
Load balancing of temporary tasks in theℓp norm

Yossi Azar∗ Amir Epstein† Leah Epstein‡

Abstract

We consider the on-line load balancing problem where there arem identical machines (servers).
Jobs arrive at arbitrary times, where each job has a weight and a duration. A job has to be as-
signed upon its arrival to exactly one of the machines. The duration of each job becomes known
only upon its termination (this is called temporary tasks ofunknown durations). Once a job has
been assigned to a machine it cannot be reassigned to anothermachine. The goal is to minimize
the maximum over time of the sum (over all machines) of the squares of the loads, instead of the
traditional maximum load.

We show that for the sum of the squares the greedy algorithm performs within at most2.23 of
the optimum. We show (an asymptotic) lower bound of1.79 on the competitive ratio of the greedy
algorithm. We also show a lower bound of1.44 on the competitive ratio of any deterministic
algorithm.

Minimizing the sum of the squares is equivalent to minimizing the load vector with respect to
theℓ2 norm. We extend our techniques and analyze the competitive ratio of greedy with respect
to theℓp norm. We show that the greedy algorithm performs within at most 2 − Ω(1/p) of the
optimum. We also show a lower bound of2 − O(ln p/p) on the competitive ratio of any on-line
algorithm.

1 Introduction

We are givenm parallel identical machines and a number of independent jobs (tasks) arriving at
arbitrary times, where each job has a weight and a duration. A job should beassigned upon its arrival
to exactly one of the machines based only on the previous jobs without any knowledge on the future
jobs, thus increasing theload on this machine by its weight for the duration of the job. The duration
of each job becomes known only upon its termination (this is called temporary tasks of unknown
durations). Theload of a machine is the sum of the weights of the jobs assigned to it. For anyℓp

norm we define thecostof an assignment for an input sequence of jobs as the maximum over time of
theℓp norm of the load vector. Specifically, theℓ∞ norm is the makespan (or maximum load) and the
ℓ2 norm is the Euclidean norm, which is equivalent to the sum of the squares ofthe load vector. The
goal of an assignment algorithm is to assign all the jobs so as to minimize the cost.

Consider for example the case where the weight of a job corresponds to itsmachine disk access
frequency. Each job may see a delay that is proportional to the load on the machine it is assigned to.
Then theaveragedelay is proportional to the sum of squares of the machines loads (namely theℓ2

norm of the corresponding machines load vector) whereas themaximumdelay is proportional to the
maximum load.

∗School of Computer Science, Tel-Aviv University. E-Mail: azar@math.tau.ac.il. Supported in part by the Israel Science
Foundation.

†School of Computer Science, Tel Aviv University.
‡School of Computer Science, The Interdisciplinary Center, Herzliya, Israel. E-Mail: lea@.idc.ac.il. Supported in part

by the Israel Science Foundation.

1

We measure the performance of an on-line algorithm by itscompetitive ratio. An on-line algo-
rithm isc-competitive if for each input the cost of the assignment produced by the algorithm is at most
c time larger than the cost of the optimal assignment.

We first summarizeour results.

• For the sum of the squares of loads, we show that the greedy algorithm is at most 2.2293-
competitive for any number of machines. In fact, form = 2 greedy algorithm is optimal and its
competitive ratio is1.309 and form = 3 we can improve the upper bound to19

9 ≈ 2.1111.

• For the sum of the squares of loads, we show that there is no on-line algorithm that is1.4472-
competitive.

• For the sum of the squares of loads, we show a lower bound of4
3 − O(1

m
) on the competitive

ratio of any on-line algorithm and we show a lower bound of4
3 for m divisible by3.

• For the sum of the squares of loads, we show (an asymptotic) lower boundof 1.7906 on the
competitive ratio of the greedy algorithm.

• For the generalℓp norm (for anyp > 1), we show that the greedy algorithm is at most2 −
Ω(1/p)-competitive for any number of machines.

• For the generalℓp norm (for anyp > 1), we show (an asymptotic) lower bound of2−O(ln p/p)
on the competitive ratio of any on-line algorithm.

• For the generalℓp norm (for anyp > 1), we show that for m=2 the greedy algorithm is an
optimal on-line algorithm.

Temporary tasks, ℓ∞ norm: For the problem of on-line load balancing of temporary tasks the
upper bound is2 − 1

m
. This upper bound was proved for permanent tasks (tasks that neverdepart)

by Graham [12], nevertheless Graham’s analysis of the upper bound holds also for temporary tasks.
The results in [4] show that his algorithm is optimal by constructing a lower bound of 2 − 1

m
on the

competitive ratio of any deterministic on-line algorithm.

Permanent tasks,ℓ∞ norm: The permanent tasks model is the model where tasks only ar-
rive (on-line), but never depart. This is the classic ancient problem ofscheduling jobs on identical
machines minimizing the makespan (or maximum load). Graham [12] showed that the greedy load
balancing algorithm is2− 1

m
-competitive in this case. The greedy algorithm is an optimal on-line

algorithm only form ≤ 3 [9].
Bartal et al. [6] were the first to show an algorithm whose competitive ratio isstrictly belowc < 2

(for all m). More precisely, their algorithm achieves a competitive ratio of2− 1
70 . Later, the algorithm

was generalized by Karger, Phillips and Torng [16] to yield an upper bound of 1.945. Subsequently,
Albers [1] designed1.923-competitive algorithm. Fleischer and Wahl [10] improved this result to a
ratio of1.9201.

Bartal et al. [7] showed a lower bound of1.8370 for the problem. This result was improved by
albers [1] to a ratio of1.852 and then by Gormley et al. [11] to a ratio of1.853. The best lower bound
currently known is due to Rudin [15], who showed a lower bound of1.88.

Permanent tasks,ℓp norm: Chandra and Wong [8] were the first to consider the problem of
minimizing the sum of squares of the machine loads. They showed that if the jobsarrive in non-
increasing weights order then the greedy algorithm yields a schedule whose cost is within25

24 of the
optimal cost. This result was slightly improved by Leung and Wei [17]. Chandra and Wong [8]
also considered the generalℓp norm (for anyp > 1) and showed that the greedy algorithm on the
sorted items achieves a constant performance bound. The constant depends onp and grows to3

2
whenp grows to∞. The problem of on-line load balancing in the generalℓp norm (for anyp > 1)

2

for permanent tasks was considered in [3]. The results in [3] show thatfor the sum of the squares,
the greedy algorithm performs within43 of the optimum, and no on-line algorithm achieves a better
competitive ratio. For the sum of the squares [3] also provided on-line algorithm with competitive
ratio 4

3 − δ, for some fixedδ, for any sufficiently large number of machines. For the generalℓp norm
the results show that the competitive ratio of greedy algorithm is2 − Θ((ln p)/p).

Off-line results: Azar et al. [5] presented a polynomial time approximation scheme for the
problem of off-line load balancing of temporary tasks (in theℓ∞ norm) in the case where the number
of machines is fixed. For the case in which the number of machines is given aspart of the input (i.e,
not fixed) they showed that no polynomial algorithm can achieve a better approximation ratio than32
unlessP = NP .

