On-Line Machine Covering

Yossi Azar!,Leah Epstein?

! Dept. of Computer Science, Tel-Aviv University. ***
2 Dept. of Computer Science, Tel-Aviv University. |

Abstract. We consider the problem of scheduling a sequence of jobs to
m parallel machines as to maximize the minimum load over the machines.
This situation corresponds to a case that a system which consists of the
m machines is alive (i.e. productive) only when all the machines are alive,
and the system should be maintained alive as long as possible. It is well
known that any on-line deterministic algorithm for identical machines
has a competitive ratio of at least m and that greedy is an m competitive
algorithm. In contrast we design an on-line randomized algorithm which
is O(y/m) competitive and a matching lower bound of §2(4/m) for any on-
line randomized algorithm. In the case where the jobs are polynomially
related we design an optimal O(log m) competitive randomized algorithm
and a matching tight lower bound for any on-line randomized algorithm.
In fact, if F is the ratio between the largest job and the smallest job then
our randomized algorithm is O(log F') competitive.

A sub-problem that we solve which is interesting by its own is the prob-
lem where the value of the optimal algorithm is known in advance. Here
we show a deterministic (constant) 2 — # competitive algorithm. We also
show that our algorithm is optimal for two, three and four machines and
that no on-line deterministic algorithm can achieve a better competitive
ratio than 1.75 for m > 4 machines.

For related machines we show that there is no on-line algorithm, whose
competitive ratio is a function of the number of machines. However, for
the case where the value of the optimal assignment is known in advance,
and for the case where jobs arrive in non increasing order, we show that
the exact competitive ratio is m. We show a constant 2 competitive
algorithm for the intersection of the above two cases, i.e. the value of
the optimal assignment is known in advance and the jobs arrive in non
increasing order.

1 Introduction

We consider the problem of scheduling a sequence of jobs to m parallel machines
as to maximize the minimum load over the machines. This situation is moti-
vated by the following scenario. A system consists of m (identical or related)

*** E-Mail: azar@math.tau.ac.il. Research supported in part by Allon Fellowship and by
the Israel Science Foundation administered by the Israel Academy of Sciences.
! E-Mail: lea@math.tau.ac.il.

machines. The system is alive (i.e. productive) only when all the machines are
alive. In order to keep a machine alive it requires resources (e.g. tanks of fuel).
The various size resources arrive one after the other, and each resource should be
assigned immediately upon its arrival to one of the machines. The goal is clearly
to keep the system alive as long as possible. The above problem has applications
also in the sequencing of maintenance actions for modular gas turbine aircraft
engines [15]. To conform with the standard scheduling terminology we view the
resources as jobs. Thus, jobs are assigned to machines as to maximize the mini-
mum load. If all the machines are identical then the problem corresponds to the
identical machines scheduling/load-balancing problem and if each machine has
its own size (of the engine that operates on the fuel) then it corresponds to the
related machines problem.

We give a formal definition of the problem discussed above. Consider a set
of m identical machines and a set of jobs that arrive on-line. Each job j has a
weight w;. The load of a machine 7 is the sum of the weights of the jobs assigned
to it. That is, l; = ZjeJi w;, where J; is the of jobs assigned to machine 3. If
machine ¢ has a speed v; (related machines case) then [; = ZjeJi 1:—3 The goal
is to assign the jobs to the machines as to maximize the minimum load over the
machines. The problems are on-line versions of classical covering problems and
are called the machine covering problems. Note that these problems are different
from the bin covering problems [2, 4, 5, 13] where the goal is to maximize the
number of covered bins, i.e. bins of load of at least 1.

We use the standard definition of the competitive ratio. Denote by Vo (o)
(or just Vo) the value of the on-line algorithm for a sequence o which is the
load incurred on the least loaded machine. The value of the optimal assignment
for this sequence would be denoted by Vopi(o) (or justVop:). The algorithm is
¢ competitive (the competitive ratio is ¢) if for every sequence o, Vopi(o) <
¢ Vou(0).

Known results: The off-line problem of maximizing the load of the least
loaded machine, is known to be NP-complete in the strong sense [17]. Woeg-
inger [22] designed a polynomial time approximation scheme for the identical
machines case. He also showed that the greedy algorithm is m competitive. (It
is well known that no deterministic algorithm can achieve a better competitive
ratio.) Deuermeyer, Friesen and Langston [14] studied a semi on-line problem
on identical machines. They examined the LPT-heuristic which order the jobs
by non increasing weights and assigns each job to the least loaded machine at
the moment. It is shown in [14] that the competitive ratio of this heuristic is at
most %. The tight ratio g:::i is given by Csirik, Kellerer and Woeginger [12].

