
On-Line Machine CoveringYossi Azar1,Leah Epstein21 Dept. of Computer Science, Tel-Aviv University. ???2 Dept. of Computer Science, Tel-Aviv University. yAbstract. We consider the problem of scheduling a sequence of jobs tom parallel machines as to maximize the minimum load over the machines.This situation corresponds to a case that a system which consists of themmachines is alive (i.e. productive) only when all the machines are alive,and the system should be maintained alive as long as possible. It is wellknown that any on-line deterministic algorithm for identical machineshas a competitive ratio of at least m and that greedy is anm competitivealgorithm. In contrast we design an on-line randomized algorithm whichis ~O(pm) competitive and a matching lower bound of
(pm) for any on-line randomized algorithm. In the case where the jobs are polynomiallyrelated we design an optimal O(logm) competitive randomized algorithmand a matching tight lower bound for any on-line randomized algorithm.In fact, if F is the ratio between the largest job and the smallest job thenour randomized algorithm is O(log F) competitive.A sub-problem that we solve which is interesting by its own is the prob-lem where the value of the optimal algorithm is known in advance. Herewe show a deterministic (constant) 2� 1m competitive algorithm. We alsoshow that our algorithm is optimal for two, three and four machines andthat no on-line deterministic algorithm can achieve a better competitiveratio than 1:75 for m � 4 machines.For related machines we show that there is no on-line algorithm, whosecompetitive ratio is a function of the number of machines. However, forthe case where the value of the optimal assignment is known in advance,and for the case where jobs arrive in non increasing order, we show thatthe exact competitive ratio is m. We show a constant 2 competitivealgorithm for the intersection of the above two cases, i.e. the value ofthe optimal assignment is known in advance and the jobs arrive in nonincreasing order.1 IntroductionWe consider the problem of scheduling a sequence of jobs to m parallel machinesas to maximize the minimum load over the machines. This situation is moti-vated by the following scenario. A system consists of m (identical or related)??? E-Mail: azar@math.tau.ac.il. Research supported in part by Allon Fellowship and bythe Israel Science Foundation administered by the Israel Academy of Sciences.y E-Mail: lea@math.tau.ac.il.

machines. The system is alive (i.e. productive) only when all the machines arealive. In order to keep a machine alive it requires resources (e.g. tanks of fuel).The various size resources arrive one after the other, and each resource should beassigned immediately upon its arrival to one of the machines. The goal is clearlyto keep the system alive as long as possible. The above problem has applicationsalso in the sequencing of maintenance actions for modular gas turbine aircraftengines [15]. To conform with the standard scheduling terminology we view theresources as jobs. Thus, jobs are assigned to machines as to maximize the mini-mum load. If all the machines are identical then the problem corresponds to theidentical machines scheduling/load-balancing problem and if each machine hasits own size (of the engine that operates on the fuel) then it corresponds to therelated machines problem.We give a formal de�nition of the problem discussed above. Consider a setof m identical machines and a set of jobs that arrive on-line. Each job j has aweight wj. The load of a machine i is the sum of the weights of the jobs assignedto it. That is, li = Pj2Ji wj , where Ji is the of jobs assigned to machine i. Ifmachine i has a speed vi (related machines case) then li =Pj2Ji wjvi . The goalis to assign the jobs to the machines as to maximize the minimum load over themachines. The problems are on-line versions of classical covering problems andare called the machine covering problems. Note that these problems are di�erentfrom the bin covering problems [2, 4, 5, 13] where the goal is to maximize thenumber of covered bins, i.e. bins of load of at least 1.We use the standard de�nition of the competitive ratio. Denote by Von(�)(or just Von) the value of the on-line algorithm for a sequence � which is theload incurred on the least loaded machine. The value of the optimal assignmentfor this sequence would be denoted by Vopt(�) (or justVopt). The algorithm isc competitive (the competitive ratio is c) if for every sequence �, Vopt(�) �c � Von(�).Known results: The o�-line problem of maximizing the load of the leastloaded machine, is known to be NP-complete in the strong