
Chapter 1Comparison-Sorting and Selecting inTotally Monotone MatricesNoga Alon � Yossi Azar yAbstractAnm�nmatrix A is called totally monotone if for all i1 < i2and j1 < j2, A[i1; j1] > A[i1; j2] implies A[i2; j1] > A[i2; j2].We consider the complexity of comparison-based selectionand sorting algorithms in such matrices. Although ourselection algorithm counts only comparisons its advantageon all previous work is that it can also handle selectionof elements of di�erent (and arbitrary) ranks in di�erentrows (or even selection of elements of several ranks in eachrow), in time which is slightly better than that of the bestknown algorithm for selecting elements of the same rank ineach row. We also determine the decision tree complexity ofsorting each row of a totally monotone matrix up to a factorof at most log n by proving a quadratic lower bound andby slightly improving the upper bound. No nontrivial lowerbound was previously known for this problem. In particularfor the case m = n we prove a tight 
(n2) lower bound.This bound holds for any decision-tree algorithm, and notonly for a comparison-based algorithm. The lower boundis proved by an exact characterization of the bitonic totallymonotone matrices, whereas our new algorithms depend ontechniques from parallel comparison algorithms.1 Introduction.1.1 Background and previous work. Let A =A[i; j] be an m�n matrix. A is called totally monotoneif for all i1 < i2 and j1 < j2, A[i1; j1] > A[i1; j2]implies A[i2; j1] > A[i2; j2]. Totally monotone matriceswere introduced by Aggarwal, Klawe, Moran, Shor andWilber [4]. These matrices arise naturally in the studyof various problems in computational geometry, in theanalysis of certain dynamic programming algorithms,and in other combinatorial problems related to VLSI�Department of Mathematics, Raymond and Beverly Sackler,Faculty of Exact Sciences, Tel Aviv University, Tel-Aviv, Israel,and Bellcore, Morristown, NJ, 07960, USA. Supported in part bya U.S.A.- Israeli BSF Grant and by a Bergmann Memorial GrantyDEC Systems Research Center, 130 Lytton Ave. Palo-Alto,CA 94301. A portion of this work was done while the authorwas in the department of Computer Science, Stanford University,CA 94305-2140, and supported by a Weizmann fellowship andcontract ONR N00014-88-K-0166.

circuit design. A wide variety of applications that usetotally monotone matrices can be found in [4], [5], [9],[10] and their references.In most of the applications the problems are re-duced to a selection or sorting problem in each row in anappropriate totally monotone matrix. The basic prob-lem considered was row maxima (or row minima), i.e.,the problem of �nding the maximum (or minimum) el-ement in each row. An optimal algorithm for this prob-lem was given in [4]. This algorithm, usually referred toas the SMAWK algorithm (see, e.g., [12]), runs in �(n)steps for n � m and in �(n log(2m=n)) steps for n < m.This improves signi�cantly the obvious �(nm)-time al-gorithm that solves the row maxima problem for generalmatrices, and has been used in many applications.The next natural problem considered was selectingthe k'th element in each row. Kravets and Park [9] gavean algorithmwhich runs inO(k(m+n)) steps. Mansour,Park, Schieber and Sen [10] designed an algorithmwhichruns in timeO(m1=2n logn logm+m log n) for any k andthus yields a better complexity for the case of generalk, and in particular for that of selecting the median ineach row. For the typical case m = n the �rst algorithmis better when k � n1=2(logn)2 and the second is betterfor all the remaining range. Note that both algorithmsrequire that k will be the same for all the rows, thusmaking a rather restrictive assumption.Kravets and Park [9] also considered the problem ofrow-sorting, i.e., the problem of sorting each row in atotally monotone matrix. They designed an algorithmwhich runs in time O(mn+n2), improving the complex-ity of the trivial algorithm that sorts each row indepen-dently for the range n = O(m logm). They raised theopen problem of improving their algorithm or establish-ing a lower bound for this problem. Note, for example,that for the case m = n the SMAWK algorithm reducesthe time for �nding the row maxima from quadraticto linear by utilizing the special structure of a totallymonotone matrix, whereas for sorting the time remainsquadratic (the algorithm of [9] saves only a logarithmicfactor). Observe that the fact that the size of the outputof a row-sorting algorithm is 