Our Results: We consider the on-line version of the machine covering
problems. We show the following results for the identical machines case.

— There is a randomized O(y/mlogm) competitive algorithm and any ran-
domized algorithm is at least £2(4/m) competitive. This is in contrast to the
competitive ratio of the best possible deterministic algorithm which is m.

— There is a randomized O(log F) competitive algorithm for jobs of weights
which may vary up to a factor of F. In particular, there is an O(logm)

competitive randomized algorithm for polynomially related weight jobs. (The
deterministic lower bound of m holds already for jobs of weights that are
polynomially related.) Also, any randomized algorithm is at least £2(logm)
competitive for polynomially related weight jobs.

A sub-problem that we solve which is interesting by its own is the problem
where the value of the optimal algorithm is known in advance. Here we show the
following results:

— There is a deterministic 2 — % competitive algorithm.

— The algorithm is optimal for two, three and four machines and no on-line
deterministic algorithm can achieve a better competitive ratio than 1.75 for
m > 4 machines.

For related machines we show the following results

— There is no algorithm whose competitive ratio is a function of the number
of machines.

— For the case where the value of the optimal assignment is known in advance
the exact competitive ratio is m.

— For the case where jobs arrive in non increasing order the exact competitive
ratio is also m.

— For the case where both the value of the optimal assignment is known in
advance and jobs arrive in non increasing order there is 2 competitive algo-
rithm.

Other related work: The original scheduling problem of minimizing the
maximum load over all machines has been widely studied. The problem was
introduced by Graham [18, 19] who gave a greedy algorithm ”List Scheduling”
which i1s 2 — % competitive. It turns out that the algorithm of Graham is not
optimal for minimizing the maximum load (for all m > 4) [16, 11]. Bartal et al.
[8] were the first to show an algorithm whose competitive ratio is strictly below
¢ < 2 (for all m). More precisely, their algorithm achieves a competitive ratio
of about 2 — %. Later, the algorithm was generalized by Karger, Phillips and
Torng [20] to yield an upper bound of 1.945. Very recently, Albers [1] designed
1.923 competitive algorithm and improved the lower bound to 1.852 (the previ-
ous lower bound was 1.8370 [7]). Clearly randomized algorithms for the problem
may improve the bounds only by a constant factor. Unlike the scheduling prob-
lem, there are no constant competitive algorithms for the covering problem on
identical machines. Moreover, as we mentioned our results show that the compet-
itive ratio of randomized algorithms are significantly better than the competitive
ratio of the deterministic ones.

For the related machines case it was proved in [3] that there is a constant
8 competitive algorithm for minimizing the maximum load. (the constant was
recently improved by [9].) If the value of the optimal assignment is known in
advance then the competitive ratio is 2. This is in contrast to the “more difficult”
covering problem where in order to get comparable results one need to assume

that the jobs arrive in non-increasing order and the optimal value is known in
advance.

It is interesting to note that a measure which is different than the maximum
load has been already used for scheduling problems. Specifically, Awerbuch et
al.[6] studied the case of minimizing the sum of the squares of the load (and
general L, norm). It is shown that there is a constant competitive algorithm for
a general class of scheduling problems.

Structure of the paper: In section 2 we consider the sub-problem where
the value of the optimal assignment is known in advance. In section 3 we use an
algorithm from section 2 as a procedure, and discuss randomized algorithms for
identical machines. In section 4 we consider algorithms for related machines.

2 Known optimal value

In this section we show a simple algorithm for identical machines for the case
where the value of the optimal assignment is known in advance. We assume
without loss of generality that V,p; = 1. The competitive ratio of our algorithm
is2— %, which is the same ratio as for the algorithm of Graham for scheduling. In
contrast to the algorithm of Graham which tries to fill all the machines evenly,
our algorithm fills the machines one by one. We define 8 = 5"+ and call a
machine of load at least 8 a full machine. A non empty machine which is not

full is called active. Our algorithm maintains at most one active machine.
Algorithm FiL:

If there are no empty machines, assign a new job to the least loaded machine.
Otherwise, if the weight of the new job is at least 8 assign it to an empty machine
(the machine becomes full). If the weight of the job is less than g8 assign it to
the active machine if exists, and otherwise to an empty machine (which becomes
active).