sense [17]. Woeg-inger [22] designed a polynomial time approximation scheme for the identicalmachines case. He also showed that the greedy algorithm is m competitive. (Itis well known that no deterministic algorithm can achieve a better competitiveratio.) Deuermeyer, Friesen and Langston [14] studied a semi on-line problemon identical machines. They examined the LPT-heuristic which order the jobsby non increasing weights and assigns each job to the least loaded machine atthe moment. It is shown in [14] that the competitive ratio of this heuristic is atmost 43 . The tight ratio 4m�23m�1 is given by Csirik, Kellerer and Woeginger [12].Our Results: We consider the on-line version of the machine coveringproblems. We show the following results for the identical machines case.{ There is a randomized O(pm logm) competitive algorithm and any ran-domized algorithm is at least
(pm) competitive. This is in contrast to thecompetitive ratio of the best possible deterministic algorithm which is m.{ There is a randomized O(logF) competitive algorithm for jobs of weightswhich may vary up to a factor of F . In particular, there is an O(logm)

competitive randomized algorithm for polynomially related weight jobs. (Thedeterministic lower bound of m holds already for jobs of weights that arepolynomially related.) Also, any randomized algorithm is at least
(logm)competitive for polynomially related weight jobs.A sub-problem that we solve which is interesting by its own is the problemwhere the value of the optimal algorithm is known in advance. Here we show thefollowing results:{ There is a deterministic 2� 1m competitive algorithm.{ The algorithm is optimal for two, three and four machines and no on-linedeterministic algorithm can achieve a better competitive ratio than 1:75 form � 4 machines.For related machines we show the following results{ There is no algorithm whose competitive ratio is a function of the numberof machines.{ For the case where the value of the optimal assignment is known in advancethe exact competitive ratio is m.{ For the case where jobs arrive in non increasing order the exact competitiveratio is also m.{ For the case where both the value of the optimal assignment is known inadvance and jobs arrive in non increasing order there is 2 competitive algo-rithm.Other related work: The original scheduling problem of minimizing themaximum load over all machines has been widely studied. The problem wasintroduced by Graham [18, 19] who gave a greedy algorithm "List Scheduling"which is 2 � 1m competitive. It turns out that the algorithm of Graham is notoptimal for minimizing the maximum load (for all m � 4) [16, 11]. Bartal et al.[8] were the �rst to show an algorithm whose competitive ratio is strictly belowc < 2 (for all m). More precisely, their algorithm achieves a competitive ratioof about 2 � 170 . Later, the algorithm was generalized by Karger, Phillips andTorng [20] to yield an upper bound of 1:945. Very recently, Albers [1] designed1:923 competitive algorithm and improved the lower bound to 1:852 (the previ-ous lower bound was 1:8370 [7]). Clearly randomized algorithms for the problemmay improve the bounds only by a constant factor. Unlike the scheduling prob-lem, there are no constant competitive algorithms for the covering problem onidentical machines. Moreover, as we mentioned our results show that the compet-itive ratio of randomized algorithms are signi�cantly better than the competitiveratio of the deterministic ones.For the related machines case it was proved in [3] that there is a constant8 competitive algorithm for minimizing the maximum load. (the constant wasrecently improved by [9].) If the value of the optimal assignment is known inadvance then the competitive ratio is 2. This is in contrast to the \more di�cult"covering problem where in order to get comparable results one need to assume

that the jobs arrive in non-increasing order and the optimal value is known inadvance.It is interesting to note that a measure which is di�erent than the maximumload has been already used for scheduling problems. Speci�cally, Awerbuch etal.