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Abstract

We consider the on-line load balancing problem where thereiadentical machines (servers).
Jobs arrive at arbitrary times, where each job has a weightaturation. A job has to be as-
signed upon its arrival to exactly one of the machines. Thatthn of each job becomes known
only upon its termination (this is called temporary tasksioknown durations). Once a job has
been assigned to a machine it cannot be reassigned to anmlcbine. The goal is to minimize
the maximum over time of the sum (over all machines) of theasegiof the loads, instead of the
traditional maximum load.

We show that for the sum of the squares the greedy algorithiforpes within at mosg.23 of
the optimum. We show (an asymptotic) lower bound &8 on the competitive ratio of the greedy
algorithm. We also show a lower bound bfi4 on the competitive ratio of any deterministic
algorithm.

Minimizing the sum of the squares is equivalent to minimigihe load vector with respect to
the /s norm. We extend our techniques and analyze the competétie of greedy with respect
to the/, norm. We show that the greedy algorithm performs within ast2o- (1/p) of the
optimum. We also show a lower bounddf O(Inp/p) on the competitive ratio of any on-line
algorithm.

1 Introduction

We are givenm parallel identical machines and a number of independent jobs (taskah@rat
arbitrary times, where each job has a weight and a duration. A job shoualsisiigned upon its arrival

to exactly one of the machines based only on the previous jobs without amydaige on the future
jobs, thus increasing thead on this machine by its weight for the duration of the job. The duration
of each job becomes known only upon its termination (this is called temporary tdsknknown
durations). Thdoad of a machine is the sum of the weights of the jobs assigned to it. Fof,any
norm we define theostof an assignment for an input sequence of jobs as the maximum over time of
the/,, norm of the load vector. Specifically, tiig, norm is the makespan (or maximum load) and the
£5 norm is the Euclidean norm, which is equivalent to the sum of the squathe @fad vector. The
goal of an assignment algorithm is to assign all the jobs so as to minimize the cost.

Consider for example the case where the weight of a job correspondstiadtiine disk access
frequency. Each job may see a delay that is proportional to the load on ttrermeat is assigned to.
Then theaveragedelay is proportional to the sum of squares of the machines loads (namely the
norm of the corresponding machines load vector) whereamthémumdelay is proportional to the
maximum load.
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We measure the performance of an on-line algorithm bgatapetitive ratio. An on-line algo-
rithm is c-competitive if for each input the cost of the assignment produced bydbdthm is at most
c time larger than the cost of the optimal assignment.

We first summarizeur results.

e For the sum of the squares of loads, we show that the greedy algorithimmiesa2.2293-
competitive for any number of machines. In fact, for= 2 greedy algorithm is optimal and its
competitive ratio isl.309 and form = 3 we can improve the upper bound}@% ~ 2.1111.

e For the sum of the squares of loads, we show that there is no on-linétlafgdhat is1.4472-
competitive.

e For the sum of the squares of loads, we show a lower bour%d@t)(%) on the competitive
ratio of any on-line algorithm and we show a lower bount% d&br m divisible by 3.

e For the sum of the squares of loads, we show (an asymptotic) lower lfuin@j06 on the
competitive ratio of the greedy algorithm.

e For the generaf, norm (for anyp > 1), we show that the greedy algorithm is at mast
Q(1/p)-competitive for any number of machines.

e Forthe general, norm (for anyp > 1), we show (an asymptotic) lower bound®f O(Inp/p)
on the competitive ratio of any on-line algorithm.

e For the general, norm (for anyp > 1), we show that for m=2 the greedy algorithm is an
optimal on-line algorithm.

Temporary tasks, /., norm: For the problem of on-line load balancing of temporary tasks the
upper bound i2 — % This upper bound was proved for permanent tasks (tasks that depart)
by Graham [12], nevertheless Graham’s analysis of the upper baaldd &also for temporary tasks.
The results in [4] show that his algorithm is optimal by constructing a lowentafi2 — % on the
competitive ratio of any deterministic on-line algorithm.

Permanent tasks,/., norm: The permanent tasks model is the model where tasks only ar-
rive (on-line), but never depart. This is the classic ancient problestléduling jobs on identical
machines minimizing the makespan (or maximum load). Graham [12] showed ¢hatetedy load
balancing algorithm i — %-competitive in this case. The greedy algorithm is an optimal on-line
algorithm only form < 3 [9].

Bartal et al. [6] were the first to show an algorithm whose competitive ratitricgtly belowe < 2
(for all m). More precisely, their algorithm achieves a competitive rattm—)f%. Later, the algorithm
was generalized by Karger, Phillips and Torng [16] to yield an uppentaii1.945. Subsequently,
Albers [1] designed .923-competitive algorithm. Fleischer and Wahl [10] improved this result to a
ratio of 1.9201.

Bartal et al. [7] showed a lower bound ©8370 for the problem. This result was improved by
albers [1] to a ratio ot .852 and then by Gormley et al. [11] to a ratio bB53. The best lower bound
currently known is due to Rudin [15], who showed a lower boundl. 3.

Permanent tasks,/, norm: Chandra and Wong [8] were the first to consider the problem of
minimizing the sum of squares of the machine loads. They showed that if theujobs in non-
increasing weights order then the greedy algorithm yields a scheduleewbestis within% of the
optimal cost. This result was slightly improved by Leung and Wei [17]. @harand Wong [8]
also considered the gener@l norm (for anyp > 1) and showed that the greedy algorithm on the
sorted items achieves a constant performance bound. The constanddemp and grows to%

whenp grows toco. The problem of on-line load balancing in the gendgahorm (for anyp > 1)
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for permanent tasks was considered in [3]. The results in [3] showfdhalhe sum of the squares,
the greedy algorithm performs withi§1 of the optimum, and no on-line algorithm achieves a better
competitive ratio. For the sum of the squares [3] also provided on-lingitdgowith competitive
ratio % — ¢, for some fixed, for any sufficiently large number of machines. For the gengrabrm

the results show that the competitive ratio of greedy algorithen-so ((1n p) /p).