Theorem 1. The algorithm Fill has a competitive ratio of% =2 - %

Proof. We show that when the algorithm terminates, all machines are full. This
implies that the competitive ratio is at most +. Assume that there is a non full
machine. First we may replace all jobs of weight more than 1 by jobs of weight
1, which would not influence the optimal algorithm or our algorithm. We show
that all jobs of weight at least 3 were assigned to empty machines. Otherwise
the first such job that was assigned to a non empty machine was assigned to the
only active machine, and after it was assigned all machines becomes full which
contradicts the assumption. We estimate the load of each machine. Denote the
load of the least loaded machine by h. The load of machines that have only one
job is clearly at most 1. If there are at least two jobs on a machine, its load is
bounded by 203, since just before the last job was placed the load was less than 8
and the weight of the last job is also less than §. Thus the load of each machine
is bounded by 283. Since the optimal value is 1 then

2m m

hom—(m-1)-28>m—(m-1)g—0 =0 —7=

g

which completes the proof.

Notice that later we will use algorithm Fill with 8/ < B8 which is clearly L%
competitive. The algorithm Fill with the parameter 8 turns out to be optimal
for two, three and four machines.

Theorem 2. The competitive ratio of any algorithm for two machines is at least

1.5.

Proof. We consider the following sequence of jobs. First two jobs of weight 2/3
arrive. There are two cases:

— If both jobs were placed on one machine, then two jobs of weight 1/3 arrive.
The optimal algorithm assigns one small job and one big job on each machine.
The best value the on-line is 2/3 by assigning both small jobs to the empty
machine. Thus the competitive ratio in this case is at least 1.5 .

— If each job was placed on a different machine, then one job of weight 1
arrives. The optimal algorithm assignment the two jobs of weight 2/3 on
one machine, and the unit job on the other machine. The on-line places the
unit job on one machine, and the load of the other machine is still 2/3. The
competitive ratio in this case is also at least 1.5 .

Theorem 3. The competitive ratio of any algorithm for three machines is at

least 5/3 .

Proof. We construct a sequence such that V,, < 0.6 and thus the competitive
ratio is at least 5/3. We consider the following sequence of jobs. First two jobs of
weight 0.6 arrive. If the on-line algorithm assigns the jobs on different machines,
two unit jobs arrive. The minimum load of the on-line is 0.6 while the optimal
algorithm assigns the jobs of weight 0.6 on one machine, and one unit job on
each other machine.

If the on-line algorithm assigns them to the same machine, we continue the
sequence by two jobs of weight 0.3 . Clearly, the on-line will not use the machine
with the first two jobs any more, because it already has load of at least 1. Thus
we are left with two machines. There are two cases:

— If the two jobs of weight 0.3 are placed on different machines, then two jobs
of weight 0.1 and one unit job arrive. Clearly, the best value the on-line can
obtain is 0.5 (by assigning the unit job to one of the two machines, and both
jobs of weight 0.1 to the other). The optimal algorithm assigns the unit job
on one machine, and three jobs of weights 0.6,0.3,0.1 on each of the other
two machines and achieves a minimum load of 1.

— If the two jobs of weight 0.3 are placed on the same machine, then a job
of weight 0.6 arrives. If it is placed on the only empty machine, a unit job
arrives, and since there are two on-line machines with load 0.6, V,, = 0.6.
The optimal algorithm assigns two jobs of weight 0.6 on one machine, the
unit job on another machine and all the other jobs on the third machine and
thus achieves a minimum load of 1. If the job of weight 0.6 is placed on the

machine with load 0.6, three jobs with the weights 0.4, 0.1, 0.1 arrive. Even if
they are all placed on the third machine, V,, = 0.6. The optimal algorithm
assigns a job of weight 0.6 with a job of weight 0.4 on one machine and a
job of weight 0.6 with two jobs of weights 0.1 and 0.3 on each of the other
two machines. Thus the competitive ratio is at least 5/3 for all the cases.

The proof of the following theorem is omitted.

Theorem 4. The competitive ratio of any algorithm for four machines is ot least

1.75 .

We give a general lower bound for m > 4 machines by noticing that the com-
petitive ratio of the problem is non-increasing as a function of the number of
machines.

Lemma 5. Let r be a lower bound for k machines, then r is also a lower bound
for m > k machines.

