
All-Norm Approximation for S
heduling onIdenti
al Ma
hinesYossi Azar � Shai Taub yAbstra
tWe
onsider the problem of assigning jobs to m identi
al ma
hines. The load of ama
hine is the sum of the weights of jobs assigned to it. The goal is to minimize the normof the resulting load ve
tor. It is known that for any �xed norm there is a PTAS. Onthe other hand, it is also known that there is no single assignment whi
h is optimal forall norms. We show that there exists one assignment whi
h simultaneously guaranteesa 1.388-approximation of the optimal assignments for all norms. This improves the 1.5approximation given by Chandra and Wong in 1975.1 Introdu
tionThe problem of ma
hine s
heduling is one of the most resear
hed problems in the area ofapproximation algorithms. The identi
al ma
hines model is de�ned by m parallel ma
hinesand n independent jobs, where ea
h job j has a non-negative weight wj . Ea
h job shouldbe assigned to one of the ma
hines, and the load of ea
h ma
hine i, li, is de�ned as thesum of weights of all jobs assigned to it. The goal of the problem is to get the best assign-ment. For ea
h spe
i�
 norm `p (p > 1), this is de�ned as the assignment that minimizesk(l1; : : : ; lm)kp = (Pmi=1 lpi)1=p. Spe
i�
ally, for the
ase of the `1 norm (makespan), thegoal is to minimize the maximum load of all the ma
hines. In this paper we des
ribe analgorithm that �nds an assignment that simultaneously provides a good approximation forall the optimal assignments of all the `p norms.It is well known that for any spe
i�
 norm, one
an �nd for every " > 0 a polynomial timealgorithm for the problem that provides an approximation ratio of 1+" (PTAS). Ho
hbaumand Shmoys [11℄ showed that there is a PTAS of minimizing the makespan (`1). Later, itwas shown in [1℄, that there is a PTAS for every `p norm. However, this does not mean thatfor every positive " there exists an assignment that approximates the optimal assignmentof various norms simultaneously, up to a fa
tor of 1 + ". A
tually, in the same paper thereis an example that shows that optimal solutions for the `2 and `1 norms are a
hievedfrom di�erent assignments. In the Appendix we generalize this example, and prove thatfor every two di�erent norms we
an �nd an input for whi
h the optimal assignment of the�azar�tau.a
.il. S
hool of Computer S
ien
e, Tel-Aviv University, Tel-Aviv, 69978, Israel. Resear
hsupported in part by the Israeli Ministry of industry and trade and by the Israel S
ien
e Foundation.yshai ta�netvision.net.il. S
hool of Computer S
ien
e, Tel-Aviv University, Tel-Aviv, 69978, Israel.Resear
h supported in part by the Israeli Ministry of industry and trade.1

two norms di�er. By that we
on
lude that in general there is no assignment that 1 + "approximates the optimal assignments of both norms, for small enough ". Moreover, for anyset of di�erent `p norms there is an example in whi
h there is a di�erent optimal assignmentfor ea
h norm of the set.Now that we know that we
annot �nd an approximation s
heme (not ne
essarily poly-nomial time) even for two di�erent norms simultaneously, we want to �nd an algorithmwhi
h �nds an assignment that approximates the optimal assignments of all `p norms si-multaneously, with a small
onstant approximation ratio.Chandra and Wong showed in [4℄, that the algorithm that sorts the jobs from the biggestweight to the smallest, and then sequentially greedily assigns ea
h job to the least loadedma
hine, gives an approximation ratio of 1.5 for all norms simultaneously. In parti
ular,this algorithm gives an approximation ratio of 43 for the `1 norm (see [8℄), and 1.021 forthe `2 norm.Our results: Our main result is a polynomial time algorithm that provides an assignmentthat approximates the optimal assignment of all norms simultaneously within a fa
tor of1.3875. This improves the 1.5 approximation ratio given in [4℄.As mentioned above we also show (in the Appendix) that for any two norms `p and`q there exists an input that has two di�erent optimal assignments for both norms, andmoreover, for any set of norms `p1 ; `p2 ; : : : ; `pk there is an input for whi
h all the optimalassignments of all these norms di�er. This proves that an approximation s
heme (notne
essarily polynomial time) for the problem of approximating two out of several normssimultaneously, does not exist.Other related results: Goel et al. [7℄ introdu
ed the de�nition of globally �-balan
e.Goel and Meyerson [6℄ showed that an assignment whi
h is globally �-balan
ed (de�nedlater) also �-approximates all optimal assignments for all norms (as well as �-approximatesthe optimal assignments for every
onvex fun
tion on the loads of the ma
hines). They also
onsidered the problem of �nding a globally �-balan
ed assignment for identi
al ma
hines.They showed how to �nd a PTAS for an assignment that is globally �-balan
ed with thebest (smallest) value of �, but did not give a bound of this �. In this paper we show thatthis � is a
tually bounded by 1:3875.Other s
heduling models have also been studied: related ma
hines, restri
ted assignment(subset model) and unrelated ma
hines. In the related ma
hines model (i.e. ma
hines have�xed speeds) there is no assignment that approximates all norms simultaneously within a
onstant fa
tor [3℄. This obviously holds for the unrelated ma
hines model as well. The samepaper also shows an algorithm that simultaneously 2-approximates the optimal solutions ofall norms in the restri
ted assignment model (i.e. ea
h job arrives with a set of ma
hinesthat it
an be assigned to). We note that more is known for approximating any �xed norm.For the related ma
hines model a PTAS was given by Ho
hbaum and Shmoys [10℄ for `1norm and by Epstein and Sgall [5℄ for any �xed `p norm. For the restri
ted assignmentmodel 2-approximation was a
hieved by Lenstra et al. [13℄ for `1 norm and by [3℄ for anyother `p norm. Moreover, in these papers it was also shown that a PTAS does not exist for`1 as well as for any `p norm (p > 1). In the unrelated ma
hines model 2-approximationalgorithm was a
hieved by [13℄ for `1 and a �(p) approximation ratio for any other `p norm[2℄ (see [12℄ and [14℄ for other related results).2

