we assume that the other assignment has the same jobs as ours on these mahines(the worst ase), then we have the same 2m� 2k jobs on m�k mahines. By Theorem 3.3,the snake assignment is globally 43 -balaned, and therefore Prem < 43 Qrem.Now by Lemma 2.1 we get:P = �[ki=1Pi� [ Prem <max( 2��3� ; 43 ) �[ki=1Qi� [Qrem = Q : (10)Finally , we onlude our main result.Theorem 3.4 The all-norm algorithm produes an assignment whih is globally 1 + �-balaned, for � = p10�23 . 12



Proof: By Lemma 3.3 we have an algorithm that assigns jobs of weight between � and 1(where 1 is the average load of the mahines), and provides an assignment whih is globallymax(2��3� ; 43)-balaned, for 13 � � < 12 . We an plug in the "big jobs" algorithm into step 6of the all-norm algorithm, and by Theorem 3.2 we an return to the original input, and getan assignment whih is globally max(2��3� ; 43 ; 1 + �)-balaned.If we hoose 2��3� = 1 + � (� = p10�23 � 0:3875), we get an algorithm that provides anassignment whih is globally-1.3875 balaned. In partiular, this algorithm has an approx-imation ratio of 1.3875 for all `p norms simultaneously.Referenes[1℄ N. Alon, Y. Azar, G. Woeginger, and T. Yadid. Approximation shemes for sheduling.In Pro. 8th ACM-SIAM Symp. on Disrete Algorithms, pages 493{500, 1997.[2℄ B. Awerbuh, Y. Azar, E. Grove, M. Kao, P. Krishnan, and J. Vitter. Load balaningin the lp norm. In Pro. 36th IEEE Symp. on Found. of Comp. Siene, pages 383{391,1995.[3℄ Y. Azar, L.Epstein, Y. Rihter, and G.J. Woeginger. All-norm approximation algo-rithms. Pro. of 8th SWAT, pages 288{297, 2002.[4℄ A.K. Chandra and C.K. Wong. Worst-ase analysis of a plaement algorithm relatedto storage alloation. SIAM Journal on Computing, 4(3):249{263, 1975.[5℄ L. Epstein and J. Sgall. Approximation shemes for sheduling on uniformly related andidential parallel mahines. In Pro. 7th Annual European Symposium on Algorithms,pages 151{162, 1999.[6℄ A. Goel and A. Meyerson. Simultaneous optimization via approximate majorizationfor onave pro�ts or onvex osts. 2003. Manusript.[7℄ A. Goel, A. Meyerson, and S. Plotkin. Approximate majorization and fair online loadbalaning. In Pro. 12nd ACM-SIAM Symp. on Disrete Algorithms, pages 384{390,2001.[8℄ R.L. Graham. Bounds on multiproessing timing anomalies. SIAM J. Appl. Math,17:416{429, 1969.[9℄ G.H. Hardy, J.E. Littlewood, and G. Polya. Some simple inequalities satis�ed byonvex funtions. Messenger Math, 58:145{152, 1929.[10℄ D. Hohbaum and D. Shmoys. A polynomial approximation sheme for shedulingon uniform proessors: Using the dual approximation approah. SIAM Journal onComputing, 17(3):539{551, 1988.[11℄ D. S. Hohbaum and D. B. Shmoys. Using dual approximation algorithms for shedul-ing problems: Theoretial and pratial results. J. of the ACM, 34(1):144{162, January1987. 13