Proof. We assume that r is a lower bound for k& machines. We convert it into
a lower bound for m machines, where m > k. We begin the lower bound with
m — k unit jobs. After those jobs arrive, we continue with the original lower
bound for & machines. The on-line and the off-line algorithms both assign the
first m — k jobs to m — k different machines and do not use those machines later.
Thus, the competitive ratio of any algorithm for m > k machines is at least r.

Corollary 6. The competitive ratio of any algorithm for m > 4 machines is at

least 1.75 .

3 The identical machines case

We recall that no deterministic algorithm can achieve a better competitive ratio
than m (consider a sequence of m jobs of weight 1 which may be followed with
m — 1 jobs of weight m) and that greedy is m competitive. Here we show that
randomization really helps in reducing the competitive ratio. We first introduce
an algorithm whose competitive ratio depends on the maximum ratio between
the largest job and the smallest job. We denote this ratio by F. We show an
O(log F) competitive algorithm for the case that F is known in advance. If F is
not known in advance we can apply the standard technique of [21] and get an
O(log'™® F) competitive algorithm.

Lemma 7. Assume that it is known in advance that A < Vo < 2X. Then
algorithm Fill with parameter X as the known optimal value and the parameter
B = 1 is 4 competitive.

Proof. The results of running the algorithm Fill with these parameters, is the

same as running the algorithm with the correct value of V,, and 8" = 2‘}‘ -
op

Since % <pg'< % then by Theorem 1 the algorithm succeeds and is 4 competi-
tive.

Our randomized algorithm normalizes the weight of the first job to 1. Thus the
weights of the jobs are bounded between F and % We first define two procedures
that the algorithm uses.

Procedure RFILL:

The procedure chooses an integer 7* uniformly at random, where 2" is in the
range # <2 <oF (Assume that F is known in advance). Then the procedure

runs the algorithm Fill with the value 2*" as the known optimal value and 8 =

1/2.
Lemma 8. The procedure RFill is O(log F') competitive if F > Vopy /2.

Proof. Let us bound the value of V,p. If V5 = 0, then the lemma is trivially
correct. Thus we may assume that the optimal algorithm has at least one job on
each machine, and since the weight of a job is at least % then % < Vopt < 2F. For
each possible value of V,,;, a suitable value of #* such that 2t < Vept < 2¢"+1 was
chosen with probability O(@). Hence the procedure is O(log F') competitive.
If F is not known in advance we choose an integer value 7, —oo < 7 < oo with
probability W and achieve competitive ratio of O(log1+€ F).

Procedure GREEDY:
Assign each new job to a machine that has the current minimum load.

Lemma9. The procedure is 2 competitive if F < Vp, /2

Proof. Denote by h the minimum on-line load, by H the maximum on-line load
and by z a machine with load H. Clearly Vop: < H and V,, = h. Let Y be the
last job assigned to z. By the definition of F, w(Y) < F. Clearly at the time
that Y was assigned, z had the minimum load and hence H — w(Y) < h. Thus

H—h<w(Y)<F < Vope/2< HJ2
which implies that A > H/2 and % < <o

Algorithm RFILL-GREEDY: Run RFill with probability 1/2 and Greedy with
probability 1/2.

Theorem 10. The algorithm RFill-Greedy is O(log F') competitive.
Proof. The proof follows immediately from the proofs of Lemmas 8 and 9.

The above theorem immediately implies the following:

Corollary 11. The algorithm RFill-Greedy is O(logm) competitive for polyno-
mially related weight jobs.

In fact, we cannot achieve a better bound up to a constant factor.

Theorem 12. Any randomized algorithm for a sequence for which the ratio be-
tween the largest and the smallest jobs is at least m is £2(logm) competitive.

Proof. We use an adaptation of Yao’s theorem for randomized on-line algorithms
which states that a lower bound on the competitive ratio of deterministic algo-
rithms on any distribution on the input is also a lower bound for randomized
algorithms, and is given by max{1/E (Vorn/Vopt) s E(Vopt)/ E(Von)} [10]. Assume
for simplicity that m = 2%. Consider the following sequence. At first m jobs
of weight 1 arrive. After those unit jobs are placed then m — ok—i’ big jobs of
weight 2" arrive, where 0 < ¢* < k is an integer chosen uniformly at random.
The optimal off-line assignment would be to put one big job on each machine,
and 2¢° unit jobs on the remaining 2~*" machines, yielding the value 2¢ . It is
easy to see that the best strategy for the on-line algorithm is to assign the big
jobs to the least loaded machines. After the first phase, we sort the machines in
non decreasing order, according to the number of jobs assigned to each machine:
My, My, ..., My, where M; is the most loaded machine. Let a;,0 < 7 < k be