Off-line results: Azar et al. [5] presented a polynomial time approximation scheme for the
problem of off-line load balancing of temporary tasks (in genorm) in the case where the number
of machines is fixed. For the case in which the number of machines is giygartasf the input (i.e,
not fixed) they showed that no polynomial algorithm can achieve a befpeoxdmation ratio than}
unlessP = NP.

For the problem of off-line load balancing of permanent tasks (ir/theorm), there is a poly-
nomial time approximation scheme for any fixed number of machines [13, @i8}lan for arbitrary
number of machines by Hochbaum and Shmoys [14].

Off-line scheduling and load balancing of permanent tasks with respéioe t9 norm has been
considered in [2]. The off-line minimization problem is known to be NP-harthastrong sense.
Alon et al. [2] provided a polynomial approximation scheme for schedulibg jeith respect to the
¢, norm for anyp > 1. An example in which the optimal assignment for the sum of the squares is
different than the optimal assignment in the norm is also given in [2].

2 Definitions and preliminaries

In theload balancing problemwe are givenn identical machines (servers) and a finite sequence of
events. We denote the input sequencerby o4, ..., 0,.. Each event; is an arrival or departure of a
job (task). We views as a sequence of times, the timgs the moment after th& event happened.
We denote the weight of a jobby w;, its arrival time bya; and its departure time (which is unknown
until it departs) byd;. An on-line algorithm has to assign a job upon its arrival without knowing the
future jobs and the durations of jobs that have not departed yet. We cetfgaperformance of on-
line algorithms and an optimal off-line algorithm that knows the sequence sfgod their durations
inadvance. Let; = {j | a; < 0; < d;} be the active jobs at time;. A scheduleS is an assignment
which assigns each johto a single maching, 1 < k£ < m. For every schedul§, theload of machine

k at timeo;, denotedL}’g(S), is the sum of weights of all jobs assigned to mackHine S, and active

at this time. Thevector of loads at timeo; is L¢(S) = (L4(S),..., Lt (S)). Our cost measure is

the,, norm. Hence theostof a schedules at timeo; is defined ad{L*(S) ||, = (35, (LL(5))P) v,
The costof a schedulés is defined ag|L(S)||, = max; ||L(S)]||,. We denote the load vector with
the maximum cost, by.(S) = (L1(S), ..., Lm(9)).

Theoptimal cost, denotedOPT(S), is the minimal cost over all possible schedules for the given
sequence of.

We measure the performance of our algorithms bydbmpetitive ratio. For a fixedp > 1,
the competitive ratio of a scheduleS is defined a€’(S) = ||L(S5)|,/OPT(S). Let A be an on-line
assignment algorithm. Trempetitive ratio of A for a fixed number m > 1 of machinesis defined
as

Ca,m =sup{C(S) | S is a schedule produced byonm machines.

The competitive ratio of A for an arbitrary number of machines is defined a€y = sup{C4 , |
m > 1}.



The previous definitions cover also the case where we measure the sgoeoés of loads, since
then the cost ig|| L(S)||2)%. Consequently, the competitive ratios for the sum of the squares of loads
are equal ta”?(5), C% ,, andC3 w.r.t. thel, norm.

Now we define the notion of a shape of a schedule, which is an abstra¢@oschedule where
for every machine, all jobs assigned to it except for one are replaceer small jobs with the same
total load. In general it may be impossible to produce such a schedule baitie algorithm as the
original one. Nevertheless, the concept of a shape is very usefpkdoing upper bounds on the
competitive ratio, since the optimal assignment may improve (by partitioning thevidtie the cost
of the assignment does not change. Hence a shape is a pessimistic estimathefule. A shape
characterizes each machine by two numberss the total load of the small jobs, ang is (a lower
bound on) the weight of one large job.

Formally ashapeis a pairR = (a,u), wherea andu are vectors ofn nonnegative reals. The
vector of loadsof a shape is defined &(R) = a + u. The shapeR = (a,u) is ashape of a
scheduleS if L(R) = L(S) and for everyi < m with u; > 0 there exists a job with weight; > v;
assigned to the machirign S. Theoptimal cost of a shapeR is the infimum of the optimal costs
of all schedulesS with the shapeR, formally OPT(R) = inf{OPT(S) | Ris ashape of}. As
we shall see, the infimum can be replaced by a minimum. cdmpetitive ratio of a shapeR is
C(R) = || L(R)||,/OPT(R).

It is possible to compute the optimal cost of the sh&pe- (a, ) explicitly. It is the cost of a
schedule in which some big jobs are scheduled each on a separate machiine st of the jobs are
balanced evenly on the rest of the machines. Let the machines be osddhed.; are nondecreasing.
Forl <l <mleth;= (3", ai+ Eﬁzl u;)/l. Letk be the largest such that; > v; (k is always
defined, sincé; > u;). We define théneight of the shape to be(R) = hy.

It is easy to see that a good candidate for an optimal schedule for the Bhiago put on each
machine one job of size exactly and partitioru; into a few jobs so that they can be balanced exactly
on thek machines; then the load vector(isy, . . . , hx, uk11,- - -, un). See the Figures 1 and 2 for
examples where; = 1 for all 4.