[12℄ E. Horowitz and S. Sahni. Exat and approximate algorithms for sheduling non-idential proessors. Journal of the Assoiation for Computing Mahinery, 23:317{327,1976.[13℄ J.K. Lenstra, D.B. Shmoys, and E. Tardos. Approximation algorithms for shedulingunrelated parallel mahines. Math. Prog., 46:259{271, 1990.[14℄ D. Shmoys and E. Tardos. An approximation algorithm for the generalized assignmentproblem. Mathematial Programming A, 62:461{474, 1993. Also in the proeeding ofthe 4th Annual ACM-SIAM Symposium on Disrete Algorithms, 1993.A Non-Existene of Approximation ShemesIn this setion, we prove that an approximation sheme (not neessarily polynomial time)for �nding the optimal solution for two di�erent `p norms does not exist. In [1℄ there is anexample that shows that optimal solutions for di�erent norms (`2 and `1), might be ahievedfrom di�erent assignments, and therefore not only that we annot �nd an assignment thatgives an approximation ratio of 1 + ", for " > 0 as small as we want for all norms, but alsosuh an assignment does not exist. We repeat this example in order to prove that thereis no suh assignment even for any two di�erent norms simultaneously. The example is asfollows:
99 666 13 136 96 96The left assignment is optimal for the `1 norm (gives a value of 18, while the rightassignment gives a value of 19). The right assignment, on the other hand, is optimal for the`2 norm (gives a value of p811, while the left assignment gives a value of p817). So it islear now that there is no assignment that is 1 + "-submajorized by both of these optimalassignments for every ". But an we �nd a PTAS for both `7 and `3 norms, for example?Theorem A.1 For every two norms, `r and `q, there exists an input and " > 0 wherethere is no assignment that is 1 + "-submajorized by both of the optimal assignments forboth norms. Hene, there is " > 0 suh that there is no assignment that is globally (1 + ")-balaned.Proof: If we look bak at the example, we an see that while the left assignment is optimalfor some `p1 norm, and the right assignment is optimal for some other `p2 norm, there is noPTAS for both `p1 and `p2 norms. So if p > 1 uniquely solves the equation18p + 18p + 13p = 19p + 15p + 15p ; (11)14



then there is no approximation sheme for norms from di�erent sides of p (p = 9:966::), andan assignment that gives an approximation ratio of 1 + " for any " > 0 and for two suhdi�erent norms does not neessarily exist. But this does not mean that we annot �nd aPTAS for two di�erent `p norms, say bigger than 10, or maybe smaller than 9. Considerthe equation18p + 18p + ap = (a+ 6)p + 15p + 15p (12)for 12 � a � 15, whih orresponds to the `p norm of the assignments in the example shownabove, when a job of weight a replaes the job of weight 13. We want to prove that for everyp this equation has at least one solution a between 12 and 15, and for this a we have twooptimal assignments, one for p0 > p, and one for p0 < p. This will prove that for every twodi�erent norms we an �nd an input (de�ned by a), where there are two di�erent optimalassignments for `r and `q. For that, we pik p� between r and q, and solve the value of afrom (12) for p = p�.Solving (12) for a �xed p (p > 1) is equivalent to �nding the roots off(a) = 2 � 18p + ap � (a+ 6)p � 2 � 15p : (13)Note that f(12) = 18p+12p�2�15p > 0 and f(15) = 2�18p�21p�15p < 0, and thereforethere is a root between 12 and 15 for any p > 1.Claim A.1 For a �xed a (12 < a < 15), the funtiong(p) = 2 � 18p + ap � (a+ 6)p � 2 � 15p (14)vanishes at most one for p > 1. If suh a p exists, then it will be denoted by p�, andg(p) > 0 for every p < p� and g(p) < 0 for every p > p�.Proof: For a �xed a, onsider the equation:2 � 18p + ap � (a+ 6)p � 2 � 15p = 0 (15)whih an be written as:ap ��a+ 6a �p � 1� = 2 � 15p ��1815�p � 1� : (16)By applying ln on both sides of the equation we getp ln(a) + ln��a+ 6a �p � 1� = ln(2) + p ln(15) + ln��1815�p � 1� (17)and then:p(ln(a)� ln(15)) � ln(2) = ln��1815�p � 1�� ln��a+ 6a �p � 1� : (18)The left-hand side of the equation is a linear funtion of p. One an hek that the right sideof the equation is a onave funtion for p � 1. Sine p = 1 is a solution of the equation,there an be only one more solution bigger than 1. If suh a solution p� exists, then sineg(p) < 0 when p tends to in�nity (sine a > 12), it is lear (by onavity) that g(p) > 0 forevery p < p� and g(p) < 0 for every p > p�. 15