(nm) does not necessar-1



2 N. Alon and Y. Azarily provide a lower bound on the time required to sortthe rows, since the output can possibly have a smallrepresentation based on the fact that totally monotonematrices are structured. Thus, it seems interesting toeither improve signi�cantly the time for row-sorting orto prove that this is impossible.Parallel algorithms for �nding the row maximawerealso considered. The authors of [5] gave an algorithmthat runs on a CREW PRAM in O(logn log logn) stepsusing n= log logn processors (for the case m = n). Abetter algorithm, which runs on an EREW PRAM inO(logn) steps with n processors is given in [6].1.2 Our results. In the present paper we considertwo main problems for totally monotone matrices. The�rst is selecting elements of desired ranks in the rows(where the ranks may di�er, and we may look for variousdi�erent ranks in some rows) and the second is row-sorting.We consider both problems mainly in the compari-son model. Recall that in this model the complexity ofan algorithm is determined by the number of compar-isons performed, and the other steps in the computa-tion are given for free. Such a model is realistic whenthe comparisons cost more than the rest of the com-putation. It is also interesting in the study of lowerbounds. Although our algorithms are sequential, someof the techniques are based on ideas that arise in parallelcomparison algorithms, and mainly these that appear inthe study of approximation problems.For the selection problem (in the special case of onerequired element in a row) we assume that a sequence ofranks ri, i = 1; : : :m is given and we should �nd for anyi the element of rank ri in row i. We design a compar-ison algorithm that performs O(nm1=2 logn(logm)1=2)comparisons for any given sequence ri. Note that thecomplexity of our algorithm is slightly better than thecomplexity of the algorithm of [10] which is the bestknown algorithm for selecting elements with the samerank in each row. In fact, the improvement is moresigni�cant for m which is much bigger than n. More-over, our algorithm has the advantage of being able todeal with distinct ranks (although it also has the dis-advantage of being a comparison algorithm, i.e., onlycomparisons are counted in its complexity).Our comparison algorithm can be easily parallelizedto run in O(logm + log logn) rounds with no penaltyin the number of processors, i.e., with a number ofprocessors whose product with the above time is equal,up to a constant factor, to the above mentioned totalsequential running time.The sorting problem we consider is row-sorting,i.e., the problem of sorting each row of a given totally

monotone m by n matrix. We prove tight lower andupper bounds which determine the complexity of thissorting problem up to a factor of at most logn in allcases. This settles an open problem raised in [9]. Inparticular, for the interesting special case m = n weprove a tight lower bound of 
(n2).Here is a summary of the complexity of the row-sorting problem. For m � n=logn the best knownalgorithm was to sort each row independently in totalrunning time O(mn logn). For m > n= logn the bestknown upper bound was O(mn + n2) as shown by [9].No nontrivial lower bounds were known.We �rst observe that one can easily design a com-parison row-sorting algorithm that runs in O(n2 logm)time, which is much smaller than the above mentionedbound when m is much bigger than n. By applying sim-ilar methods to these used in our selection algorithm weare also able to (slightly) improve the complexity for therow-sorting problem when m � n and n=m = 2o(logn).In particular, if m = n=(logn)O(1) our improved algo-rithm replaces a logarithmic factor by a double loga-rithmic one. However, our main result for row-sortingis an almost tight lower bound in a general decision treemodel. Speci�cally, we show that any algorithm thatsorts each row of a totally monotone matrix requires
(min(mn; n2 log(2 +m=n2))) steps. In particular, form = n the 
(n2) bound is tight. For m > n2+� the