Paper stru
ture: In se
tion 2 we repeat the de�nition of globally �-balan
e taken from[7℄ and explain its
onne
tion to the approximation of all norms showed in [6℄. We alsodes
ribe a tool used by the algorithm. In se
tion 3 we des
ribe the all-norm approximationalgorithm. In subse
tion 3.1 we show how to easily handle the huge jobs, i.e., jobs whi
hare larger than the average load on the ma
hines. In subse
tion 3.2 we show how to assignthe small jobs (de�ned later) after assigning the big ones without in
reasing the imbalan
e.In subse
tion 3.3 we show how to �nd a balan
ed assignment for the big jobs and by that
omplete the algorithm and its proof. In the appendix A we show that an approximations
heme for more than one norm does not exist.2 De�nitions and ObservationsWe use the de�nition of globally �-balan
e used in [7℄, to prove the all-norm approximation.We will brie
y repeat some de�nitions and a theorem that explain the importan
e of thisquantity.Let Sk(x) denote the sum of the loads of the k most loaded ma
hines in the assignment x,for 1 � k � m.De�nition 2.1 For � � 1, given two assignments x and y (not ne
essarily of the samejobs), we say that x is �-submajorized by y, if for every k (1 � k � m), Sk(x) � �Sk(y).This will be denoted by x <� y.De�nition 2.2 Assignment P is
alled globally �-balan
ed if for any other feasible assign-ment P 0 of the same jobs, we have P <� P 0.The next theorem will de�ne our way of proving an all-norm approximation. The proofof the theorem is based on the basi
 theorem of Hardy et al. [9℄ (see [6℄).Theorem 2.1 If an assignment is globally �-balan
ed, then it �-approximates the optimalassignment of all `p norms (p � 1).The way to prove that an assignment P �-approximates the optimal assignment of ea
h`p norm, is to pi
k any other assignment P 0, and prove that P <� P 0. A useful tool usedby our algorithm is separating the problem into smaller problems. For that we de�ne theunion of assignments and prove lemmas using it.De�nition 2.3 Given an assignment P1 of n1 jobs on m1 ma
hines, and an assignmentP2 of n2 jobs on m2 ma
hines, the (disjoint) union of P1 and P2 (denoted by P1 [P2) isthe assignment on m1+m2 ma
hines, that assigns the n1 jobs from P1 on m1 ma
hines asP1, and the n2 jobs from P2 on the m2 ma
hines as P2.It is easy to see that given two assignments, P1 on m1 ma
hines, and P2 on m2 ma
hines,we haveSk(P1) + Sl(P2) � Sk+l(P1 [P2) (1)for every k, 1 � k � m1 and l, 1 � l � m2. 3

Lemma 2.1 Let P1, Q1 be two di�erent assignments on m1 ma
hines (not ne
essarily
onsisting of the same jobs), and let P2, Q2 be two di�erent assignments on m2 ma
hines.If P1 <� Q1 and P2 <� Q2, then the assignment whi
h is the union of P1 and P2 on them1 +m2 ma
hines is �-submajorized by the assignment whi
h is the union of Q1 and Q2.Proof: Consider the k most loaded ma
hines in the union of P1 and P2. They in
lude themost loaded ma
hines in P1 and P2. Assume they in
lude l ma
hines from P1 and k � lma
hines from P2. Then for every k, 1 � k � m1 +m2 we haveSk(P1 [P2) = Sl(P1) + Sk�l(P2)� �Sl(Q1) + �Sk�l(Q2)� �Sk(Q1 [Q2)where the last inequality follows from (1).From the lemma above we
an
on
lude by indu
tion the following lemma:Lemma 2.2 Let Pi, Qi be two di�erent assignments on mi ma
hines, for 1 � i � k (notne
essarily
onsisting of the same jobs). If Pi <� Qi for every i, then [ki=1Pi <� [ki=1Qi onthe Pki=1mi ma
hines.3 All Norm ApproximationOur algorithm
onsists of 4 phases. In the �rst phase, subse
tion 3.1, we eliminate the hugejobs (jobs of weight larger than the average load of the ma
hines). In the se
ond phase,subse
tion 3.2, we eliminate the small jobs (jobs of weight smaller than some
onstantfra
tion of the average load of the ma
hines). In the third phase we repeat the �rst phasefor the new huge jobs
reated by eliminating the small jobs in the se
ond phase. Now,we are left only with big jobs, i.e., jobs whi
h are neither huge nor small. In the forthphase, subse
tion 3.3, we solve the problem for the big jobs. This yields the main result
on
luded in Theorem 3.4 whi
h states that our algorithm produ
es a globally 1.3875-balan
ed assignment.3.1 Handling Huge JobsWe apply normalization on the weights by dividing ea
h of the weights by Pni=1 wim . Thenwe get Pni=1wj = m, and the average load over all ma
hines is exa
tly 1.De�nition 3.1 An assignment P is
alled "reasonable" if by removing any job from thema
hine it was assigned to, the load of that ma
hine be
omes smaller than 1.Lemma 3.1 If assignment P is not reasonable, then there exists an assignment P 0, su
hthat P 0 <1 P . 4