The following lemma, which appears in [3] shows that this really is the optimaé@dh. The
proof of the lemma appears in Appendix B.1.
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Figure 1: A shape®. Figure 2: Optimal assignment &f

Lemma 2.1 Leth = h(R) and letk be such that = hy, in the previous definition. Then OPR) =
(IO TS S iy ||

Now we extend the notion of shape and define continuous shapes, whicefined similarly
to shapes. It is an extension, which treats the machines as points in thelifiterwa The load
of machines is a function defined on that interval and is the sum of two funscti®ne function is



the total load of very small jobs on each machine. The other function is theofoawke big job on
each machine. Formally @ntinuous shapeis a pairR = (a,u), wherea andu are functions (not
necessarily continuous), defined in the interigaln|. Thefunction of loads of a shape is defined
asL(R) = a + u. Wherea(t) represents the total load of very small jobs at poiit the interval
[0,m] andu(t) represents the load of one big job at paim the interval[0, m|. From the convexity
of the functionz? it follows that theoptimal cost of a continuous shapeR is obtained by assigning
some big jobs each on a separate machine and the remaining jobs are balardgdn the rest of
the machines. Formally w.l.0.g left) be a non-decreasing function. There existss.tu/(t) = u(t)
and

Ty 0 t<t
a@%_{ﬁiﬂﬁfﬂﬂﬁ+4?u@mn—u@) t <t

and forty, to, s.tty < t’ < to, it holds thatu/(t1) > a'(t2) + ' (t2)

andR’ = (d’,u’) gives the optimal load.(R’) for the shaper.

Transition from a shape to a continuous shape is defined as follows? keta, u) be a shape,
then its continuous shag® = (a/,v’) is

dty={a i-1<t<i

t)={w i-1<t<i

3 The greedy algorithm
In this section we analyze the competitive ratio of the greedy algorithm ddfigled.

Algorithm Greedy: Upon arrival of a jobj assign it to the machine with the current
minimum load (ties are broken arbitrarily).

Note that a job departs from a machine it was assigned to.

To obtain a constant upper bound for the performance ratio of Gregedghow that each schedule
can be replaced by a very special continuous shape so that the corapetitl/does not decrease.
Computing the competitive ratio is then shown to be equivalent to computing the nmaxaha
certain function with equality constraints over the reals. A shidpe (h, z) is called partial flat if
there exists an integér< k < m, and a reat > 0 such that the following conditions hold:

hi=c for i1=1,...,k
z; >0 for 1=1,...,k
hi=x;=0 for i=k+1,...,m.

Whenk = m the shape is calleflat. A shapeR = (h,z) is calledseparateif there exists an
integerl < k < m and areat > 0, such that the following conditions hold:

h;=0 for i=1,...k
r; >c for i=1,...,k
hi=c for i=k+1,...,m

z; =0 for i=k+1,...,m.

Let S be a schedule obtained by Greedy andiléf), be the load when Greedy reaches the
maximum cost. Leh be the load vector of all jobs except the last job assigned to each maclkne, w
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treat these jobs as very small jobs and call them sand jobs: betthe weight vector of the last job
assigned to each machine. The sh&pe (h, z) is a shape of the schedute we call it the Greedy
shape.

Lemma 3.1 Let R = (h,z) be the Greedy shape of a Greedy schedtilemormalized such that
(OPT(S))? = m. Then there exists a partial flat shap& = (2, 2’) such that|L(R)||, < ||L(R)||,
and OPTR) > OPT(R’) with the non-zero components/dfequal to 1, and the off-line shape of the
shapeR’ is a separate shape.

Proof: It is easy to see that; < 1 (otherwise when the last job was assigned to machinefore
Greedy reached the maximum cd€PT(S))? > m, which is a contradiction).

W.l.o.g we assume that the machines are ordered sathat:; are non increasing. We perform
the following transformation. Note that in each step of the transformation thieof@reedy can
only increase and the cost of the off-line algorithm can only decredss.igin particular due to the
convexity of the functiont?. Figure 3 shows the obtained shape at the end of each transformation
step.

1. Inthis step we move to a continuous sh&pe- (h(t), z(t)) , whereh(t) andz(t) are functions
in the interval0, m]. We treat each poirtin that interval as a machine and the val{e) +x(t)
as its load. Now we transform regular jobs (jobs or part of jobs) thapkaeed below height
1 to sand jobs. Next we push the sand jobs left such that the sand jolts tilighe equal
to 1 from point0 to point V, whereV} is the total volume of the sand jobs. Formally, let
R = (h(t),z(t)) be the current shape and tgtbe maximal, such thdt(¢) + z(t) > 1 then the
new shape?’ = (h/(t),2/(t)) is obtained as follows. Denote

Vo= to+ / " (h) + ()t

to

then
/ _ 1 tSVO
h(t)_{o Vo <t
i () +a(t) -1 t <ty
x(t){ 0 to <t

2. Jobs that in the off-line algorithm are scheduled on machines with saadajebpushed left
to have the same height as the load of those machines in the off-line algorithich (are
balanced). Formally, leR = (h(t),z(t)) be the current shape then the new shape=
(h'(t),2'(t)) is obtained as follows. Let be a minimal point such that machinghas sand
jobs in the off-line algorithm, letv be its total load in the off-line algorithm and I8t be the
volume of the regular jobs on machinigs, m]. Denote

Vlz/ x(t)dt
t1

then

z(t) t<t
2 (t) = wo H<t<t+4a
0 otherwise



3. Sand jobs on machines with no regular jobs are transformed continuousgttiar jobs of
height equal tav (as defined in the previous step). We put these jobs on the leftmost machines
possible that have only sand jobs. We perform this process from rigktttoThis process
continues until all machines in the greedy shape have sand jobs andlar jeppu Formally,
let R = (h(t),z(t)) be the current shape then the new sh&be= (h/(t),2'(t)) is obtained
as follows. Lett; be maximal such that machine has sand jobs and a regular job. kebe
maximal such that machirte has jobs (any jobs). Let= 1wl then

w+1 !
e )1 t<s
v ={

otherwise
o(t) t<t
2 (t) = w t1<t<s
0 otherwise

It is easy to see that in each of the transformation steps the cost of graedynly increase and
the cost of the off-line algorithm can only decrease due to the convexibedtinctionz?. We denote
the shape obtained by the transformationfy= (h’, 2’). This shape has jobs on machirf@ss| for
some real number < s < m. Each machine € |0, s| has sand jobs of height 1 and a regular job of
heightz/(¢) > 0, other machines have no jobs assigned to them, hence this is a partial fiat The
off-line shape has jobs of height(¢) on machines € [0, s] and sand jobs of total volumeevenly
assigned to machings, m]. In additiontgf(i)n] 7'(t) > w = s/(m — s), hence the off-line shape is a

separate shape. This completes the proof.
[ ]