(n2 logn) bound is also tight. For all the remainingrange the lower bound is of the same order of magni-tude as the upper bound up to a factor of at most logn.Recall that in the decision tree the algorithm is allowedat each step to branch into two possibilities accordingto any computation on the input (and not merely com-parisons), and hence this lower bound is valid in a verygeneral setting. We believe that similar techniques maybe useful in establishing lower bounds for other sortingand searching problems dealing with totally monotonematrices.We complete this section by the proof of the easyobservation mentioned above.Observation 1.1. Sorting each row in a totally mono-tone m by n matrix can be done in O(n2 logm) compar-isons.Proof. Consider any two columns j1; j2, (j1 < j2).Let l be the minimum i for which A[i; j1] > A[i; j2] (ifsuch a row does not exits then de�ne l = m+1). By thede�nition of the minimumand the de�nition of a totallymonotone matrix, for all i < l, A[i; j1] < A[i; j2] and ifi � l, A[i; j1] > A[i; j2]. Hence, by a straightforwardbinary search one can �nd, for any speci�c pair ofcolumns, this breakpoint l in O(logm) steps. Thus, thebreakpoints for all pairs can be found in O(n2 logm)steps. It is easy to see that the knowledge of this



Sorting and Selecting in Totally Monotone Matrices 3information yields the exact order for each row.2 Selection.The main result in this section is the following theorem;Theorem 2.1. Let A be an m by n totally mono-tone matrix, and letS = f(i1; r1); (i2; r2); : : : ; (is; rs)gbe a set of pairs, where 1 � ij � m and 1 � rj � n forall j. There exists a comparison algorithm that �nds,using T (n) = O(ns1=2 logn(logm)1=2) comparisons, theelement whose rank in row number ij is rj, for all1 � j � s.In particular, when s = m and all the numbersij are distinct this is a comparison algorithm that�nds, using O(nm1=2 logn(logm)1=2) comparisons, anelement of a desired rank in each row.The proof is based on a combination of some of thetechniques which have been used in parallel comparisonalgorithms with the reasoning in the proof of the easyObservation 1.1. The main part of the algorithm isbased on comparisons performed according to the edgesof appropriately chosen random graphs. These canbe replaced by explicit expanders, with some increasein the total number of comparisons performed. Wedescribe here only the version based on random graphs.We need the following two lemmas, �rst provedin [3], which have been applied to various parallelcomparison algorithms in [11] and in [2] as well.Lemma 2.1. For every n � a � 1 there exists agraph G(n; a) with n vertices and at most 2n2 logna edgesin which any two disjoint sets of a+ 1 vertices each arejoined by an edge.Lemma 2.2. Let G = G(n; a) be a graph as inLemma 2.1, and suppose n elements are comparedaccording to the edges of G, i.e., we associate eachelement with a vertex of G and compare a pair ofelements i� the corresponding vertices are adjacent inG. Then, for every possible result of the comparisons,for every rank all but at most 7a logn from the elementswith a smaller rank will be known to be too small to havethat rank. A symmetric statement holds for the elementswith a bigger rank.Proof of Theorem 2.1 (sketch) Given a totallymonotone m by n matrix A and a set S of pairsas in the theorem, let G = G(n; a) be a graph asin Lemma 2.1, where a is a parameter to be chosenlater. Let f1; 2; : : :ng be the set of vertices of G. Foreach edge fj1; j2g of G (where j1 < j2) �nd, by abinary search using dlogme comparisons, the minimumi such that A[i; j1] > A[i; j2]. Altogether this costsO(n2 logn logma ) comparisons, after which we know the

results of comparing the elements in each row of thematrix A according to the edges of G.Claim: In each row separately, for each rank r, 1 �r � n, one can �nd the element of rank r in the row byperforming at most O(a logn) additional comparisons.Let S be the set of elements whose rank is notknown to be smaller than r nor larger than r. Denoteby l the number of elements whose rank is known tobe smaller than r. Clearly, the element of rank r isexactly the element of rank r� l in S. Since Lemma 2.2implies that jSj � 15a logn, we conclude that O(a logn)additional comparisons su�ce to select that element.This completes the proof of the claim.Returning to the proof of the theorem, we concludethat for each value of a it is possible to �nd allthe required s elements by performing at most T (n)comparison whereT (n) = O(n2 logn logma ) + O(sa logn) :In the trivial case s � n2 logm we can sort, byObservation 1.1, all the rows of A in timeT (n) = O(n2 logm) � O(ns1=2 logn(logm)1=2)as needed. Otherwise, takea = bnplogmps cand conclude thatT (n) = O(ns1=2 logn(logm)1=2) :This completes the proof. 