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1 Introduction

1.1 Overview:

In most communication networks it is infeasible to maintain one centralized
authority to route traffic efficiently. As a result, users may decide individu-
ally how to route their traffic. Each user behaves selfishly in the sense that
he wishes to minimize his transmission cost while being aware of the network
congestion caused by other users. A system of users decisions is said to be
in a Nash equilibrium if no user can benefit from changing his decision. Sim-
ple examples in game theory show that the performance of systems in Nash
equilibrium, achieved by non-cooperative users, can be far from the global
optimum. Recently, the question of quantifying the decrease in network per-
formance caused by the lack of a centralized authority, received considerable
attention among researchers. Koutsoupias and Papadimitriou [5,8] suggested
to investigate the worst-case coordination ratio, which is the ratio between the
worst possible Nash equilibrium and the global optimum, as a mean to under-
stand the cost incurred due to the lack of a centralized regulating authority.

Problems of this type have been studied lately by two approaches. The worst-
case coordination ratio in a network composed of m parallel related links was
analyzed in [4,5,8], while making no assumptions on the relative amount of
traffic controlled by each user. On the other hand, [11,12] obtained improved
bounds for general networks while assuming that each user controls only a
negligible fraction of the total traffic. We attempt to bridge between these two
approaches, by analyzing the worst-case coordination ratio as a function of
the relative fraction of the total traffic controlled by each user. Specifically,
we quantify the required “negligibility” of each user’s traffic, needed to bound
the worst-case coordination ratio by a constant.

We focus on two new models. First, we study the restricted assignment model
(also called the subset model) which is defined as follows. The network consists
of m parallel links. There are n users where user j has amount of traffic wj ,
that can be transmitted through any link from a subset Mj of the m links.
We consider both the pure strategies case where each user selects one link to
transmit his traffic, and the more general case of mixed strategies where each
user decides a probability distribution over his allowable links. In both cases
each user is aware of the decisions made by other users. The cost incurred by
each user is the total load on the link to which his traffic is assigned. Since
all users behave selfishly, each wishes to minimize his cost by assigning his
traffic to the least loaded link. The global objective however, is to minimize
the load of the most loaded link. We note that even though this model is a
simplification of real communication networks, it captures the essence of basic
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networking problems as pointed out by [5,6,8,11].

Additionally, we study the more general model of unrelated links in which a
task j (j = 1, . . . , n) is associated with an m-vector ~wj specifying its weight on
each link. This model corresponds to a scenario in which the network includes
diverse links, and the traffic generated by each task depends on the specific link
used (e.g. network parameters such as latency, error rate, bandwidth etc. have
different influence over the amount of traffic generated by different network
applications). We analyze the worst-case coordination ratio as a function of
the maximum stretch s in the system, where s = maxj,i,l:wij<∞

wij

wlj
.

1.2 Our results:

We provide a full characterization of the worst-case coordination ratio for
both pure and mixed strategies in the restricted assignment and unrelated
links models. Specifically, we prove the following results:

• We show the following tight bounds for the restricted assignment model,
as functions of the ratio r between the optimal assignment and the largest
task (notice that r ≥ 1):
· For 1 ≤ r ≤ log m we prove that the worst-case coordination ratio is

bounded by Θ
(

log m

r·log(2+ log m
r

)

)

in the pure strategies case, and is bounded

by Θ
(

log m

r·log log(2+ log m

r
)

)

in the mixed strategies case.

· For any 0 < ǫ < 1 and r = Ω( log m
ǫ2

) we show that the worst-case coor-
dination ratio for both pure and mixed strategies systems is bounded by
1 + ǫ.

Note that general bounds of Θ( log m
log log m

) for pure strategies and Θ( log m
log log log m

)
for mixed strategies are obtained when r = 1, i.e. when making no assump-
tions on the largest task in the system. We also note that for r = Ω(log m)
the worst-case coordination ratio is bounded by a constant, for both pure
and mixed strategies.

• In the unrelated links model we prove that the worst-case coordination

ratio is bounded by Θ
(

s + log m

log(2+ log m
s

)

)

in pure strategies systems, and

Θ
(

s·log m
log log m

+ s·log m

log(s·log(2+ log m

s
))

)

when mixed strategies are allowed.

The paper most closely related to ours is [4], which provides tight bounds for
the related links model. In this model the links may have different speeds,
each task is associated with a weight and can be assigned to any link, and the
load of each link equals the total amount of weight assigned to it divided by
its speed. Note that this is also a special case of the unrelated links model.
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We follow the ideas in [4] and extend their results to the restricted assignment
and unrelated links models, while formulating the influence of additional im-
portant parameters on the worst-case coordination ratio. Our proofs mainly
rely on the techniques and ideas used in [4].