Lemma 3.2 Let R = (h,x) be a partial flat shape such tha{¢) = 1 for 0 < ¢ < s. Assume that
the off-line shape oR is a separate shape. Then there is a shape R’=(h,x’), such tha& for < s,
z'(t) = y for some valug; > 0 and otherwiser/(¢) = 0 and it holds that| L(R)||, < || L(R')||, and
OPT(R) = OPT(R/) .

Proof: Leté - m = s. Define 5
1 m 1
=(—— P(t)dt)».
v=(om [ e

ClearlyOPT(R) = OPT(R’). Now

é-m 1

IL(R)[l, = (/0 (1 +z(t))Pdt)»
o-m 1 o-m i
< (/0 1dt)» + (/0 xP(t)dt)»

— (5-m)r+(5-m)7 -y
— (G-m)7-(1+y)
— |IL(R),

where the inequality follows from the triangle inequality for thenorm. This completes the proa.
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Figure 3: The transformation steps

Define the functiory (4, =) with the constraing(4, z).
f(6,z2) = §6-(1+ax)P,
g(o,z) = 6-aP 4+ —r— =1

Theorem 3.3 The competitive ratio of Greedy algorithm satisfies

T =

CGreedy < (fmn,z)

where f,,,q. is the maximum of with constraint (2), in the domait < 2,0 < § <

N[

1

(1)
(2)



Proof: Let Ry be the Greedy shape of a schedtilebtained by Greedy. For simplicity we transform
to a new shap&; by normalizing all job weights such that

(OPT(Ry))? = m. (3)

If all the h components of?; are equal to zero then the Greedy schedule is optimal. Otherwise by
applying Lemma 3.1 and Lemma 3.2 we obtain fréna partial flat shapéz, = (h,x), in which

all the non zero components ofare the same and its off-line shape is a separate shape such that
|IL(R1)|lp < ||L(R2)|l, andOPT(R;) > OPT(R;). We have

LB = 6 m- (142, "
(OPT(Ry))" = /ﬁm PE)dt+ (1 — (2T —§omar T ()
2 =, T m(l—&)-m =d0-m-x Aoy

e e (6)

- (1-6)-m 1-96

The last inequality restricts the weight of a regular job to be greater thenttieveight of sand jobs
on machines with sand jobs in the off-line shape. For simplicity we divide equaf#tieand (5) by
m, this does not change the ratio between the cost and the off-line cdsipéR,. Which gives the
following

V4
1 > §-22+ (1_5%, (8)

The left side of the equality ig(6, ) by definition. The first inequality results from (5), since
(OPT(R2))? < (OPT(R1))P < m and the division byn.
Substituting (9) in (8) gives

§p+1 5P 5P

R R T s e R s

which yieldss < % We obtain the following relation fof

ALY (LR (LS,
H00 =2 2 o Z (OPTS)P

where the first inequality follows from (3) and the fact that(R,)||, < ||L(R2)||,- Hence to bound
the competitive ratio of Greedy we need to solve the following maximum problemeirddmain
0<6< % and0 < z. We need to find the maximum ¢f(0, ) under the constraint (8). It is easy
to see that the maximum of is obtained when (8) is an equality. Hence we obtain the following
maximum problem forf with constrainty (1), (2) in the domair®) < z,0 < § < % This completes
the proof. [

The following theorem results from Theorem 3.3. The proof appearppeAdix B.2.
< 2.2293.

Theorem 3.4 For p = 2 the competitive ratio of Greedy algorithmG%reedy <
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Theorem A.2 in the Appendix gives a somewhat weaker result to theognusdng a different
method for approximating the upper bound.

The following Theorem gives an upper bound%fm 2.1111 for the competitive ratio of Greedy
for p = 2 andm = 3, which is an improvement of the constant upper bound. This result follews f
Theorem A.1, which appears in the Appendix.

Theorem 3.5 For p = 2 andm = 3 the competitive ratio of Greedy algorithrﬁ‘éreedy s < P
2.1111.

Now we turn to the case of genegal The proof of the following theorems appear in Appendices
B.3 and B.4.

Theorem 3.6 For anyp > 1 it holds Cirecay < 2 — <%)

Theorem 3.7 For m = 2 the greedy algorithm is optimal and its competitive ratio is

1
1+ (1+ m)p> P
C —sup [ TEN T 10
Greedy,2 Iz%) < P 4 P ( )

and the supremum is achieved as a maximum at the unique salutaid, co) of the equation

P N1+ (1 +2)7P) = 2P,

From the above theorem, which claims thatfer= 2 Greedy is optimal and its competitive ratio is
the same as in the permanent tasks case, we obtain according to [3] that$am of the squares and
for two machines Greedy is optimal and its competitive ratio,is + 3)/4 ~ 1.309.

4 Lower bounds

4.1 Lower bounds for sum of squares

In this section we give lower bounds fpr= 2. We prove a lower bound for any algorithm (the proof
is form = 3). Then we prove a weaker lower bound for any> 3. Finally we prove a lower bound
for Greedy for a large number of machines ( ~o).

Theorem 4.1 For any on-line assignment algorithe, C3 > C3 5 > 1.4472.