2Remarks1). Using a similar reasoning we can show that one cansort all the rows in a totally monotone m by n matrixusing O�n2a logn logm +mn log(a logn)�comparisons, for each choice of a; n � a � 1. Thisslightly improves the trivial O(nm logn) upper bound(obtained by sorting each row separately) for values ofm � n which are quite close to n. For example, form = n=(logn)O(1) this gives an algorithm that sorts therows using O(mn log logn) comparisons. we omit thedetails but mention that as shown in the next sectionthis is tight up to the log logn factor (even for generaldecision-tree algorithms).2). The argument used in the �rst part of the proof,together with some of the known results on almost sort-ing algorithms ([3], [1], [8]) implies that by using only



4 N. Alon and Y. AzarO(n logn log logn logm) comparisons one can know al-most all the order relations between pairs of elementssharing the same row of an m by n totally monotonematrix.We can also get an approximation algorithm for therow selection problem, i.e., �nd, for each pair of rowand rank in the input, an element in that row whoserank is \close" to the desired rank. This yields a trade-o� between the number of comparisons performed tothe quality of the approximation, (which stands for themeaning of \close").3). The algorithm can be easily parallelized. The�rst step can be easily done in O(logm) rounds withno penalty in the number of processors. The restof the algorithm can be done in O(log logn) rounds,again, with no loss in the total number of operationsperformed, by using the parallel selection algorithm of[7] which is based on the one of [3].3 Comparison lower bound for row-sorting.In this section we prove the lower bound for the problemof sorting all the rows in totally monotone matrices.Theorem 3.1. Any decision tree algorithm thatsorts each row in a totally monotone m by n matrixrequires 
(min(mn; n2 log(2+m=n2))) steps. In partic-ular, for m � n the lower bound is 
(mn), for m � nit is 
(n2), and for m � n2+� it is 
(n2 logm).Proof. We construct a large family F of m � n to-tally monotone matrices such that any two matrices inthe family di�er in the order of at least one correspond-ing row. Thus, any algorithm that sorts each row in thematrix should have a di�erent output on each matrix inthe family. Hence, a lower bound for any decision treealgorithm is the logarithm of the size of the family.We start with a characterization of the bitonictotally monotone matrices, i.e., the totally monotonematrices in which each row is bitonic (=unimodal).This is done by associating with each such matrix acertain tableau T [i; j] in a one-to-one manner. Wenote that similar tableaux are known as Young-tableauxand appear in the study of the Representations of thesymmetric group, but here we are merely interested insome simple combinatorial properties of T = T [i; j],described below.1. Let li, 1 � i � m be integers such that n�1 � l1 �l2::: � lm � 0.2. T [i; j] is de�ned only for i = 1; ::;m, j = 1; ::; li.3. For all 1 � i � m and 1 � j � li, T [i; j] is aninteger and 1 � T [i; j] � n � 1.4. Each row of T is a monotone increasing sequence.I.e., for all 1 � i � m and 1 � j1 < j2 � li we have

T [i; j1] < T [i; j2].5. Each column of T is a monotone non-decreasingsequence. I.e., for all 1 � i1 < i2 � m andj � lj2 (� li1 ), T [i1; j] � T [i2; j].We next show how to map these tableaux intoa family F of totally monotone matrices such thatdi�erent tableaux would map to di�erent order-typematrices. (Here, of course, the order-type of a matrixrefers to the sequence of linear orders of its rows).To this end, construct the matrix A corresponding tothe tableau T as follows. Each row of A starts withthe elements in the corresponding row in the tableauT . Note that a row in T contains a subset S of theset f1; : : : ; n � 1g. Put N = f1; :::; ng. To completethe row we put to the right of S the number n (i.e.A[i; li + 1] = n) and then the set N � S where thenumbers in the set appear in