For the problem of off-line load balancing of permanent tasks (in theℓ∞ norm), there is a poly-
nomial time approximation scheme for any fixed number of machines [13, 18] and also for arbitrary
number of machines by Hochbaum and Shmoys [14].

Off-line scheduling and load balancing of permanent tasks with respect tothe ℓp norm has been
considered in [2]. The off-line minimization problem is known to be NP-hard inthe strong sense.
Alon et al. [2] provided a polynomial approximation scheme for scheduling jobs with respect to the
ℓp norm for anyp > 1. An example in which the optimal assignment for the sum of the squares is
different than the optimal assignment in theℓ∞ norm is also given in [2].

2 Definitions and preliminaries

In the load balancing problemwe are givenm identical machines (servers) and a finite sequence of
events. We denote the input sequence byσ = σ1, . . . , σr. Each eventσi is an arrival or departure of a
job (task). We viewσ as a sequence of times, the timeσi is the moment after theith event happened.
We denote the weight of a jobj by wj , its arrival time byaj and its departure time (which is unknown
until it departs) bydj . An on-line algorithm has to assign a job upon its arrival without knowing the
future jobs and the durations of jobs that have not departed yet. We compare the performance of on-
line algorithms and an optimal off-line algorithm that knows the sequence of jobs and their durations
in advance. LetJi = {j | aj ≤ σi < dj} be the active jobs at timeσi. A scheduleS is an assignment
which assigns each jobj to a single machinek, 1 ≤ k ≤ m. For every scheduleS, theloadof machine
k at timeσi, denotedLi

k(S), is the sum of weights of all jobs assigned to machinek in S, and active
at this time. Thevector of loads at timeσi is Li(S) = (Li

1(S), . . . , Li
m(S)). Our cost measure is

theℓp norm. Hence thecostof a scheduleS at timeσi is defined as‖Li(S)‖p =
(
∑m

k=1(L
i
k(S))p

) 1

p .
Thecostof a scheduleS is defined as‖L(S)‖p = maxi ‖Li(S)‖p. We denote the load vector with
the maximum cost, byL(S) = (L1(S), . . . , Lm(S)).

Theoptimal cost, denotedOPT(S), is the minimal cost over all possible schedules for the given
sequence ofS.

We measure the performance of our algorithms by thecompetitive ratio. For a fixedp > 1,
thecompetitive ratio of a scheduleS is defined asC(S) = ‖L(S)‖p/OPT(S). Let A be an on-line
assignment algorithm. Thecompetitive ratio of A for a fixed number m ≥ 1 of machinesis defined
as

CA,m = sup{C(S) | S is a schedule produced byA onm machines}.

Thecompetitive ratio of A for an arbitrary number of machines is defined asCA = sup{CA,m |
m ≥ 1}.

3

The previous definitions cover also the case where we measure the sum ofsquares of loads, since
then the cost is(‖L(S)‖2)

2. Consequently, the competitive ratios for the sum of the squares of loads
are equal toC2(S), C2

A,m andC2
A w.r.t. theℓ2 norm.

Now we define the notion of a shape of a schedule, which is an abstraction of a schedule where
for every machine, all jobs assigned to it except for one are replaced by very small jobs with the same
total load. In general it may be impossible to produce such a schedule by thesame algorithm as the
original one. Nevertheless, the concept of a shape is very useful for proving upper bounds on the
competitive ratio, since the optimal assignment may improve (by partitioning the jobs) while the cost
of the assignment does not change. Hence a shape is a pessimistic estimate ofa schedule. A shape
characterizes each machine by two numbers,ai is the total load of the small jobs, andui is (a lower
bound on) the weight of one large job.

Formally ashapeis a pairR = (a, u), wherea andu are vectors ofm nonnegative reals. The
vector of loadsof a shape is defined asL(R) = a + u. The shapeR = (a, u) is a shape of a
scheduleS if L(R) = L(S) and for everyi ≤ m with ui > 0 there exists a job with weightwj ≥ ui

assigned to the machinei in S. Theoptimal cost of a shapeR is the infimum of the optimal costs
of all schedulesS with the shapeR, formally OPT(R) = inf{OPT(S) | R is a shape ofS}. As
we shall see, the infimum can be replaced by a minimum. Thecompetitive ratio of a shapeR is
C(R) = ‖L(R)‖p/OPT(R).

It is possible to compute the optimal cost of the shapeR = (a, u) explicitly. It is the cost of a
schedule in which some big jobs are scheduled each on a separate machine and the rest of the jobs are
balanced evenly on the rest of the machines. Let the machines be orderedso thatui are nondecreasing.
For1 ≤ l ≤ m let hl = (

∑m
i=1 ai +

∑l
i=1 ui)/l. Let k be the largestl such thathl ≥ ul (k is always

defined, sinceh1 ≥ u1). We define theheight of the shape to beh(R) = hk.
It is easy to see that a good candidate for an optimal schedule for the shape R is to put on each

machine one job of size exactlyui and partitionai into a few jobs so that they can be balanced exactly
on thek machines; then the load vector is(hk, . . . , hk, uk+1, . . . , um). See the Figures 1 and 2 for
examples whereai = 1 for all i.

The following lemma, which appears in [3] shows that this really is the optimal Schedule. The
proof of the lemma appears in Appendix B.1.

1

123......m

Figure 1: A shapeR.

h

k

...... 3 2 1m

Figure 2: Optimal assignment ofR

Lemma 2.1 Leth = h(R) and letk be such thath = hk in the previous definition. Then OPT(R) =
‖(h, . . . , h, uk+1, . . . , um)‖p.

Now we extend the notion of shape and define continuous shapes, which are defined similarly
to shapes. It is an extension, which treats the machines as points in the interval [0, m]. The load
of machines is a function defined on that interval and is the sum of two functions. One function is

4

the total load of very small jobs on each machine. The other function is the loadof one big job on
each machine. Formally acontinuous shapeis a pairR = (a, u), wherea andu are functions (not
necessarily continuous), defined in the interval[0, m]. The function of loads of a shape is defined
asL(R) = a + u. Wherea(t) represents the total load of very small jobs at pointt in the interval
[0, m] andu(t) represents the load of one big job at pointt in the interval[0, m]. From the convexity
of the functionxp it follows that theoptimal cost of a continuous shapeR is obtained by assigning
some big jobs each on a separate machine and the remaining jobs are balancedevenly on the rest of
the machines. Formally w.l.o.g letu(t) be a non-decreasing function. There existst′ , s.tu′(t) = u(t)
and

a′(t) =

{

0 t ≤ t′
1

m−t′
(
∫ m

0 a(t)dt +
∫ m

t′
u(t)dt) − u(t) t′ < t

and fort1, t2, s.tt1 ≤ t′ < t2, it holds thatu′(t1) ≥ a′(t2) + u′(t2)
andR′ = (a′, u′) gives the optimal loadL(R′) for the shapeR.
Transition from a shape to a continuous shape is defined as follows. LetR = (a, u) be a shape,

then its continuous shapeR′ = (a′, u′) is

a′(t) =
{

ai i − 1 < t ≤ i

u′(t) =
{

ui i − 1 < t ≤ i

3 The greedy algorithm

In this section we analyze the competitive ratio of the greedy algorithm definedbelow.