[6] studied the case of minimizing the sum of the squares of the load (andgeneral Lp norm). It is shown that there is a constant competitive algorithm fora general class of scheduling problems.Structure of the paper: In section 2 we consider the sub-problem wherethe value of the optimal assignment is known in advance. In section 3 we use analgorithm from section 2 as a procedure, and discuss randomized algorithms foridentical machines. In section 4 we consider algorithms for related machines.2 Known optimal valueIn this section we show a simple algorithm for identical machines for the casewhere the value of the optimal assignment is known in advance. We assumewithout loss of generality that Vopt = 1. The competitive ratio of our algorithmis 2� 1m , which is the same ratio as for the algorithmof Graham for scheduling. Incontrast to the algorithm of Graham which tries to �ll all the machines evenly,our algorithm �lls the machines one by one. We de�ne � = m2m�1 and call amachine of load at least � a full machine. A non empty machine which is notfull is called active. Our algorithm maintains at most one active machine.Algorithm Fill:If there are no empty machines, assign a new job to the least loaded machine.Otherwise, if the weight of the new job is at least � assign it to an empty machine(the machine becomes full). If the weight of the job is less than � assign it tothe active machine if exists, and otherwise to an empty machine (which becomesactive).Theorem1. The algorithm Fill has a competitive ratio of 1� = 2� 1m .Proof. We show that when the algorithm terminates, all machines are full. Thisimplies that the competitive ratio is at most 1� . Assume that there is a non fullmachine. First we may replace all jobs of weight more than 1 by jobs of weight1, which would not in
uence the optimal algorithm or our algorithm. We showthat all jobs of weight at least � were assigned to empty machines. Otherwisethe �rst such job that was assigned to a non empty machine was assigned to theonly active machine, and after it was assigned all machines becomes full whichcontradicts the assumption. We estimate the load of each machine. Denote theload of the least loaded machine by h. The load of machines that have only onejob is clearly at most 1. If there are at least two jobs on a machine, its load isbounded by 2�, since just before the last job was placed the load was less than �and the weight of the last job is also less than �. Thus the load of each machineis bounded by 2�. Since the optimal value is 1 thenh � m � (m� 1) � 2� � m� (m � 1) 2m2m� 1 = m2m� 1 = �

which completes the proof.Notice that later we will use algorithm Fill with �0 � � which is clearly 1�0competitive. The algorithm Fill with the parameter � turns out to be optimalfor two, three and four machines.Theorem2. The competitive ratio of any algorithm for two machines is at least1:5 .Proof. We consider the following sequence of jobs. First two jobs of weight 2=3arrive. There are two cases:{ If both jobs were placed on one machine, then two jobs of weight 1=3 arrive.The optimal algorithmassigns one small job and one big job on each machine.The best value the on-line is 2=3 by assigning both small jobs to the emptymachine. Thus the competitive ratio in this case is at least 1:5 .{ If each job was placed on a di�erent machine, then one job of weight 1arrives. The optimal algorithm assignment the two jobs of weight 2=3 onone machine, and the unit job on the other machine. The on-line places theunit job on one machine, and the load of the other machine is still 2=3. Thecompetitive ratio in this case is also at least 1:5 .Theorem3. The competitive ratio of any algorithm for three machines is atleast 5=3 .Proof. We construct a sequence such that Von � 0:6 and thus the competitiveratio is at least 5=3. We consider the following sequence of jobs. First two jobs ofweight 0:6 arrive. If the on-line algorithm assigns the jobs on di�erent machines,two unit jobs arrive. The minimum load of the on-line is 0:6 while the optimalalgorithm assigns the jobs of weight 0:6 on one machine, and one unit job oneach other machine.If the on-line algorithm assigns them to the same machine, we continue thesequence by two jobs of weight 0:3 . Clearly, the on-line will not use the machinewith the �rst two jobs any more, because it already has load of at least 1. Thuswe are left with two machines. There are two cases:{ If the two jobs of weight 0:3 are placed on di�erent machines, then two jobsof weight 0:1 and one unit job arrive. Clearly, the best value the on-line canobtain is 0:5 (by assigning the unit job to one of the two machines, and bothjobs of weight 0:1 to the other). The optimal algorithm assigns the unit jobon one machine, and three jobs of weights 0:6; 0:3; 0:1 on each of the othertwo machines and achieves a minimum load of 1.{ If the two jobs of weight 0:3 are placed on the same machine, then a jobof weight 0:6 arrives. If it is placed on the only empty machine, a unit jobarrives, and since there are two on-line machines with load 0:6, Von = 0:6.The optimal algorithm assigns two jobs of weight 0:6 on one machine, theunit job on another machine and all the other jobs on the third machine andthus achieves a minimum load of 1. If the job of weight 0:6 is placed on the

