All-Norm Approximation for Scheduling on
Identical Machines

YossI AZAR * SHAT TauB |

Abstract

We consider the problem of assigning jobs to m identical machines. The load of a
machine is the sum of the weights of jobs assigned to it. The goal is to minimize the norm
of the resulting load vector. It is known that for any fixed norm there is a PTAS. On
the other hand, it is also known that there is no single assignment which is optimal for
all norms. We show that there exists one assignment which simultaneously guarantees
a 1.388-approximation of the optimal assignments for all norms. This improves the 1.5
approximation given by Chandra and Wong in 1975.

1 Introduction

The problem of machine scheduling is one of the most researched problems in the area of
approximation algorithms. The identical machines model is defined by m parallel machines
and n independent jobs, where each job j has a non-negative weight w;. Each job should
be assigned to one of the machines, and the load of each machine ¢, [;, is defined as the
sum of weights of all jobs assigned to it. The goal of the problem is to get the best assign-
ment. For each specific norm £, (p > 1), this is defined as the assignment that minimizes
1Ty D)l = (7, 12)1/P. Specifically, for the case of the £, norm (makespan), the
goal is to minimize the maximum load of all the machines. In this paper we describe an
algorithm that finds an assignment that simultaneously provides a good approximation for
all the optimal assignments of all the £, norms.

It is well known that for any specific norm, one can find for every ¢ > 0 a polynomial time
algorithm for the problem that provides an approximation ratio of 14+¢ (PTAS). Hochbaum
and Shmoys [11] showed that there is a PTAS of minimizing the makespan (£,). Later, it
was shown in [1], that there is a PTAS for every £, norm. However, this does not mean that
for every positive € there exists an assignment that approximates the optimal assignment
of various norms simultaneously, up to a factor of 1 + . Actually, in the same paper there
is an example that shows that optimal solutions for the /5 and /., norms are achieved
from different assignments. In the Appendix we generalize this example, and prove that
for every two different norms we can find an input for which the optimal assignment of the

*azar@tau.ac.il. School of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel. Research
supported in part by the Israeli Ministry of industry and trade and by the Israel Science Foundation.

*shai_ta@netvision.net.il. School of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel.
Research supported in part by the Israeli Ministry of industry and trade.

two norms differ. By that we conclude that in general there is no assignment that 1 4 ¢
approximates the optimal assignments of both norms, for small enough . Moreover, for any
set of different Z, norms there is an example in which there is a different optimal assignment
for each norm of the set.

Now that we know that we cannot find an approximation scheme (not necessarily poly-
nomial time) even for two different norms simultaneously, we want to find an algorithm
which finds an assignment that approximates the optimal assignments of all ¢, norms si-
multaneously, with a small constant approximation ratio.

Chandra and Wong showed in [4], that the algorithm that sorts the jobs from the biggest
weight to the smallest, and then sequentially greedily assigns each job to the least loaded
machine, gives an approximation ratio of 1.5 for all norms simultaneously. In particular,
this algorithm gives an approximation ratio of § for the £ norm (see [8]), and 1.021 for
the /5 norm.

Our results: Our main result is a polynomial time algorithm that provides an assignment
that approximates the optimal assignment of all norms simultaneously within a factor of
1.3875. This improves the 1.5 approximation ratio given in [4].

As mentioned above we also show (in the Appendix) that for any two norms /¢, and
¢, there exists an input that has two different optimal assignments for both norms, and
moreover, for any set of norms ¢, ,4p,,...,¥¢,, there is an input for which all the optimal
assignments of all these norms differ. This proves that an approximation scheme (not
necessarily polynomial time) for the problem of approximating two out of several norms
simultaneously, does not exist.

Other related results: Goel et al. [7] introduced the definition of globally a-balance.
Goel and Meyerson [6] showed that an assignment which is globally a-balanced (defined
later) also a-approximates all optimal assignments for all norms (as well as a-approximates
the optimal assignments for every convex function on the loads of the machines). They also
considered the problem of finding a globally a-balanced assignment for identical machines.
They showed how to find a PTAS for an assignment that is globally a-balanced with the
best (smallest) value of «, but did not give a bound of this a. In this paper we show that
this « is actually bounded by 1.3875.

Other scheduling models have also been studied: related machines, restricted assignment
(subset model) and unrelated machines. In the related machines model (i.e. machines have
fixed speeds) there is no assignment that approximates all norms simultaneously within a
constant factor [3]. This obviously holds for the unrelated machines model as well. The same
paper also shows an algorithm that simultaneously 2-approximates the optimal solutions of
all norms in the restricted assignment model (i.e. each job arrives with a set of machines
that it can be assigned to). We note that more is known for approximating any fixed norm.
For the related machines model a PTAS was given by Hochbaum and Shmoys [10] for /.,
norm and by Epstein and Sgall [5] for any fixed £, norm. For the restricted assignment
model 2-approximation was achieved by Lenstra et al. [13] for /o, norm and by [3] for any
other £, norm. Moreover, in these papers it was also shown that a PTAS does not exist for
l~ as well as for any ¢, norm (p > 1). In the unrelated machines model 2-approximation
algorithm was achieved by [13] for /5, and a 6(p) approximation ratio for any other £, norm
[2] (see [12] and [14] for other related results).