Proof: Consider the following sequence for three machines. First three unitajothone job of
weightx > 1 arrive. Then two unit jobs depart. At last one job of weigtrrive. Consider the first
three unit jobs. If algorithmd assigns two or more jobs to the same machine, it does not get any other
job. Its cost is at least, the optimal cost i$, and we are done. Otherwise, algorittrassigns one
unit job to every machine (the off-line algorithm assigns two unit jobs to macharel one unit job
to machine2). Now the next job of weight: arrives. AlgorithmA assigns it to one of the machines
say1 (the off-line algorithm assigns it to machiBg Then two unit jobs depart, which are the jobs
on machineg,3 (the jobs on machine in the off-line algorithm). At last a job of weigt arrive.
The best algorithnd can do is to assign it to one of the empty machihes 3 (the off-line algorithm
assigns it to maching). Its cost is at leastl + x)? + 22 , whereas the optimum cost$ + 1 + 22,
The maximal ratiox 1.4472 is achieved for: = /5. ]
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Theorem 4.2 For any number of machines > 3 and any on-line assignment algorith# Cfx,m >
4/3 — O(55). For m divisible bys, C% ,, > 4/3.

Proof: Letm = 3k. We consider the following sequence. Fidét unit jobs arrive. Ther2k unit
jobs depart. Finally: jobs of weight2 arrive. Consider the arrival of the firgék unit jobs. Algorithm
A assigns these jobs. W.l.o.g we assume that machines, m are sorted in nondecreasing order of
load (the off-line algorithm assigns two jobs on each macthine. , £ and one job on each machine
k+1,...,3k). Then2k jobs depart. There exists a minimal> 2k, such that machines, ..., ¢
are assigned at lea2k jobs. Then2k jobs from machineg, ..., ¢ depart as follows, all jobs from
machined., ..., t — 1 and some jobs from machirnin the off-line algorithm the jobs on machines
1,..., k depart). At the end of this step machings. . , 2k are empty. Nexk jobs of weight2 arrive.
The best algorithmd can do is to assign each job to an empty machine (In the off-line these jobs are
assigned to machinds. . ., k). Finally there are jobs of total weight assigned to no more th&#
machines. Due to the convexity of the functiefy the minimum cost is obtained when all machines
have the same load, therefore its cost is at [Bast(2)2. The optimum cost i% - 22 + 2k - 12, which
yields a ratio oft/3. Form not divisible by3 a similar proof gives a ratio of /3 — O(L).

[ ]

Theorem 4.3 For the greedy algorithmcémdy > 1.7906.

Proof: First we prove a weaker lower bound b7281 for the greedy algorithm, by solving an ordi-
nary differential equation analytically. Then by a similar proof we obtain aencomplex ordinary
differential equation, which has no simple solution. Hence we use a conpoigtam to compute
the competitive ratio in this case, which gives a lower bount T06.

We start with the first proof. We see the machines as» points in the interva(0, 1], machine;
as the point> € (0, 1], and the load of the machines as a functfgn), f(t) = I; for (17—71_1) <t< L
wherel; is the load of machiné. For each machinéthe total load is the value of in the interval
(%, %] and the total load of all machines is the total volumef affi the interval(0, 1] multiplied by
m. Let f(k/m) be the load of machineat the end of step and letF'(k/m) be the volume of the jobs
assigned to machinds . . ., m at the beginning of step in the following process. For convenience
we number the steps from to 1 in decreasing order. In this process we keep the volume of jobs fixed
and equal td at the end of each step. We start with the arrival of infinitesimally small jolbstaf
volume1, we call jobs of this type sand jobs. Both the off-line and greedy algorittesiga these
jobs evenly on all the machines (total heightn each machine). At stépa job of heightz (z > 1)
arrives. Greedy assigns this job to the machine with minimum load w.l.0.g to mackheh is the
one with the largest index among all machines with the minimum load. , k£ (otherwise we swap
indices) and the off-line algorithm performs the same assignment. Thenrtiga®s on machines
1,...,k—1departin greedy. In the off-line algorithm the departing jobs are contpafsall the sand
jobs of machinég: and equal amounts of sand jobs from machihes., & — 1 with the appropriate
volume. Next sand jobs arrive with total volunie- F'(k/m) — = (=1-total volume of machines
k,...,m), thus keeping the total volume equalio Greedy and the off-line algorithms assign the
sand jobs to machings. .., k — 1 evenly, such that these machines will have the same load. At the

end of stepk
_1—F(k/m)
f(k/m) = “iim +x
The computation of the lower bound for Greedy according to the abowasgoewhich is techni-
cal, appears in Appendix B.5. [
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4.2 Lower bound for generalp > 1

In this section we construct a lower bound for generat 1. The proof of the following theorem
appears in Appendix B.6.

Theorem 4.4 For anyp > 1 and any on-line algorithnd it holds thatC'y > 2 — O (1‘17”).
Acknowledgment: We would like to thank Adi Avidor for letting us use Figuresida?.
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Appendix

A The competitive ratio of Greedy

We show forp = 2 andm = 3 an upper bound 0{39 ~ 2.1111 for the competitive ratio of Greedy,
which is an improvement of the constant upper bound. Actually we givepperibound in a more
general way in the following theorem.