Algorithm Greedy : Upon arrival of a jobj assign it to the machine with the current
minimum load (ties are broken arbitrarily).

Note that a job departs from a machine it was assigned to.
To obtain a constant upper bound for the performance ratio of Greedy,we show that each schedule

can be replaced by a very special continuous shape so that the competitive ratio does not decrease.
Computing the competitive ratio is then shown to be equivalent to computing the maximum of a
certain function with equality constraints over the reals. A shapeR = (h, x) is called partial flat if
there exists an integer1 ≤ k ≤ m, and a realc > 0 such that the following conditions hold:

hi = c for i = 1, . . . , k
xi ≥ 0 for i = 1, . . . , k
hi = xi = 0 for i = k + 1, . . . , m.

Whenk = m the shape is calledflat. A shapeR = (h, x) is calledseparateif there exists an
integer1 ≤ k ≤ m and a realc > 0, such that the following conditions hold:

hi = 0 for i = 1, . . . , k
xi ≥ c for i = 1, . . . , k
hi = c for i = k + 1, . . . , m
xi = 0 for i = k + 1, . . . , m.

Let S be a schedule obtained by Greedy and letL(S), be the load when Greedy reaches the
maximum cost. Leth be the load vector of all jobs except the last job assigned to each machine, we

5

treat these jobs as very small jobs and call them sand jobs. Letx be the weight vector of the last job
assigned to each machine. The shapeR = (h, x) is a shape of the scheduleS, we call it the Greedy
shape.

Lemma 3.1 Let R = (h, x) be the Greedy shape of a Greedy scheduleS, normalized such that
(OPT(S))p = m. Then there exists a partial flat shapeR′ = (h′, x′) such that‖L(R)‖p ≤ ‖L(R′)‖p

and OPT(R) ≥ OPT(R′) with the non-zero components ofh′ equal to 1, and the off-line shape of the
shapeR′ is a separate shape.

Proof: It is easy to see thathi ≤ 1 (otherwise when the last job was assigned to machinei before
Greedy reached the maximum cost,(OPT(S))p > m, which is a contradiction).

W.l.o.g we assume that the machines are ordered so thathi + xi are non increasing. We perform
the following transformation. Note that in each step of the transformation the cost of greedy can
only increase and the cost of the off-line algorithm can only decrease. This is in particular due to the
convexity of the functionxp. Figure 3 shows the obtained shape at the end of each transformation
step.

1. In this step we move to a continuous shapeR = (h(t), x(t)) , whereh(t) andx(t) are functions
in the interval[0, m]. We treat each pointt in that interval as a machine and the valueh(t)+x(t)
as its load. Now we transform regular jobs (jobs or part of jobs) that areplaced below height
1 to sand jobs. Next we push the sand jobs left such that the sand jobs height will be equal
to 1 from point 0 to point V0, whereV0 is the total volume of the sand jobs. Formally, let
R = (h(t), x(t)) be the current shape and lett0 be maximal, such thath(t) + x(t) ≥ 1 then the
new shapeR′ = (h′(t), x′(t)) is obtained as follows. Denote

V0 = t0 +

∫ m

t0

(h(t) + x(t))dt

then

h′(t) =

{

1 t ≤ V0

0 V0 < t

x′(t) =

{

h(t) + x(t) − 1 t ≤ t0
0 t0 < t

2. Jobs that in the off-line algorithm are scheduled on machines with sand jobs are pushed left
to have the same height as the load of those machines in the off-line algorithm (which are
balanced). Formally, letR = (h(t), x(t)) be the current shape then the new shapeR′ =
(h′(t), x′(t)) is obtained as follows. Lett1 be a minimal point such that machinet1 has sand
jobs in the off-line algorithm, letw be its total load in the off-line algorithm and letV1 be the
volume of the regular jobs on machines[t1, m]. Denote

V1 =

∫ m

t1

x(t)dt

then

h′(t) = h(t)

x′(t) =







x(t) t ≤ t1
w t1 < t ≤ t1 + V1

w

0 otherwise

6

3. Sand jobs on machines with no regular jobs are transformed continuously toregular jobs of
height equal tow (as defined in the previous step). We put these jobs on the leftmost machines
possible that have only sand jobs. We perform this process from right toleft. This process
continues until all machines in the greedy shape have sand jobs and a regular job. Formally,
let R = (h(t), x(t)) be the current shape then the new shapeR′ = (h′(t), x′(t)) is obtained
as follows. Lett1 be maximal such that machinet1 has sand jobs and a regular job. Lett2 be
maximal such that machinet2 has jobs (any jobs). Lets = t1·w+t2

w+1 , then

h′(t) =

{

1 t ≤ s
0 otherwise

x′(t) =







x(t) t ≤ t1
w t1 < t ≤ s
0 otherwise

It is easy to see that in each of the transformation steps the cost of greedycan only increase and
the cost of the off-line algorithm can only decrease due to the convexity ofthe functionxp. We denote
the shape obtained by the transformation byR′ = (h′, x′). This shape has jobs on machines[0, s] for
some real number0 < s < m. Each machinet ∈ [0, s] has sand jobs of height 1 and a regular job of
heightx′(t) > 0, other machines have no jobs assigned to them, hence this is a partial flat shape. The
off-line shape has jobs of heightx′(t) on machinest ∈ [0, s] and sand jobs of total volumes evenly
assigned to machines(s, m]. In addition min

t∈[0,s]
x′(t) ≥ w = s/(m − s), hence the off-line shape is a

separate shape. This completes the proof.

Lemma 3.2 Let R = (h, x) be a partial flat shape such thath(t) = 1 for 0 ≤ t ≤ s. Assume that
the off-line shape ofR is a separate shape. Then there is a shape R’=(h,x’), such that for0 ≤ t ≤ s,
x′(t) = y for some valuey > 0 and otherwisex′(t) = 0 and it holds that‖L(R)‖p ≤ ‖L(R′)‖p and
OPT(R) = OPT(R′) .

Proof: Let δ · m = s. Define

y = (
1

δ · m

∫ δ·m

0
xp(t)dt)

1

p .

ClearlyOPT(R) = OPT(R′). Now

‖L(R)‖p = (

∫ δ·m

0
(1 + x(t))pdt)

1

p

≤ (

∫ δ·m

0
1dt)

1

p + (

∫ δ·m

0
xp(t)dt)

1

p

= (δ · m)
1

p + (δ · m)
1

p · y
= (δ · m)

1

p · (1 + y)

= ‖L(R′)‖p

where the inequality follows from the triangle inequality for theℓp norm. This completes the proof.

7

Figure 3: The transformation steps

Define the functionf(δ, x) with the constraintg(δ, x).

f(δ, x) = δ · (1 + x)p, (1)

g(δ, x) = δ · xp +
δp

(1 − δ)p−1
= 1. (2)

Theorem 3.3 The competitive ratio of Greedy algorithm satisfies

CGreedy ≤ (fmax)
1

p

wherefmax is the maximum off with constraint (2), in the domain0 ≤ x, 0 ≤ δ ≤ 1
2 .