Paper structure: In section 2 we repeat the definition of globally a-balance taken from
[7] and explain its connection to the approximation of all norms showed in [6]. We also
describe a tool used by the algorithm. In section 3 we describe the all-norm approximation
algorithm. In subsection 3.1 we show how to easily handle the huge jobs, i.e., jobs which
are larger than the average load on the machines. In subsection 3.2 we show how to assign
the small jobs (defined later) after assigning the big ones without increasing the imbalance.
In subsection 3.3 we show how to find a balanced assignment for the big jobs and by that
complete the algorithm and its proof. In the appendix A we show that an approximation
scheme for more than one norm does not exist.

2 Definitions and Observations

We use the definition of globally a-balance used in [7], to prove the all-norm approximation.
We will briefly repeat some definitions and a theorem that explain the importance of this
quantity.

Let Sk(z) denote the sum of the loads of the k¥ most loaded machines in the assignment z,
for 1 <k <m.

Definition 2.1 For a > 1, given two assignments x and y (not necessarily of the same
jobs), we say that x is a-submajorized by y, if for every k (1 < k < m), Sk(z) < aSk(y).
This will be denoted by © <4 y.

Definition 2.2 Assignment P is called globally a-balanced if for any other feasible assign-
ment P’ of the same jobs, we have P <, P'.

The next theorem will define our way of proving an all-norm approximation. The proof
of the theorem is based on the basic theorem of Hardy et al. [9] (see [6]).

Theorem 2.1 If an assignment is globally a-balanced, then it a-approzimates the optimal
assignment of all £, norms (p > 1).

The way to prove that an assignment P a-approximates the optimal assignment of each
¢, norm, is to pick any other assignment P’, and prove that P <, P’. A useful tool used
by our algorithm is separating the problem into smaller problems. For that we define the
union of assignments and prove lemmas using it.

Definition 2.3 Given an assignment P; of ny jobs on my machines, and an assignment
P, of ny jobs on msy machines, the (disjoint) union of Py and Py (denoted by Py U Py) is
the assignment on m1 + mo machines, that assigns the ni jobs from Py on mq machines as
Py, and the no jobs from Py on the mo machines as Ps.

It is easy to see that given two assignments, P; on m; machines, and P» on msy machines,
we have

Sk(Pl) + Sl(Pz) < Sk+l(P1 U Pg) (1)

forevery k, 1 <k <mjandl, 1 <] < ms.

Lemma 2.1 Let P;, Q1 be two different assignments on my machines (not necessarily
consisting of the same jobs), and let Py, Qo be two different assignments on ms machines.
If P <, Q1 and Py <4 @3, then the assignment which is the union of Py and P> on the
mi + meo machines is a-submajorized by the assignment which is the union of Q1 and Q2.

Proof: Consider the & most loaded machines in the union of P; and P,. They include the
most loaded machines in P; and P,. Assume they include [machines from P; and k — [
machines from P,. Then for every k, 1 < k < mj + mo we have

Se(PrUPy) = S(P1) + Sk i(P)

< a8 (Q1) + aSp-i(Q2)
< aSk(Q1U@2)
where the last inequality follows from (1).]

From the lemma above we can conclude by induction the following lemma:

Lemma 2.2 Let P;, Q; be two different assignments on m; machines, for 1 <i <k (not
necessarily consisting of the same jobs). If P; <, Q; for every i, then U§:1PZ~ <a UleQi on
the Y%_ m; machines.

3 All Norm Approximation

Our algorithm consists of 4 phases. In the first phase, subsection 3.1, we eliminate the huge
jobs (jobs of weight larger than the average load of the machines). In the second phase,
subsection 3.2, we eliminate the small jobs (jobs of weight smaller than some constant
fraction of the average load of the machines). In the third phase we repeat the first phase
for the new huge jobs created by eliminating the small jobs in the second phase. Now,
we are left only with big jobs, i.e., jobs which are neither huge nor small. In the forth
phase, subsection 3.3, we solve the problem for the big jobs. This yields the main result
concluded in Theorem 3.4 which states that our algorithm produces a globally 1.3875-
balanced assignment.

3.1 Handling Huge Jobs

n

We apply normalization on the weights by dividing each of the weights by <= 2 Then
we get Y i'; w; = m, and the average load over all machines is exactly 1.

Definition 3.1 An assignment P is called "reasonable” if by removing any job from the
machine it was assigned to, the load of that machine becomes smaller than 1.

Lemma 3.1 If assignment P is not reasonable, then there exists an assignment P', such
that P’ <y P.

