
Approximation Schemes for SchedulingNoga Alon� Yossi Azary Gerhard J. Woegingerz Tal YadidxAbstractWe consider the classic scheduling/load balancing problemswhere there are m identical machines and n jobs, and eachjob should be assigned to some machine. Traditionally, theassignment of jobs to machines is measured by the makespan(maximum load) i.e., the L1 norm of the assignment. An �-approximation scheme was given by Hochbaum and Shmoys[10] for minimizing the L1 norm.In several applications, such as in storage allocation, amore appropriate measure is the sum of the squares of theloads (which is equivalent to the L2 norm). This problemwas considered in [4, 5, 13] who showed how to approximatethe optimum value by a factor of about 1.04. In fact, amore general measure, which is the Lp norm (for any p � 1)can also be approximated to some constant (see Chandraand Wong [4]) which may be as large as 3=2. We improvethese results by providing an �-approximation scheme for thegeneral Lp norm (and in particular for the L2 norm). Wealso consider the case of restricted assignment of unit jobswhere we show how to �nd in polynomial time, a solutionwhich is optimal for all norms.1 IntroductionWe consider the classic scheduling/load balancing prob-lems. These are some of the most well-studied problemsin scheduling theory (see e.g., [9]). For these problems,there are m identical machines and n jobs with weightswi � 0 where each job should be assigned to some ma-chine. The assignment results in a machines load vectorwhere its j'th coordinate is the sum of weights of jobsassigned to the j'th machine.In relation to storage allocation problems ChandraandWong [4] studied the problem of minimizing the sumof the squares of the machines load vector. Cody and�School of Mathematical Sciences, Tel-Aviv University. Sup-ported in part by a USA-Israeli BSF grant. E-Mail:noga@math.tau.ac.ilyDept. of Computer Science, Tel-Aviv University. Sup-ported by Alon Fellowship and by the Israel Science Founda-tion, administered by the Israel Academy of Sciences. E-Mail:azar@math.tau.ac.ilzTU Graz, Institut f�ur Mathematik, Graz, Austria. E-Mail:gwoegi@igi.tu-graz.ac.atxDept. of Computer Science, Tel-Aviv University. E-Mail:yadid@math.tau.ac.il

Co�man [5], in their study of placing a set of recordson a sectored drum to minimize the average latency,were confronted with essentially the same minimizationproblem.The above minimization problem is known to beNP-hard [6]. Chandra and Wong [4] considered heuris-tics to provide approximation algorithms. They showedthat sorting the weights (in non-increasing order) andusing the LPT rule due to Graham [8] (i.e. assigninga job to the current least loaded machine) results ina worst case performance bound of 25/24 for minimiz-ing the sum of the squares. This result was slightlyimproved by Leung and Wei [13]. No better approxima-tions have been known prior to our paper.Note that minimizing the sum of the squares isequivalent to minimizing the L2 norm of the machinesload vector. In fact, Chandra and Wong [4] alsoconsidered the the general Lp norm (for any p � 1).They showed that the LPT rule on the sorted itemsachieves a performance bound of a constant. Theconstant depends on p and may be as large as 3=2. Thecase p = 1 (i.e., L1) is the classic ancient problem ofminimizing the makespan (or maximum load). Graham[7] showed that the LPT rule achieves a performancebound of 2 � 1=m for minimizing the makespan. Later[8] he showed that sorting the weights (in non-increasingorder) and using the LPT rule results in a better boundof 4=3 � 1=(3m). It took some time until Hochbaumand Shmoys [10] designed an �-approximation schemefor the L1 norm. That is for any � > 0 there is apolynomial time algorithm A� that approximates theoptimal solution up to a factor of 1 + �. The runningtime of the algorithm depends polynomially on n butexponentially on 1=�. In fact, since the problem isstrongly NP hard no fully polynomial approximationscheme exists unless P=NP.In this paper we resolve the general problem by pro-viding an �-approximation scheme for scheduling jobswith respect to the Lp norm for any p � 1 (in particu-lar for the L2 norm). Of course, the running time of thealgorithm depends polynomially on n but exponentiallyon 1=�. We also improve on the complexity of [10] byproviding an algorithm whose running time depends on1=� only in the constant (the dependence on n is linear).In some applications, both the L1 and the L2