8

Proof: Let R0 be the Greedy shape of a scheduleS obtained by Greedy. For simplicity we transform
to a new shapeR1 by normalizing all job weights such that

(OPT(R1))
p = m. (3)

If all the h components ofR1 are equal to zero then the Greedy schedule is optimal. Otherwise by
applying Lemma 3.1 and Lemma 3.2 we obtain fromR1 a partial flat shapeR2 = (h, x), in which
all the non zero components ofx are the same and its off-line shape is a separate shape such that
‖L(R1)‖p ≤ ‖L(R2)‖p andOPT(R1) ≥ OPT(R2). We have

(‖L(R2)‖p)
p = δ · m · (1 + x)p, (4)

(OPT(R2))
p =

∫ δ·m

0
xp(t)dt + (1 − δ)m(

δ · m
(1 − δ) · m)p = δ · m · xp +

δp · m
(1 − δ)p−1

, (5)

x ≥ δ · m
(1 − δ) · m =

δ

1 − δ
. (6)

The last inequality restricts the weight of a regular job to be greater then the total weight of sand jobs
on machines with sand jobs in the off-line shape. For simplicity we divide equalities (4) and (5) by
m, this does not change the ratio between the cost and the off-line cost of shapeR2. Which gives the
following

f(δ, x) = δ · (1 + x)p, (7)

1 ≥ δ · xp +
δp

(1 − δ)p−1
, (8)

x ≥ δ

1 − δ
. (9)

The left side of the equality isf(δ, x) by definition. The first inequality results from (5), since
(OPT(R2))

p ≤ (OPT(R1))
p ≤ m and the division bym.

Substituting (9) in (8) gives

1 ≥ δp+1

(1 − δ)p
+

δp

(1 − δ)p−1
=

δp

(1 − δ)p

which yieldsδ ≤ 1
2 . We obtain the following relation forf

f(δ, x) =
1
m

(‖L(R2)‖p)
p

1
m

· m
≥ (‖L(R1)‖p)

p

(OPT(R1))p
≥ (‖L(S)‖p)

p

(OPT(S))p

where the first inequality follows from (3) and the fact that‖L(R1)‖p ≤ ‖L(R2)‖p. Hence to bound
the competitive ratio of Greedy we need to solve the following maximum problem in the domain
0 ≤ δ ≤ 1

2 and0 ≤ x. We need to find the maximum off(δ, x) under the constraint (8). It is easy
to see that the maximum off is obtained when (8) is an equality. Hence we obtain the following
maximum problem forf with constraintg (1), (2) in the domain0 ≤ x, 0 ≤ δ ≤ 1

2 . This completes
the proof.

The following theorem results from Theorem 3.3. The proof appears in Appendix B.2.

Theorem 3.4 For p = 2 the competitive ratio of Greedy algorithm isC2
Greedy ≤ 2.2293.

9

Theorem A.2 in the Appendix gives a somewhat weaker result to theorem 3.4, using a different
method for approximating the upper bound.

The following Theorem gives an upper bound of19
9 ≈ 2.1111 for the competitive ratio of Greedy

for p = 2 andm = 3, which is an improvement of the constant upper bound. This result follows from
Theorem A.1, which appears in the Appendix.

Theorem 3.5 For p = 2 andm = 3 the competitive ratio of Greedy algorithm,C2
Greedy,3 ≤ 19

9 ≈
2.1111.

Now we turn to the case of generalp. The proof of the following theorems appear in Appendices
B.3 and B.4.

Theorem 3.6 For anyp > 1 it holdsCGreedy ≤ 2 − Ω
(

1
p

)

.

Theorem 3.7 For m = 2 the greedy algorithm is optimal and its competitive ratio is

CGreedy,2 = sup
x≥0

(

1 + (1 + x)p

2p + xp

) 1

p

, (10)

and the supremum is achieved as a maximum at the unique solutionx ∈ (0,∞) of the equation

xp−1(1 + (1 + x)1−p) = 2p.

From the above theorem, which claims that form = 2 Greedy is optimal and its competitive ratio is
the same as in the permanent tasks case, we obtain according to [3] that forthe sum of the squares and
for two machines Greedy is optimal and its competitive ratio is(

√
5 + 3)/4 ≈ 1.309.

4 Lower bounds

4.1 Lower bounds for sum of squares

In this section we give lower bounds forp = 2. We prove a lower bound for any algorithm (the proof
is for m = 3). Then we prove a weaker lower bound for anym ≥ 3. Finally we prove a lower bound
for Greedy for a large number of machines (m → ∞).

Theorem 4.1 For any on-line assignment algorithmA, C2
A ≥ C2

A,3 ≥ 1.4472.

Proof: Consider the following sequence for three machines. First three unit jobsand one job of
weightx ≥ 1 arrive. Then two unit jobs depart. At last one job of weight2 arrive. Consider the first
three unit jobs. If algorithmA assigns two or more jobs to the same machine, it does not get any other
job. Its cost is at least5, the optimal cost is3, and we are done. Otherwise, algorithmA assigns one
unit job to every machine (the off-line algorithm assigns two unit jobs to machine1 and one unit job
to machine2). Now the next job of weightx arrives. AlgorithmA assigns it to one of the machines
say1 (the off-line algorithm assigns it to machine3). Then two unit jobs depart, which are the jobs
on machines2,3 (the jobs on machine1 in the off-line algorithm). At last a job of weight2 arrive.
The best algorithmA can do is to assign it to one of the empty machines2 or 3 (the off-line algorithm
assigns it to machine1). Its cost is at least(1 + x)2 + 22 , whereas the optimum cost is22 + 1 + x2.
The maximal ratio≈ 1.4472 is achieved forx =

√
5.

10

Theorem 4.2 For any number of machinesm ≥ 3 and any on-line assignment algorithmA, C2
A,m ≥

4/3 − O(1
m

). For m divisible by3, C2
A,m ≥ 4/3.

Proof: Let m = 3k. We consider the following sequence. First4k unit jobs arrive. Then2k unit
jobs depart. Finallyk jobs of weight2 arrive. Consider the arrival of the first4k unit jobs. Algorithm
A assigns these jobs. W.l.o.g we assume that machines1, . . . , m are sorted in nondecreasing order of
load (the off-line algorithm assigns two jobs on each machine1, . . . , k and one job on each machine
k + 1, . . . , 3k). Then2k jobs depart. There exists a minimalt ≥ 2k, such that machines1, . . . , t
are assigned at least2k jobs. Then2k jobs from machines1, . . . , t depart as follows, all jobs from
machines1, . . . , t − 1 and some jobs from machinet (in the off-line algorithm the jobs on machines
1, . . . , k depart). At the end of this step machines1, . . . , 2k are empty. Nextk jobs of weight2 arrive.
The best algorithmA can do is to assign each job to an empty machine (In the off-line these jobs are
assigned to machines1, . . . , k). Finally there are jobs of total weight4k assigned to no more than2k
machines. Due to the convexity of the functionxp, the minimum cost is obtained when all machines
have the same load, therefore its cost is at least2k · (2)2. The optimum cost isk · 22 + 2k · 12, which
yields a ratio of4/3. Form not divisible by3 a similar proof gives a ratio of4/3 − O(1

m
).