Proof: If P is not reasonable, then there exists a machine A and a job j on A, such that if
we remove j from A, the total load of A is still not smaller than 1. We build the assignment
P’ by assigning j to a machine B whose load is less than 1 (such a machine must exist).
The other jobs will be assigned in P’ as they were assigned in P. Clearly, P’ <; P since
the total load of A and B is the same in P and P’, each of the machines A and B in P’
have smaller loads than the machine A in P, and all the other machines are unchanged.

If P’ is reasonable, we are done. If not, we will continue this process with P’ until we get
a reasonable assignment. This process must end since we have a finite number of possible
assignments, and in every step, the sum of squares of the loads of the machines is reduced.
|

From this lemma it is clear that if we want to prove that an assignment P gives an
approximation of « for all norms, it is enough to pick any other reasonable assignment
P', and prove that P <, P'.

Clearly, in any reasonable assignment, a job whose weight is at least 1 is assigned to a
machine by itself. Therefore, our algorithm has the following structure:

all-norm algorithm(preliminary version)

1. Normalize weights to get an average load of 1.
2. While there are jobs of weight > 1 ("huge jobs”) do

(a) Assign each of these jobs individually to a machine and delete these jobs and
machines.

(b) Renormalize weights with the remaining jobs and the remaining machines.
3. Handle the remaining jobs and the remaining machines.

4. Insert the jobs and the machines that were deleted in step 2a.

Claim 3.1 If there exists an algorithm for jobs of weight smaller than 1 (where 1 is the
average load of the machines), that provides an assignment which is globally «-balanced,
then there is an algorithm that provides an assignment which is globally a-balanced for any
input.

Proof: Use the above algorithm, where you plug into step 3 the algorithm that handles jobs
of weight smaller than 1. We will prove that the above algorithm provides an assignment
which is globally a-balanced, by comparing for any given input, the assignment provided
by this algorithm to any other reasonable assignment.

For a given input, consider the last round that step 2 was applied. Let m’ be the number
of machines and N’ the set of the remaining jobs at the beginning of that last round. Denote
by k' be the number of jobs of weight larger than 1 ("huge jobs”) at that last round. Let
P’ be the assignment provided by the above algorithm for the set of jobs N’ , let P; be the
assignment of the k&’ huge jobs on &' machines in P, and let Pj be the assignment of the
other jobs provided by the algorithm in step 3 on the other m' — k' machines (P’ = P{UP}).
Let @' be another reasonable assignment for the set of jobs N’ let Q) be @' for the &'

huge jobs (which are, of course, assigned to separate k' machines), and let Q5 be Q' on the
other m' — k' machines (Q' = Q| U @Q5). From the assumption of the claim, P; <, Q5.
Clearly P <1 @), and in particular, P{ <, Q). Therefore, from Lemma 2.1, P’ <, Q.
This complete the proof for the last round of step 2. By repeating this argument for any
round of step 2 of the above algorithm (where the average load 1 is different in each such
round), we complete the proof. [

3.2 Handling Small Jobs

We first show that given n jobs, we can separate the jobs into big jobs and small jobs, so
that if we could find a good assignment for the big jobs, we could easily add the small jobs
without damaging the balance of the assignment.

Theorem 3.1 Given n jobs, whose average load is normalized to 1, if there exists an as-
signment P of all jobs whose weights are bigger than 5 (0 < B < 1), which is globally
(1 + B)-balanced, then adding the small jobs sequentially greedily in any order (each job on
the current least loaded machine) also creates a globally (1 4 ()-balanced assignment.

Proof: Let (Py, P;,...,Py) be the load vector of the machines ordered in non-increasing
order in the assignment P of the big jobs (the jobs whose weights are bigger than). Let
@ be any other assignment of the big jobs, and (Q1,Q2,. .., Q) be the load vector of the
machines in (), ordered in non-increasing order. Then from the assumption of the theorem,

Let P’ be the assignment created by adding the small jobs to P sequentially greedily, and let
(P{,Py,...,P]) be the load vector of the machines in P’, ordered in non-increasing order.
Let @' be the assignment created by adding the small jobs to @) in an arbitrary way, and let
(Q),Q%,...,Q!.) be the load vector of the machines in @', ordered in non-increasing order.
Note that Q' stands for an arbitrary assignment. Clearly, for every k, 1 < k < m:

Qr <Q} . (3)

Let [(I < m) be the largest integer such that P, = P; for every k <1 (if there is no such I,
we define [= 0). Then for each & <[we have:

k k k k

Sp(P) =3 P/=) Pi<(1+B)Y Qi<1+h)d Q=1+HSKQ). (4)
i=1 i=1 i=1 i=1

The first inequality follows from (2) and the second inequality follows from (3).

Note that in the m — [least loaded machines in P’, the difference between the loads of
the most loaded machine and the least loaded machine is at most 8 (otherwise, the last job
that was greedily assigned to the most loaded machine, should not have been assigned to it,
since it was not the least loaded machine at that moment). Hence, the difference between
each of the loads of these machines and their average load is at most 5:

iy P

P <
J A+ m —1

< B+

for every j, [+1 < j < m. The equality holds since the sum of all the weights in P’ is
normalized to be m, and the second inequality follows from the definition of /.