Theorem A.1 For p = 2 the competitive ratio of Greedy algorithm is bounded@,..,, ,, <
3-2+:L
m m

Proof: We start with genergh. Consider timel’, when greedy reaches the maximum cost. d.et
be the time just after the last job was assigned to machisech thatt; < 7. Let h;(¢;) be the
load of machine, just before assigning that job and let¢;) be the weight of that job. In general
let z;(t;) be the weight of the last job assigned to machyjra timet;. Let ;(¢;) be the total Ioad
of jobs on maching at timet; exceptz;(t;). Note that there exists a machlhe;uch thatl’ =

Let Greedy, Opt() and Opt be the costs of Greedy, the optimal off-line algorithm at tinaed the
optimal off-line algorithm respectively. Denote

" (hy(t) + @t
(e — S (hat) + 25() an
m
From the convexity of the function?
m - h(t;)P < Opt(t;)P < OptP. (12)
Substituting (11) in (12) yields
Z ) +xi(ts)) < — Opt. (13)
7j=1
For machine we have (using volume considerations)
m-hi(T) 4+ z(T) < m-hi(ts) + xi(t;)
< Z hj(ti) +x;(t:))
7=1
< m"v-opt (14)

where the first inequality follows from the fact that no jobs arrive to mazhimetween times;
andT (note that jobs can depart from machingt that time interval). The second inequality follows
from the definition of Greedy/j # i h;(t;) < h;(t;) +z;(t;). The lastinequality is obtained by (13).
The inequality (14) is equivalent to
hi(T) < m”r -Opt — @

(15)

For convenience we denokg(T") by h; andz;(7T") by ;. Now we turn to the case=2.
Substitutingy = 2 in inequality (15) gives

13



Opt Ty (T)

hi(T) < — — 16
(M) < J= == (16)
It is obvious that .
> a2 < opt? (17)
i=1
as all jobsr; are present at tim€. In addition we use the following
- " Opt xl)
hzl'z S —_— = — | "X (18)
Sea < (B
Opt f: 1 — 9
vm i=1 moia
Opt 1 &,
< £ . - . - 2
< I (vm - Opt) — — ;xz (20)
1 m
= 2_ . 2
= Opt - ;xz (22)

where the first inequality follows from (15). The second inequality follénes (13) by assigning
p=2.
We bound the competitive ratio of greedy

Greedy® = Z(hi+:ci)2

= ihi-(hi—i—xi)—i-ixi'(hri‘l’i)

i=1 =1

“ Opt ZT; i
< Il . . . . .
< 1'521(\/% m) (hz—i-azz)—i-;:l:c, (hi + ;)
Ot m m
= — hi+x;)+(1——)- i+ (hy + x5
Ve Slhitm) (=)D e (b )
Opt 1 -
< )" : 1—— i\l i
< () (- Op)+ (1= )3 i (b )
_ 2 1N, o
= Opt”+(1 m) (;_1 h; :L’ﬁ—;_l xy)
1 m
< 24+ (1— — 2 + (1 . 2
< Opft (1= ) |Opf+ (1= ) }]
< Opt2+(1—%)-[0pt2+(1 —)-Oth]
3 2
= (3—E+—2)'Opt



where the first inequality follows from (15). The second inequality folldwesn (13). The third
inequality follows from (21). The last inequality follows from (17). Thiswpletes the proof. =

The following theorem gives a somewhat weaker result to Theorem 8idg different method
for approximation of the upper bound.

Theorem A.2 For p = 2 the competitive ratio of Greedy algorithmd, < 2.2361.

reedy,m

Proof: Let S be a schedule obtained by Greedy andiet= (h, z) be the shape of the schedufle
For simplicity we normalize all job weights, such that

(OPT(Ry))* = m. (22)

This does not change the competitive ratio of the schefulé/.l.0.g we assume that in the off-
line shape jobs, ..., z,, are assigned to machings. . . , m respectively (the machines are ordered
,S.t.x; are non increasing) and sand jobs are assigned to machinés. .., m, s.t. the total load of
each machiné + 1, ..., m is the same.

It is easy to see that

h; <1 (23)

(otherwise when the last job was assigned to machinefore Greedy reached the maximum cost,
(OPT(S))? > m, which is a contradiction)
and
Vi, k+1<i<m, z; <1 (24)

(otherwisevi, 1 <i < m, z; > 1, therefore OPT(R;))? > m , which is a contradiction).
We bound the cost of shagg

(IL(R)2)* = Y (hi+2:)
i=1
k k m m
= Zhi'(hrl-xi)—i-zﬂ?i “(hi +25) + Z hi - (hi + ;) + Z z; - (hi + i)
i=1 i=1 i=k+1 i=k+1
k k m
i=1 i=1 i=k—+1
k k k m
= ZHJ?—!—Q-Zhi-wZ‘—FZh?—I—Q' Z(hz+xl)
i=1 i=1 i=1 i=k+1
k k k m
< Z$?+2'Zhi'$i+zhi+2‘ Z (hi + ;)
i=1 i=1 i=1 i=k+1
k k k m m k
< Zx?+2-JZhi-\le%+2-(Z hit Y @)+ h (25)
i=1 i=1 i=1 i=k—+1 i=k+1 i=1

where the first inequality follows from (23) and (24). The second iaétyfollows from the fact
thath? < h; (sinceh; < 1). The last inequality follows from Cauchy Schwartz inequality.
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From (22) we obtain the following equation for the off-line cost of sh&pe

k

m m 2
> al+(m—k) <(Z“ Lhub® S xi)) = (OPT(Ry))* = m

, m—k
=1

which is equivalent to

k m m
sz n (o hi + 3 i)®

m—k
=1
Denote
k
a-m = Zw?,
=1
m m
B-m o= > hit+ Y
i=k+1 i=k+1
k
yeomo = Zhi7
=1
k
0 = —
m
where

OSOé,ﬁ,’}/,(SSl.

Substituting the above new variables in (25) and (26) gives

(HL(RI)HQ)Z = Oé'm+2-\/a-’y-m+2ﬂ.m+,y,m,

B+7)>-m
o m—i—il_a = m.

Dividing the above equations by gives

fla,B,v) = a+2-Ja-vy+20+7,

B+7)?
o+ - = 1,

where in the first equation we replage- (|| L(R1)|2)? , by f(a, 3,7).
We add the following constraint

v < 0.

