Approximation Schemes for Scheduling

Noga Alon* Yossi Azar!

Abstract

We consider the classic scheduling/load balancing problems
where there are m identical machines and n jobs, and each
job should be assigned to some machine. Traditionally, the
assignment of jobs to machines is measured by the makespan
(maximum load) i.e., the Lo norm of the assignment. An e-
approximation scheme was given by Hochbaum and Shmoys
[10] for minimizing the Lo norm.

In several applications, such as in storage allocation, a
more appropriate measure is the sum of the squares of the
loads (which is equivalent to the L; norm). This problem
was considered in [4, 5, 13] who showed how to approximate
the optimum value by a factor of about 1.04. In fact, a
more general measure, which is the L, norm (for any p > 1)
can also be approximated to some constant (see Chandra
and Wong [4]) which may be as large as 3/2. We improve
these results by providing an e-approximation scheme for the
general L, norm (and in particular for the La norm). We
also consider the case of restricted assignment of unit jobs
where we show how to find in polynomial time, a solution
which is optimal for all norms.

1 Introduction

We consider the classic scheduling/load balancing prob-
lems. These are some of the most well-studied problems
in scheduling theory (see e.g., [9]). For these problems,
there are m identical machines and n jobs with weights
w; > 0 where each job should be assigned to some ma-
chine. The assignment results in a machines load vector
where its j'th coordinate is the sum of weights of jobs
assigned to the j’th machine.

In relation to storage allocation problems Chandra
and Wong [4] studied the problem of minimizing the sum
of the squares of the machines load vector. Cody and

School of Mathematical Sciences, Tel-Aviv University. Sup-
ported in part by a USA-Israeli BSF grant. E-Mail:

noga@math.tau.ac.il

tDept. of Computer Science, Tel-Aviv University. Sup-
ported by Alon Fellowship and by the Israel Science Founda-
tion, administered by the Israel Academy of Sciences. E-Mail:
azar@math.tau.ac.il

iTU Graz, Institut fiir Mathematik, Graz, Austria. E-Mail:
gwoegi@igi.tu-graz.ac.at

$Dept. of Computer Science, Tel-Aviv University. E-Mail:
yadid@math.tau.ac.il

Gerhard J. Woeginger*

Tal Yadid®

Coffman [5], in their study of placing a set of records
on a sectored drum to minimize the average latency,
were confronted with essentially the same minimization
problem.

The above minimization problem is known to be
NP-hard [6]. Chandra and Wong [4] considered heuris-
tics to provide approximation algorithms. They showed
that sorting the weights (in non-increasing order) and
using the LPT rule due to Graham [8] (i.e. assigning
a job to the current least loaded machine) results in
a worst case performance bound of 25/24 for minimiz-
ing the sum of the squares. This result was slightly
improved by Leung and Wei [13]. No better approxima-
tions have been known prior to our paper.

Note that minimizing the sum of the squares is
equivalent to minimizing the Ly norm of the machines
load vector. In fact, Chandra and Wong [4] also
considered the the general L, norm (for any p > 1).
They showed that the LPT rule on the sorted items
achieves a performance bound of a constant. The
constant depends on p and may be as large as 3/2. The
case p = oo (i.e., Lo) is the classic ancient problem of
minimizing the makespan (or maximum load). Graham
[7] showed that the LPT rule achieves a performance
bound of 2 — 1/m for minimizing the makespan. Later
[8] he showed that sorting the weights (in non-increasing
order) and using the LPT rule results in a better bound
of 4/3 — 1/(3m). It took some time until Hochbaum
and Shmoys [10] designed an e-approximation scheme
for the L, norm. That is for any € > 0 there is a
polynomial time algorithm A, that approximates the
optimal solution up to a factor of 1+ €. The running
time of the algorithm depends polynomially on n but
exponentially on 1/e. In fact, since the problem is
strongly NP hard no fully polynomial approximation
scheme exists unless P=NP.

In this paper we resolve the general problem by pro-
viding an e-approximation scheme for scheduling jobs
with respect to the L, norm for any p > 1 (in particu-
lar for the Ly norm). Of course, the running time of the
algorithm depends polynomially on n but exponentially
on 1/e. We also improve on the complexity of [10] by
providing an algorithm whose running time depends on
1/€ only in the constant (the dependence on n is linear).