Theorem 4.3 For the greedy algorithm,C2
Greedy ≥ 1.7906.

Proof: First we prove a weaker lower bound of1.7281 for the greedy algorithm, by solving an ordi-
nary differential equation analytically. Then by a similar proof we obtain a more complex ordinary
differential equation, which has no simple solution. Hence we use a computerprogram to compute
the competitive ratio in this case, which gives a lower bound of1.7906.

We start with the first proof. We see them machines asm points in the interval(0, 1], machinei
as the pointi

m
∈ (0, 1], and the load of the machines as a functionf(t), f(t) = li for (i−1)

m
< t ≤ i

m
,

whereli is the load of machinei. For each machinei the total load is the value off in the interval
(i−1

m
, i

m
] and the total load of all machines is the total volume off in the interval(0, 1] multiplied by

m. Letf(k/m) be the load of machinek at the end of stepk and letF (k/m) be the volume of the jobs
assigned to machinesk, . . . , m at the beginning of stepk in the following process. For convenience
we number the steps fromm to 1 in decreasing order. In this process we keep the volume of jobs fixed
and equal to1 at the end of each step. We start with the arrival of infinitesimally small jobs oftotal
volume1, we call jobs of this type sand jobs. Both the off-line and greedy algorithms assign these
jobs evenly on all the machines (total height1 on each machine). At stepk a job of heightx (x ≥ 1)
arrives. Greedy assigns this job to the machine with minimum load w.l.o.g to machinek which is the
one with the largest index among all machines with the minimum load1, . . . , k (otherwise we swap
indices) and the off-line algorithm performs the same assignment. Then the sand jobs on machines
1, . . . , k−1 depart in greedy. In the off-line algorithm the departing jobs are composed of all the sand
jobs of machinek and equal amounts of sand jobs from machines1, . . . , k − 1 with the appropriate
volume. Next sand jobs arrive with total volume1 − F (k/m) − x

m
(=1-total volume of machines

k, . . . , m), thus keeping the total volume equal to1. Greedy and the off-line algorithms assign the
sand jobs to machines1, . . . , k − 1 evenly, such that these machines will have the same load. At the
end of stepk

f(k/m) =
1 − F (k/m)

k/m
+ x.

The computation of the lower bound for Greedy according to the above scenario, which is techni-
cal, appears in Appendix B.5.

11

4.2 Lower bound for generalp > 1

In this section we construct a lower bound for generalp > 1. The proof of the following theorem
appears in Appendix B.6.

Theorem 4.4 For anyp > 1 and any on-line algorithmA it holds thatCA ≥ 2 − O
(

ln p
p

)

.

Acknowledgment: We would like to thank Adi Avidor for letting us use Figures 1 and 2.

References

[1] S. Albers. Better bounds for online scheduling.SIAM Journal on Computing, 29:459–473, 1999.

[2] N. Alon, Y. Azar, G. Woeginger, and T. Yadid. Approximation schemes for scheduling on parallel ma-
chines.Journal of Scheduling, 1(1):55–66, 1998.

[3] A. Avidor, Y. Azar, and J. Sgall. Ancient and new algorithms for load balancing in theℓp norm. Algorith-
mica, 29:422–441, 2001. Also inProc. 9th ACM-SIAM SODA, 1998, pp. 426-435.

[4] Y. Azar and L. Epstein. On-line load balancing of temporary tasks on identical machines. In5th Israeli
Symp. on Theory of Computing and Systems, pages 119–125, 1997.

[5] Y. Azar, O. Regev, J. Sgall, and G. Woeginger. Off-line temporary tasks assignment.Theoretical Computer
Science, 287:419–428, 2002.

[6] Y. Bartal, A. Fiat, H. Karloff, and R. Vohra. New algorithms for an ancient scheduling problem.Journal
of Computer and System Sciences, 51(3):359–366, 1995.

[7] Y. Bartal, H. Karloff, and Y. Rabani. A better lower boundfor on-line scheduling.Information Processing
Letters, 50:113–116, 1994.

[8] A.K. Chandra and C.K. Wong. Worst-case analysis of a placement algorithm related to storage allocation.
SIAM Journal on Computing, 4(3):249–263, 1975.

[9] U. Faigle, W. Kern, and G. Turan. On the performance of online algorithms for partition problems.Acta
Cybernetica, 9:107–119, 1989.

[10] R. Fleischer and M. Wahl. Online scheduling revisited.Journal of Scheduling, 3(5):343–353, 2000.

[11] T. Gormley, N. Reingold, E. Torng, and J. Westbrook. Generating adversaries for request-answer games.
In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
564–565, 2000.

[12] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal, 45:1563–
1581, 1966.

[13] R.L. Graham. Bounds on multiprocessing timing anomalies.SIAM J. Appl. Math, 17:416–429, 1969.

[14] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling problems:
Theoretical and practical results.J. Assoc. Comput. Mach., 34(1):144–162, January 1987.

[15] J.F. Rudin III. Improved bounds for the on-line scheduling problem. PhD thesis, The University of Texas
at Dallas, May 2001.

[16] D. Karger, S. Phillips, and E. Torng. A better algorithmfor an ancient scheduling problem.Journal of
Algorithms, 20(2):400–430, 1996.

[17] J.Y.T. Leung and W.D. Wei. Tighter bounds on a heuristicfor a partition problem.Information Processing
Letters, 56:51–57, 1995.

[18] S. Sahni. Algorithms for scheduling independent tasks. Journal of the Association for Computing Ma-
chinery, 23:116–127, 1976.

12

Appendix

A The competitive ratio of Greedy

We show forp = 2 andm = 3 an upper bound of199 ≈ 2.1111 for the competitive ratio of Greedy,
which is an improvement of the constant upper bound. Actually we give an upper bound in a more
general way in the following theorem.

Theorem A.1 For p = 2 the competitive ratio of Greedy algorithm is bounded byC2
Greedy,m ≤

3 − 3
m

+ 1
m2 .