This constraint results from the definitionsafs and the fact that; < 1.
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We obtain the following relation fof

_ZIEERD? _ (LRI (L))
flosp.n) = 2 T = (oA 2 (OPTIS)?

m

Hence to bound the competitive ratio of Greedy we can solve the following maxiprablem
for f in the domain (27). We have to find the maximumfdé., 3, ) under the constraints (31), (32).
It is easy to see that the maximum pfa, 3,~) under the constraints (31) and (32) is achieved
when~y = §. Hence we have to find the maximum ff«, 3, v) under the following constraint

(B+7) _
11—~y
We find the maximum off(«, 3,~) under the constraint (33) using the Lagrange multipliers
method.
By Theorem A.3 the maximum of is achieved atr ~ 0.7236, 6 ~ 0.1708, v ~ 0.2764, and
Creeay < fla, B,7) ~ 2.2361. This completes the proof.

o+ 1. (33)

]
Theorem A.3 Let
fla,By) = a+2-Va-v+20+7, (34)
g, B,7) = a+ wf_’f “1-0. (35)
The maximum of under the constraing in the domair) < «, 8,7 < 1S fihae ~ 2.2361.
Proof: Equation (35) is equivalent to
Btry=+01-a)1-7). (36)
Substituting (36) in (34) gives
flayy) =a+2-a-y+2(/(1-a)(l-7) —7. (37)

First we find the maximum of on the boundary
1. If & = 0. Substitutingr in (37) givesf < 2.
2. If o = 1. Substitutingy in (35) givesg = v = 0. Substitutingx, v in (37) givesf < 1.

3. If 8 = 0. Substitutingg in (35) and finding the maximum of under this constraint using
Maple givesf q: ~ f(a = 0.7913,v = 0.3642) ~ 2.2293.

4. If p = 1. Substitutings in (35) givesa = v = 0. Substitutingy, v in (34) givesf < 2.
5. If v = 0. Substitutingy in (37) givesf < 2.
6. If v = 1. Substitutingy in (37) givesf < 2.

Now we find the local extremum points @gfusing the lagrange multipliers method.
Solving in Maple givesfia: ~ f(a = 0.7236,5 = 0.1708,7 = 0.2764) ~ 2.2361. This
completes the proof.
[ ]
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B Omitted proofs

B.1 Proof of Lemma 2.1

We have seen above that there exists a schedule which achieves thidtvaoins to prove that for
any schedulé& with shapeR, the costOPT(.S) is at least the bound in the statement of the lemma.

From the definition ofi(R) it follows thath < u; for everyi > k (otherwise we would have
chosen largek). Fori > k, let j; be a job assigned to machin@ S with weight at leasty; (it exists,
sinceu; > 0).

Let S’ be the optimal schedule for the jobsSn First, S” has a machine with load at mdstthere
are at least machines on which no joly, i > k, is scheduled, and their total load is at mbat
Second, ifS’ is optimal, then for any > k, no other job is assigned to the same machine as the job
ji- Assume that the jobj; is scheduled on a machine with the Idag- 0 of other jobs. We know that
there is a machine with load< h < u; < wj,. However, if we replace the two machines with loads
c andb + w;, by two machines with loadl + ¢ andwy,, the total cost decreases due to the convexity
of the functionz?. Consequently, after a renumbering of the machines, the vector of load&(S”)
satisfiesL; > u; for eachi > kand) ", L; = hk + >_", ., u;. Using convexity again, the cost of
any such schedule is at ledst, . . ., h, ugt1, ..., um)||p-

B.2 Proof of Theorem 3.4

By Theorem 3.3 the competitive ratio of Greedy is obtained by solving the fltpmaximum prob-
lem for f, which is obtained by substituting= 2 in (1) and (2).

f6,z) = §-(1+z) (38)
52

_ L2
1—(5334-1_6.

(39)

We solve this maximum problem. (39) gives

r = —=2 (40)

Substituting equation (40) in equation (38) gives

1— -2 i
f&=6-1+ 51—5 . (41)

From (41) we have to find the maximum §£5) in the intervals € [0, 3.
Using Maple we can see that the maximum of f is achievedl at 0.3642, (z ~ 1.474), and
< f(9) = 2.2293. This completes the proof.

2
CGreedy

B.3 Proof of Theorem 3.6

By Theorem 3.3 we have

Hence



Substitutingd in (1) gives

0 < B = ). @
Substitutings < 1 in (1) gives
F(6,0) < S (1) = fala).

Since f1(x) is a monotonically decreasing function ofand f»(x) is a monotonically increasing
function of z we obtain

1 1 1\P
f(é,x) < fmax < fQ(J:O = 2p) = 5 (1 +2p)
wherezy = 20 is a solution of the equation
fi(x) = fa(z).
Hence
1
1 1+ 27 1\>r 1 1
CGreedyS(fma:c)pg 1 :1+<§>p:1+6 pln2:2—Q<—).
2p b

This completes the proof.

B.4 Proof of Theorem 3.7

First we show that any schedufeobtained by Greedy has a flat shapevhich is a shape of.(.5).
Consider timeT’, when greedy reaches the maximum cost. Let L(S) be the vector of loads
of S attimeT. W.l.o.g we assume thdt; is the smallest component &f We claim that the shape
R = (a,u) wherea = L andu; = L; —a, is a flat shape ok (.S). Clearly(L(R) = L(S)). Consider
machine2 with us > 0. Let j be the last job assigned to the mach2nentil time 7. At the time of its
assignment, the load of machihenust have been at mostas otherwise the greedy cost at that time
would be greater theftiZ(S)||,, which is a contradiction. Hence; > Ly — a = ug, and the shape
R = (a,u) is a flat shape.

In [3] it is shown that in the permanent tasks casenfoe= 2 the greedy algorithm is optimal and
its competitive ratio is given in equation (10). The proof of the upper bouas based on the fact
that each schedulg obtained by greedy has a flat shape, hence this upper bound is triferalse
temporary tasks case. The proof of the lower bound gives a schechiteh is a legal schedule also
for the temporary tasks case, hence this lower bound is true also for therempasks case. This
completes the proof.