Fig. 1. The machines sorted by non increasing load

the number of jobs on the machine Mjy:. Since there are m unit jobs, and the
machines are sorted, agp + Y ;;cs @i (2* — 2¢-1) < m. Now we can estimate
the value of the on-line algorithm for each one of the k + 1 cases. For a fixed
value of i*, there are m — 25~%" big jobs, that are placed on the least loaded
machines, which implies a load of at least 2" on those machines. After that, the
least loaded machine is Myx—i+, which has load ax_;+«. The competitive ratio in
this case is afz —. Hence,

-1

Von 1 a4 1 a;
P() i X % i L o
Vopt k—|—10§i§k 2 k+10§i§k2

A

1 . 1 .
== a2 ——— | ag+ a; - 271
FT D) 2, Sy (7 2

1 2
< . =
Sok-1k+1) T k+1

Thus, by Yao’s theorem the competitive ratio is at least kzll = 2(logm).

Next we provide an algorithm whose performance is as a function only of the
number of machines. We introduce a randomized algorithm Partition which is
O(y/mlogm) competitive. Assume without loss of generality that m is a power of
4. We round down the weights of jobs in the sequence to powers of 2. Clearly the
competitive ratio of a general weight sequences is at most twice the competitive
ratio of power of 2 sequences. Next with probability 1/2 we apply the procedure
Greedy and with probability 1/2 we choose 0 < i < % log m uniformly at random
and apply the following partitioning procedure with & = 2'. The procedure
partitions the machines into two parts. The left part consists of ¥ machines and
the right part consists of the remaining machines. The idea of the procedure is
to classify each new job to one of the sets, and assi§n it to a machine in this

set. The procedure keeps a guess A for the value of —Z, which is initialized to

0. Whenever a job j arrives, if A > w(j), the job is considered below threshold,
and would be assigned to the left & machines. Otherwise, with probability %
the procedure decides to increase A to be w(j), and the job which becomes
below threshold is assigned to the left machines. If A was not changed, the job is
assigned to the right machines. Jobs on the right machines are assigned greedily,
i.e. on a least loaded right machine. Jobs on the left machines are placed in a
round Robin manner for each weight separately.

Theorem 13. The algorithm Partition is O(y/mlogm) competitive.

Proof. We will prove the following claim: For every sequence, either greedy is
O(4/m) competitive or there exists a choice of k, for which the partitioning
procedure is O(4/m) competitive. Since there are O(logm) choices of k, all with
equal probability, the algorithm is O(y/mlogm) competitive.

opt

For a fixed sequence we define a job j as big if w(j) > :\/ﬁ and otherwise

small. Let 7 be the number of big jobs in the sequence and ki = max(0, m — r).

We first show that if k& = 0, the simple greedy algorithm yields the desired
result. We show that the load of every machine is at least :"—"n‘l. The definition
of k1 implies that there are at least m big jobs. If at least one big job was placed
on each machine, the claim on the load holds. Otherwise, there a machine with
at least two big jobs. At the moment the second job was placed, this machine
had the minimum load among all machines, which is at least the weight of one

big job, and thus all machines had load of at least :\"/‘%

Next we show that if k; > /m, the simple greedy algorithm also yields
the desired result. Here we show that the small jobs give enough load for all
machines. Consider the greedy assignment. Assume that machine z has minimum
load h. Since the algorithm is greedy, if we remove the latest job from all other
machines, they all would have loads that do not exceed h. We bound the total
load achieved from small jobs. It is A for machine z and h plus one small job for

all other machines. The total is bounded by hm+(m—1)-V,p: /(84/m). Since the

total load of small jobs is at least k1 Vop: > +/mVop:, we conclude that h > 2‘/"—\/"—7:1
Finally we show that there is an appropriate choice of k for all cases 0 < k; <

v/m. Assume 2 < k; < 21111, We show that the choice k£ = 21111 yields the load
9 (%) with constant probability. Notice that for this choice 2k; > &k > ky.