Proof: If P is not reasonable, then there exists a ma
hine A and a job j on A, su
h that ifwe remove j from A, the total load of A is still not smaller than 1. We build the assignmentP 0 by assigning j to a ma
hine B whose load is less than 1 (su
h a ma
hine must exist).The other jobs will be assigned in P 0 as they were assigned in P . Clearly, P 0 <1 P sin
ethe total load of A and B is the same in P and P 0, ea
h of the ma
hines A and B in P 0have smaller loads than the ma
hine A in P , and all the other ma
hines are un
hanged.If P 0 is reasonable, we are done. If not, we will
ontinue this pro
ess with P 0 until we geta reasonable assignment. This pro
ess must end sin
e we have a �nite number of possibleassignments, and in every step, the sum of squares of the loads of the ma
hines is redu
ed.From this lemma it is
lear that if we want to prove that an assignment P gives anapproximation of � for all norms, it is enough to pi
k any other reasonable assignmentP 0, and prove that P <� P 0.Clearly, in any reasonable assignment, a job whose weight is at least 1 is assigned to ama
hine by itself. Therefore, our algorithm has the following stru
ture:all-norm algorithm(preliminary version)1. Normalize weights to get an average load of 1.2. While there are jobs of weight � 1 ("huge jobs") do(a) Assign ea
h of these jobs individually to a ma
hine and delete these jobs andma
hines.(b) Renormalize weights with the remaining jobs and the remaining ma
hines.3. Handle the remaining jobs and the remaining ma
hines.4. Insert the jobs and the ma
hines that were deleted in step 2a.Claim 3.1 If there exists an algorithm for jobs of weight smaller than 1 (where 1 is theaverage load of the ma
hines), that provides an assignment whi
h is globally �-balan
ed,then there is an algorithm that provides an assignment whi
h is globally �-balan
ed for anyinput.Proof: Use the above algorithm, where you plug into step 3 the algorithm that handles jobsof weight smaller than 1. We will prove that the above algorithm provides an assignmentwhi
h is globally �-balan
ed, by
omparing for any given input, the assignment providedby this algorithm to any other reasonable assignment.For a given input,
onsider the last round that step 2 was applied. Letm0 be the numberof ma
hines and N 0 the set of the remaining jobs at the beginning of that last round. Denoteby k0 be the number of jobs of weight larger than 1 ("huge jobs") at that last round. LetP 0 be the assignment provided by the above algorithm for the set of jobs N 0 , let P1 be theassignment of the k0 huge jobs on k0 ma
hines in P 0, and let P 02 be the assignment of theother jobs provided by the algorithm in step 3 on the other m0�k0 ma
hines (P 0 = P 01[P 02).Let Q0 be another reasonable assignment for the set of jobs N 0, let Q01 be Q0 for the k05

huge jobs (whi
h are, of
ourse, assigned to separate k0 ma
hines), and let Q02 be Q0 on theother m0 � k0 ma
hines (Q0 = Q01 [Q02). From the assumption of the
laim, P 02 <� Q02.Clearly P 01 <1 Q01, and in parti
ular, P 01 <� Q01. Therefore, from Lemma 2.1, P 0 <� Q0.This
omplete the proof for the last round of step 2. By repeating this argument for anyround of step 2 of the above algorithm (where the average load 1 is di�erent in ea
h su
hround), we
omplete the proof.3.2 Handling Small JobsWe �rst show that given n jobs, we
an separate the jobs into big jobs and small jobs, sothat if we
ould �nd a good assignment for the big jobs, we
ould easily add the small jobswithout damaging the balan
e of the assignment.Theorem 3.1 Given n jobs, whose average load is normalized to 1, if there exists an as-signment P of all jobs whose weights are bigger than � (0 < � < 1), whi
h is globally(1 + �)-balan
ed, then adding the small jobs sequentially greedily in any order (ea
h job onthe
urrent least loaded ma
hine) also
reates a globally (1 + �)-balan
ed assignment.Proof: Let (P1; P2; : : : ; Pm) be the load ve
tor of the ma
hines ordered in non-in
reasingorder in the assignment P of the big jobs (the jobs whose weights are bigger than �). LetQ be any other assignment of the big jobs, and (Q1; Q2; : : : ; Qm) be the load ve
tor of thema
hines in Q, ordered in non-in
reasing order. Then from the assumption of the theorem,P <1+� Q : (2)Let P 0 be the assignment
reated by adding the small jobs to P sequentially greedily, and let(P 01; P 02; : : : ; P 0m) be the load ve
tor of the ma
hines in P 0, ordered in non-in
reasing order.Let Q0 be the assignment
reated by adding the small jobs to Q in an arbitrary way, and let(Q01; Q02; : : : ; Q0m) be the load ve
tor of the ma
hines in Q0, ordered in non-in
reasing order.Note that Q0 stands for an arbitrary assignment. Clearly, for every k, 1 � k � m:Qk � Q0k : (3)Let l (l � m) be the largest integer su
h that Pk = P 0k for every k � l (if there is no su
h l,we de�ne l = 0). Then for ea
h k � l we have:Sk(P 0) = kXi=1 P 0i = kXi=1 Pi � (1 + �) kXi=1Qi � (1 + �) kXi=1Q0i = (1 + �)Sk(Q0) : (4)The �rst inequality follows from (2) and the se
ond inequality follows from (3).Note that in the m� l least loaded ma
hines in P 0, the di�eren
e between the loads ofthe most loaded ma
hine and the least loaded ma
hine is at most � (otherwise, the last jobthat was greedily assigned to the most loaded ma
hine, should not have been assigned to it,sin
e it was not the least loaded ma
hine at that moment). Hen
e, the di�eren
e betweenea
h of the loads of these ma
hines and their average load is at most �:P 0j � � + Pmi=l+1 P 0im� l 6