Proof: We start with generalp. Consider timeT , when greedy reaches the maximum cost. Letti
be the time just after the last job was assigned to machinei, such thatti ≤ T . Let hi(ti) be the
load of machinei, just before assigning that job and letxi(ti) be the weight of that job. In general
let xj(ti) be the weight of the last job assigned to machinej at timeti. Let hj(ti) be the total load
of jobs on machinej at timeti exceptxj(ti). Note that there exists a machinek such thatT = tk.
Let Greedy, Opt(ti) and Opt be the costs of Greedy, the optimal off-line algorithm at timeti and the
optimal off-line algorithm respectively. Denote

h(ti) =

∑m
j=1(hj(ti) + xj(ti))

m
. (11)

From the convexity of the functionxp

m · h(ti)
p ≤ Opt(ti)

p ≤ Optp. (12)

Substituting (11) in (12) yields

m
∑

j=1

(hj(ti) + xj(ti)) ≤ m
1− 1

p · Opt. (13)

For machinei we have (using volume considerations)

m · hi(T) + xi(T) ≤ m · hi(ti) + xi(ti)

≤
m

∑

j=1

(hj(ti) + xj(ti))

≤ m
1− 1

p · Opt (14)

where the first inequality follows from the fact that no jobs arrive to machine i between timesti
andT (note that jobs can depart from machinei at that time interval). The second inequality follows
from the definition of Greedy,∀j 6= i hi(ti) ≤ hj(ti)+xj(ti). The last inequality is obtained by (13).
The inequality (14) is equivalent to

hi(T) ≤ m
− 1

p · Opt − xi(T)

m
. (15)

For convenience we denotehi(T) by hi andxi(T) by xi. Now we turn to the casep=2.
Substitutingp = 2 in inequality (15) gives

13

hi(T) ≤ Opt√
m

− xi(T)

m
. (16)

It is obvious that
m

∑

i=1

x2
i ≤ Opt2 (17)

as all jobsxi are present at timeT . In addition we use the following

m
∑

i=1

hi · xi ≤
m

∑

i=1

(

Opt√
m

− xi

m

)

· xi (18)

=
Opt√

m
·

m
∑

i=1

xi −
1

m
·

m
∑

i=1

x2
i (19)

≤ Opt√
m

· (
√

m · Opt) − 1

m
·

m
∑

i=1

x2
i (20)

= Opt2 − 1

m
·

m
∑

i=1

x2
i (21)

where the first inequality follows from (15). The second inequality followsfrom (13) by assigning
p = 2.

We bound the competitive ratio of greedy

Greedy2 =
m

∑

i=1

(hi + xi)
2

=

m
∑

i=1

hi · (hi + xi) +

m
∑

i=1

xi · (hi + xi)

≤
m

∑

i=1

(

Opt√
m

− xi

m

)

· (hi + xi) +
m

∑

i=1

xi · (hi + xi)

=
Opt√

m
·

m
∑

i=1

(hi + xi) + (1 − 1

m
) ·

m
∑

i=1

xi · (hi + xi)

≤ (
Opt√

m
) · (

√
m · Opt) + (1 − 1

m
) ·

m
∑

i=1

xi · (hi + xi)

= Opt2 + (1 − 1

m
) · (

m
∑

i=1

hi · xi +
m

∑

i=1

x2
i)

≤ Opt2 + (1 − 1

m
) ·

[

Opt2 + (1 − 1

m
) ·

m
∑

i=1

x2
i

]

≤ Opt2 + (1 − 1

m
) ·

[

Opt2 + (1 − 1

m
) · Opt2

]

= (3 − 3

m
+

1

m2
) · Opt2

14

where the first inequality follows from (15). The second inequality followsfrom (13). The third
inequality follows from (21). The last inequality follows from (17). This completes the proof.

The following theorem gives a somewhat weaker result to Theorem 3.4, using different method
for approximation of the upper bound.

Theorem A.2 For p = 2 the competitive ratio of Greedy algorithm isC2
Greedy,m ≤ 2.2361.

Proof: Let S be a schedule obtained by Greedy and letR1 = (h, x) be the shape of the scheduleS.
For simplicity we normalize all job weights, such that

(OPT(R1))
2 = m. (22)

This does not change the competitive ratio of the scheduleS. W.l.o.g we assume that in the off-
line shape jobsx1, . . . , xm are assigned to machines1, . . . , m respectively (the machines are ordered
,s.t.xi are non increasing) and sand jobs are assigned to machinesk + 1, . . . , m, s.t. the total load of
each machinek + 1, . . . , m is the same.

It is easy to see that
hi ≤ 1 (23)

(otherwise when the last job was assigned to machinei before Greedy reached the maximum cost,
(OPT(S))2 > m, which is a contradiction)

and
∀i, k + 1 ≤ i ≤ m, xi ≤ 1 (24)

(otherwise∀i, 1 ≤ i ≤ m, xi > 1 , therefore(OPT(R1))
2 > m , which is a contradiction).

We bound the cost of shapeR1

(‖L(R1)‖2)
2 =

m
∑

i=1

(hi + xi)
2

=

k
∑

i=1

hi · (hi + xi) +

k
∑

i=1

xi · (hi + xi) +

m
∑

i=k+1

hi · (hi + xi) +

m
∑

i=k+1

xi · (hi + xi)

≤
k

∑

i=1

hi · (hi + xi) +
k

∑

i=1

xi · (hi + xi) + 2 ·
m

∑

i=k+1

(hi + xi)

=
k

∑

i=1

x2
i + 2 ·

k
∑

i=1

hi · xi +
k

∑

i=1

h2
i + 2 ·

m
∑

i=k+1

(hi + xi)

≤
k

∑

i=1

x2
i + 2 ·

k
∑

i=1

hi · xi +
k

∑

i=1

hi + 2 ·
m

∑

i=k+1

(hi + xi)

≤
k

∑

i=1

x2
i + 2 ·

√

√

√

√

k
∑

i=1

hi ·

√

√

√

√

k
∑

i=1

x2
i + 2 · (

m
∑

i=k+1

hi +
m

∑

i=k+1

xi) +
k

∑

i=1

hi (25)

where the first inequality follows from (23) and (24). The second inequality follows from the fact
thath2

i ≤ hi (sincehi ≤ 1). The last inequality follows from Cauchy Schwartz inequality.

15

From (22) we obtain the following equation for the off-line cost of shapeR1

k
∑

i=1

x2
i + (m − k)

(

(
∑m

i=1 hi +
∑m

i=k+1 xi)

m − k

)2

= (OPT(R1))
2 = m

which is equivalent to

k
∑

i=1

x2
i +

(
∑m

i=1 hi +
∑m

i=k+1 xi)
2

m − k
= m. (26)

Denote

α · m =

k
∑

i=1

x2
i ,

β · m =
m

∑

i=k+1

hi +
m

∑

i=k+1

xi,

γ · m =

k
∑

i=1

hi,

δ =
k

m

where

0 ≤ α, β, γ, δ ≤ 1. (27)

Substituting the above new variables in (25) and (26) gives

(‖L(R1)‖2)
2 = α · m + 2 · √α · γ · m + 2β · m + γ · m, (28)

α · m +
(β + γ)2 · m

1 − δ
= m. (29)

Dividing the above equations bym gives

f(α, β, γ) = α + 2 · √α · γ + 2β + γ, (30)

α +
(β + γ)2

1 − δ
= 1, (31)

where in the first equation we replace1
m

· (‖L(R1)‖2)
2 , by f(α, β, γ).

We add the following constraint

γ ≤ δ. (32)

This constraint results from the definitions ofγ, δ and the fact thathi ≤ 1.

16

We obtain the following relation forf

f(α, β, γ) =
1
m

(‖L(R1)‖2)
2

1
m

· m
=

(‖L(R1)‖2)
2

(OPT(R1))2
≥ (‖L(S)‖2)

2

(OPT(S))2
.