Note also that for any 1 < k <m — I,

I+k
i Q > k Z l+1 Ql k m — Zi’:l Q’IL (6)
—1 m—1
i=l+1

where the inequality is follow from the fact that the sum of the k& biggest values in the

vector (Q) 1, @49, ---, Q@) is not smaller than & times the average value in this vector.
The equality is true since the sum of all the weights in Q' is normalized to m.

Now for every k (0 < k < m — 1), we will compare the sums of the [+ k most loaded
machines in both assignments. The sum of the [+k most loaded machines in our assignment
is:

k+1

Ski(P) = Z P

I+k

= ZP’+ > P

i=l+1

m_Z§:1Pi
ZPi%-k(ﬂ%-W) (7)

=1

- (1—L>ip~+5k+k—m
N m—1) 4 ‘ m —

IA

< (1—mi> (1+8) ZQZ 1+5)%.

The first inequality follows from (5) and the second inequality follows from (2).
The sum of the | + k most loaded machines in the other assignment is:

k+1

Spr(Q) = ZQ;

I+k

= ZQNL > Qi

i=l+1

, m-Yl_, 0
;Qr"k(—m_l) (8)
k Lo
- (no) e

=1

v

k ! km
> - e
- (1 m—l)ZQz_l-m—l

=1

The first inequality follows from (6) and the second inequality follows from (3).

From (4), (7) and (8) we get Sp(P') < (1 + B)Si(Q') for every k, 1 < k < m. Since
any assignment can be composed from an assignment @ of the big jobs by adding the small
jobs in some way, we conclude that our algorithm provides a globally (1 + ()-balanced
assignment. [

By the above theorem, in order to get an assignment which is (1 +)-balanced, our
algorithm is defined as follows:

all-norm algorithm

1. Normalize weights to get an average load of 1.
2. While there are jobs of weight > 1 ("huge jobs”) do:

(a) Assign each of these jobs individually to a machine and delete these jobs and
machines.

(b) Renormalize weights with the remaining jobs and the remaining machines.
3. Put the jobs of weight smaller than 8 (”small jobs”) aside.
4. Renormalize weights to get an average load of 1.
5. While there are jobs of weight > 1 ("huge jobs”) do:

(a) Assign each of these jobs individually to a machine and delete these jobs and
machines.

(b) Renormalize weights with the remaining jobs and the remaining machines.

6. Handle the jobs of weight between 5 and 1 (”big jobs”), as will be described later
(subsection 3.3).

7. Insert the jobs and the machines that were deleted in step 5a.
8. Add the small jobs greedily sequentially.

9. Insert the jobs and the machines that were deleted in step 2a.

Note that after each of the steps 3 and 5a the average load of the machines becomes
smaller, and therefore after renormalization, there will be no jobs of weight smaller than .
Hence, step 3 should only be done once in order to get jobs of weight between 8 and 1, as
required by step 6. Clearly, we have the following theorem:

Theorem 3.2 If there exists an algorithm that provides an assignment which is globally
(1 + B)-balanced for an input which consists of jobs of weight between [and 1 (where 1 is
the average load of the machines), then there is an algorithm that provides an assignment
which is globally (1 +)-balanced for any input.

Proof: Use the above algorithm, where you plug into step 6 the algorithm that handles jobs
of weight between § and 1. From Claim 3.1 and Theorem 3.1, this algorithm provides an
assignment which is globally (1 + 3)-balanced. [|

Remark: Actually step 2a of the above algorithm may be omitted since Theorem 3.1
holds even if there are jobs of weight larger than 1. However, it is more natural to keep
step 2a, since the assignments done in step 2a are part of every reasonable assignment.

3.3 Handling Big Jobs

In this subsection we will show how to handle jobs of weight between 3 and 1 (step 6 of the
all-norm algorithm).

3.3.1 Treating a small number of big jobs

At first we show a specific case where the number of big jobs is at most 2m. Since all jobs
are of weight at most 1, we have at least m jobs. Let the number of jobs be 2m — k, for
some 0 < k < m.

Definition 3.2 Given 2m — k jobs (for a given k, 0 < k < m) of arbitrary weight (not
necessarily at least 3), "the snake assignment” assigns each of the k largest jobs to a separate
machine, and for everyi (1 <i < m—Ek) assigns the i+k’th largest job and the i’th smallest

job to a separate machine.
é\

The snake assignment sorts the jobs
in a non-increasing order of weights,
then assigns each job to a machine
from the first machine to the last,
and then backwards.

\\s A

Lemma 3.2 For the case where there are at most 2m jobs, “the snake assignment” S, is 1-
submajorized by any assignment which does not assign more than two jobs to each machine,
and therefore is optimal in all norms.