1.3 Related work:

Koutsoupias and Papadimitriou [5] initiated the study of worst-case coordina-
tion ratio in networks composed of m-parallel related links with possibly dif-
ferent speeds. They first investigated the case of two links and proved a worst-
case coordination ratio of 3/2 for the case of identical links, and φ = 1+

√
5

2
for

links with possibly different speeds. They also obtained non-tight bounds for
the general case of m parallel links. Mavronicolas and Spirakis [6] continued
this line of research while focusing on the special case of fully-mixed strate-
gies in which the probability of assigning any task to any link is non-zero.
They proved that in this case the worst-case coordination ratio is bounded
by Θ( log m

log log m
) for both the identical links model and the general related links

model where all tasks have equal weights and m ≤ n. Czumaj and Vöcking [4]
proved tight bounds for the m-parallel related links model, and showed that
the worst-case coordination ratio is bounded by Θ( log m

log log m
) in the identical

links model and by Θ( log m
log log log m

) in the general related links model. Czumaj

et al. [3] continued to study this problem and characterized the coordination
and bicriteria ratios for different families of cost functions.

Roughgarden et al. [10,12] also examined the degradation in network perfor-
mance due to unregulated traffic. Their model deals with general networks
where users adopt pure strategies only, and the amount of traffic of each user
is assumed to be a negligible fraction of the total traffic. The objective is to
minimize the total latency. They proved that when the latency of each edge is
a linear function of the edge congestion, any flow at Nash equilibrium has total
latency at most 4/3 of the optimal flow. Although for general latency func-
tions the worst-case coordination ratio is unbounded, the following bicriteria
result can be shown: for any network with continuous non-decreasing latency
functions, a flow at Nash equilibrium has total latency no more than that of
an optimal flow forced to route twice as much traffic. Roughgarden [11] also
showed that the cost of unregulated traffic does not depend on the complex-
ity of the network topology. He also studied the impact of latency functions
belonging to specific classes. Roughgarden et al. [1,2,9] studied various ways
to construct and price networks such that the cost incurred in unregulated
traffic is minimized.
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1.4 Paper structure:

The paper is organized as follows. Section 2 includes formal definitions and
notations. The restricted assignment model is studied in Section 3. In Section 4
we analyze the unrelated links model.

2 Definitions and notations

The restricted assignment model is defined as follows: there are m parallel
links and n users, where user j (j = 1, . . . , n) has a task with weight wj, that
can be assigned to any link from a subset Mj of the m links. We denote the
largest task in the system by wmax = max1≤j≤n wj . Given an assignment of the
tasks to the links, the load of each link is defined as the sum of the weights
that are associated with the tasks being assigned to it. Given an instance
of the problem we define the global optimum (denoted by OPT ) to be the
assignment of tasks to links that minimizes the maximum load of a link. We
denote the ratio between the value of the optimal solution and the largest task
by r = OPT

wmax

. The unrelated links model is more general. Task j (j = 1, . . . , n)
is associated with an m-vector ~wj, where wij indicates the weight of task j on
link i.

We assume that the users are non-cooperative and each one wishes to minimize
his own cost with no regard to the global optimum. We consider two types of
users strategies systems:

(1) Pure strategies: user j selects link lj ∈ Mj and assigns his task to it.
Each user is aware of the choices made by all other users when making
his decision.

(2) Mixed strategies: user j selects a probability distribution {pij} (i ∈
Mj) over the allowable set of links for task j. Each user is aware of the
probability distributions selected by all other users.

For the remainder of this section we regard pure strategies as a special case of
mixed strategies, and give our definitions in terms of mixed strategies systems.
Given a system S of mixed strategies with probability distributions {pS

ij}, we
define the following random variables:

• A set of indicator random variables {XS
ij}, where XS

ij indicates whether task
j is assigned to link i. By definition: Pr[XS

ij = 1] = pS
ij .

• For each link i (i = 1, . . . , m) we define a random variable LS
i , indicating

the total load on the link: LS
i =

∑n
j=1 wj · XS

ij . We denote the maximum
expected load by µS = max1≤i≤m E[LS

i ].
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• We define a random variable LS
max

= max1≤i≤m LS
i to indicate the maximum

link load, and denote its expectancy by µS
max

= E[LS
max

]. Clearly, µS
max

≥ µS

(for pure strategies µS
max = µS).

For simplicity of notation, throughout the paper we omit the superscript S
when meaning is clear from context.

Definition 1 The expected cost of user j for assigning his task to link i in

system S is defined as: cS
ij = E[LS

i |XS
ij = 1] = E[LS

i ] + (1 − pS
ij)wj.