machine with load 0:6, three jobs with the weights 0:4; 0:1; 0:1 arrive. Even ifthey are all placed on the third machine, Von = 0:6. The optimal algorithmassigns a job of weight 0:6 with a job of weight 0:4 on one machine and ajob of weight 0:6 with two jobs of weights 0:1 and 0:3 on each of the othertwo machines. Thus the competitive ratio is at least 5=3 for all the cases.The proof of the following theorem is omitted.Theorem4. The competitive ratio of any algorithm for four machines is at least1:75 .We give a general lower bound for m > 4 machines by noticing that the com-petitive ratio of the problem is non-increasing as a function of the number ofmachines.Lemma5. Let r be a lower bound for k machines, then r is also a lower boundfor m > k machines.Proof. We assume that r is a lower bound for k machines. We convert it intoa lower bound for m machines, where m > k. We begin the lower bound withm � k unit jobs. After those jobs arrive, we continue with the original lowerbound for k machines. The on-line and the o�-line algorithms both assign the�rst m�k jobs to m�k di�erent machines and do not use those machines later.Thus, the competitive ratio of any algorithm for m > k machines is at least r.Corollary 6. The competitive ratio of any algorithm for m � 4 machines is atleast 1:75 .3 The identical machines caseWe recall that no deterministic algorithm can achieve a better competitive ratiothan m (consider a sequence of m jobs of weight 1 which may be followed withm � 1 jobs of weight m) and that greedy is m competitive. Here we show thatrandomization really helps in reducing the competitive ratio. We �rst introducean algorithm whose competitive ratio depends on the maximum ratio betweenthe largest job and the smallest job. We denote this ratio by F . We show anO(logF) competitive algorithm for the case that F is known in advance. If F isnot known in advance we can apply the standard technique of [21] and get anO(log1+" F) competitive algorithm.Lemma7. Assume that it is known in advance that � � Vopt < 2�. Thenalgorithm Fill with parameter � as the known optimal value and the parameter�0 = 12 is 4 competitive.Proof. The results of running the algorithm Fill with these parameters, is thesame as running the algorithm with the correct value of Vopt and �00 = �2Vopt .Since 14 < �00 � 12 then by Theorem 1 the algorithm succeeds and is 4 competi-tive.

Our randomized algorithm normalizes the weight of the �rst job to 1. Thus theweights of the jobs are bounded between F and 1F . We �rst de�ne two proceduresthat the algorithm uses.Procedure RFill:The procedure chooses an integer i� uniformly at random, where 2i� is in therange 12F � 2i� � 2F (Assume that F is known in advance). Then the procedureruns the algorithm Fill with the value 2i� as the known optimal value and �0 =1=2.Lemma8. The procedure RFill is O(logF) competitive if F � Vopt=2.Proof. Let us bound the value of Vopt. If Vopt = 0, then the lemma is triviallycorrect. Thus we may assume that the optimal algorithm has at least one job oneach machine, and since the weight of a job is at least 1F then 1F � Vopt � 2F . Foreach possible value of Vopt, a suitable value of i� such that 2i� � Vopt < 2i�+1 waschosen with probability O(1logF). Hence the procedure is O(logF) competitive.If F is not known in advance we choose an integer value i, �1 < i < 1 withprobability 1(jij)1+"+1 and achieve competitive ratio of O(log1+"F).Procedure Greedy:Assign each new job to a machine that has the current minimum load.Lemma9. The procedure is 2 competitive if F � Vopt=2Proof. Denote by h the minimum on-line load, by H the maximum on-line loadand by x a machine with load H. Clearly Vopt � H and Von = h. Let Y be thelast job assigned to x. By the de�nition of F , w(Y) � F . Clearly at the timethat Y was assigned, x had the minimum load and hence H �w(Y) � h. ThusH � h � w(Y) � F � Vopt=2 � H=2which implies that h � H=2 and VoptVon � Hh � 2.Algorithm RFill-Greedy: Run RFill with probability 1=2 and Greedy withprobability 1=2.Theorem10. The algorithm RFill-Greedy is O(logF) competitive.Proof. The proof follows immediately from the proofs of Lemmas 8 and 9.The above theorem immediately implies the following:Corollary11. The algorithm RFill-Greedy is O(logm) competitive for polyno-mially related weight jobs.In fact, we cannot achieve a better bound up to a constant factor.Theorem12. Any randomized algorithm for a sequence for which the ratio be-tween the largest and the smallest jobs is at least m is
(logm) competitive.