= � + m�Pli=1 P 0im� l (5)� � + m�Pli=1 Pim� lfor every j, l + 1 � j � m. The equality holds sin
e the sum of all the weights in P 0 isnormalized to be m, and the se
ond inequality follows from the de�nition of l.Note also that for any 1 � k � m� l,l+kXi=l+1Q0i � k Pmi=l+1Q0im� l ! = k m�Pli=1Q0im� l ! (6)where the inequality is follow from the fa
t that the sum of the k biggest values in theve
tor (Q0l+1; Q0l+2; : : : ; Q0m) is not smaller than k times the average value in this ve
tor.The equality is true sin
e the sum of all the weights in Q0 is normalized to m.Now for every k (0 � k � m � l), we will
ompare the sums of the l + k most loadedma
hines in both assignments. The sum of the l+k most loaded ma
hines in our assignmentis: Sk+l(P 0) = k+lXi=1 P 0i= lXi=1 P 0i + l+kXi=l+1P 0i� lXi=1 Pi + k � + m�Pli=1 Pim� l ! (7)= �1� km� l� lXi=1 Pi + �k + kmm� l� �1� km� l� (1 + �) lXi=1Qi + (1 + �) kmm� l :The �rst inequality follows from (5) and the se
ond inequality follows from (2).The sum of the l + k most loaded ma
hines in the other assignment is:Sk+l(Q0) = k+lXi=1Q0i= lXi=1Q0i + l+kXi=l+1Q0i� lXi=1Q0i + k m�Pli=1Q0im� l ! (8)= �1� km� l� lXi=1Q0i + kmm� l7

� �1� km� l� lXi=1Qi + kmm� l :The �rst inequality follows from (6) and the se
ond inequality follows from (3).From (4), (7) and (8) we get Sk(P 0) � (1 + �)Sk(Q0) for every k, 1 � k � m. Sin
eany assignment
an be
omposed from an assignment Q of the big jobs by adding the smalljobs in some way, we
on
lude that our algorithm provides a globally (1 + �)-balan
edassignment.By the above theorem, in order to get an assignment whi
h is (1 + �)-balan
ed, ouralgorithm is de�ned as follows:all-norm algorithm1. Normalize weights to get an average load of 1.2. While there are jobs of weight � 1 ("huge jobs") do:(a) Assign ea
h of these jobs individually to a ma
hine and delete these jobs andma
hines.(b) Renormalize weights with the remaining jobs and the remaining ma
hines.3. Put the jobs of weight smaller than � ("small jobs") aside.4. Renormalize weights to get an average load of 1.5. While there are jobs of weight � 1 ("huge jobs") do:(a) Assign ea
h of these jobs individually to a ma
hine and delete these jobs andma
hines.(b) Renormalize weights with the remaining jobs and the remaining ma
hines.6. Handle the jobs of weight between � and 1 ("big jobs"), as will be des
ribed later(subse
tion 3.3).7. Insert the jobs and the ma
hines that were deleted in step 5a.8. Add the small jobs greedily sequentially.9. Insert the jobs and the ma
hines that were deleted in step 2a.Note that after ea
h of the steps 3 and 5a the average load of the ma
hines be
omessmaller, and therefore after renormalization, there will be no jobs of weight smaller than �.Hen
e, step 3 should only be done on
e in order to get jobs of weight between � and 1, asrequired by step 6. Clearly, we have the following theorem:Theorem 3.2 If there exists an algorithm that provides an assignment whi
h is globally(1 + �)-balan
ed for an input whi
h
onsists of jobs of weight between � and 1 (where 1 isthe average load of the ma
hines), then there is an algorithm that provides an assignmentwhi
h is globally (1 + �)-balan
ed for any input.8

Proof: Use the above algorithm, where you plug into step 6 the algorithm that handles jobsof weight between � and 1. From Claim 3.1 and Theorem 3.1, this algorithm provides anassignment whi
h is globally (1 + �)-balan
ed.Remark: A
tually step 2a of the above algorithm may be omitted sin
e Theorem 3.1holds even if there are jobs of weight larger than 1. However, it is more natural to keepstep 2a, sin
e the assignments done in step 2a are part of every reasonable assignment.3.3 Handling Big JobsIn this subse
tion we will show how to handle jobs of weight between � and 1 (step 6 of theall-norm algorithm).3.3.1 Treating a small number of big jobsAt �rst we show a spe
i�

ase where the number of big jobs is at most 2m. Sin
e all jobsare of weight at most 1, we have at least m jobs. Let the number of jobs be 2m � k, forsome 0 � k � m.De�nition 3.2 Given 2m � k jobs (for a given k, 0 � k � m) of arbitrary weight (notne
essarily at least �), "the snake assignment" assigns ea
h of the k largest jobs to a separatema
hine, and for every i (1 � i � m�k) assigns the i+k'th largest job and the i'th smallestjob to a separate ma
hine. �� The snake assignment sorts the jobsin a non-in
reasing order of weights,then assigns ea
h job to a ma
hinefrom the �rst ma
hine to the last,and then ba
kwards.Lemma 3.2 For the
ase where there are at most 2m jobs, \the snake assignment" S, is 1-submajorized by any assignment whi
h does not assign more than two jobs to ea
h ma
hine,and therefore is optimal in all norms.Proof: We will �rst show that it is enough to prove the lemma for the
ase where thenumber of jobs is exa
tly 2m. In the general
ase there are 2m� l jobs, where 1 � l � m.Any instan
e of 2m� l jobs
an be transformed into an instan
e of 2m jobs by adding l zeroweighted jobs without
hanging the loads (the lemma holds for arbitrary weights, in
ludingzero). Moreover, this does not a�e
t the snake assignment.Consider the
ase where the number of jobs is exa
tly 2m. Here all the jobs are dividedinto pairs, and ea
h pair is assigned to a ma
hine separately. The proof is by indu
tion onm. For m = 1 the
laim is trivial. We will assume that the snake assignment is optimal form = k and prove it for m = k+ 1. Let R be an arbitrary assignment of these 2(k +1) jobs9