Definition 2 A system S is said to be in Nash Equilibrium if and only if for

every task j and link i, pS
ij > 0 only if cS

ij = min1≤k≤m cS
kj.

Definition 3 The worst-case coordination ratio of an instance of the problem

is defined as R = maxS
µS
max

OPT
, where the maximum is taken over all strategies

systems S in Nash equilibrium.

Throughout the paper we use the standard Gamma function defined by Γ(x) =
∫∞
0 tx−1e−tdt. We also frequently employ the following known equality for the

inverse Gamma function: Γ−1(m) = (1 + o(1))( log m
log log m

).

3 Worst-case equilibria in the restricted assignment model

In this section we provide tight bounds for worst-case equilibria in the re-
stricted assignment model. We investigate both pure and mixed strategies.
We first show upper bounds for the problem, and then provide matching lower
bounds.

3.1 Upper bounds for restricted assignment

We begin by proving an upper bound on the maximum expected load in any
system in Nash equilibrium. Recall that r = OPT

wmax

; without loss of generality
we assume that r is integral.

Lemma 4 Let S be any system in Nash equilibrium. Then µS ≤ (β+ 1
r
)·OPT,

for some β that satisfies the inequality e(β
e
)β ≤ m

1
r .

PROOF. We order the links by non-increasing order of their expected loads.
For every k ≥ 1, define mk to be the minimal integer such that E[Lmk+1] <

k · wmax (mk = m if there is no such integer). We define l = ⌊ µS

wmax

⌋. Note
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that ml ≥ 1. The next claim, which is analogous to Claim 2.2 in [4], states an
important property regarding the relation between mk and mk+1.

Claim 5 For every k ≥ 1, mk

mk+1
≥ k+1

r
.

PROOF. Denote by Jk+1 the set of tasks with positive probability to be
assigned to any link from [1, . . . , mk+1], and denote the total weight of tasks
from Jk+1 by W (Jk+1) =

∑

j∈Jk+1
wj. Consider the way OPT schedules the

tasks from Jk+1. We claim that OPT can not assign a task from Jk+1 to a
link with index larger than mk. To prove this, let us assume, for contradiction,
that OPT assigns task j ∈ Jk+1 to link t > mk, and let pqj > 0 for some link
q ≤ mk+1. There follows:

cqj = E[Lq] + (1 − pqj)wj ≥ (k + 1)wmax + (1 − pqj)wj ≥ (k + 1)wmax

≥ k · wmax + (1 − ptj)wj > ctj ,

where the first inequality follows from the definition of q and the third in-
equality results from wj ≤ wmax (j = 1, . . . , n). This contradicts the fact that
the system S is in Nash equilibrium. Hence, OPT must assign all tasks from
Jk+1 to links in the range [1, . . . , mk]. Let LOPT

i denote the load on link i in
the optimal assignment. Recall that wmax = OPT

r
. We conclude that

mk · OPT ≥
mk
∑

i=1

LOPT

i ≥ W (Jk+1) ≥
mk+1
∑

i=1

E[Li] ≥ (k + 1)
(

OPT

r

)

mk+1,

which yields the desired inequality. 2

We use Claim 5 iteratively together with the inequality (n!/k!) ≥ (n/e)n

(k/e)k to
obtain the following:

m ≥ mr ≥
l(l − 1) · · · (r + 1)

rl−r
=

l!

r! · rl−r
≥ ( l

e
)l

( r
e
)r · rl−r

.

Substituting l = β · r we get: e(β
e
)β ≤ m1/r and µS ≤ (l + 1)OPT

r
= (β +

1
r
)OPT . 2

3.1.1 Pure strategies

In the following theorem we show an upper bound on the worst-case coordi-
nation ratio as a function of the ratio r between the optimal solution and the
largest task in the system.
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Theorem 6 For pure strategies, when 1 ≤ r ≤ log m, R = O
(

log m

r·log(2+ log m

r
)

)

.

PROOF. Since µS
max

= µS for pure strategies, and given the inequality stated
in Lemma 4, it suffices to bound the value of β in order to prove the theorem.
Applying Stirling’s formula to the inequality from Lemma 4 we have:

m
1
r ≥ e

(

β

e

)β

= (1 + o(1)) e
β!√
2πβ

,

and therefore β ≤ (1 + o(1)) Γ−1(m
1
r ) = O

(

log m

r·log(2+ log m
r

)

)

. The theorem fol-

lows. 2

As a direct result from Theorem 6, we obtain the following general upper
bounds for two extreme cases. In the first case we make no assumptions re-
garding the amount of traffic controlled by each user, namely, the largest task
may be as large as the optimal solution, i.e. r = 1. In the second case the
tasks are relatively small, i.e. r = Θ(log m).