In some applications, both the L., and the L,

norms are suitable ways to measure how well the jobs
are balanced. For example consider a case in which
a job describes a process whose weight corresponds to
its frequency access to a disk (a machine). Then each
access request may see a delay that is proportional to the
load on the machine it is assigned to. Thus the average
delay is proportional to the sum of the squares of the
machines loads, where mazimum delay is proportional
to the maximum load.

It is easy to come with an example of two vectors
in which one has a better Ly norm and the other has a
better Lo norm. Still one might be tempted to think
that if the vectors correspond to optimal assignments
then there is an assignment that is optimal in all norms.
In fact, this is true for the two machines case. Moreover,
this is true also for the case of restricted assignment of
unit jobs as will be discussed later. In general, however,
this is incorrect. In the appendix we give an example
in which the optimal assignment in the L, norm is
different than the optimal assignment for the L norm.
It also follows that an e-approximation scheme for the
makespan (Lo norm) does not provide such a scheme
for the Ly (or Lp) norm.

Our e-approximation scheme for scheduling jobs
with respect to the L, norm generalizes the algorithm of
Hochbaum and Shmoys [10] and builds on some of their
ideas. However, there are several differences where a
major one is dealing with “small” jobs. The structure
of the algorithm in [10] is first to remove the small
jobs, then solve the remaining problem, and at last add
greedily the small jobs. One may suggest that a similar
approach may be used to approximate the L, norm. It
turns out that if we remove the small jobs and then get
the exact (not just an approximate) solution, it may be
the case that there is no way to add the small jobs and
get even close to the required approximate factor. More
specifically, in the appendix we show that this method
cannot approximate the optimal solution better than
some fixed €. Therefore a new way is required to deal
with the small jobs.

We also consider the case of unit weights jobs, where
each is assoclated with a subset of the machines and
should be assigned to one of them [3]. This case is
called restricted assignment of unit jobs. Recall that,
in general, an optimal assignment with respect to one
norm may be non-optimal with respect to other norms.
Surprisingly, we show that for restricted assignment of
unit jobs there exists an assignment that is optimal in all
norms. We call it a strongly-optimal assignment since it
has the nice advantage of being optimal in all respects.
Moreover, we show that such an assignment can be
found in polynomial time. Lenstra-Shmoys-Tardos [12]
considered the restricted assignment of unit jobs only

for the Lo, norm. They obtained an optimal solution by
using network flow algorithms. We find an assignment
that is optimal for all norms using “special” augmenting
paths.

On-line scheduling/load balancing with respect to
the Ly (or L,) norm has been considered in [1, 2].
Here the jobs arrive one by one and should be assigned
to a machine based only on the previous jobs without
any knowledge on the future jobs. It is not hard to
to see that the LPT rule achieves an approximation
factor (competitive ratio) of 2 for any L, norm. For
the Ly norm the competitive ratio of the LPT rule is
in fact 1/(4/3) [2]. For the restricted assignment in the
L, norm a ©(p) competitive ratio and a matching lower
bound are shown in [1].

The paper is structured as follows. In section 2 we
give definitions, notations and some easy observations
for the classic scheduling problem. In section 3 we show
how to get an optimal solution for the case where the
numbers of possible job weights is constant. In section 4
we deal with the e-approximation scheme for the general
In section b we consider the case of unit jobs
on restricted assignment. In the appendix we show
examples that were discussed earlier.

case.

2 Definitions and Notations

In the identical machines scheduling and load balancing
problems, we are given m identical machines (servers)
and a set of n jobs with non negative weights wq, ..., wy.
Each job should be assigned to a machine. For a given
assignment, the load [; on a machine 7 is the sum of
the weights of the jobs assigned to it. We denote by
[= (l1,...,lm) the machines load vector. The quality
of the assignment is measured by the L, norm, i.e.

[, = (Z:’;llf)% We Denote the average load on
the machines by L = % 2?21 w;. We start with few
simple observations, that allow us to assign very large
jobs appropriately.

CrLamm 2.1. If for a given assignment l;, — w; > I,
where job j is assigned to machine i1 then assigning j
to iy reduces the L, norm of the load vector.

