Algorithmic Methods

Final Exam: Jul 1, 2021

Lecturer: Prof. Yossi Azar

Solve 4 out of the 5 questions. Write short but full and accurate answers. Each question should start on a new page and each of its parts should not exceed a page. No extra material is allowed.

- 1. We are given an undirected connected graph G = (V, E) with a non-negative capacity w_e on each edge $e \in E$. We are given $k \leq \binom{n}{2}$ pairs (s_i, t_i) and demand d_i . The cost of decreasing the capacity of an edge e by each unit is $c_e \geq 0$ for each $e \in E$. One need to decrease the capacities of the edges such that for any i the maximum flow between s_i and t_i is at most d_i . Assume that all $e \in E$ all c_e and w_e and d_i for all i are non negative integers (bounded by 2^n where |V| = n).
 - (a) (18 points) Assume that the goal function to minimize the total cost over all edges. Form an LP for the problem and show how to solve it by a polynomial time algorithm (in n).
 - (b) (7 points) Now the goal function is to minimize the maximum cost of decreasing any edge (we are allowed to decrease capacities ONLY by integer numbers). Show a poly-time algorithm without LP.
- 2. Consider an approximation algorithm for MAX-SAT which is based on LP and randomized rounding. Let x be the LP optimal fractional solution.
 - (a) (18 points) Show that if we randomly round each variable independently according to the function $p_i = 1 4^{-x_i}$ for $x_i \leq 0.5$ and $p_i = 4^{x_i-1}$ for $x_i \geq 0.5$ then we get an 3/4-approximation for MAX-SAT (use the fact that $1 4^{a-1} \leq 4^{-a}$ for any a).
 - (b) (7 points) Show that this algorithm does not achieve a better than 3/4 approximation by providing for every n an example of a formula on n variables where each variable appears at least once and the algorithm achieves exactly 3/4 (using non-vertex optimal solution of the LP partial points).
- 3. We are given n jobs and m unrelated machines. The load of job i on machine j is w_{ij} . The load of a machine is the sum of the weights of the jobs assigned to it. Each job i should be either assigned to some machine or we encounter a penalty of p_i for not assigning this job. The goal is to minimize the maximum load PLUS the total penalty of all unassigned jobs.
 - (a) (7 points) Form an integer LP for the problem and relaxed it to be solved in polynomial time.
 - (b) (18 points) Round the solution in poly time to design a 3 approximation algorithm for the problem. Remark: Better bound is possible. Worst bound gets partial points.
- 4. Let G = (V, E) be an undirected graph where |E| = m and the capacity of edge e is $c(e) \ge \frac{10 \log m}{\epsilon^2}$ for some fixed $\epsilon > 0$. We are given m subgraphs where subgraph H_i has value v_i . The goal is to find a subset of the subgraphs of maximum total value such that each edge is used by at most c(e) subgraphs.
 - (a) (7 points) Form an integer LP for the problem and relaxed it to be solved in polynomial time.
 - (b) (18 points) Round the solution (in poly time) to an integer solution and get $1 + \epsilon$ approximation. Recall the Chernoff bound: let $X_1, \ldots X_n$ be random variables $X_i \in [0, 1]$ for all $i, E(X_i) = \mu_i$, $X = \sum_i X_i$ and $E(X) = \sum_i \mu_i \leq \mu$. Then $Pr(x > (1 + \delta)\mu) \leq e^{-\delta^2 \mu/3}$ for $\delta \leq 1$.
- 5. We are given set of intervals, interval *i* which is (s_i, t_i) has a width $w_i \leq 1/2$ and a value v_i . The goal is to find subset of intervals such that the total width at any point is at most 1 with total maximum value. By using local ratio with the interval that ENDS FIRST (with width *w* and value v > 0) and using values of $\frac{vw_i}{1-w}$ we get 2-approximation algorithms. Instead of taking the first interval assume we take an arbitrary (positive value) interval which does NOT contain any other interval.
 - (a) (18 points) Define the exact algorithm and show that we get in this way a 4-approximation.
 - (b) (7 points) Show by example that if we choose an interval that possibly contains other intervals the approximation ratio may be arbitrary large.

The duration of the exam is 3 hours. GOOD LUCK