norms are suitable ways to measure how well the jobsare balanced. For example consider a case in whicha job describes a process whose weight corresponds toits frequency access to a disk (a machine). Then eachaccess request may see a delay that is proportional to theload on the machine it is assigned to. Thus the averagedelay is proportional to the sum of the squares of themachines loads, where maximum delay is proportionalto the maximum load.It is easy to come with an example of two vectorsin which one has a better L2 norm and the other has abetter L1 norm. Still one might be tempted to thinkthat if the vectors correspond to optimal assignmentsthen there is an assignment that is optimal in all norms.In fact, this is true for the two machines case. Moreover,this is true also for the case of restricted assignment ofunit jobs as will be discussed later. In general, however,this is incorrect. In the appendix we give an examplein which the optimal assignment in the L1 norm isdi�erent than the optimal assignment for the L2 norm.It also follows that an �-approximation scheme for themakespan (L1 norm) does not provide such a schemefor the L2 (or Lp) norm.Our �-approximation scheme for scheduling jobswith respect to the Lp norm generalizes the algorithm ofHochbaum and Shmoys [10] and builds on some of theirideas. However, there are several di�erences where amajor one is dealing with \small" jobs. The structureof the algorithm in [10] is �rst to remove the smalljobs, then solve the remaining problem, and at last addgreedily the small jobs. One may suggest that a similarapproach may be used to approximate the Lp norm. Itturns out that if we remove the small jobs and then getthe exact (not just an approximate) solution, it may bethe case that there is no way to add the small jobs andget even close to the required approximate factor. Morespeci�cally, in the appendix we show that this methodcannot approximate the optimal solution better thansome �xed �. Therefore a new way is required to dealwith the small jobs.We also consider the case of unit weights jobs, whereeach is associated with a subset of the machines andshould be assigned to one of them [3]. This case iscalled restricted assignment of unit jobs. Recall that,in general, an optimal assignment with respect to onenorm may be non-optimal with respect to other norms.Surprisingly, we show that for restricted assignment ofunit jobs there exists an assignment that is optimal in allnorms. We call it a strongly-optimal assignment since ithas the nice advantage of being optimal in all respects.Moreover, we show that such an assignment can befound in polynomial time. Lenstra-Shmoys-Tardos [12]considered the restricted assignment of unit jobs only

for the L1 norm. They obtained an optimal solution byusing network
ow algorithms. We �nd an assignmentthat is optimal for all norms using \special" augmentingpaths.On-line scheduling/load balancing with respect tothe L2 (or Lp) norm has been considered in [1, 2].Here the jobs arrive one by one and should be assignedto a machine based only on the previous jobs withoutany knowledge on the future jobs. It is not hard toto see that the LPT rule achieves an approximationfactor (competitive ratio) of 2 for any Lp norm. Forthe L2 norm the competitive ratio of the LPT rule isin fact p(4=3) [2]. For the restricted assignment in theLp norm a �(p) competitive ratio and a matching lowerbound are shown in [1].The paper is structured as follows. In section 2 wegive de�nitions, notations and some easy observationsfor the classic scheduling problem. In section 3 we showhow to get an optimal solution for the case where thenumbers of possible job weights is constant. In section 4we deal with the �-approximation scheme for the generalcase. In section 5 we consider the case of unit jobson restricted assignment. In the appendix we showexamples that were discussed earlier.2 De�nitions and NotationsIn the identical machines scheduling and load balancingproblems, we are given m identical machines (servers)and a set of n jobs with non negative weights w1; : : : ; wn.Each job should be assigned to a machine. For a givenassignment, the load li on a machine i is the sum ofthe weights of the jobs assigned to it. We denote by~l = (l1; : : : ; lm) the machines load vector. The qualityof the assignment is measured by the Lp norm, i.e.jljp = (Pmi=1 lpi) 1p . We Denote the average load onthe machines by L = 1mPnj=1wj. We start with fewsimple observations, that allow us to assign very largejobs appropriately.Claim 2.1. If for a given assignment li1 � wj > li2where job j is assigned to machine i1 then assigning jto i2 reduces the Lp norm of the load vector.Proof. Consider the load vector ~x generated by assign-ing j to i2. Obviously, xi = li for each machine exceptfor i1 and i2. Clearly li2 < xi2 < li1 , li2 < xi1 < li1and xi1 + xi2 = li1 + li2 . It follows from the convexityof f(t) = tp that xpi1 + xpi2 < lpi1 + lpi2 . Hence j~xjp < j~ljp.The following claim implies that large jobs shouldbe assigned to separate machines.Claim 2.2. If a job j1 has weight wj1 > L, then in anyoptimal solution no other job is assigned to the samemachine that j1 is assigned to.