Proof. Consider the load vector # generated by assign-
ing j to 23. Obviously, z; = [; for each machine except
for 41 and i3. Clearly L, < =i, < Li,, Li, < zi, <,
and z;, + z;, = I, +1;,. It follows from the convexity
of f(t) =t? that «f +af <P +1F . Hence ||, < |l_]p.

The following claim implies that large jobs should

be assigned to separate machines.

CrLamm 2.2. If a job ji has weight wj, > L, then in any
optimal solution no other job is assigned to the same
machine that j; is assigned to.

Proof. Consider an optimal assignment with load vector
. Suppose that job j; is assigned to machine 7; and
another job, j» # ji, is assigned to ¢; as well. Let
i3 be a machine such that l;, < L. Such a machine
must exist since L is the average load on the machines.
Observe that I;, —I;, > w;, +w;, — L > wj,. Claim 2.1
implies that assigning j; to machine 75 yields a better
assignment, which is a contradiction.

For assigning the large jobs, we use the above claim
iteratively. While there is a job whose weight is larger
than the current average load, we assign the job to a
machine and remove both from the setting.

Note that both the optimal algorithm and the
iterative process described above assign the large jobs to
separate machines. Thus, we may assume that no job
has weight larger than the average. More specifically,
given an e-approximation algorithm A, for the case
where none of the jobs has weight larger than the
average, we can generate an approximation algorithm
for the general case, by assigning the large jobs to
separate machines, and applying A, on the remaining
jobs and machines. Obviously the resulting algorithm
assures e-approximation for the general case. Since no
job has weight larger than the average load, we can
bound the maximum load on the machines in an optimal
solution as follows:

CramM 2.3. In an optimal solution no machine has load
greater than 2L.

Proof. Assume that for the optimal solution there is
a machine 4; with load l;, > 2L. There must be a
machine i; whose load is smaller than the average load
L. Let j be a job assigned to machine 7;. It follows that
l;, =1l;, > L > w;. By Claim 2.1, ['is not optimal, which
is a contradiction.

of

3 Scheduling with a constant number

weights

We start by considering the case where all the weights
belong to some constant size set C = {y1,y2,--.,Yr }
such that L > y1 > y2 > ... > ¥ > aL. We use
the following notation to represent the input and the
assignments. The input jobs are represented as a vector
= (n1,...,n,), where nj denotes the number of jobs
whose weight is yx. Notice that n = 22:1 ng. An
assignment to a machine is a vector @ = (u1,...,Ur),
where uy is the number of jobs of weight y; assigned to
that machine. The load of assignment %, denoted W (%)
is 22:1 ug - Yr. Denote by E the set of all possible
assignments %. It follows from Claim 2.3 that we need
to consider only vectors € < 7 (i.e < in each coordinate)
with W(€) < 2L. Hence, each € € E consists of at most

2/a jobs. Therefore, for r > 1, |E| < r=*! and can be
found is time O(|E|).

We show two alternative methods to find an opti-
mal solution in polynomial time. The first is by proce-
dure DY N PROG which is based on a simple dynamic
programming. The second is more efficient but more
complex algorithm ILP which is based on integer lin-
ear programming in a fixed dimension [11].

First we describe DY NPROG, the algorithm for
solving the scheduling problem given the vector of jobs
77 and m machines using dynamic programming. Let
V be the set of vectors corresponding to subsets of
the input, iie. V = {7 : 0 < ¥ < @}. We build
a layered-graph G, with m + 1 layers. Layer 0 has
a single node, (0,6). The next m — 1 layers consist
of the nodes {(¢,7),1 < i < m — 1,9 € V}, where %
indicates the layer, and v is a vector of jobs. Layer m
has, again, a single node, (m, 7). We associate a value
with each node, denoted Val(4, %), which corresponds
to the p power of the load of a best assignment of ¥" to
the first 4 machines. More specifically, if (I1,...,1;) is a
load vector that minimizes the L, norm for assigning 7
on ¢ machines, then Val(i,v) = > %, (l)?.

It is easy to see that the optimal assignment of v to
1 machines, satisfies the following recurrence:

Val(0,0) = 0
Val(l,7) = WEWP VeV
and for ¢ > 2
Val(i,7) = 4I>n4inE{W(é')P +Val(t —1,v—€)}
v>ec

Notice that we can find the best assignment, not
only its value, by keeping for each node (i,7) an
incoming edge e € E such that Val(i,v) = W(e)P +
Val(i—1,v—¢€) .