to k + 1 ma
hines by pairs. We want to prove that S <1 R. We will build an intermediateassignment IR and prove S <1 IR <1 R.If in R the biggest job is assigned to the same ma
hine as the smallest job, we will de�neIR to be R. Otherwise, we will look at the biggest job, whose weight is denoted by w1,and assume that in R it is assigned to a ma
hine denoted by A with a job whose weightis denoted by w2. The smallest job, whose weight is denoted by w3, is assigned in R toa ma
hine denoted by B with a job whose weight is denoted by w4. In IR, the job ofweight w1 will be assigned to A with the job of weight w3 and the job of weight w2 will beassigned to B with the job of weight w4. The assignments to the other ma
hines will be leftun
hanged. Let P1 be the assignment IR on A[B, and let P2 be the assignment IR on theother ma
hines. Let Q1 be the assignment R on A[B, and let Q2 be the assignment R onthe other ma
hines. Sin
e w1 + w3 � w1 + w2 and w2 + w4 � w1 + w2, we have P1 <1 Q1.Clearly, P2 <1 Q2, and by Lemma 2.1 we
on
lude that IR <1 R.Next we show that S <1 IR. In IR the biggest job is assigned to the same ma
hine asthe smallest. The assignment to this ma
hine will be denoted by Q1. The other jobs areassigned to the other ma
hines arbitrarily. The assignment to the other k ma
hines willbe denoted by Q2 . In S, the biggest job is assigned to the same ma
hine as the smallest.The assignment to this ma
hine will be denoted by P1. The other jobs are assigned to theother ma
hines by the snake assignment. We will denote the assignment of S to the otherk ma
hines by P2. Clearly, P1 <1 Q1. From the indu
tion assumption on k ma
hines,P2 <1 Q2, and from Lemma 2.1, S <1 IR, and therefore S <1 R. This
on
ludes the
asefor exa
tly 2m jobs.Theorem 3.3 The snake assignment S is globally 43 -balan
ed when there are no more than2m jobs, ea
h of weight between 13 and 1.Proof: Let P be another reasonable assignment. We need to prove that S < 43 P . We willuse an intermediate assignment IP , and prove that S <1 IP < 43 P . At �rst we noti
e thatin P there is no ma
hine with more than three jobs assigned to it (sin
e P is reasonable andthe weights of the jobs are at least 13). The algorithm to
reate the intermediate assignmentis de�ned by:1. Initialize i := 1.2. While there is a ma
hine with three jobs assigned to it do:(a) Find su
h a ma
hine, denoted by Ai.(b) Find another ma
hine, denoted by Bi, with only one job assigned to it (
learlythere is su
h a ma
hine).(
) Take the smallest job from Ai, whose weight is denoted by xi, and assign it toBi.(d) i := i+ 1.The output of this algorithm is the intermediate assignment IP . Note that all the Ai'sand Bi's are distin
t, and therefore the pro
ess stops after at most m steps.10

From the previous lemma it is
lear that S <1 IP , sin
e S is optimal among all assignmentsthat do not assign more than two jobs to a ma
hine.We only have to prove now that IP < 43 P . This will be done by observing step i ofthe algorithm for
reating IP . Let Pi be the assignment P on Ai [Bi and let IP i be theassignment IP on Ai[Bi. We want to prove that IP i < 43 Pi. Of
ourse, on
e the sum of theloads in both assignments is the same, we only have to
ompare the ma
hine whose loadis the bigger of the two. In Pi the ma
hine with the biggest load is the one with the threejobs (sin
e all the weight are between 13 and 1). If the most loaded ma
hine in IP i is theone that had the three jobs before the transformation, then IP i <1 Pi. Otherwise, the mostloaded ma
hine in IP i is the one that had one job assigned to it before the transformation.Consider the job of weight xi. In Pi it was assigned to a ma
hine whose load was no lessthan 3xi. In IP i it is assigned to a ma
hine whose load is no more than 1 + xi. The ratiobetween the loads of these ma
hines is 1+xi3xi (whi
h is not more than 43 , sin
e xi � 13). ThenIP i < 43 Pi, and this is true for every Ai,Bi.Suppose the algorithm stopped after k iterations, then by Lemma 2.2, sin
e all Ai's and Bi'sare distin
t, [ki=1IP i < 43 [ki=1Pi. Denote the set of ma
hines not
hanged by the algorithmby J . Clearly, P and IP are the same on J . Let PJ be the assignment P on J , and let IPJbe the assignment IP on J . Then IPJ <1 PJ . From Lemma 2.1:IP = �[ki=1IP i� [IPJ < 43 �[ki=1Pi� [PJ = P : (9)Therefore, S < 43 P .3.3.2 Treating big jobs - the general
aseRe
all that all jobs are between � and 1, and assume that 13 � � < 12 . Then no reasonableassignment has more than three jobs on one ma
hine. We may also assume that there aremore than 2m jobs. Otherwise, we have an assignment whi
h is globally 43 -balan
ed. Sothere are 2m+ k jobs to assign, where 1 � k � m.Claim 3.2 If three jobs are assigned to one ma
hine in a reasonable assignment, then noneof them has a weight bigger than 1� �.Proof: If the
laim is not true, then one of the jobs has a weight bigger than 1��. So thereare two jobs with a total weight bigger than 1, whi
h is not a reasonable assignment.For the same reason the next
laim is also true:Claim 3.3 If three jobs are assigned to one ma
hine in a reasonable assignment, then atmost one job has a weight bigger than 0:5.Claim 3.4 There are at least 3k jobs of weight smaller than 0:5.Proof: Suppose there are less than 3k jobs of weight smaller than 0:5. Then there are atleast 2m�2k+1 jobs of weight bigger than 0:5. The other jobs have weight of at least �, andthe sum of all weights of all jobs � 0:5(2m� 2k+1)+�(3k� 1) � m�k+0:5+k� 13 > m.This is a
ontradi
tion to the fa
t that the sum of all weights is m.11