Proof: We will first show that it is enough to prove the lemma for the case where the
number of jobs is exactly 2m. In the general case there are 2m — [jobs, where 1 <[< m.
Any instance of 2m — 1 jobs can be transformed into an instance of 2m jobs by adding [zero
weighted jobs without changing the loads (the lemma holds for arbitrary weights, including
zero). Moreover, this does not affect the snake assignment.

Consider the case where the number of jobs is exactly 2m. Here all the jobs are divided
into pairs, and each pair is assigned to a machine separately. The proof is by induction on
m. For m = 1 the claim is trivial. We will assume that the snake assignment is optimal for
m = k and prove it for m = k+ 1. Let R be an arbitrary assignment of these 2(k 4+ 1) jobs

to k£ + 1 machines by pairs. We want to prove that S <; R. We will build an intermediate
assignment Ir and prove S <7 Ip <1 R.

If in R the biggest job is assigned to the same machine as the smallest job, we will define
Ir to be R. Otherwise, we will look at the biggest job, whose weight is denoted by w;,
and assume that in R it is assigned to a machine denoted by A with a job whose weight
is denoted by ws. The smallest job, whose weight is denoted by ws, is assigned in R to
a machine denoted by B with a job whose weight is denoted by wy. In Ig, the job of
weight wy will be assigned to A with the job of weight w3 and the job of weight wy will be
assigned to B with the job of weight w4. The assignments to the other machines will be left
unchanged. Let P; be the assignment I on AU B, and let P, be the assignment Iz on the
other machines. Let ()1 be the assignment R on AU B, and let ()9 be the assignment R on
the other machines. Since wy + w3 < wy + wo and we + wy < wy + we, we have P; <1 Q1.
Clearly, P> <1 @2, and by Lemma 2.1 we conclude that Ip <; R.

Next we show that S <y Ig. In Ir the biggest job is assigned to the same machine as
the smallest. The assignment to this machine will be denoted by @)1. The other jobs are
assigned to the other machines arbitrarily. The assignment to the other k£ machines will
be denoted by ()2 . In S, the biggest job is assigned to the same machine as the smallest.
The assignment to this machine will be denoted by P;. The other jobs are assigned to the
other machines by the snake assignment. We will denote the assignment of S to the other
k machines by P,. Clearly, P, <; ;. From the induction assumption on k& machines,
Py <1 @2, and from Lemma 2.1, S <; Ig, and therefore S <; R. This concludes the case
for exactly 2m jobs. [|

Theorem 3.3 The snake assignment S is globally %—balanced when there are no more than
2m jobs, each of weight between % and 1.

Proof: Let P be another reasonable assignment. We need to prove that S <1 P. We will
3
use an intermediate assignment Ip, and prove that S <; Ip <4 P. At first we notice that
3

in P there is no machine with more than three jobs assigned to it (since P is reasonable and
the weights of the jobs are at least %) The algorithm to create the intermediate assignment
is defined by:

1. Initialize 7 := 1.
2. While there is a machine with three jobs assigned to it do:

(a) Find such a machine, denoted by A;.

(b) Find another machine, denoted by B;, with only one job assigned to it (clearly
there is such a machine).

(c) Take the smallest job from A;, whose weight is denoted by z;, and assign it to
B;.
(d) i:=i+41.

The output of this algorithm is the intermediate assignment I'p. Note that all the A;’s
and B;’s are distinct, and therefore the process stops after at most m steps.

10

From the previous lemma it is clear that S <y Ip, since S is optimal among all assignments
that do not assign more than two jobs to a machine.

We only have to prove now that Ip <4 P. This will be done by observing step ¢ of
the algorithm for creating Ip. Let P; be tlr31e assignment P on A; U B; and let Ip; be the
assignment Ip on A;UB;. We want to prove that Ip; <1 P;. Of course, once the sum of the
loads in both assignments is the same, we only have to compare the machine whose load
is the bigger of the two. In P; the machine with the biggest load is the one with the three
jobs (since all the weight are between % and 1). If the most loaded machine in Ip; is the
one that had the three jobs before the transformation, then I'p; <; P;. Otherwise, the most
loaded machine in Ip; is the one that had one job assigned to it before the transformation.
Consider the job of weight x;. In P; it was assigned to a machine whose load was no less
than 3z;. In Ip; it is assigned to a machine whose load is no more than 1 + z;. The ratio
between the loads of these machines is 1;—;? (which is not more than %, since x; > %) Then
Ip; <4 P;, and this is true for every A;,B;.

Suppo?’se the algorithm stopped after k iterations, then by Lemma, 2.2, since all A;’s and B;’s
are distinct, U¥_; Ip; <4 UF_| P;. Denote the set of machines not changed by the algorithm
by J. Clearly, P and I; are the same on J. Let P; be the assignment P on J, and let Ip,

be the assignment Ip on J. Then Ip, <; P;. From Lemma 2.1:
Tp = (Ui Tpi) UTp, <s (U B)UP, =P (9)

Therefore, S <1 P. [
3

3.3.2 Treating big jobs - the general case

Recall that all jobs are between 8 and 1, and assume that % <pB< % Then no reasonable
assignment has more than three jobs on one machine. We may also assume that there are
more than 2m jobs. Otherwise, we have an assignment which is globally %—balanced. So
there are 2m + k jobs to assign, where 1 < k < m.