Proof. We use an adaptation of Yao's theorem for randomized on-line algorithmswhich states that a lower bound on the competitive ratio of deterministic algo-rithms on any distribution on the input is also a lower bound for randomizedalgorithms, and is given by maxf1=E (Von=Vopt) ; E(Vopt)=E(Von)g [10]. Assumefor simplicity that m = 2k. Consider the following sequence. At �rst m jobsof weight 1 arrive. After those unit jobs are placed then m � 2k�i� big jobs ofweight 2i� arrive, where 0 � i� � k is an integer chosen uniformly at random.The optimal o�-line assignment would be to put one big job on each machine,and 2i� unit jobs on the remaining 2k�i� machines, yielding the value 2i� . It iseasy to see that the best strategy for the on-line algorithm is to assign the bigjobs to the least loaded machines. After the �rst phase, we sort the machines innon decreasing order, according to the number of jobs assigned to each machine:M1;M2; :::;Mm, where M1 is the most loaded machine. Let ai; 0 � i � k be
M M M M M

1 2 4 8 16Fig. 1. The machines sorted by non increasing loadthe number of jobs on the machine M2i . Since there are m unit jobs, and themachines are sorted, a0 +P1�i�k ai � (2i � 2i�1) � m. Now we can estimatethe value of the on-line algorithm for each one of the k + 1 cases. For a �xedvalue of i�, there are m � 2k�i� big jobs, that are placed on the least loadedmachines, which implies a load of at least 2i� on those machines. After that, theleast loaded machine is M2k�i� , which has load ak�i�. The competitive ratio inthis case is 2i�ak�i� . Hence,E� VonVopt� � 1k + 1 X0�i�k ak�i2i = 1k + 1 X0�i�k ai2k�i= 12k�1(k + 1) X0�i�kai2i�1 � 12k�1(k + 1) 0@a0 + X1�i�k ai � 2i�11A

� 12k�1(k + 1) �m = 2k + 1Thus, by Yao's theorem the competitive ratio is at least k+12 =
(logm).Next we provide an algorithm whose performance is as a function only of thenumber of machines. We introduce a randomized algorithm Partition which isO(pm logm) competitive. Assume without loss of generality thatm is a power of4. We round down the weights of jobs in the sequence to powers of 2. Clearly thecompetitive ratio of a general weight sequences is at most twice the competitiveratio of power of 2 sequences. Next with probability 1=2 we apply the procedureGreedy and with probability 1=2 we choose 0 � i � 12 logm uniformly at randomand apply the following partitioning procedure with k = 2i. The procedurepartitions the machines into two parts. The left part consists of k machines andthe right part consists of the remaining machines. The idea of the procedure isto classify each new job to one of the sets, and assign it to a machine in thisset. The procedure keeps a guess � for the value of Voptpm , which is initialized to0. Whenever a job j arrives, if � � w(j), the job is considered below threshold,and would be assigned to the left k machines. Otherwise, with probability 12mthe procedure decides to increase � to be w(j), and the job which becomesbelow threshold is assigned to the left machines. If � was not changed, the job isassigned to the right machines. Jobs on the right machines are assigned greedily,i.e. on a least loaded right machine. Jobs on the left machines are placed in around Robin manner for each weight separately.Theorem13. The algorithm Partition is O(pm logm) competitive.Proof. We will prove the following claim: For every sequence, either greedy isO(pm) competitive or there exists a choice of k, for which the partitioningprocedure is O(pm) competitive. Since there are O(logm) choices of k, all withequal probability, the algorithm is O(pm logm) competitive.For a �xed sequence we de�ne a job j as big if w(j) � Vopt8pm and otherwisesmall. Let r be the number of big jobs in the sequence and k1 = max(0;m� r).We �rst show that if k1 = 0, the simple greedy algorithm yields the desiredresult. We show that the load of every machine is at least Vopt8pm . The de�nitionof k1 implies that there are at least m big jobs. If at least one big job was placedon each machine, the claim on the load holds. Otherwise, there a machine withat least two big jobs. At the moment the second job was placed, this machinehad the minimum load among all machines, which is at least the weight of onebig job, and thus all machines had load of at least Vopt8pm .Next we show that if k1 > pm, the simple greedy algorithm also yieldsthe desired result. Here we show that the small jobs give enough load for allmachines. Consider the greedy assignment. Assume that machine z has minimumload h. Since the algorithm is greedy, if we remove the latest job from all othermachines, they all would have loads that do not exceed h. We bound the totalload achieved from small jobs. It is h for machine z and h plus one small job for

all other machines. The total is bounded by hm+(m�1) �Vopt=(8pm). Since thetotal load of small jobs is at least k1Vopt � pmVopt, we conclude that h � Vopt2pm .Finally we show that there is an appropriate choice of k for all cases 0 < k1 �pm. Assume 2i1 < k1 � 2i1+1. We show that the choice k = 2i1+1 yields the load