Proof. Consider an optimal assignment with load vector~l. Suppose that job j1 is assigned to machine i1 andanother job, j2 6= j1, is assigned to i1 as well. Leti2 be a machine such that li2 < L. Such a machinemust exist since L is the average load on the machines.Observe that li1 � li2 > wj1 +wj2 �L > wj2. Claim 2.1implies that assigning j2 to machine i2 yields a betterassignment, which is a contradiction.For assigning the large jobs, we use the above claimiteratively. While there is a job whose weight is largerthan the current average load, we assign the job to amachine and remove both from the setting.Note that both the optimal algorithm and theiterative process described above assign the large jobs toseparate machines. Thus, we may assume that no jobhas weight larger than the average. More speci�cally,given an �-approximation algorithm A� for the casewhere none of the jobs has weight larger than theaverage, we can generate an approximation algorithmfor the general case, by assigning the large jobs toseparate machines, and applying A� on the remainingjobs and machines. Obviously the resulting algorithmassures �-approximation for the general case. Since nojob has weight larger than the average load, we canbound the maximumload on the machines in an optimalsolution as follows:Claim 2.3. In an optimal solution no machine has loadgreater than 2L.Proof. Assume that for the optimal solution there isa machine i1 with load li1 > 2L. There must be amachine i2 whose load is smaller than the average loadL. Let j be a job assigned to machine i1. It follows thatli1� li2 > L � wj. By Claim 2.1,~l is not optimal, whichis a contradiction.3 Scheduling with a constant number ofweightsWe start by considering the case where all the weightsbelong to some constant size set C = fy1; y2; : : : ; yrgsuch that L � y1 > y2 > : : : > yr � �L. We usethe following notation to represent the input and theassignments. The input jobs are represented as a vector~n = (n1; : : : ; nr), where nk denotes the number of jobswhose weight is yk. Notice that n = Prk=1 nk. Anassignment to a machine is a vector ~u = (u1; : : : ; ur),where uk is the number of jobs of weight yk assigned tothat machine. The load of assignment ~u, denoted W (~u)is Prk=1 uk � yk. Denote by E the set of all possibleassignments ~u. It follows from Claim 2.3 that we needto consider only vectors ~e � ~n (i.e � in each coordinate)with W (~e) � 2L. Hence, each ~e 2 E consists of at most

2=� jobs. Therefore, for r > 1, jEj < r 2�+1 and can befound is time O(jEj).We show two alternative methods to �nd an opti-mal solution in polynomial time. The �rst is by proce-dure DY NPROG which is based on a simple dynamicprogramming. The second is more e�cient but morecomplex algorithm ILP which is based on integer lin-ear programming in a �xed dimension [11].First we describe DY NPROG, the algorithm forsolving the scheduling problem given the vector of jobs~n and m machines using dynamic programming. LetV be the set of vectors corresponding to subsets ofthe input, i.e. V = f~v : ~0 � ~v � ~ng. We builda layered-graph G, with m + 1 layers. Layer 0 hasa single node, (0;~0). The next m � 1 layers consistof the nodes f(i;~v); 1 � i � m � 1; ~v 2 V g, where iindicates the layer, and ~v is a vector of jobs. Layer mhas, again, a single node, (m;~n). We associate a valuewith each node, denoted V al(i;~v), which correspondsto the p power of the load of a best assignment of ~v tothe �rst i machines. More speci�cally, if (l1; : : : ; li) is aload vector that minimizes the Lp norm for assigning ~von i machines, then V al(i;~v) =Pik=1(lk)p.It is easy to see that the optimal assignment of v toi machines, satis�es the following recurrence:V al(0;~0) = 0V al(1; ~v) = W (~v)p 8~v 2 Vand for i � 2V al(i;~v) = min~v�~e2EfW (~e)p + V al(i � 1; ~v � ~e)gNotice that we can �nd the best assignment, notonly its value, by keeping for each node (i;~v) anincoming edge e 2 E such that V al(i;~v) = W (~e)p +V al(i � 1; ~v � ~e) :For computing the value of a node, we look atno more than jEj possible assignments. For eachassignment we do a constant amount of work. Thus,the total running time of the dynamic programming isO(m � jV jjEj).In order to upper bound jV j we note that jV j =Qrk=1(nk + 1). Under the constraintPrk=1 nk = n, thisproduct is upper bounded by (nr +1)r by the ArithmeticGeometric Means inequality. Hence, jV j = O((2nr)r).Recall that jEj � r 2�+1. Therefore the running time ofthe algorithm is O(m � (2nr)r � r 2�+1).Thus we proved the following theorem:Theorem 3.1. Given m machines and n jobs withweights taken from the set fy1; : : : ; yrg, and minifyig ��L, where � and r are constants independent of the