We first show that with constant probability all the big jobs, were placed on
the right machines. In order for some of the big jobs to be placed on the left
machines, the value A should have been changed for at least one of them. The
probability that A was not changed for a single job is 1—1/(2m). The probability
that for 7 < m big jobs A was not changed is (1 — 3&)" > (1 — 5=)™ > 1. Thus,
with probability at least 1/2, r big jobs are placed on the m — k right machines.

:\"/‘%. Next

we estimate the expected minimum load on the left machines. We first prove the
following lemma:

Since m — k < m — k1 = r the load of each right machine is at least

Lemma 14. The expected minimum load on the left machines induced by the
small jobs, is at least 3‘;‘\’/"% for the appropriate choice of k.

Proof. There are at most 2k; left machines. We denote the total weight of the
small jobs by W. We define a success for a set of 24/m jobs of equal weight w by
the event that after the arrival of the first 1/m jobs, the value of X is at least w
(and thus the last v/m jobs were below threshold, and were assigned to the left
machines).

The failure probability for a set of 24/m jobs is most (1 — ﬁ)\/ﬁ < e~
Since for 0 < z < 1, e™® < 1 — %, the failure probability is at most 1 — ﬁ.
Hence the success probability in a set of 24/m jobs is at least ﬁ. If there was
a success in a subsequence of 24/m jobs of equal weight, then at least 4/m jobs
were assigned to all left machines, thus at least @ jobs to each one of the left
machines. We partition all small jobs into sets of size 24/m. The last set, which
may contain less than 24/m jobs, is ignored. The weight that is lost by ignoring
those sets is bounded by

Wmaz Vo i Vo i
2 <4 maz < dv/m . — < 2P
m; P < A/ ils < 4/ g2 < 2
where Wpq is the weight of the largest small job. Denote the set of sets that
are not ignored by A, and the total weight of A by W,. Since the total weight
of small jobs is at least Vp; then W, > % The expected of the minimum load
over the left machines is at least

1 Vmw, 1 1 1 W
= 24/ a > > —
41,/_1%;4 k 8k/m D> 2v/mua > kv A2 Shm 2

acA

Clearly W > k1V,p: and hence the expected minimum load on the left machines
is at least
Vopt

k
Vit > Vipr >
1ropt = 3okym Pt = 32 /m

L k
16k+/m

We conclude that with probability of at least 1/2 the expected minimum load
over all the machines is {2 (%) and thus the partitioning procedure is O(4/m)

competitive, for the appropriate choice of k.
Surprisingly, no algorithm can achieve a significantly better competitive ratio.
Theorem 15. Any randomized algorithm is £2(1/m) competitive.

Proof. By Yao’s theorem it is enough to show a lower bound for some distribution
on the input on max{1/E (Von/Vopt), E(Vopt)/ E(Von)}.

Assume for simplicity that m = k? > 4. The first phase of the sequence
contains k parts, each of k jobs. All the jobs of part 72 have equal weight of
s; = k% (for 1 < i < k). In the second phase, an integer 1 < i* < k is chosen
uniformly at random, and additional ki* — 1 jobs of weight k2* 1 arrive. Clearly
the sequence can be assigned by the optimal algorithm so that the load of each
machine is at least k2% +1. This can be done since there are k2 — 1 jobs of weight
at least k%" *1 and k jobs of weight k2.

We consider the on-line assignment after the first phase. We sort the on-
line machines in non decreasing order according to the load on each machine:
My, Ms, ..., M,,, where M; is the most loaded machine. Notice that for each i, a
job of weight s; is larger than the sum of all smaller jobs, since

B2 > 2k - k201 > p(R20-0) 4 g20-20 4 4 1) .

Thus the largest k% jobs are assigned to machines My, ..., My, forall 1 <7 <k
(not necessary all of them). All the jobs of weight sz_;41 jobs are assigned to
machines My, ..., Mg;. The largest weight of a job on machine M;; is at most
Sg—i. Denote by b; the number of jobs of weight s;_;11 jobs on the machine
M4 k(i-1), and by I; the load of this machine. Notice that ; < (b; + 1)sg_i11.