For computing the value of a node, we look at
no more than |E| possible assignments. For each
assignment we do a constant amount of work. Thus,
the total running time of the dynamic programming is
O(m- V|| El).

In order to upper bound |V| we note that |V| =
szl(nk + 1). Under the constraint 22:1 ng = n, this
product is upper bounded by (% +1)" by the Arithmetic
Geometric Means inequality. Hence, |V| = O((zr—")r)
Recall that |E| < rat1. Therefore the running time of
the algorithm is O(m - (22) cpatl),

Thus we proved the following theorem:

THEOREM 3.1. Given m machines and n jobs with
weights taken from the set {y1,...,yr}, and min;{y;} >
al, where a and r are constants independent of the

wnput, DY NPROG finds a best assignment in terms of
the L, norm, in time O(m - (2T—")T -1%"‘1).

The second method to solve the constant number
of weight scheduling problem is by using integer linear
programming (ILP) with a fixed number of variables
[11]. In this case, we require that the weights of the
jobs, ¥1,...,y, are all rational numbers represented
by O(logn) bits. As before, E is the set of possible
assignments to a machine. For each vector € € E denote
by zz the numbers of machines that were assigned €. In
these terms, A feasible solution to the problem is a non-
negative integer vector X such that Yoecm Te =m, ie.,
m machines are used, and } . 5 zs- €= 1, i.e., all jobs
were assigned. The p power of the L, norm of a solution
X is Y ecr Te- W(€)P. Clearly the optimal solution is
given by the following integer system:

min Z zz - W(E)

gcE

subject to

Veée FE

Notice that the dimension and the number of equa-
tions are fixed. We apply Lenstra [11] method to find
the optimal solution of the ILP. The time complexity
of Lenstra’s algorithm is exponential in the dimension
of the program but polynomial in the logarithms of the
coefficients and therefore is O(f(r, %)logo(l)n) where
f is a function of the two constants r and 1/a.

Therefore, we have shown:

THEOREM 3.2. Given m machines and n jobs with
rational weights in the set {y1,...,yr} and min;{y;} >
al, where a and r are constants independent of the
input, ILP finds the best assignment in terms of the Ly

norm in time O(n + f(r, L) logP) n).

4 The general case

We now describe the polynomial approximation scheme
for the general case. We are given a set of n jobs with
weights w1, ..., w, and m machines. For any positive
(constant) € < 1 we describe an algorithm Approz. that
finds an assignment of the jobs, with load vector ['such
that m;z < (14 46)|l_2””t |p where I°Pt is an optimal load
vector in the L, norm.

We define 3 sets of inputs : I, I, I.

e Denote by I the original input to the problem.
Denote by L the average load on the machines for
this input.

e Define a set of small jobs J = {j : w; < eL}.
Denote by W(J) the total weight of the jobs in J,
that is W(J) = >_;c; wj. I3 is generated from I by
replacing the jobs in J with R = |[W(J)/eL] jobs
each of weight eL. Notice that R < |J|, therefore
the number of jobs needed to be assigned in I3 is
at most n.

o For a non-negative integer k, define ¢, = eL+k-€2L.
We generate I from I3 simply by replacing the
weight w; by w; = max{cy : ¢y < w;} for each j.
Since w; < L for all j, then

1
W €C={cL+k-EL:0<k< —°

€2 b
Note that the number of jobs is the same as in I3,

hence, at most n.
We are ready to describe algorithm Approz.:
1. Generate the 3 inputs I, I3, I;

2. Solve I, using an algorithm for constant number of

jobs (DYNPROG or ILP).

3. Apply the solution of I to I3, simply by changing
the weight of each job.

4. Convert the solution of I3 to a solution for I by
replacing R jobs of weight €L with the jobs from J
in a greedy procedure described below.

Next we describe how to replace the R jobs of
weight €L with jobs from J. Let 7; be the number of
such jobs assigned to machine 2. For each machine %,
we assign jobs arbitrarily from J of total weight of at
most (r; + 1) - eL. We claim that all the jobs in J are
assigned in this process. Assume that some jobs are
left unassigned. Since each job is of size of at most €L
then for each 7 machine 7 is at least r; - €L loaded with
small jobs. If we force the job to be assigned to the
first machine, the total load of small jobs assigned to it
exceeds (r1 + 1)eL. Hence

W(J) > (O)+ 1)eL > (R+1) €L
=1
which is a contradiction.