input, DY NPROG �nds a best assignment in terms ofthe Lp norm, in time O(m � (2nr)r � r 2�+1).The second method to solve the constant numberof weight scheduling problem is by using integer linearprogramming (ILP) with a �xed number of variables[11]. In this case, we require that the weights of thejobs, y1; : : : ; yr are all rational numbers representedby O(logn) bits. As before, E is the set of possibleassignments to a machine. For each vector ~e 2 E denoteby x~e the numbers of machines that were assigned ~e. Inthese terms, A feasible solution to the problem is a non-negative integer vector ~X such thatP~e2E x~e = m, i.e.,m machines are used, andP~e2E x~e � ~e = ~n, i.e., all jobswere assigned. The p power of the Lp norm of a solution~X is P~e2E x~e �W (~e)p. Clearly the optimal solution isgiven by the following integer system:minX~e2E x~e �W (~e)psubject to X~e2E x~e = mX~e2E x~e � ~e = ~nx~e � 0 8~e 2 ENotice that the dimension and the number of equa-tions are �xed. We apply Lenstra [11] method to �ndthe optimal solution of the ILP . The time complexityof Lenstra's algorithm is exponential in the dimensionof the program but polynomial in the logarithms of thecoe�cients and therefore is O(f(r; 1�) logO(1) n) wheref is a function of the two constants r and 1=�.Therefore, we have shown:Theorem 3.2. Given m machines and n jobs withrational weights in the set fy1; : : : ; yrg and minifyig ��L, where � and r are constants independent of theinput, ILP �nds the best assignment in terms of the Lpnorm in time O(n+ f(r; 1�) logO(1) n).4 The general caseWe now describe the polynomial approximation schemefor the general case. We are given a set of n jobs withweights w1; : : : ; wn and m machines. For any positive(constant) � � 1 we describe an algorithmApprox� that�nds an assignment of the jobs, with load vector ~l suchthat j~ljp � (1 + 4�)j~loptjp where ~lopt is an optimal loadvector in the Lp norm.We de�ne 3 sets of inputs : I; I2; I3.

� Denote by I the original input to the problem.Denote by L the average load on the machines forthis input.� De�ne a set of small jobs J = fj : wj < �Lg.Denote by W (J) the total weight of the jobs in J ,that isW (J) =Pj2J wj. I3 is generated from I byreplacing the jobs in J with R = bW (J)=�Lc jobseach of weight �L. Notice that R � jJ j, thereforethe number of jobs needed to be assigned in I3 isat most n.� For a non-negative integer k, de�ne ck = �L+k��2L.We generate I2 from I3 simply by replacing theweight wj by ŵj = maxfck : ck � wjg for each j.Since wj � L for all j, thenŵj 2 C = f�L + k � �2L : 0 � k � 1� ��2 g :Note that the number of jobs is the same as in I3,hence, at most n.We are ready to describe algorithm Approx�:1. Generate the 3 inputs I; I3; I22. Solve I2 using an algorithm for constant number ofjobs (DY NPROG or ILP).3. Apply the solution of I2 to I3, simply by changingthe weight of each job.4. Convert the solution of I3 to a solution for I byreplacing R jobs of weight �L with the jobs from Jin a greedy procedure described below.Next we describe how to replace the R jobs ofweight �L with jobs from J . Let ri be the number ofsuch jobs assigned to machine i. For each machine i,we assign jobs arbitrarily from J of total weight of atmost (ri + 1) � �L. We claim that all the jobs in J areassigned in this process. Assume that some jobs areleft unassigned. Since each job is of size of at most �Lthen for each i machine i is at least ri � �L loaded withsmall jobs. If we force the job to be assigned to the�rst machine, the total load of small jobs assigned to itexceeds (r1 + 1)�L. HenceW (J) > ((mXi=1 ri) + 1)�L � (R+ 1) � �Lwhich is a contradiction.The running time of step 1; 3 and 4 in Approx� is�(n). In step 2, we use either DY NPROG or ILP .Note that � = � and r � 1=�2. Using theorem 3.2, therunning time of step 2 and the total running time is