The "big jobs" algorithm: (step 6 of the all-norm algorithm)1. Initialize pool of jobs to in
lude all big jobs.2. Do k times:(a) Take the job of biggest weight smaller than 1�� from the pool of jobs and assignit to a new ma
hine.(b) Take the two jobs of biggest weight smaller than 0:5 from the pool of jobs andassign them both to the ma
hine used in the pre
eding Step (a).3. Now assign the remaining 2m�2k jobs to the remaining m�k ma
hines by the snakeassignment.Lemma 3.3 The "big jobs" algorithm provides an assignment whi
h is globally max(2��3� ; 43)-balan
ed, for 13 � � < 12 .Proof: As
an be seen above, the algorithm takes the largest possible triplets in any rea-sonable assignment, leaving the small jobs to the pairs. Let P be the assignment
reatedby the algorithm and let Pi (1 � i � k) be the assignment to one ma
hine
reated by theiteration i of the loop in the algorithm. Let Prem be the assignment of the algorithm to theremaining ma
hines.Every reasonable assignment must have at least k triplets of jobs assigned to one ma
hine.Let Q be any reasonable assignment, and let Qi (1 � i � k) be any k di�erent sub-assignments of Q to one ma
hine, ea
h ma
hine having a triplet assigned to it. Let Qrembe the sub-assignment of Q to the remaining ma
hines. So by
omparing ea
h Pi to Qi, weget a ratio of 0:5+0:5+(1��)�+�+� = 2��3� . By Lemma 2.2, we get [ki=1Pi < 2��3� [ki=1Qi. If we now
ompare the rest of the m� k ma
hines we will see that in our assignment these ma
hinesin
lude the smallest jobs possible (sin
e the largest possible jobs went to the triplets). Inany other reasonable assignment these m�k ma
hines will in
lude these jobs or bigger ones(bigger in the sense of
omparing the values in the ve
tor of the sorted weights one by one).Even if we assume that the other assignment has the same jobs as ours on these ma
hines(the worst
ase), then we have the same 2m� 2k jobs on m�k ma
hines. By Theorem 3.3,the snake assignment is globally 43 -balan
ed, and therefore Prem < 43 Qrem.Now by Lemma 2.1 we get:P = �[ki=1Pi� [Prem <max(2��3� ; 43) �[ki=1Qi� [Qrem = Q : (10)Finally , we
on
lude our main result.Theorem 3.4 The all-norm algorithm produ
es an assignment whi
h is globally 1 + �-balan
ed, for � = p10�23 . 12

Proof: By Lemma 3.3 we have an algorithm that assigns jobs of weight between � and 1(where 1 is the average load of the ma
hines), and provides an assignment whi
h is globallymax(2��3� ; 43)-balan
ed, for 13 � � < 12 . We
an plug in the "big jobs" algorithm into step 6of the all-norm algorithm, and by Theorem 3.2 we
an return to the original input, and getan assignment whi
h is globally max(2��3� ; 43 ; 1 + �)-balan
ed.If we
hoose 2��3� = 1 + � (� = p10�23 � 0:3875), we get an algorithm that provides anassignment whi
h is globally-1.3875 balan
ed. In parti
ular, this algorithm has an approx-imation ratio of 1.3875 for all `p norms simultaneously.Referen
es[1℄ N. Alon, Y. Azar, G. Woeginger, and T. Yadid. Approximation s
hemes for s
heduling.In Pro
. 8th ACM-SIAM Symp. on Dis
rete Algorithms, pages 493{500, 1997.[2℄ B. Awerbu
h, Y. Azar, E. Grove, M. Kao, P. Krishnan, and J. Vitter. Load balan
ingin the lp norm. In Pro
. 36th IEEE Symp. on Found. of Comp. S
ien
e, pages 383{391,1995.[3℄ Y. Azar, L.Epstein, Y. Ri
hter, and G.J. Woeginger. All-norm approximation algo-rithms. Pro
. of 8th SWAT, pages 288{297, 2002.[4℄ A.K. Chandra and C.K. Wong. Worst-
ase analysis of a pla
ement algorithm relatedto storage allo
ation. SIAM Journal on Computing, 4(3):249{263, 1975.[5℄ L. Epstein and J. Sgall. Approximation s
hemes for s
heduling on uniformly related andidenti
al parallel ma
hines. In Pro
. 7th Annual European Symposium on Algorithms,pages 151{162, 1999.[6℄ A. Goel and A. Meyerson. Simultaneous optimization via approximate majorizationfor
on
ave pro�ts or
onvex
osts. 2003. Manus
ript.[7℄ A. Goel, A. Meyerson, and S. Plotkin. Approximate majorization and fair online loadbalan
ing. In Pro
. 12nd ACM-SIAM Symp. on Dis
rete Algorithms, pages 384{390,2001.[8℄ R.L. Graham. Bounds on multipro
essing timing anomalies. SIAM J. Appl. Math,17:416{429, 1969.[9℄ G.H. Hardy, J.E. Littlewood, and G. Polya. Some simple inequalities satis�ed by
onvex fun
tions. Messenger Math, 58:145{152, 1929.[10℄ D. Ho
hbaum and D. Shmoys. A polynomial approximation s
heme for s
hedulingon uniform pro
essors: Using the dual approximation approa
h. SIAM Journal onComputing, 17(3):539{551, 1988.[11℄ D. S. Ho
hbaum and D. B. Shmoys. Using dual approximation algorithms for s
hedul-ing problems: Theoreti
al and pra
ti
al results. J. of the ACM, 34(1):144{162, January1987. 13