B.5 Detailed proof of Theorem 4.3

Whenm — oot = k/m is a continuous variable in the interv@, 1] and we get the following

equation
1= F(t)

t

f(t) + . (43)
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We havef(t) = (smceF / f(u)du) and we get

dF(t) 1—F(t)
dt ot

+x.

Now we have the following first order differential equation

dE(t)
—t— +Ft)—z-t—1 = 0
F(1) = 0
It is easy to verify its solution
F(t)=—z-t-In(t) —t+ 1. (44)

Substituting equation (44) in equation (43) gives
ft)=x-In(t) +z+1. (45)

The above process continues until assigning the job with weightthe machine represented by
to, WwhereF'(ty) = 1, i.e until the volume of all machines of greedy that were assigned a job ohtveig
x approacheg (until there are no sand jobs that can depart from machingst < ¢y). From (44)
we get

—l‘-to-ln(to)—to—i-l:l
which gives

to = 6_;1'.

At the end of the above process each machine in the intggdl has sand jobs and one big job of
weightz. In the off-line algorithm each machine in the interya), 1] has one job of weight and
the other machines have sand jobs assigned equally to them. The maximum gestdy and the
off-line algorithms is obtained at the end of the above process due to thexitynof the function
xP. Let Greedy(x) andOpt(z), be the costs of greedy and the off-line algorithms as a functian of
respectively.

1
Greedy*(r) = ) fA(t)dt

e =

1
= /6;) (z-In(t) + = + 1)%dt

= /11 [ In%(t) + 2z - (x + 1) - In(t) + (z + 1)?]dt

T

= [ (t-In%(¢) —21t-1n()+21t)+2:;:-(ac+1)-(t-(ln(lt)—t)Jr(ﬂchl)Q't]i—l

T

= [t- (2 In*(t) + 2z - In(t) + 2 +1)],%

HI'—'

)+ 1,

= 22 (l—e
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_1 2
Oth(gg) = (1—6_%>-x2+e—%. [1—(1_? w)‘x]
e =z
1 1 )
e (o) P+ [1-(1-ee) af’

1

= e%-[(m2—2m)-(1—e*%)+l}.

Let
_ Greedy*(z)

2
lm) = Opt*(x)
and
C? = max C?(x).
1<z
Forz > 1 the maximum value of?(x) is obtained approximately at ~ 1.2612 and its value is
C? ~ 1.7281. HenceCy, ., > C* ~ 1.7281.

Now we give a similar proof to improve the lower bound. The process afteve similar with the
difference that here we keep the cost of the off-line algorithm fixedeapul to 1 instead of keeping
the volume fixed and equal to 1 at the end of each step. In this proof wib@isame notations as in
the first proof. Consider the off-line algorithm at the end of stefhen assigning a job with weight
to machine. According to the invariant constraint we have.

(1—1t)-2® +t-h*=Opt*(x) = 1.

Whereh is the weight of the sand jobs on machin@g] at the end of step We defineh as a function

of . The above equation gives
—(1=1t) 22
h(t) /1—(1 : t)-x ‘

f(t):(1—t)~1:+7;-h(t)—F(t)+x. (46)

At the end of step

We havef(t) = —%Et) and we get

dF(t) (1—t)-z+t-h(t)— F(t)
- ; + .

Now we have the following first order differential equation

dF(t)

.=\
dt

+F(t)—t-h(t)—x = 0
F(1) = 0
The solution to this equation is not simple and was calculated using a compugeaipravhich gave

the following result. For: > 1 the maximum value of?(z) is obtained approximately at~ 1.3888

and its value i€0? ~ 1.7906. HenceC,..,, > C* =~ 1.7906, which completes the proof.

21



B.6 Proof of Theorem 4.4

Let m — oo. As in the proof of Theorem 4.3 we consider the machines as points in theahter
(0, 1], each machine is represented by a poiat (0, 1], and the load of the machines is represented
as a functionf(¢) in that interval. Letd) < a < 1. We consider the following sequence. First
infinitesimally small jobs of total volume arrive. Next, jobs of total volumél — «) depart. Finally
unit jobs of total volume arrive. Consider the arrival of the infinitesimally small jobs. Algoritim
assigns these jobs, w.l.o.g we assume that maclines. , 1] are in non increasing order of load (the
off-line algorithm assigns these jobs evenly on all the machines).s leta be maximal such that
machinegs, ..., 1] are assigned jobs of total volunie—«). Then jobs of total volumél — o) depart
from machineqs, ..., 1] (in the off-line algorithm these jobs depart evenly from all the machines).
We denote byr < « the fraction of machines with assigned jobs of total height greaterithblext

the unit jobs of total volume arrive. The best Greedy can do is to assign jobs of total volirex)
evenly to machine&y, . . ., 1] and then to assign jobs of total voluméo the« least loaded machines,
which are composed of machings, . . ., a], each machine with jobs of total height less tHeand
w.l.0.g to machineséa, o+ x], each machine with jobs of total heighfthe off-line algorithm assigns
these jobs evenly to all the machines). L&tnd Opt be the costs of algorithrh and the off-line
algorithms respectively.

p
A > gopgg |t
- o
= x-2p+a(2—£)p
(6]

where the first term from left represents the cost of machiaes. ., a + x] and the other term is
a lower bound for the cost of machin@s .. ., a].

Opt? = (1+«a)P.
Hence
A \?
A
o ()
x-2p+a(2—£)p

> e 48
- (1+a)p (48)

We choosex = 1—1). We consider two cases. In both cases we use the ineqaality 1 — .
Forz > & = [% we obtain

D D —2Inp
el P __ 1P e
p (e P (+lp T a+lp
Hence
olnp 1 2111]?
CA226 P > 1p -0 ln_p
1+5 14—}—7 p



Forz <& = Z% we obtain

Hence

This completes the proof.

L e
p (143
1
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p
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