O(n + g(1�) logO(1) n) where g grows (somewhat worsethan) exponentially in 1=�.We are now ready to show that the solution to I,which is a feasible assignment to the original problem'sinput, is a (1 + 4�) approximation to that problem. Wedo this in steps according to the algorithm, showing thatin each step we do not get far from the optimal solution.Denote by ~lopt the load vector on the machines ofan optimal assignment, and by ~l(2) the load vector onthe machines of the optimal solution to I2 generated instep 2 of the algorithm. The following claim will showthat j~l(2)jp is not much larger than j~loptjp.Claim 4.1. j~l(2)jp � j~loptjp + �L �m 1p .Proof. Consider an optimal assignment for input I. LetZi be the total weight of jobs in J assigned to machinei. For each machine i, replace the jobs in J , by at mostdZi=(�L)e jobs of weight �L. This is always possiblesince Pmi=1dZi=(�L)e � R. This de�nes an assignmentto the input I3. Next, for each j replace the weightwj by ŵj. This de�nes a feasible solution for input I2.Denote by ~x the load vector on the machines generatedby this process. Since ~l(2) is optimal, j~l(2)jp � j~xjp. Theload on each machine in this process was increased byless than �L. Hence, lopti +�L > xi for each i. Therefore,by the triangle inequalityj~l(2)jp � j~xjp � j~lopt + �L~1jp � j~loptjp + �L �m 1p :We move now to step 3 in the algorithm. Denoteby ~l(3) the load vector on the machines in the solutionof I3. Next we claim that j~l(3)jp is not much larger thanj~l(2)jp.Claim 4.2. j~l(3)jp � (1 + �)j~l(2)jp.Proof. For each job jwĵwj = 1 + wj � ŵjŵj � 1 + �2L̂wj � 1 + �2L�L = 1 + � :Hence, l(3)i =l(2)i � 1 + � for each machine i. Thusj~l(3)jp � j(1 + �)~l(2)jp = (1 + �)j~l(2)jp :In step 4 we use a greedy procedure in order toreplace R jobs of weight �L with the small jobs in J .We now show that the greedy procedure performs well.Denote by ~l the load vector on machines generated byour algorithm for the solution to I.Claim 4.3. j~ljp � j~l3jp + �L �m 1p .

Proof. Recall that the greedy process simply adds toeach machine 1 � i � m, jobs from J with total loadof at least ri � �L, but less than (ri + 1) � �L. Thusli � l(3)i + �L, for 1 � i � n. Hence, by the triangleinequalityj~ljp � j~l(3) + �L~1jp � j~l(3)jp + �L �m 1p :The next simple lemma lower bounds the perfor-mance of the optimal solution:Lemma 4.1. Any assignment of n jobs on m machines,with average load L, has a total load of at least L �m 1p .Proof. This follows immediately from the convexity ofthe function xp.Putting all this together, we havej~ljp � j~l(3)jp + �L �m 1p� (1 + �)j~l(2)jp + �L �m 1p� (1 + �)(j~loptjp + �L �m 1p) + �L �m 1p� (1 + �)(j~loptjp + �j~loptjp) + �j~loptjp� (1 + 4�)j~loptjp :By replacing � by �=4 we conclude:Theorem 4.1. Given m machines and n jobs, and any� > 0, algorithm Approx� �nds in linear time in n (theconstants depend on 1=�) an assignment of the jobs onthe machines, whose total load (in the Lp norm) is atmost (1 + �) of the optimal.5 Unit jobs restricted assignmentIn this section we consider the case of unit jobs, eachof which should be assigned to one out of subset ofmachines that is associated with it. We de�ne itformally as follows. Let G = (U; V;E) be a bipartitegraph having jU j = n vertices on one side (jobs ortasks) and jV j = m vertices on the other side (serversor machines) connected by the set of edges E where thedegree of each vertex u 2 U is at least 1. We de�nean assignment H as an assignment of each job u 2 Uto a machine v 2 V such that (u; v) 2 E. In otherwords H � G such that deg(u) = 1 for all u 2 U .Note that dv = deg(v) for v 2 V might be more than1. The number of jobs assigned to a machine v 2 V isreferred to as the load of vertex v or its degree in theassignment. The goal is to come up with an assignmentthat minimizes the Lp norm of the load vector on V .Denote by dH the load vector of some assignmentH. For T � V de�ne ST =Xi2T di