Claim 3.2 If three jobs are assigned to one machine in a reasonable assignment, then none
of them has a weight bigger than 1 — 3.

Proof: If the claim is not true, then one of the jobs has a weight bigger than 1 — . So there
are two jobs with a total weight bigger than 1, which is not a reasonable assignment. [|

For the same reason the next claim is also true:

Claim 3.3 If three jobs are assigned to one machine in a reasonable assignment, then at
most one job has a weight bigger than 0.5.

Claim 3.4 There are at least 3k jobs of weight smaller than 0.5.

Proof: Suppose there are less than 3k jobs of weight smaller than 0.5. Then there are at
least 2m —2k+1 jobs of weight bigger than 0.5. The other jobs have weight of at least 3, and
the sum of all weights of all jobs > 0.5(2m —2k+1)+ 83k —1) > m—k+0.5+k— 1 > m.
This is a contradiction to the fact that the sum of all weights is m. [

11

The ”big jobs” algorithm: (step 6 of the all-norm algorithm)

1. Initialize pool of jobs to include all big jobs.
2. Do k times:

(a) Take the job of biggest weight smaller than 1— 3 from the pool of jobs and assign
it to a new machine.

(b) Take the two jobs of biggest weight smaller than 0.5 from the pool of jobs and
assign them both to the machine used in the preceding Step (a).

3. Now assign the remaining 2m — 2k jobs to the remaining m — k£ machines by the snake
assignment.

Lemma 3.3 The ”big jobs” algorithm provides an assignment which is globally max(%, %)—
balanced, for % <p< %

Proof: As can be seen above, the algorithm takes the largest possible triplets in any rea-
sonable assignment, leaving the small jobs to the pairs. Let P be the assignment created
by the algorithm and let P; (1 <4 < k) be the assignment to one machine created by the
iteration ¢ of the loop in the algorithm. Let P,.,, be the assignment of the algorithm to the
remaining machines.

Every reasonable assignment must have at least k triplets of jobs assigned to one machine.
Let @@ be any reasonable assignment, and let @; (1 < 4 < k) be any k different sub-
assignments of) to one machine, each machine having a triplet assigned to it. Let Qrem
be the sub-assignment of () to the remaining machines. So by comparing each P; to Q);, we
get a ratio of %ﬂ};m = % By Lemma 2.2, we get U¥_, P; <% UF_,Q;. If we now
compare the rest of the m — k machines we will see that in our assignment these machines
include the smallest jobs possible (since the largest possible jobs went to the triplets). In
any other reasonable assignment these m — k machines will include these jobs or bigger ones
(bigger in the sense of comparing the values in the vector of the sorted weights one by one).
Even if we assume that the other assignment has the same jobs as ours on these machines
(the worst case), then we have the same 2m — 2k jobs on m — k machines. By Theorem 3.3,
the snake assignment is globally %—balanced, and therefore Prem <4 Qrem.-
Now by Lemma 2.1 we get: ’

P = (U?lei) U Prem <max(%,%) (U?ZIQZ') U Qrem = Q . (10)

Finally , we conclude our main result.

Theorem 3.4 The all-norm algorithm produces an assignment which s globally 1 + -
balanced, for B = @.

12

Proof: By Lemma 3.3 we have an algorithm that assigns jobs of weight between 8 and 1
(where 1 is the average load of the machines), and provides an assignment which is globally
max(%, %)—balanced, for % <B< % We can plug in the ”big jobs” algorithm into step 6
of the all-norm algorithm, and by Theorem 3.2 we can return to the original input, and get

an assignment which is globally max(%, %, 1 + B)-balanced.

If we choose % =14+p6 (= @ ~ 0.3875), we get an algorithm that provides an
assignment which is globally-1.3875 balanced. In particular, this algorithm has an approx-
imation ratio of 1.3875 for all /, norms simultaneously. [|

References

[1] N. Alon, Y. Azar, G. Woeginger, and T. Yadid. Approximation schemes for scheduling.
In Proc. 8th ACM-SIAM Symp. on Discrete Algorithms, pages 493-500, 1997.

[2] B. Awerbuch, Y. Azar, E. Grove, M. Kao, P. Krishnan, and J. Vitter. Load balancing
in the [, norm. In Proc. 36th IEEE Symp. on Found. of Comp. Science, pages 383391,
1995.

[3] Y. Azar, L.Epstein, Y. Richter, and G.J. Woeginger. All-norm approximation algo-
rithms. Proc. of 8th SWAT, pages 288-297, 2002.

[4] A.K. Chandra and C.K. Wong. Worst-case analysis of a placement algorithm related
to storage allocation. STAM Journal on Computing, 4(3):249-263, 1975.