a decreasing order. Weneed the following Lemma;Lemma 3.1. For any tableau T as above the con-struction yields a totally monotone m by n matrix.Moreover, di�erent tableaux yield di�erent order-typematrices.Proof. First note that the length of each row in thematrix is precisely n since any row consists of somepermutation of the set N . Thus the construction yields,indeed, an m�n matrix. Let us show that the resultingmatrix is totally monotone. It is clear that each row isbitonic. More precisely, the �rst li+1 elements in row iform a monotone increasing sequence and the elementsfrom li + 1 to the end of the row form a monotonedecreasing sequence. It is also not too di�cult toverify that our construction and property 5 imply thateach column in the complement of the tableau is amonotone non-increasing sequence. Formally, for all1 � i1 < i2 � m and j > li1 (� li2), A[i1; j] � A[i2; j].This property is called property 5'.Suppose i1 < i2 and j1 < j2. We have to showthat if A[i1; j1] > A[i1; j2] then A[i2; j1] > A[i2; j2].We consider several possible cases. If j2 � li1 + 1then clearly A[i1; j1] and A[i1; j2] are in the monotoneincreasing part of the row i1 and thus A[i1; j1] <A[i1; j2] and there is nothing to prove. If j1 � li2 + 1then clearly A[i2; j1] and A[i2; j2] are in the monotonedecreasing part of the row i2 and thus A[i2; j1] >A[i2; j2] which also leaves nothing to prove. Thus, wecan assume thatj1 � li2 � li1 < li1 + 2 � j2 :Therefore, we conclude thatA[i2; j1] � A[i1; j1] > A[i1; j2] � A[i2; j2]



Sorting and Selecting in Totally Monotone Matrices 5where the �rst inequality uses property 5 of the tableau(j1 � li2), the middle inequality is the assumption andthe last inequality takes advantage of property 5' (sincej2 > li1). Hence, the matrix is totally monotone.It is left to show that for any two di�erent tableauxthe construction yields matrices of di�erent order types.Note that the value of each element in the tableau is infact precisely its rank in its row. Let the sequence li,i = 1; : : : ;m denote the shape of the tableau. Thus, iftwo di�erent tableaux have the same shape then theymust have a di�erent value in some entry. Hence, theyhave di�erent order types. On the other hand, if theydi�er in the shapes, then, there exists an i for which liin one matrix is, say, smaller than l0i of the other. Then,the element in row i and column li + 1 has a di�erentrank in its row in the two matrices since in the �rst oneit has rank n, whereas in the second its rank is smallerthan n. This completes the proof of the Lemma.In fact, it is also true that any totally monotonematrix A in which each row is a bitonic sequence hasthe same order type as one of the matrices constructedin the above way from an appropriate tableau T . Tosee this, construct T as follows. Replace each elementin A by its rank to obtain a matrix A0. Each row inT will be the part of the corresponding row of A0 thatstarts from the leftmost entry in the matrix up to theelement n (the maximum) excluding this element. It iseasy to verify that this T has all the required properties1 - 5 above. Since this is not essential for our results,we omit the details.We continue the proof of Theorem 3.1 by establish-ing a lower bound on the size of the family F . Firstwe observe that each row in the tableau T has at most2n�1 possibilities (each row is a subset of f1; : : : ; n�1g).Since there are m such rows, the size of the family is atmost 2mn, so we cannot expect a better lower boundusing bitonic matrices.Consider �rst the case m � n=2. For this case weshow that the number of such tableaux A is 2
(nm), andthus 
(mn) steps are required in any decision-tree row-sorting algorithm. To this end we even restrict ourselvesto a subfamily of the tableaux where li = n=2 � ifor 1 � i � n=2. Moreover, we consider only thefollowing subfamily; T [i; j] will be either 2 � (i + j � 1)or 2 � (i + j � 1) � 1. One can easily check that anysuch assignment produces a legal tableau T , since allthe elements are in the admissible range, each rowis monotone increasing and each column is monotoneincreasing as well. Moreover, the number of suchassignments is simply 2 to the power of the number ofplaces in the tableau which is 2
(mn) and we are done.For 2n2 � m > n=2 an 
(n2) lower bound followsfrom the bound for m = n=2.