 �Voptpm � with constant probability. Notice that for this choice 2k1 > k � k1.We �rst show that with constant probability all the big jobs, were placed onthe right machines. In order for some of the big jobs to be placed on the leftmachines, the value � should have been changed for at least one of them. Theprobability that � was not changed for a single job is 1�1=(2m). The probabilitythat for r � m big jobs � was not changed is (1� 12m)r � (1� 12m)m � 12 . Thus,with probability at least 1=2, r big jobs are placed on the m� k right machines.Since m� k � m � k1 = r the load of each right machine is at least Vopt8pm . Nextwe estimate the expected minimum load on the left machines. We �rst prove thefollowing lemma:Lemma14. The expected minimum load on the left machines induced by thesmall jobs, is at least Vopt32pm for the appropriate choice of k.Proof. There are at most 2k1 left machines. We denote the total weight of thesmall jobs by W . We de�ne a success for a set of 2pm jobs of equal weight w bythe event that after the arrival of the �rst pm jobs, the value of � is at least w(and thus the last pm jobs were below threshold, and were assigned to the leftmachines).The failure probability for a set of 2pm jobs is most (1 � 12m)pm � e� 12pm .Since for 0 � x � 1, e�x � 1 � x2 , the failure probability is at most 1 � 14pm .Hence the success probability in a set of 2pm jobs is at least 14pm . If there wasa success in a subsequence of 2pm jobs of equal weight, then at least pm jobswere assigned to all left machines, thus at least pmk jobs to each one of the leftmachines. We partition all small jobs into sets of size 2pm. The last set, whichmay contain less than 2pm jobs, is ignored. The weight that is lost by ignoringthose sets is bounded by2pmXj�0 wmax2j � 4pmwmax � 4pm � Vopt8pm � Vopt2where wmax is the weight of the largest small job. Denote the set of sets thatare not ignored by A, and the total weight of A by WA. Since the total weightof small jobs is at least Vopt then WA � W2 . The expected of the minimum loadover the left machines is at least14pmXa2A pmwak = 18kpmXa2A 2pmwa � 18kpmWA � 18kpmW2Clearly W � k1Vopt and hence the expected minimum load on the left machinesis at least 116kpmk1Vopt � k32kpmVopt � Vopt32pm

We conclude that with probability of at least 1=2 the expected minimum loadover all the machines is
 �Voptpm � and thus the partitioning procedure is O(pm)competitive, for the appropriate choice of k.Surprisingly, no algorithm can achieve a signi�cantly better competitive ratio.Theorem15. Any randomized algorithm is
(pm) competitive.Proof. By Yao's theorem it is enough to show a lower bound for some distributionon the input on maxf1=E (Von=Vopt) ; E(Vopt)=E(Von)g.Assume for simplicity that m = k2 � 4. The �rst phase of the sequencecontains k parts, each of k jobs. All the jobs of part i have equal weight ofsi = k2i (for 1 � i � k). In the second phase, an integer 1 � i� � k is chosenuniformly at random, and additional ki��1 jobs of weight k2i�+1 arrive. Clearlythe sequence can be assigned by the optimal algorithm so that the load of eachmachine is at least k2i�+1. This can be done since there are k2�1 jobs of weightat least k2i�+1 and k jobs of weight k2i� .We consider the on-line assignment after the �rst phase. We sort the on-line machines in non decreasing order according to the load on each machine:M1;M2; :::;Mm, where M1 is the most loaded machine. Notice that for each i, ajob of weight si is larger than the sum of all smaller jobs, sincek2i > 2k � k2(i�1) � k(k2(i�1) + k2(i�2)+ :::+ 1) :Thus the largest ki jobs are assigned to machines M1; :::;Mki, for all 1 � i � k(not necessary all of them). All the jobs of weight sk�i+1 jobs are assigned tomachines M1; :::;Mki. The largest weight of a job on machine M1+ki is at mostsk�i. Denote by bi the number of jobs of weight sk�i+1 jobs on the machineM1+k(i�1), and by li the load of this machine. Notice that li � (bi + 1)sk�i+1.Next we show that B = b1+b2+ :::+bk � 3k. Let j be the minimum index (ifexists) such thatPi<j(bi� 1) � k. Clearly, all the kj largest jobs were assignedto M1; ::;Mk(j�1). Thus bj = 0 and similarly bi = 0 for all i � j. Since by thede�nition of jPi<j�1(bj�1) < k and since bj�1 � k thenPi<j(bj�1) < 2k. If jis not de�ned, thenP1�i�k(bj�1) < k < 2k as well. ThusP1�i�k(bj�1) < 2kand B < 3k.We now evaluate E(Von=Vopt). Consider the case Vopt = k2i�+1. It is easy tosee that the best for the on-line algorithm is to assign the jobs of the secondphase, to the least loaded machines. Thus ki� � 1 jobs are assigned to machinesMk(k�i�)+2; :::;Mm, and the ratio isksk�i�1lk(k�i�)+1 � ksk�i�1(bk�i�+1 + 1)sk�i�1 = kbk�i�+1 + 1 :ThusE� VonVopt� � 1k X1�i�k bk�i+1 + 1k � 1k X1�i�k bi + 1k � 1k2 (B + k) � 4kk2 = 4pmwhich completes the proof of the theorem.