Hence to bound the competitive ratio of Greedy we can solve the following maximum problem
for f in the domain (27). We have to find the maximum off(α, β, γ) under the constraints (31), (32).

It is easy to see that the maximum off(α, β, γ) under the constraints (31) and (32) is achieved
whenγ = δ. Hence we have to find the maximum off(α, β, γ) under the following constraint

α +
(β + γ)2

1 − γ
= 1. (33)

We find the maximum off(α, β, γ) under the constraint (33) using the Lagrange multipliers
method.

By Theorem A.3 the maximum off is achieved atα ≈ 0.7236, β ≈ 0.1708, γ ≈ 0.2764, and
C2

Greedy ≤ f(α, β, γ) ≈ 2.2361. This completes the proof.

Theorem A.3 Let

f(α, β, γ) = α + 2 · √α · γ + 2β + γ, (34)

g(α, β, γ) = α +
(β + γ)2

1 − γ
− 1 = 0. (35)

The maximum off under the constraintg in the domain0 ≤ α, β, γ ≤ 1 is fmax ≈ 2.2361.

Proof: Equation (35) is equivalent to

β + γ =
√

(1 − α)(1 − γ). (36)

Substituting (36) in (34) gives

f(α, γ) = α + 2 · √α · γ + 2
√

(1 − α)(1 − γ) − γ. (37)

First we find the maximum off on the boundary

1. If α = 0. Substitutingα in (37) givesf ≤ 2.

2. If α = 1. Substitutingα in (35) givesβ = γ = 0. Substitutingα, γ in (37) givesf ≤ 1.

3. If β = 0. Substitutingβ in (35) and finding the maximum off under this constraint using
Maple givesfmax ≈ f(α = 0.7913, γ = 0.3642) ≈ 2.2293.

4. If β = 1. Substitutingβ in (35) givesα = γ = 0. Substitutingα, γ in (34) givesf ≤ 2.

5. If γ = 0. Substitutingγ in (37) givesf ≤ 2.

6. If γ = 1. Substitutingγ in (37) givesf ≤ 2.

Now we find the local extremum points off using the lagrange multipliers method.
Solving in Maple givesfmax ≈ f(α = 0.7236, β = 0.1708, γ = 0.2764) ≈ 2.2361. This

completes the proof.

17

B Omitted proofs

B.1 Proof of Lemma 2.1

We have seen above that there exists a schedule which achieves this value. It remains to prove that for
any scheduleS with shapeR, the costOPT(S) is at least the bound in the statement of the lemma.

From the definition ofh(R) it follows that h < ui for every i > k (otherwise we would have
chosen largerk). Fori > k, let ji be a job assigned to machinei in S with weight at leastui (it exists,
sinceui > 0).

Let S′ be the optimal schedule for the jobs inS. First,S′ has a machine with load at mosth: there
are at leastk machines on which no jobji, i > k, is scheduled, and their total load is at mostkh.
Second, ifS′ is optimal, then for anyi > k, no other job is assigned to the same machine as the job
ji: Assume that the jobji is scheduled on a machine with the loadb > 0 of other jobs. We know that
there is a machine with loadc ≤ h < ui ≤ wji

. However, if we replace the two machines with loads
c andb + wji

by two machines with loadb + c andwji
, the total cost decreases due to the convexity

of the functionxp. Consequently, after a renumbering of the machines, the vector of loadsL = L(S′)
satisfiesLi ≥ ui for eachi > k and

∑m
i=1 Li = hk +

∑m
i=k+1 ui. Using convexity again, the cost of

any such schedule is at least‖(h, . . . , h, uk+1, . . . , um)‖p.

B.2 Proof of Theorem 3.4

By Theorem 3.3 the competitive ratio of Greedy is obtained by solving the following maximum prob-
lem forf , which is obtained by substitutingp = 2 in (1) and (2).

f(δ, x) = δ · (1 + x)2, (38)

1 = δ · x2 +
δ2

1 − δ
. (39)

We solve this maximum problem. (39) gives

x =

√

1 − δ2

1−δ

δ
. (40)

Substituting equation (40) in equation (38) gives

f(δ) = δ ·



1 +

√

1 − δ2

1−δ

δ





2

. (41)

From (41) we have to find the maximum off(δ) in the intervalδ ∈ [0, 1
2].

Using Maple we can see that the maximum of f is achieved atδ ≈ 0.3642, (x ≈ 1.474), and
C2

Greedy ≤ f(δ) ≈ 2.2293. This completes the proof.

B.3 Proof of Theorem 3.6

By Theorem 3.3 we have
1 = g(δ, x) ≥ δ · xp.

Hence

δ ≤ 1

xp
.

18

Substitutingδ in (1) gives

f(δ, x) ≤ (1 + x)p

xp
= f1(x). (42)

Substitutingδ ≤ 1
2 in (1) gives

f(δ, x) ≤ 1

2
(1 + x)p = f2(x).

Sincef1(x) is a monotonically decreasing function ofx and f2(x) is a monotonically increasing
function ofx we obtain

f(δ, x) ≤ fmax ≤ f2(x0 = 2
1

p) =
1

2

(

1 + 2
1

p

)p

wherex0 = 2
1

p is a solution of the equation

f1(x) = f2(x).

Hence

CGreedy ≤ (fmax)
1

p ≤ 1 + 2
1

p

2
1

p

= 1 +

(

1

2

) 1

p

= 1 + e
− 1

p
ln 2

= 2 − Ω

(

1

p

)

.

This completes the proof.

B.4 Proof of Theorem 3.7

First we show that any scheduleS obtained by Greedy has a flat shapeR which is a shape ofL(S).
Consider timeT , when greedy reaches the maximum cost. LetL = L(S) be the vector of loads
of S at timeT . W.l.o.g we assume thatL1 is the smallest component ofL. We claim that the shape
R = (a, u) wherea = L1 andui = Li−a, is a flat shape ofL(S). Clearly(L(R) = L(S)). Consider
machine2 with u2 > 0. Let j be the last job assigned to the machine2 until timeT . At the time of its
assignment, the load of machine1 must have been at mosta, as otherwise the greedy cost at that time
would be greater then‖L(S)‖p, which is a contradiction. Hencewj ≥ L2 − a = u2, and the shape
R = (a, u) is a flat shape.

In [3] it is shown that in the permanent tasks case form = 2 the greedy algorithm is optimal and
its competitive ratio is given in equation (10). The proof of the upper boundwas based on the fact
that each scheduleS obtained by greedy has a flat shape, hence this upper bound is true alsofor the
temporary tasks case. The proof of the lower bound gives a schedule,which is a legal schedule also
for the temporary tasks case, hence this lower bound is true also for the temporary tasks case. This
completes the proof.

B.5 Detailed proof of Theorem 4.3

Whenm → ∞ t = k/m is a continuous variable in the interval[0, 1] and we get the following
equation

f(t) =
1 − F (t)

t
+ x. (43)

19

We havef(t) = −dF (t)
dt

(sinceF (t) =

∫ 1

t

f(u)du) and we get

−dF (t)

dt
=

1 − F (t)

t
+ x.