The running time of step 1,3 and 4 in Approz. is
O(n). In step 2, we use either DY NPROG or ILP.
Note that o = € and » < 1/e2. Using theorem 3.2, the
running time of step 2 and the total running time is

O(n + g(%)logo(l) n) where g grows (somewhat worse
than) exponentially in 1/e.

We are now ready to show that the solution to I,
which is a feasible assignment to the original problem’s
input, is a (1 4 4¢) approximation to that problem. We
do this in steps according to the algorithm, showing that
in each step we do not get far from the optimal solution.

Denote by [°Pt the load vector on the machines of
an optimal assignment, and by 112) the load vector on
the machines of the optimal solution to Iy generated in
step 2 of the algorithm. The following claim will show
that |l_(2)|p is not much larger than |l_2”’t|p.

Cram 4.1. [i?)|, < |i#Pt], + €L -m>.

Proof. Consider an optimal assignment for input I. Let
Z; be the total weight of jobs in J assigned to machine
1. For each machine i, replace the jobs in J, by at most
[Z;/(eL)] jobs of weight eL. This is always possible
since > iv [Z;/(eL)] > R. This defines an assignment
to the input I3. Next, for each j replace the weight
w; by ;. This defines a feasible solution for input I5.
Denote by & the load vector on the machines generated
by this process. Since i{2) is optimal, |l_(2)|p < |&|p. The
load on each machine in this process was increased by
less than eL. Hence, l;’pt +e€L > z; for each ¢. Therefore,
by the triangle inequality

|l_(2)|p <lal, < |l_ap]t + fLﬂp < |l_apt|p +eL-m? .
We move now to step 3 in the algorithm. Denote
by I13) the load vector on the machines in the solution
of Is. Next we claim that |l_(3)|p is not much larger than
12
Cramv 4.2. |I®], < (14 €)[il2)],.

Proof. For each job j

3 . afy. 2L 2L
e S N Bl AP S PR S R0 R
w; w; - w; el

Hence, 11(3)/11(2) < 1+ € for each machine 7. Thus
[< I(1+) = (1+) .

In step 4 we use a greedy procedure in order to
replace R jobs of weight €L with the small jobs in J.
We now show that the greedy procedure performs well.
Denote by [the load vector on machines generated by
our algorithm for the solution to I.

CLam 4.3. |lT,, < |l_3|,, +eL-m>.

Proof. Recall that the greedy process simply adds to
each machine 1 < ¢ < m, jobs from J with total load
of at least r; - €L, but less than (r; + 1) - eL. Thus

l; < 11(3) + €L, for 1 < 7 < n. Hence, by the triangle
inequality

mp < |[(3)+ELT|12 < |l_(3)|p+€L'm% :

The next simple lemma lower bounds the perfor-
mance of the optimal solution:

LEMMA 4.1. Any assignment of n jobs on m machines,
1
with average load L, has a total load of at least L - m?>.

Proof. This follows immediately from the convexity of
the function zP.

Putting all this together, we have

m;z < |l_(3)|p+€L'm%
< (14, +eL-m#
< (14&)(|i |, + €L -m?) +¢L-m#
< (L4 (PP | + €lI']p) + €l
< (1440, .

By replacing € by ¢/4 we conclude:

THEOREM 4.1. Given m machines and n jobs, and any
€ > 0, algorithm Approz. finds in linear time in n (the
constants depend on 1/¢) an assignment of the jobs on
the machines, whose total load (in the L, norm) is at
most (1 + €) of the optimal.