and MT = mini2T di :For 1 � k � m let Sk be the value of ST for the set Tof the k most loaded machines of U . An assignment iscalled strongly-optimal if for any assignmentH 0 and forall 1 � k � m Sk � Sk0Our main result in this section is the followingTheorem 5.1. For any G there exists a strongly-optimal assignment. Moreover, it can be found in poly-nomial time.The proof follows from Theorem 5.3 described below.Strongly-optimal assignments are of a special inter-est since they are optimal in any norm. More speci�-cally:Theorem 5.2. Let H be a strongly-optimal assign-ment. For any p � 1 and any assignment H0jdH jp � jdH0jp:Proof. Let h (resp. h0) be the vector dH (resp. dH0)with the coordinates sorted in non-increasing order.Clearly jhjp = jdH jp and jh0jp = jdH0 jp. Here for1 � i � k kXi=1 hi � kXi=1 h0i :It is not di�cult to show that one can generate asequence of steps that starts with the vector h and endswith h0 where in each step one unit moves from somecoordinate to a coordinate with larger or equal value.Each such step can only increase the norm and thusjhjp � jh0jp.For an assignment H we de�ne an alternating pathP = v0u0v1 : : : vk�1uk�1vkfor k � 0 as a simple path such that (vi; ui) 2 Hand (ui; vi+1) 2 G for 0 � i � k � 1. If in additiondvk � dv0 � 2 the path is called an augmenting path.Given an assignment H and an augmenting path Pwe can generate a new assignment by replacing the oddedges of the path by the even ones. The new assignmenthas the following properties: dv0 is reduced by 1 whiledvk is increased by 1, and the degrees of all other verticesdo not change.We make the following easy observations:1. For any assignment 0 <Pmi=1 d2i � n2.2. An augmenting path reducesPmi=1 d2i by at least 2.

3. An augmenting path from a vertex can be found(if one exists) in linear time (e.g. by Breadth FirstSearch).We are ready to describe the algorithm that generatesa strongly-optimal assignment.ALG-Augment: Start with an arbitrary assign-ment. Improve the assignment repetitively as long asan augmenting path exists.Theorem 5.3. ALG-Augment terminates in polyno-mial time and generates a strongly-optimal assignment.Proof. By the previous observations the number oftimes we may augment an assignment is at most n2.Finding an augmenting path and improving the assign-ment can be done in O(njEj) (we make no attempt toachieve the best complexity here). Thus the algorithmterminates in polynomial time.It is left to prove that an assignment H that cannotbe improved by an augmenting path is strongly-optimal.Assume by contradiction thatH is not strongly-optimal.Then there exists an assignment H0 and some k suchthat Sk � S0k + 1 :Let k0 be the minimal k with the above property. Let T0(resp. T 00) be a set of the k0 most loaded machines of theassignment H (resp. H0) . Note that Sk = Sk�1 +MT0and S0k = S0k�1 + M 0T 00 . The minimality of k0 impliesthat MT0 �M 0T 00 + 1 :For the assignment H let T1 = fijdi � MT0g.Clearly T0 � T1. Consider all alternating paths thatstart at T1. Let T2 be the set of ending points ofthese paths and put k2 = jT2j. Clearly T1 � T2. Itis important to note that T2 is closed under alternatingpaths. More speci�cally, there are no alternating pathsfrom machines of T2 to machines outside T2, otherwise,there were such paths from amachine in T1 to a machineoutside T2.If there exists i 2 T2 such that di � MT0 �2 then itwould yield an augmenting path which contradicts thefact that H cannot be augmented. Thus for each j 2 T2dj � MT0 � 1 � M 0T 00 :Thus ST2 � ST0 +MT2 jT2 � T0j� Sk0 + (MT0 � 1)(k2 � k0)� S0k0 + 1 +M 0T 00 (k2 � k0)� S0k2 + 1� S0T2 + 1