4 The related machines caseIn this section we consider the case where the machines are related. Machine jhas a speed vj , and if job i is assigned to machine j, the load of the machineis increased by wi=vj. Most of the proofs in this section are omitted. First weshow that it is impossible to design an algorithm whose competitive ratio is afunction of the number of the machines.Lemma16. There is no on-line algorithm for related machines whose competi-tive ratio is a function of the number of the machines (already when the numberof machines is 2).We consider the case where the value of the optimal o�-line assignment is knownin advance. We show that the exact competitive ratio in this case is m.Theorem17. The competitive ratio of any deterministic algorithm for relatedmachines, even when the value of the optimal o�-line assignment is known inadvance, is at least m.Now, we show anm competitive algorithm for related machines case in which thevalue of the optimal o�-line algorithm is known in advance. We use a constant� = 1m . Assume without loss of generality that the value of the optimal o�-linealgorithm is 1.Algorithm Slow-Fast: Assign each new job on the fastest machine whosecurrent load is less than � and its load with the job would be at least �. If nosuch machine exists, put the job on the slowest machine that has load less than�. If all machines have load of at least �, put the job on an arbitrary machine.Theorem18. The algorithm Slow-Fast is m competitive for the related ma-chines case in which the optimal value is known in advance.We call an algorithm "semi on-line" if jobs arrive in non increasing weight order.Theorem19. Any semi on-line algorithm for related machines has competitiveratio of at least m.We show a matching m competitive algorithm.Algorithm Biased-Greedy: Assign each new job to the machine with thecurrent minimum load. In case of ties assign the job to the fastest machineamong those with the minimum load.Theorem20. The semi on-line algorithm Biased-Greedy is m competitive forrelated machines.If, in addition, the value of the optimal o�-line algorithm is to be known inadvance, it is possible to reduce the competitive ratio. We show a constantcompetitive semi on-line algorithm for related machines, for which the value ofthe optimal o�-line algorithm is known in advance. We assume without loss ofgenerality that this value is 1.

Algorithm Next-Cover: Assign a new job to the fastest machine, whosecurrent load does not exceed 12 . If the load of all machines is at least 12 , assignit to an arbitrary machine.Theorem21. The semi on-line algorithm Next-Cover is 2 competitive for therelated machines case in which the optimal value is known in advance.Proof. From the de�nition of the algorithm it is clear that if the algorithmfails, the slowest machine has load less than 12 . We assume by contradictionthat the slowest machine has load less than 1=2. We sort the machines by nonincreasing speed, i.e. machine 1 is the fastest machine, and machine m is theslowest machine.We show the following invariant. Let Wi be the total weight of the jobsassigned to machines 1 through i by the on-line algorithm and let W �i be therespective value for the optimal algorithm.We show that there exists an optimalassignment such that Wi � Wi� for all i. In particular Wm�1 � Wm�1�, and theslowest machine of the on-line is loaded by at least the same load of the optimalalgorithm which is at least 1 which is a contradiction.For i = 0 the invariant is trivially true. Assume it for i � 1 and prove it fori. If the on-line load on machine i does not exceed 1, the claim is trivially true.(Since in the optimal assignment, the load on this machine is at least 1). Thus,we may assume that the on-line load on the machine exceeds 1. We consider twocases according to the number of jobs on machine i.Assume �rst that there are at least two jobs on the machine. The last job islarger than half the speed of the machine, since before it was placed, the load ofthe machine was less than 1=2, and after it was placed, the load is larger than 1.Since the jobs arrive in non increasing order, then the �rst job on the machineis also larger than half the speed which contradicts the fact that the load wasless than 1=2.Thus, we may assume that only one job placed on the machine i. Considerthe set S of all jobs that arrived before the only job on machine i (including thejob). Clearly the on-line assigned those jobs and only those jobs on machines 1through i, thusWi = W (S). If all jobs in S are assigned by the optimal algorithmto machines 1 through i, then Wi = W (S) �Wi�. Otherwise change the o�-linepacking in the following way: take one job of S that is assigned to a machine x,x > i, and put it on machine i; this gives load of at least 1 to machine i, sinceeven the smallest job of S is at least of weight vi. Put on x all jobs that were oni. Since x is a slower machine, its load is also at least 1. Hence Wi � Wi�.References1. S. Albers. Better bounds for on-line scheduling. In Proc. 29th ACM Symp. onTheory of Computing, 1997. To appear.2. N. Alon, J. Csirik, S. V. Sevastianov, A. P. A. Vestjens, and G. J. Woeginger. On-line and o�-line approximation algorithms for vector covering problems. In Proc.4th European Symposium on Algorithms, LNCS. Springer, 1996.