Now we have the following first order differential equation

−t · dF (t)

dt
+ F (t) − x · t − 1 = 0

F (1) = 0

It is easy to verify its solution
F (t) = −x · t · ln(t) − t + 1. (44)

Substituting equation (44) in equation (43) gives

f(t) = x · ln(t) + x + 1. (45)

The above process continues until assigning the job with weightx to the machine represented by
t0, whereF (t0) = 1, i.e until the volume of all machines of greedy that were assigned a job of weight
x approaches1 (until there are no sand jobs that can depart from machines0 ≤ t < t0). From (44)
we get

−x · t0 · ln(t0) − t0 + 1 = 1

which gives
t0 = e−

1

x .

At the end of the above process each machine in the interval[t0, 1] has sand jobs and one big job of
weightx. In the off-line algorithm each machine in the interval[t0, 1] has one job of weightx and
the other machines have sand jobs assigned equally to them. The maximum cost of greedy and the
off-line algorithms is obtained at the end of the above process due to the convexity of the function
xp. Let Greedy(x) andOpt(x), be the costs of greedy and the off-line algorithms as a function ofx
respectively.

Greedy2(x) =

∫ 1

e−
1
x

f2(t)dt

=

∫ 1

e−
1
x)

(x · ln(t) + x + 1)2dt

=

∫ 1

e−
1
x

[x2 · ln2(t) + 2x · (x + 1) · ln(t) + (x + 1)2]dt

=
[

x2 · (t · ln2(t) − 2t · ln(t) + 2t) + 2x · (x + 1) · (t · (ln(t) − t) + (x + 1)2 · t
]1

e−
1
x

=
[

t · (x2 · ln2(t) + 2x · ln(t) + x2 + 1)
]1

e−
1
x

= x2 · (1 − e−
1

x) + 1,

20

Opt2(x) =
(

1 − e−
1

x

)

· x2 + e−
1

x ·
[

1 − (1 − e−
1

x) · x
e−

1

x

]2

=
e−

1

x · (1 − e−
1

x) · x2 + [1 − (1 − e−
1

x) · x]2

e−
1

x

= e
1

x ·
[

(x2 − 2x) · (1 − e−
1

x) + 1
]

.

Let

C2(x) =
Greedy2(x)

Opt2(x)

and
C2 = max

1≤x
C2(x).

For x ≥ 1 the maximum value ofC2(x) is obtained approximately atx ≈ 1.2612 and its value is
C2 ≈ 1.7281. HenceC2

Greedy ≥ C2 ≈ 1.7281.
Now we give a similar proof to improve the lower bound. The process of events is similar with the

difference that here we keep the cost of the off-line algorithm fixed andequal to 1 instead of keeping
the volume fixed and equal to 1 at the end of each step. In this proof we usethe same notations as in
the first proof. Consider the off-line algorithm at the end of stept when assigning a job with weightx
to machinet. According to the invariant constraint we have.

(1 − t) · x2 + t · h2 = Opt2(x) = 1.

Whereh is the weight of the sand jobs on machines[0, t] at the end of stept. We defineh as a function
of t. The above equation gives

h(t) =

√

1 − (1 − t) · x2

t
.

At the end of stept

f(t) =
(1 − t) · x + t · h(t) − F (t)

t
+ x. (46)

We havef(t) = −dF (t)
dt

and we get

−dF (t)

dt
=

(1 − t) · x + t · h(t) − F (t)

t
+ x.

Now we have the following first order differential equation

−t · dF (t)

dt
+ F (t) − t · h(t) − x = 0

F (1) = 0

The solution to this equation is not simple and was calculated using a computer program, which gave
the following result. Forx ≥ 1 the maximum value ofC2(x) is obtained approximately atx ≈ 1.3888
and its value isC2 ≈ 1.7906. HenceC2

Greedy ≥ C2 ≈ 1.7906, which completes the proof.

21

B.6 Proof of Theorem 4.4

Let m → ∞. As in the proof of Theorem 4.3 we consider the machines as points in the interval
(0, 1], each machine is represented by a pointt ∈ (0, 1], and the load of the machines is represented
as a functionf(t) in that interval. Let0 < α < 1. We consider the following sequence. First
infinitesimally small jobs of total volume1 arrive. Next, jobs of total volume(1 − α) depart. Finally
unit jobs of total volume1 arrive. Consider the arrival of the infinitesimally small jobs. AlgorithmA
assigns these jobs, w.l.o.g we assume that machines(0, . . . , 1] are in non increasing order of load (the
off-line algorithm assigns these jobs evenly on all the machines). Lets ≤ α be maximal such that
machines(s, . . . , 1] are assigned jobs of total volume(1−α). Then jobs of total volume(1−α) depart
from machines(s, . . . , 1] (in the off-line algorithm these jobs depart evenly from all the machines).
We denote byx ≤ α the fraction of machines with assigned jobs of total height greater then1. Next
the unit jobs of total volume1 arrive. The best Greedy can do is to assign jobs of total volume(1−α)
evenly to machines(α, . . . , 1] and then to assign jobs of total volumeα to theα least loaded machines,
which are composed of machines(x, . . . , α], each machine with jobs of total height less then1 and
w.l.o.g to machines(α, α+x], each machine with jobs of total height1 (the off-line algorithm assigns
these jobs evenly to all the machines). LetA and Opt be the costs of algorithmA and the off-line
algorithms respectively.

Ap ≥ x · 2p + α

[

α + (α − x)

α

]p

= x · 2p + α
(

2 − x

α

)p

where the first term from left represents the cost of machines(α, . . . , α + x] and the other term is
a lower bound for the cost of machines(0, . . . , α].

Optp = (1 + α)p.

Hence

Cp
A ≥

(

A

Opt

)p

(47)

≥ x · 2p + α
(

2 − x
α

)p

(1 + α)p
. (48)

We chooseα = 1
p
. We consider two cases. In both cases we use the inequalitye−x ≥ 1 − x.

Forx ≥ α
p

= 1
p2 we obtain

Cp
A ≥ α

p
· 2p

(1 + α)p
=

1

p2
· 2p

(1 + 1
p
)p

= 2p e−2 ln p

(1 + 1
p
)p

.

Hence

CA ≥ 2
e
−2 ln p

p

1 + 1
p

≥ 2
1 − 2 ln p

p

1 + 1
p

= 2 − O

(

ln p

p

)

.

22

Forx < α
p

= 1
p2 we obtain

Cp
A ≥ α ·

(2 − 1
p
)p

(1 + α)p
=

1

p
·
(2 − 1

p
)p

(1 + 1
p
)p

= e− ln p ·
(2 − 1

p
)p

(1 + 1
p
)p

.

Hence

CA ≥ e
−

ln p

p ·
2 − 1

p

1 + 1
p

≥ (1 − ln p

p
) ·

2 − 1
p

1 + 1
p

= 2 − O

(

ln p

p

)

.

This completes the proof.

23