Next we show that B = by +ba+...+ b < 3k. Let j be the minimum index (if
exists) such that ZK]-(bi —1) > k. Clearly, all the kj largest jobs were assigned
to My, .., Mg(;_1). Thus b; = 0 and similarly b; = 0 for all ¢ > j. Since by the
definition of j Zi<j—1(bj_1) < k and since b;_; < k then ZK].(bj—l) < 2k.If 5
is not defined, then >, ., . (b; —1) < k < 2k as well. Thus >, ., (b; —1) < 2k
and B < 3k. T T

We now evaluate E(V,p/Vope). Consider the case Vipy = k% +1 Tt is easy to
see that the best for the on-line algorithm is to assign the jobs of the second
phase, to the least loaded machines. Thus k* — 1 jobs are assigned to machines
My (k—i*)42; ---) Mm, and the ratio is

ksg_i_1 ksg_i_1 k

lk—iv)tr — (bh—ioqr + 1)sk_i1 br_jeyr +1°
Thus

Von 1 booigi+1 1 b1 1 ik 4
E()S—Ziﬁ—z <SEBHR< 5=
Vo) ~ k. 52,k ol K k k2 Jm

which completes the proof of the theorem.

4 The related machines case

In this section we consider the case where the machines are related. Machine j
has a speed v;, and if job ¢ is assigned to machine j, the load of the machine
is increased by w;/v;. Most of the proofs in this section are omitted. First we
show that it is impossible to design an algorithm whose competitive ratio is a
function of the number of the machines.

Lemma 16. There is no on-line algorithm for related machines whose competi-
tive ratio is a function of the number of the machines (already when the number
of machines is 2).

We consider the case where the value of the optimal off-line assignment is known
in advance. We show that the exact competitive ratio in this case is m.

Theorem 17. The competitive ratio of any deterministic algorithm for related
machines, even when the value of the optimal off-line assignment is known in
advance, is at least m.

Now, we show an m competitive algorithm for related machines case in which the
value of the optimal off-line algorithm is known in advance. We use a constant
a= % Assume without loss of generality that the value of the optimal off-line
algorithm is 1.

Algorithm SrLow-FasT: Assign each new job on the fastest machine whose
current load is less than o and its load with the job would be at least a. If no
such machine exists, put the job on the slowest machine that has load less than
a. If all machines have load of at least «, put the job on an arbitrary machine.

Theorem 18. The algorithm Slow-Fast is m competitive for the related ma-
chines case in which the optimal value is known in advance.

We call an algorithm ”semi on-line” if jobs arrive in non increasing weight order.

Theorem 19. Any semi on-line algorithm for related machines has competitive
ratio of at least m.

We show a matching m competitive algorithm.

Algorithm BIASED-GREEDY: Assign each new job to the machine with the
current minimum load. In case of ties assign the job to the fastest machine
among those with the minimum load.

Theorem 20. The semi on-line algorithm Biased-Greedy is m competitive for
related machines.

If, in addition, the value of the optimal off-line algorithm is to be known in
advance, it is possible to reduce the competitive ratio. We show a constant
competitive semi on-line algorithm for related machines, for which the value of
the optimal off-line algorithm is known in advance. We assume without loss of
generality that this value is 1.

Algorithm NEXT-COVER: Assign a new job to the fastest machine, whose
current load does not exceed % If the load of all machines is at least %, assign
it to an arbitrary machine.

Theorem21. The semi on-line algorithm Next-Cover is 2 competitive for the
related machines case in which the optimal value is known in advance.

Proof. From the definition of the algorithm it is clear that if the algorithm
1

fails, the slowest machine has load less than 5. We assume by contradiction
that the slowest machine has load less than 1/2. We sort the machines by non
increasing speed, 1.e. machine 1 is the fastest machine, and machine m is the
slowest machine.

We show the following invariant. Let W; be the total weight of the jobs
assigned to machines 1 through ¢ by the on-line algorithm and let W} be the
respective value for the optimal algorithm. We show that there exists an optimal
assignment such that W; < W;* for all 4. In particular W,,_; < W,,_1*, and the
slowest machine of the on-line is loaded by at least the same load of the optimal
algorithm which is at least 1 which is a contradiction.

For 2 = 0 the invariant is trivially true. Assume it for ¢ — 1 and prove it for
1. If the on-line load on machine ¢ does not exceed 1, the claim is trivially true.
(Since in the optimal assignment, the load on this machine is at least 1). Thus,
we may assume that the on-line load on the machine exceeds 1. We consider two
cases according to the number of jobs on machine .

Assume first that there are at least two jobs on the machine. The last job is
larger than half the speed of the machine, since before it was placed, the load of
the machine was less than 1/2, and after it was placed, the load is larger than 1.
Since the jobs arrive in non increasing order, then the first job on the machine
is also larger than half the speed which contradicts the fact that the load was
less than 1/2.