5 Unit jobs restricted assignment

In this section we consider the case of unit jobs, each
of which should be assigned to one out of subset of
machines that is associated with it. We define it
formally as follows. Let G = (U,V, E) be a bipartite
graph having |U| = n vertices on one side (jobs or
tasks) and |V| = m vertices on the other side (servers
or machines) connected by the set of edges E where the
degree of each vertex u € U is at least 1. We define
an assignment H as an assignment of each job u € U
to a machine v € V such that (u,v) € E. In other
words H C G such that deg(u) = 1 for all u € U.
Note that d, = deg(v) for v € V might be more than
1. The number of jobs assigned to a machine v € V is
referred to as the load of vertex v or its degree in the
assignment. The goal is to come up with an assignment
that minimizes the L, norm of the load vector on V.
Denote by dy the load vector of some assignment

H. For T C V define
Sr =) _d;

€T

and
MT = min di .
€T
For 1 < k < m let Si be the value of St for the set T
of the k& most loaded machines of U. An assignment is
called strongly-optimal if for any assignment H' and for
al1<k<m
Sk < Sk

Our main result in this section is the following

THEOREM 5.1. For any G there exists a strongly-
optimal assignment. Moreover, it can be found in poly-
nomial time.

The proof follows from Theorem 5.3 described below.

Strongly-optimal assignments are of a special inter-
est since they are optimal in any norm. More specifi-
cally:

THEOREM 5.2. Let H be a strongly-optimal assign-
ment. For any p > 1 and any assignment H'

|dH|p < |dH’ |p-

Proof. Let h (resp. h') be the vector dy (resp. dm)
with the coordinates sorted in non-increasing order.
Clearly |h|, = |dul, and |h/|, = |du/|p. Here for

1<i<k
k k
Y hi<> B
=1 =1

It is not difficult to show that one can generate a
sequence of steps that starts with the vector h and ends
with A’ where in each step one unit moves from some
coordinate to a coordinate with larger or equal value.
Each such step can only increase the norm and thus

|hlp < |W'lp-
For an assignment H we define an alternating path
P = vouqvy ... Vg_1Uk_1Vk

for k > 0 as a simple path such that (v, uw;) € H
and (us,viy1) € G for 0 < i < k — 1. If in addition
dy, < dy, — 2 the path is called an augmenting path.
Given an assignment H and an augmenting path P
we can generate a new assignment by replacing the odd
edges of the path by the even ones. The new assignment
has the following properties: d,, is reduced by 1 while
dy, 1s increased by 1, and the degrees of all other vertices
do not change.
We make the following easy observations:

1. For any assignment 0 < Y 7, d? < n?.

2. An augmenting path reduces > .-, d? by at least 2.

3. An augmenting path from a vertex can be found
(if one exists) in linear time (e.g. by Breadth First
Search).

We are ready to describe the algorithm that generates
a strongly-optimal assignment.

ALG-Augment: Start with an arbitrary assign-
ment. Improve the assignment repetitively as long as
an augmenting path exists.

THEOREM 5.3. ALG-Augment terminates in polyno-
mial time and generates a strongly-optimal assignment.

Proof. By the previous observations the number of
times we may augment an assignment is at most n?.
Finding an augmenting path and improving the assign-
ment can be done in O(n|E|) (we make no attempt to
achieve the best complexity here). Thus the algorithm
terminates in polynomial time.

It is left to prove that an assignment H that cannot
be improved by an augmenting path is strongly-optimal.
Assume by contradiction that H is not strongly-optimal.
Then there exists an assignment H' and some k such
that

Sk >S5, +1.

Let ko be the minimal k with the above property. Let Ty
(resp. T§) be a set of the ko most loaded machines of the
assignment H (resp. H') . Note that Sy = Sx_1 + M7,
and S = S;,_; + M;,. The minimality of ko implies
that ’

Mz, > Mp +1.

For the assignment H let Ty = {i|d; > Mr}.
Clearly To C Ti. Consider all alternating paths that
start at 77. Let T3 be the set of ending points of
these paths and put ks = |Ty|. Clearly Ty C Th. It
is important to note that T3 is closed under alternating
paths. More specifically, there are no alternating paths
from machines of T, to machines outside T3, otherwise,
there were such paths from a machine in T} to a machine
outside T5.

If there exists ¢ € T3 such that d; < My, — 2 then it
would yield an augmenting path which contradicts the
fact that H cannot be augmented. Thus for each 7 € T3

d,-ZMTD—le:’pé.

Thus
Sr, > S, + Mr,|T: — To|
> Sko + (Mr, — 1)(k2 — ko)
> Sg, + 1+ Mg (k2 — ko)
> S, +1
> Sp,+1

where the last inequality follows from the fact that S;w
is the sum of the ks most loaded machines by H’ and
S{,,z is the sum of the loads on a specific set T3 of size
ks. The inequality before that follows from the fact that
M’-,"é is the ko’th largest load induced by H'.