[5] L. Epstein and J. Sgall. Approximation schemes for scheduling on uniformly related and
identical parallel machines. In Proc. 7th Annual European Symposium on Algorithms,
pages 151-162, 1999.

[6] A. Goel and A. Meyerson. Simultaneous optimization via approximate majorization
for concave profits or convex costs. 2003. Manuscript.

[7] A. Goel, A. Meyerson, and S. Plotkin. Approximate majorization and fair online load
balancing. In Proc. 12nd ACM-SIAM Symp. on Discrete Algorithms, pages 384-390,
2001.

[8] R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math,
17:416-429, 1969.

[9] G.H. Hardy, J.E. Littlewood, and G. Polya. Some simple inequalities satisfied by
convex functions. Messenger Math, 58:145-152, 1929.

[10] D. Hochbaum and D. Shmoys. A polynomial approximation scheme for scheduling
on uniform processors: Using the dual approximation approach. SIAM Journal on
Computing, 17(3):539-551, 1988.

[11] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for schedul-
ing problems: Theoretical and practical results. J. of the ACM, 34(1):144-162, January
1987.

13

[12] E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling non-
identical processors. Journal of the Association for Computing Machinery, 23:317-327,
1976.

[13] J.K. Lenstra, D.B. Shmoys, and E. Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Math. Prog., 46:259-271, 1990.

[14] D. Shmoys and E. Tardos. An approximation algorithm for the generalized assignment
problem. Mathematical Programming A, 62:461-474, 1993. Also in the proceeding of
the 4th Annual ACM-STAM Symposium on Discrete Algorithms, 1993.

A Non-Existence of Approximation Schemes

In this section, we prove that an approximation scheme (not necessarily polynomial time)
for finding the optimal solution for two different £, norms does not exist. In [1] there is an
example that shows that optimal solutions for different norms (¢s and £,), might be achieved
from different assignments, and therefore not only that we cannot find an assignment that
gives an approximation ratio of 1 + ¢, for € > 0 as small as we want for all norms, but also
such an assignment does not exist. We repeat this example in order to prove that there
is no such assignment even for any two different norms simultaneously. The example is as
follows:

9 0 "
6 6
6
13 13
9 6 9 9

The left assignment is optimal for the £, norm (gives a value of 18, while the right
assignment gives a value of 19). The right assignment, on the other hand, is optimal for the
{5 norm (gives a value of /811, while the left assignment gives a value of v/817). So it is
clear now that there is no assignment that is 1 4+ e-submajorized by both of these optimal
assignments for every ¢. But can we find a PTAS for both ¢; and /3 norms, for example?

Theorem A.1 For every two norms, £, and {4, there exists an input and ¢ > 0 where
there is no assignment that is 1 4+ e-submajorized by both of the optimal assignments for
both norms. Hence, there is € > 0 such that there is no assignment that is globally (1 + ¢)-
balanced.

Proof: If we look back at the example, we can see that while the left assignment is optimal
for some /,, norm, and the right assignment is optimal for some other £, norm, there is no
PTAS for both ¢,, and /), norms. So if p > 1 uniquely solves the equation

187 + 187 + 137 = 197 + 157 + 157 (11)

14

then there is no approximation scheme for norms from different sides of p (p = 9.966..), and
an assignment that gives an approximation ratio of 1 4+ ¢ for any ¢ > 0 and for two such
different norms does not necessarily exist. But this does not mean that we cannot find a
PTAS for two different /, norms, say bigger than 10, or maybe smaller than 9. Consider
the equation

187 + 18” + a” = (a + 6)? + 15” + 157 (12)

for 12 < g < 15, which corresponds to the £, norm of the assignments in the example shown
above, when a job of weight a replaces the job of weight 13. We want to prove that for every
p this equation has at least one solution a between 12 and 15, and for this ¢ we have two
optimal assignments, one for p’ > p, and one for p’ < p. This will prove that for every two
different norms we can find an input (defined by a), where there are two different optimal
assignments for £, and ¢,. For that, we pick p* between r and ¢, and solve the value of a
from (12) for p = p*.
Solving (12) for a fixed p (p > 1) is equivalent to finding the roots of

fla) =2%187 +aP — (a +6)P — 2% 157 . (13)

Note that f(12) = 187 +12P — 2% 157 > 0 and f(15) = 2% 187 — 217 — 157 < 0, and therefore
there is a root between 12 and 15 for any p > 1.

Claim A.1 For a fized a (12 < a < 15), the function
g(p) =218 +a? — (a+6)P — 2« 15° (14)

vanishes at most once for p > 1. If such a p exists, then it will be denoted by p*, and
g(p) > 0 for every p < p* and g(p) < 0 for every p > p*.