We are left with the case m > 2n2. In orderto prove the 
(n2 log(m=n2)) lower bound for thiscase we construct k = �(n2) rows R1; :::; Rk with theproperties described below, and consider the subfamilyof all tableaux of the following type: R1 appears x1times; below that R2 appears x2 times and so forthwhile x1 + : : :+ xk = m and xi � 0. The rows Ri willbe de�ned in such a way that any such tableau T willbe legal.The number of tableaux that can be constructed insuch a way is exactly the number of ways to partitionm balls in k cells which is �m+k�1k�1 �. The lower boundfollows from the fact that�m + k � 1k � 1 � > ((m+ k � 1)=(k� 1))k�1= 2
(n2 log(m=n2)) :It is left to show how to de�ne the rows R1; :::; Rk.Let k = 1 + (n� 1) + (n� 2) + :::+ 1 = �n2�+ 1The �rst row is the sequence f1; 2; :::; n� 1g. Assumeinductively that we have already constructed all therows up to the row which consists of the sequencefi; i+1; : : : ; n�1g. Denote this row by Si (and note thatit is not the i'th row for i > 1). The next n� i rows areconstructed as follows. For 1 � j � n � i the j'th rowbelow Si is de�ned to be the row Si without the numbern � j. The last row in this group is exactly Si+1 =fi + 1; : : : ; n � 1g, hence we can continue inductivelyfrom Si+1. Note that the last row (which is Sn) is anempty row, which is a legal row (by our de�nitions). Itis not di�cult to check that the tableau which consistsof these k rows is legal, i.e, satis�es all the requiredproperties. Moreover, omitting and duplicating rowsdo not a�ect the legality of the tableau. Thus, theserows can be used for the construction described above,completing the proof of the theorem.4 Acknowledgement.We would like to thank Don Coppersmith for simpli-fying the proof of Theorem 2.1 and Maria Klawe forhelpful remarks.References[1] N. Alon and Y. Azar, Sorting, approximate sorting andsearching in rounds, SIAM J. Discrete Math. 1 (1988)pp. 269{280.[2] , Parallel comparison algorithms for approxima-tion problems, Proc. 29th Annual IEEE Symp. onFoundations of Computer Science, White Plains, New



6 N. Alon and Y. AzarYork, 1988, pp. 194{203. Also: Combinatorica, inpress.[3] M. Ajtai, J. Koml�os, W.L. Steiger and E. Szemer�edi,Deterministic selection in O(log log n) parallel time,Proc. 18th Annual ACM Symp. on Theory of Comput-ing, Berkeley, CA, 1986, pp. 188{195.[4] A. Aggarwal, M. Klawe, S. Moran, P.Shor and R.Wilber, Geometric applications of a matrix searchingalgorithm, Algorithmica 2 (1987) pp. 195{208.[5] A. Aggarwal and J. Park, Notes on searching in multi-dimensional monotone arrays, Proc. 29th Annual IEEESymposium on Foundations of Computer Science 1988pp. 497{512.[6] M. Attallah and R. Kosaraju, An e�cient ParallelAlgorithm for the row minima of totally monotonematrices, Proc. 2nd Annual ACM-SIAM Symposiumon Discrete Algorithms, 1991 pp. 394{403.[7] Y. Azar and N. Pippenger, Parallel selection, DiscreteApplied Math 27 (1990) pp. 49{58.[8] B. Bollob�as and G. Brightwell, Graphs whose everytransitive orientation contains almost every relation,Israel J. Math., 59 (1987), 112{128.[9] D. Kravets and J. Park, Selection and sorting intotally monotone arrays, Proc. 1st Annual ACM-SIAMSymposium on Discrete Algorithms, pp. 494{502.[10] Y. Mansour, J. Park, B. Schieber and S. Sen, Improvedselection in totally monotone arrays, May 1991.[11] N. Pippenger, Sorting and selecting in rounds, SIAMJ. Computing 6 (1987) pp. 1032{1038.[12] R. Wilber, The concave least-weight subsequence prob-lem revisited, Journal of Algorithms 9 (1988) pp. 418{425.