where the last inequality follows from the fact that S0k2is the sum of the k2 most loaded machines by H0 andS0T2 is the sum of the loads on a speci�c set T2 of sizek2. The inequality before that follows from the fact thatM 0T 00 is the k0'th largest load induced by H0.Hence among all the jobs assigned byH to machinesof the set T2 at least one is assigned by H0 to j 62T2. This de�nes an alternating path out of T2 whichcontradicts the fact that T2 is closed under alternatingpaths.References[1] B. Awerbuch, Y. Azar, E. Grove, M. Kao, P. Krishnan,and J. Vitter. Load balancing in the lp norm. In Proc.36th IEEE Symp. on Found. of Comp. Science, pages383{391, 1995.[2] Y. Azar and J. Sgall. unpublished notes.[3] Yossi Azar, Joseph Naor, and Raphael Rom. Thecompetitiveness of on-line assignment. In Proc. 3rdACM-SIAM Symp. on Discrete Algorithms, pages 203{210, 1992.[4] A.K. Chandra and C.K. Wong. Worst-case analysisof a placement algorithm related to storage allocation.SIAM Journal on Computing, 4(3):249{263, 1975.[5] R.A. Cody and E.G. Co�man, Jr. Record allocationfor minimizing expected retrieval costs on crum-likestorage devices. J. Assoc. Comput. Mach., 23(1):103{115, January 1976.[6] M.R. Garey and D.S. Johnson. Computers and In-tractability. W.H. Freeman and Company, San Fran-cisco, 1979.[7] R.L. Graham. Bounds for certain multiprocessoranomalies. Bell System Technical Journal, 45:1563{1581, 1966.[8] R.L. Graham. Bounds on multiprocessing timinganomalies. SIAM J. Appl. Math, 17:263{269, 1969.[9] R.L. Graham, E.L. Lawler, J.K Lenstra, andA.H.G. Rinnooy Kan. Optimization and approxima-tion in deterministic sequencing and scheduling: a sur-vey. Annals of Discrete Mathematics, 5:287{326, 1979.[10] Dorit S. Hochbaum and David B. Shmoys. Usingdual approximation algorithms for scheduling prob-lems: Theoretical and practical results. J. of the ACM,34(1):144{162, January 1987.[11] H.W. Lenstra. Integer programming with a �xed num-ber of variables. Mathematics of Operations Research,8:538{548, 1983.[12] J.K. Lenstra, D.B. Shmoys, and E. Tardos. Approx-imation algorithms for scheduling unrelated parallelmachines. Math. Prog., 46:259{271, 1990.[13] J.Y.T. Leung and W.D. Wei. Tighter bounds on aheuristic for a partition problem. Information Process-ing Letters, 56:51{57, 1995.

6 AppendixWe �rst show an example where an optimal assignmentin the L1 norm is not optimal in the L2 norm.The example consists of 3 machines and 6 jobswith weights 13; 9; 9; 6; 6;6. Figure 1 shows two feasibleassignments for the problem:

Figure 1: The best assignment in L1 and L2 normAssignment 1 is optimal in terms of the L1 norm.Its value in the L1 norm is 18, and its value in the L2norm is p817. Assignment 2 is optimal in terms of theL2 norm. Its value in the L1 norm is 19, and its valuein the L2 norm is p811.Next we show that the following process cannotyield an �-approximation scheme. First remove thesmall jobs, then get the exact (not just an approximate)solution, and at last add the small jobs optimally.We can use the same example as before with a setof very small jobs of total weight 5. Obviously, theoptimal solution has a load vector (18; 18; 18) which isassigning the small jobs on machine 1 in Assignment 1.

However, if we remove the small jobs then assignment2 is the optimal assignment for the remaining jobsand any procedure that assigns the small jobs cannotproduce a load vector better than (19; 17:5; 17:5). Thelatter assignment approximate the optimal solution bya relative error of 7 � 10�4. For � which is much smallerthan that and small enough jobs the scheme does notprovide an approximation which is even close to �.