So for every p there is an input with three mahines and six jobs, where there are twoassignments, one of whih is optimal for every `p0 where p0 < p, and the other, for every`p0 where p0 > p. This proves that an assignment whih is globally (1 + ")-balaned fortwo di�erent norms does not neessarily exist for every " > 0. In partiular, there isno approximation sheme for any two di�erent `p norm problems (even with unlimitedomputational time).The following theorem generalizes the above theorem for many norms.Theorem A.2 Given k + 1 real numbers, 1 < p0 < p1 < p2 < : : : < pk , there is a set ofmahines and jobs, suh that for every `pi norm, there is a di�erent optimal assignment.Proof: We will pik k numbers qi, i = 1 : : : k suh that pi�1 < qi < pi. For eah of these qi,we will �nd an example Ei where there are three mahines and six jobs, that has di�erentoptimal assignments for `p norms when p < qi and for `p norms when p > qi (as shownabove). If we ombine all these examples we get an example of 3k mahines and 6k jobs,whih is divided into 3k jobs of weight 6, 2k jobs of weight 9, and k jobs of di�erent weightsai, where eah ai is the weight of the job spei�ed for the example Ei, 12 < ai < 15.Note that the average load of all the mahines is bigger than 15 and smaller than 18. Thepossible assignments for one mahine in any reasonable assignment in this ase are givenin a dereasing order of loads: (ai,aj), (ai,9), (9,6,6), (ai,6), (9,9), (6,6,6), (9,6), (ai), (6,6),(9), (6), (), for some i,j. We will now prove that not all these assignments an be inludedin some optimal assignment of any norm.If there is a mahine that inludes (9,6,6) in some optimal assignment, then there is amahine whose load is smaller than the average. The biggest possible load of suh a mahineis 15, whih inludes (9,6). If there is suh a mahine, then we swap the two jobs betweenthese two mahines and reate a di�erent assignment, with (9,9) and (6,6,6) assignments onthese mahines. This assignment is better in all �nite norms. For every other load below theaverage we an �nd a better assignment in a similar way. This ontradits the optimalityof the assignmentIf there is a mahine that inludes (ai,aj) in some optimal assignment (for some i,j), then itan be easily shown that there is no mahine that does not inlude some ak. For example,if (6,6,6) is another mahine in this optimal assignment, then swithing to (aj ,6,6), (ai,6)renders a better assignment. If every mahine inludes some ai, then there are at least 3kjobs whose weight is some ai. This is a ontradition.If there is a mahine that inludes (ai,9) in some optimal assignment (for some i), thenit an be easily shown that there is no mahine that inludes a job of weight 6, exeptfor mahines that inlude (aj ,6), for some j . For example, (ai,9) and (6,6,6) annot betogether in an optimal assignment, sine (ai,6) and (9,6,6) render a better assignment inevery norm. Therefore, the number of jobs of weight 6, must be at most the number of jobsof weight ai, for some i . This is a ontradition.If there is a mahine that inludes (6,6), then there is no mahine that inludes (ai,6),for any i, and there is no mahine that inludes (9,9) (otherwise the assignment an beimproved). Therefore, for every i, ai is always inluded by itself on a mahine (k mahines),and the other 2k mahines must inlude a job of weight 9. Therefore, there is no mahineleft for (6,6). The same proof works for (6). 16



If there is a mahine that inludes only (9), then there is no mahine that inludes (ai,6),for any i, and there is no mahine that inludes (6,6,6) (otherwise the assignment an beimproved). Therefore, for every i, ai is always inluded by itself on a mahine (k mahines),and the other 2k mahines must inlude a job of weight 6. Therefore, there is no mahineleft for (9).So now that we know exatly whih assignments to a mahine are possible for an optimalassignment, we an de�ne for a spei� optimal assignment:A = The number of mahines whih inlude (ai,6), for some iB = The number of mahines whih inlude (6,6,6)C = The number of mahines whih inlude (9,9)D = The number of mahines whih inlude (9,6)E = The number of mahines whih inlude (ai), for some i :We know that:A+B + C +D +E = 3k (The number of mahines)A+E = k (The number of ai's, for all i's)2C +D = 2k (The number of 9's)A+ 3B +D = 3k (The number of 6's) :From these equations we get B = C = E, and D = 2A. Therefore, an optimal assignmentin this ase is a union of optimal assignments for eah example Ei. The optimal assignmentfor `pi takes for every Ej , j � i, the optimal assignment for p > qj, and for every Ej, j > i,the optimal assignment for p < qj. We get k + 1 di�erent assignments, one for every pi.
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