Proof: For a fixed a, consider the equation:
218 +a? — (a+6)P —2x 152 =0 (15)
which can be written as:
ap<<a+6>p—1>=2-15P((§>p—1> : (16)
a 15

By applying In on both sides of the equation we get

pln(a) + In ((a-l— 6>p — 1) =In(2) + pIn(15) + In <<%>p — 1) (17)

a

and then:

p(in(a) — In(15)) — In(2) = In <(i—§>p - 1) “In ((“ : 6>p - 1) . (18)

The left-hand side of the equation is a linear function of p. One can check that the right side
of the equation is a concave function for p > 1. Since p = 1 is a solution of the equation,
there can be only one more solution bigger than 1. If such a solution p* exists, then since
g(p) < 0 when p tends to infinity (since a > 12), it is clear (by concavity) that g(p) > 0 for
every p < p* and g(p) < 0 for every p > p*. []

15

So for every p there is an input with three machines and six jobs, where there are two
assignments, one of which is optimal for every £, where p’ < p, and the other, for every
¢y where p' > p. This proves that an assignment which is globally (1 + ¢)-balanced for
two different norms does not necessarily exist for every ¢ > 0. In particular, there is
no approximation scheme for any two different £, norm problems (even with unlimited
computational time).]

The following theorem generalizes the above theorem for many norms.

Theorem A.2 Given k + 1 real numbers, 1 < pg < p1 < ps < ... < pg , there is a set of
machines and jobs, such that for every £, norm, there is a different optimal assignment.

Proof: We will pick k£ numbers ¢;, s = 1...k such that p; 1 < ¢; < p;. For each of these ¢;,
we will find an example F; where there are three machines and six jobs, that has different
optimal assignments for ¢, norms when p < ¢; and for £, norms when p > ¢; (as shown
above). If we combine all these examples we get an example of 3k machines and 6k jobs,
which is divided into 3k jobs of weight 6, 2k jobs of weight 9, and k jobs of different weights
a;, where each a; is the weight of the job specified for the example E;, 12 < a; < 15.
Note that the average load of all the machines is bigger than 15 and smaller than 18. The
possible assignments for one machine in any reasonable assignment in this case are given
in a decreasing order of loads: (a;,a;), (a,9), (9,6,6), (a;,6), (9,9), (6,6,6), (9,6), (a;), (6,6),
(9), (6), (), for some 4,7. We will now prove that not all these assignments can be included
in some optimal assignment of any norm.

If there is a machine that includes (9,6,6) in some optimal assignment, then there is a
machine whose load is smaller than the average. The biggest possible load of such a machine
is 15, which includes (9,6). If there is such a machine, then we swap the two jobs between
these two machines and create a different assignment, with (9,9) and (6,6,6) assignments on
these machines. This assignment is better in all finite norms. For every other load below the
average we can find a better assignment in a similar way. This contradicts the optimality
of the assignment

If there is a machine that includes (a;,a;) in some optimal assignment (for some 4,5), then it
can be easily shown that there is no machine that does not include some a;. For example,
if (6,6,6) is another machine in this optimal assignment, then switching to (a;,6,6), (a;,6)
renders a better assignment. If every machine includes some a;, then there are at least 3k
jobs whose weight is some a;. This is a contradiction.

If there is a machine that includes (a;,9) in some optimal assignment (for some 7), then
it can be easily shown that there is no machine that includes a job of weight 6, except
for machines that include (a;,6), for some j . For example, (a;,9) and (6,6,6) cannot be
together in an optimal assignment, since (a;,6) and (9,6,6) render a better assignment in
every norm. Therefore, the number of jobs of weight 6, must be at most the number of jobs
of weight a;, for some ¢ . This is a contradiction.

If there is a machine that includes (6,6), then there is no machine that includes (a;,6),
for any 7, and there is no machine that includes (9,9) (otherwise the assignment can be
improved). Therefore, for every i, a; is always included by itself on a machine (k machines),
and the other 2k machines must include a job of weight 9. Therefore, there is no machine
left for (6,6). The same proof works for (6).

16

If there is a machine that includes only (9), then there is no machine that includes (a;,6),
for any i, and there is no machine that includes (6,6,6) (otherwise the assignment can be
improved). Therefore, for every 7, a; is always included by itself on a machine (k machines),
and the other 2k machines must include a job of weight 6. Therefore, there is no machine
left for (9).

So now that we know exactly which assignments to a machine are possible for an optimal
assignment, we can define for a specific optimal assignment:

A = The number of machines which include (a;,6), for some i
B = The number of machines which include (6,6,6)

C = The number of machines which include (9,9)

D = The number of machines which include (9,6)

E = The number of machines which include (a;), for some i .

We know that:

A+B+C+ D+ FE =3k
A+E =k
2C+D =2k
A+3B+ D =3k

The number of machines)
The number of a;’s, for all i’s)
The number of 9’s)

The number of 6’s) .

~ o~ o~ o~

From these equations we get B = C = F, and D = 2A. Therefore, an optimal assignment
in this case is a union of optimal assignments for each example E;. The optimal assignment
for £, takes for every E;, j < i, the optimal assignment for p > ¢;, and for every Ej, j > i,
the optimal assignment for p < g;. We get £ + 1 different assignments, one for every p;. =

17