[12℄ E. Horowitz and S. Sahni. Exa
t and approximate algorithms for s
heduling non-identi
al pro
essors. Journal of the Asso
iation for Computing Ma
hinery, 23:317{327,1976.[13℄ J.K. Lenstra, D.B. Shmoys, and E. Tardos. Approximation algorithms for s
hedulingunrelated parallel ma
hines. Math. Prog., 46:259{271, 1990.[14℄ D. Shmoys and E. Tardos. An approximation algorithm for the generalized assignmentproblem. Mathemati
al Programming A, 62:461{474, 1993. Also in the pro
eeding ofthe 4th Annual ACM-SIAM Symposium on Dis
rete Algorithms, 1993.A Non-Existen
e of Approximation S
hemesIn this se
tion, we prove that an approximation s
heme (not ne
essarily polynomial time)for �nding the optimal solution for two di�erent `p norms does not exist. In [1℄ there is anexample that shows that optimal solutions for di�erent norms (`2 and `1), might be a
hievedfrom di�erent assignments, and therefore not only that we
annot �nd an assignment thatgives an approximation ratio of 1 + ", for " > 0 as small as we want for all norms, but alsosu
h an assignment does not exist. We repeat this example in order to prove that thereis no su
h assignment even for any two di�erent norms simultaneously. The example is asfollows:
99 666 13 136 96 96The left assignment is optimal for the `1 norm (gives a value of 18, while the rightassignment gives a value of 19). The right assignment, on the other hand, is optimal for the`2 norm (gives a value of p811, while the left assignment gives a value of p817). So it is
lear now that there is no assignment that is 1 + "-submajorized by both of these optimalassignments for every ". But
an we �nd a PTAS for both `7 and `3 norms, for example?Theorem A.1 For every two norms, `r and `q, there exists an input and " > 0 wherethere is no assignment that is 1 + "-submajorized by both of the optimal assignments forboth norms. Hen
e, there is " > 0 su
h that there is no assignment that is globally (1 + ")-balan
ed.Proof: If we look ba
k at the example, we
an see that while the left assignment is optimalfor some `p1 norm, and the right assignment is optimal for some other `p2 norm, there is noPTAS for both `p1 and `p2 norms. So if p > 1 uniquely solves the equation18p + 18p + 13p = 19p + 15p + 15p ; (11)14

then there is no approximation s
heme for norms from di�erent sides of p (p = 9:966::), andan assignment that gives an approximation ratio of 1 + " for any " > 0 and for two su
hdi�erent norms does not ne
essarily exist. But this does not mean that we
annot �nd aPTAS for two di�erent `p norms, say bigger than 10, or maybe smaller than 9. Considerthe equation18p + 18p + ap = (a+ 6)p + 15p + 15p (12)for 12 � a � 15, whi
h
orresponds to the `p norm of the assignments in the example shownabove, when a job of weight a repla
es the job of weight 13. We want to prove that for everyp this equation has at least one solution a between 12 and 15, and for this a we have twooptimal assignments, one for p0 > p, and one for p0 < p. This will prove that for every twodi�erent norms we
an �nd an input (de�ned by a), where there are two di�erent optimalassignments for `r and `q. For that, we pi
k p� between r and q, and solve the value of afrom (12) for p = p�.Solving (12) for a �xed p (p > 1) is equivalent to �nding the roots off(a) = 2 � 18p + ap � (a+ 6)p � 2 � 15p : (13)Note that f(12) = 18p+12p�2�15p > 0 and f(15) = 2�18p�21p�15p < 0, and thereforethere is a root between 12 and 15 for any p > 1.Claim A.1 For a �xed a (12 < a < 15), the fun
tiong(p) = 2 � 18p + ap � (a+ 6)p � 2 � 15p (14)vanishes at most on
e for p > 1. If su
h a p exists, then it will be denoted by p�, andg(p) > 0 for every p < p� and g(p) < 0 for every p > p�.Proof: For a �xed a,
onsider the equation:2 � 18p + ap � (a+ 6)p � 2 � 15p = 0 (15)whi
h
an be written as:ap ��a+ 6a �p � 1� = 2 � 15p ��1815�p � 1� : (16)By applying ln on both sides of the equation we getp ln(a) + ln��a+ 6a �p � 1� = ln(2) + p ln(15) + ln��1815�p � 1� (17)and then:p(ln(a)� ln(15)) � ln(2) = ln��1815�p � 1�� ln��a+ 6a �p � 1� : (18)The left-hand side of the equation is a linear fun
tion of p. One
an
he
k that the right sideof the equation is a
on
ave fun
tion for p � 1. Sin
e p = 1 is a solution of the equation,there
an be only one more solution bigger than 1. If su
h a solution p� exists, then sin
eg(p) < 0 when p tends to in�nity (sin
e a > 12), it is
lear (by
on
avity) that g(p) > 0 forevery p < p� and g(p) < 0 for every p > p�. 15