Hence among all the jobs assigned by H to machines
of the set T, at least one is assigned by H' to j ¢
T,. This defines an alternating path out of T, which
contradicts the fact that 75 is closed under alternating
paths.

References

[1] B. Awerbuch, Y. Azar, E. Grove, M. Kao, P. Krishnan,
and J. Vitter. Load balancing in the I, norm. In Proc.
36th IEEE Symp. on Found. of Comp. Science, pages
383-391, 1995.

[2] Y. Azar and J. Sgall. unpublished notes.

[3] Yossi Azar, Joseph Naor, and Raphael Rom. The
competitiveness of on-line assignment. In Proc. 3rd
ACM-SIAM Symp. on Discrete Algorithms, pages 203—
210, 1992.

[4] AK. Chandra and C.K. Wong. Worst-case analysis
of a placement algorithm related to storage allocation.
SIAM Journal on Computing, 4(3):249-263, 1975.

[5] R.A. Cody and E.G. Coffman, Jr. Record allocation
for minimizing expected retrieval costs on crum-like
storage devices. J. Assoc. Comput. Mach., 23(1):103-
115, January 1976.

[6] M.R. Garey and D.S. Johnson. Computers and In-
tractability. W.H. Freeman and Company, San Fran-

cisco, 1979.

[7] R.L. Graham. Bounds for certain multiprocessor
anomalies. Bell System Technical Journal, 45:1563—
1581, 1966.

[8] R.L. Graham. Bounds on multiprocessing timing
anomalies. STAM J. Appl. Math, 17:263-269, 1969.
[9] R.L. Graham, E.L. Lawler, J.K Lenstra,
A .H.G. Rinnooy Kan. Optimization and approxima-
tion in deterministic sequencing and scheduling: a sur-
vey. Annals of Discrete Mathematics, 5:287-326, 1979.
Dorit S. Hochbaum and David B. Shmoys. Using
dual approximation algorithms for scheduling prob-
lems: Theoretical and practical results. J. of the ACM,
34(1):144-162, January 1987.
H.W. Lenstra. Integer programming with a fixed num-
ber of variables. Mathematics of Operations Research,
8:538-548, 1983.
J.K. Lenstra, D.B. Shmoys, and E. Tardos. Approx-
imation algorithms for scheduling unrelated parallel
machines. Math. Prog., 46:259-271, 1990.
J.Y.T. Leung and W.D. Wei. Tighter bounds on a
heuristic for a partition problem. Information Process-
ing Letters, 56:51-57, 1995.

and

[10]

[11]

[12]

[13]

6 Appendix

We first show an example where an optimal assignment
in the Lo, norm is not optimal in the Ls; norm.

The example consists of 3 machines and 6 jobs
with weights 13,9,9,6,6,6. Figure 1 shows two feasible
assignments for the problem:

Assignment 1
20 T
15 + 6
Load10 + 6
5 | .
0 | |
1 2 3
Server
Assignment 2
20 T+
15 +
Load 10 +
5 4
0 - : :
1 2 3
Sarver

Figure 1: The best assignment in Lo, and Lz norm

Assignment 1 is optimal in terms of the Lo, norm.
Its value in the Lo, norm is 18, and its value in the L,
norm is v/817. Assignment 2 is optimal in terms of the
Ls norm. Its value in the Lo, norm is 19, and its value
in the L5 norm is 4/811.

Next we show that the following process cannot
yield an e-approximation scheme. First remove the
small jobs, then get the exact (not just an approximate)
solution, and at last add the small jobs optimally.

We can use the same example as before with a set
of very small jobs of total weight 5. Obviously, the
optimal solution has a load vector (18,18, 18) which is
assigning the small jobs on machine 1 in Assignment 1.

However, if we remove the small jobs then assignment
2 is the optimal assignment for the remaining jobs
and any procedure that assigns the small jobs cannot
produce a load vector better than (19,17.5,17.5). The
latter assignment approximate the optimal solution by
a relative error of 7-107*. For € which is much smaller
than that and small enough jobs the scheme does not
provide an approximation which is even close to e.