Thus, we may assume that only one job placed on the machine i. Consider
the set S of all jobs that arrived before the only job on machine 4 (including the
job). Clearly the on-line assigned those jobs and only those jobs on machines 1
through 4, thus W; = W(S). If all jobs in S are assigned by the optimal algorithm
to machines 1 through i, then W; = W(S) < W;*. Otherwise change the off-line
packing in the following way: take one job of S that is assigned to a machine z,
z > 1, and put it on machine 7; this gives load of at least 1 to machine 1, since
even the smallest job of S is at least of weight v;. Put on z all jobs that were on
i. Since z is a slower machine, its load is also at least 1. Hence W; < W;*.

References

1. S. Albers. Better bounds for on-line scheduling. In Proc. 29th ACM Symp. on
Theory of Computing, 1997. To appear.

2. N. Alon, J. Csirik, S. V. Sevastianov, A. P. A. Vestjens, and G. J. Woeginger. On-
line and off-line approximation algorithms for vector covering problems. In Proc.
4th European Symposium on Algorithms, LNCS. Springer, 1996.

3. J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line load balancing
with applications to machine scheduling and virtual circuit routing. In Proc. 25th
ACM Symposium on the Theory of Computing, pages 623-631, 1993.

4. S.F. Assmann. Problems in discrete applied mathematics. Technical report, Doc-
toral Dissertation, Mathematics Department, Massachusetts Institute of Technol-
ogy, Cambridge, Massachusetts, 1983.

5. S.F. Assmann, D.S. Johnson, D.J. Kleitman, and J.Y.-T. Leung. On a dual version
of the one-dimensional bin packing problem. J. Algorithms, 5:502-525, 1984.

6. B. Awerbuch, Y. Azar, E. Grove, M. Kao, P. Krishnan, and J. Vitter. Load bal-
ancing in the I, norm. In Proc. 36th IEEE Symp. on Found. of Comp. Science,
pages 383-391, 1995.

7. Y. Bartal, H. Karloff, and Y. Rabani. A better lower bound for on-line scheduling.
Information Processing Letters, 50:113-116, 1994.

8. Yair Bartal, Amos Fiat, Howard Karloff, and R. Vorha. New algorithms for an
ancient scheduling problem. In Proc. 24th ACM Symp. on Theory of Computing,
1992.

9. P. Berman and M. Karpinski. A note on on-line load balancing for related ma-
chines. Unpublished notes.

10. A. Borodin and R. El-Yaniv. On randomization in online computations. In Com-
putational Complezity, 1997.

11. B. Chen, A. van Vliet, and G. Woeginger. New lower and upper bounds for on-line
scheduling. Operations Research Letters, 16:221-230, 1994.

12. J. Csirik, H. Kellerer, and G. Woeginger. The exact Ipt-bound for maximizing the
minimum completion time. Operations Research Letters, 11:281-287, 1992.

13. J. Csirik and V. Totik. On-line algorithms for a dual version of bin packing. Discr.
Appl. Math., 21:163-167, 1988.

14. B. Deuermeyer, D. Friesen, and M. Langston. Scheduling to maximize the mini-
mum processor finish time in a multiprocessor system. SIAM J. Discrete Methods,
3:190-196, 1982.

15. D. Friesen and B. Deuermeyer. Analysis of greedy solutions for a replacement part
sequencing problem. Math. Oper. Res., 6:74-87, 1981.

16. G. Galambos and G. Woeginger. An on-line scheduling heuristic with better worst
case ratio than graham’s list scheduling. Siam Journal on Computing, 22(2):349-
355, 1993.

17. M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman and
Company, San Francisco, 1979.

18. R.L. Graham. Bounds for certain multiprocessor anomalies. Bell System Technical
Journal, 45:1563-1581, 1966.

19. R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math,
17:263-269, 1969.

20. D. Karger, S. Phillips, and E. Torng. A better algorithm for an ancient scheduling
problem. In Proc. 5th ACM-SIAM Symp. on Discrete Algorithms, 1994.

21. R. J. Lipton and A. Tomkins. Online interval scheduling. In Proc. of the 5th
ACM-SIAM Symposium on Discrete Algorithms, pages 302-311, 1994.

22. G. Woeginger. A polynomial time approximation scheme for maximizing the min-
imum machine completion time. Technical Report, 1995.

This article was processed using the IATEX macro package with LLNCS style