So for every p there is an input with three ma
hines and six jobs, where there are twoassignments, one of whi
h is optimal for every `p0 where p0 < p, and the other, for every`p0 where p0 > p. This proves that an assignment whi
h is globally (1 + ")-balan
ed fortwo di�erent norms does not ne
essarily exist for every " > 0. In parti
ular, there isno approximation s
heme for any two di�erent `p norm problems (even with unlimited
omputational time).The following theorem generalizes the above theorem for many norms.Theorem A.2 Given k + 1 real numbers, 1 < p0 < p1 < p2 < : : : < pk , there is a set ofma
hines and jobs, su
h that for every `pi norm, there is a di�erent optimal assignment.Proof: We will pi
k k numbers qi, i = 1 : : : k su
h that pi�1 < qi < pi. For ea
h of these qi,we will �nd an example Ei where there are three ma
hines and six jobs, that has di�erentoptimal assignments for `p norms when p < qi and for `p norms when p > qi (as shownabove). If we
ombine all these examples we get an example of 3k ma
hines and 6k jobs,whi
h is divided into 3k jobs of weight 6, 2k jobs of weight 9, and k jobs of di�erent weightsai, where ea
h ai is the weight of the job spe
i�ed for the example Ei, 12 < ai < 15.Note that the average load of all the ma
hines is bigger than 15 and smaller than 18. Thepossible assignments for one ma
hine in any reasonable assignment in this
ase are givenin a de
reasing order of loads: (ai,aj), (ai,9), (9,6,6), (ai,6), (9,9), (6,6,6), (9,6), (ai), (6,6),(9), (6), (), for some i,j. We will now prove that not all these assignments
an be in
ludedin some optimal assignment of any norm.If there is a ma
hine that in
ludes (9,6,6) in some optimal assignment, then there is ama
hine whose load is smaller than the average. The biggest possible load of su
h a ma
hineis 15, whi
h in
ludes (9,6). If there is su
h a ma
hine, then we swap the two jobs betweenthese two ma
hines and
reate a di�erent assignment, with (9,9) and (6,6,6) assignments onthese ma
hines. This assignment is better in all �nite norms. For every other load below theaverage we
an �nd a better assignment in a similar way. This
ontradi
ts the optimalityof the assignmentIf there is a ma
hine that in
ludes (ai,aj) in some optimal assignment (for some i,j), then it
an be easily shown that there is no ma
hine that does not in
lude some ak. For example,if (6,6,6) is another ma
hine in this optimal assignment, then swit
hing to (aj ,6,6), (ai,6)renders a better assignment. If every ma
hine in
ludes some ai, then there are at least 3kjobs whose weight is some ai. This is a
ontradi
tion.If there is a ma
hine that in
ludes (ai,9) in some optimal assignment (for some i), thenit
an be easily shown that there is no ma
hine that in
ludes a job of weight 6, ex
eptfor ma
hines that in
lude (aj ,6), for some j . For example, (ai,9) and (6,6,6)
annot betogether in an optimal assignment, sin
e (ai,6) and (9,6,6) render a better assignment inevery norm. Therefore, the number of jobs of weight 6, must be at most the number of jobsof weight ai, for some i . This is a
ontradi
tion.If there is a ma
hine that in
ludes (6,6), then there is no ma
hine that in
ludes (ai,6),for any i, and there is no ma
hine that in
ludes (9,9) (otherwise the assignment
an beimproved). Therefore, for every i, ai is always in
luded by itself on a ma
hine (k ma
hines),and the other 2k ma
hines must in
lude a job of weight 9. Therefore, there is no ma
hineleft for (6,6). The same proof works for (6). 16

If there is a ma
hine that in
ludes only (9), then there is no ma
hine that in
ludes (ai,6),for any i, and there is no ma
hine that in
ludes (6,6,6) (otherwise the assignment
an beimproved). Therefore, for every i, ai is always in
luded by itself on a ma
hine (k ma
hines),and the other 2k ma
hines must in
lude a job of weight 6. Therefore, there is no ma
hineleft for (9).So now that we know exa
tly whi
h assignments to a ma
hine are possible for an optimalassignment, we
an de�ne for a spe
i�
 optimal assignment:A = The number of ma
hines whi
h in
lude (ai,6), for some iB = The number of ma
hines whi
h in
lude (6,6,6)C = The number of ma
hines whi
h in
lude (9,9)D = The number of ma
hines whi
h in
lude (9,6)E = The number of ma
hines whi
h in
lude (ai), for some i :We know that:A+B + C +D +E = 3k (The number of ma
hines)A+E = k (The number of ai's, for all i's)2C +D = 2k (The number of 9's)A+ 3B +D = 3k (The number of 6's) :From these equations we get B = C = E, and D = 2A. Therefore, an optimal assignmentin this
ase is a union of optimal assignments for ea
h example Ei. The optimal assignmentfor `pi takes for every Ej , j � i, the optimal assignment for p > qj, and for every Ej, j > i,the optimal assignment for p < qj. We get k + 1 di�erent assignments, one for every pi.

17