3. J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line load balancingwith applications to machine scheduling and virtual circuit routing. In Proc. 25thACM Symposium on the Theory of Computing, pages 623{631, 1993.4. S.F. Assmann. Problems in discrete applied mathematics. Technical report, Doc-toral Dissertation, Mathematics Department, Massachusetts Institute of Technol-ogy, Cambridge, Massachusetts, 1983.5. S.F. Assmann, D.S. Johnson, D.J. Kleitman, and J.Y.-T. Leung. On a dual versionof the one-dimensional bin packing problem. J. Algorithms, 5:502{525, 1984.6. B. Awerbuch, Y. Azar, E. Grove, M. Kao, P. Krishnan, and J. Vitter. Load bal-ancing in the lp norm. In Proc. 36th IEEE Symp. on Found. of Comp. Science,pages 383{391, 1995.7. Y. Bartal, H. Karlo�, and Y. Rabani. A better lower bound for on-line scheduling.Information Processing Letters, 50:113{116, 1994.8. Yair Bartal, Amos Fiat, Howard Karlo�, and R. Vorha. New algorithms for anancient scheduling problem. In Proc. 24th ACM Symp. on Theory of Computing,1992.9. P. Berman and M. Karpinski. A note on on-line load balancing for related ma-chines. Unpublished notes.10. A. Borodin and R. El-Yaniv. On randomization in online computations. In Com-putational Complexity, 1997.11. B. Chen, A. van Vliet, and G. Woeginger. New lower and upper bounds for on-linescheduling. Operations Research Letters, 16:221{230, 1994.12. J. Csirik, H. Kellerer, and G. Woeginger. The exact lpt-bound for maximizing theminimum completion time. Operations Research Letters, 11:281{287, 1992.13. J. Csirik and V. Totik. On-line algorithms for a dual version of bin packing. Discr.Appl. Math., 21:163{167, 1988.14. B. Deuermeyer, D. Friesen, and M. Langston. Scheduling to maximize the mini-mum processor �nish time in a multiprocessor system. SIAM J. Discrete Methods,3:190{196, 1982.15. D. Friesen and B. Deuermeyer. Analysis of greedy solutions for a replacement partsequencing problem. Math. Oper. Res., 6:74{87, 1981.16. G. Galambos and G. Woeginger. An on-line scheduling heuristic with better worstcase ratio than graham's list scheduling. Siam Journal on Computing, 22(2):349{355, 1993.17. M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman andCompany, San Francisco, 1979.18. R.L. Graham. Bounds for certain multiprocessor anomalies. Bell System TechnicalJournal, 45:1563{1581, 1966.19. R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math,17:263{269, 1969.20. D. Karger, S. Phillips, and E. Torng. A better algorithm for an ancient schedulingproblem. In Proc. 5th ACM-SIAM Symp. on Discrete Algorithms, 1994.21. R. J. Lipton and A. Tomkins. Online interval scheduling. In Proc. of the 5thACM-SIAM Symposium on Discrete Algorithms, pages 302{311, 1994.22. G. Woeginger. A polynomial time approximation scheme for maximizing the min-imum machine completion time. Technical Report, 1995.This article was processed using the LATEX macro package with LLNCS style