Corollary 7 For pure strategies, R = O( log m
log log m

).

Corollary 8 For pure strategies, when r = Θ(log m), we have R = O(1).

Next, we study the worst-case coordination ratio in networks where each user
controls a small fraction of the total traffic, i.e. r = Ω(log m). The next theo-
rem shows that in such networks the worst-case coordination ratio is close to
1.

Theorem 9 For any 0 < ǫ < 1, if r = Ω( log m
ǫ2

), then R ≤ 1 + ǫ.

PROOF. From Lemma 4 we know that R ≤ β + 1
r

where β satisfies the

inequality: e(β
e
)β ≤ m1/r. When taking r = Ω( log m

ǫ2
) we obtain using Taylor

expansion:

eO(ǫ2) ≥ m1/r ≥ e

(

β

e

)β

= e
1
2
(β−1)2−O((β−1)3),

and the inequality yields R ≤ β + 1
r
≤ 1 + ǫ. 2

3.1.2 Mixed strategies

The following theorem gives an upper bound on the worst-case coordination
ratio for the mixed strategies case. Its proof employs the techniques used in
the proof of Theorem 1.1 in [4].
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Theorem 10 For mixed strategies, when 1 ≤ r ≤ log m, R = O
(

log m

r·log log(2+ log m

r
)

)

.

PROOF. For convenience we scale the tasks weights such that wmax = 1.
Consider an arbitrary link i. Recall that Li =

∑n
j=1 wjXij, where wj ≤ wmax =

1 for j = 1, . . . , n, and µ = max1≤i≤m E[Li]. We apply Hoeffding inequality 3

and obtain for every c > 1:

Pr[Li ≥ c · µ] ≤
(

e · E[Li]

c · µ

)c·µ

≤
(

e · µ
c · µ

)c·µ

=
(

e

c

)c·µ
.

We can now apply the union bound to obtain: Pr[Lmax ≥ c · µ] ≤ m(e/c)c·µ.
For every integer α > 10 we can upper bound the expected maximum load
by:

µmax ≤α · µ + µ ·
∞
∑

k=α

Pr[Lmax ≥ k · µ] ≤ α · µ + m · µ
∞
∑

k=α

(e/k)k·µ

≤α · µ + (2 + 1/µ) · mµ · (e/α)α·µ,

where the last inequality follows from the fact that the sequence is sub-
geometric. We can substitute α for Γ−1(m1/µ) + d, for a sufficiently large
constant d. We then have: (e/α)α·µ ≤ 1/m, hence µmax ≤ (α + 2 + 1/µ)µ.

Since α = O
(

log m

µ·log log m
µ

)

there follows: µmax = O
(

log m

log log m
µ

)

. Since OPT = r,

Lemma 4 together with the proof of Theorem 6 imply that µ = O
(

log m

log(2+ log m

r
)

)

,

substituting µ we conclude that µmax = O
(

log m

log log(2+ log m
r

)

)

and therefore R =

O
(

log m

r·log log(2+ log m

r
)

)

. 2

The following upper bounds for two extreme cases are derived directly from
Theorem 10.

Corollary 11 In the restricted assignment problem R = O( log m
log log log m

).

Corollary 12 When r = Θ(log m) we have R = O(1).

The next theorem refers to networks where each user controls a small fraction
of the total traffic.

3 We use the following version of Hoeffding inequality: Let {Xi}N
i=1 be independent

random variables with values in [0, z], and let X =
∑N

i=1 Xi. Then Pr[X ≥ t] ≤
(e · E[X]/t)t/z .
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Theorem 13 For any 0 < ǫ < 1, if r = Ω( log m
ǫ2

), then R ≤ 1 + ǫ.

PROOF. For convenience we scale the tasks weights such that wmax = 1,
hence OPT = r. We distinguish between two cases. First, assume that µ ≥
OPT . By the Hoeffding bound 4 , for every 1 ≤ i ≤ m, and 0 < ǫ < 1:

Pr[Li ≥ (1 + ǫ/3)µ]≤Pr[ Li + (µ − E[Li]) ≥ (1 + ǫ/3)µ ]

≤ e−
ǫ2µ
27 ≤ m−3,

where the first inequality follows since µ − E[Li] ≥ 0, the second inequality
results from the fact that E[ Li +(µ−E[Li]) ] = µ, and the last inequality fol-
lows since µ ≥ OPT = r. By applying the union bound, with high probability
Lmax ≤ (1+ǫ/3)µ and therefore µmax ≤ (1+ǫ/3+o(1))µ. By using Theorem 9
with ǫ/3 we conclude that µmax ≤ (1+ǫ/3+o(1))(1+ǫ/3)OPT ≤ (1+ǫ)OPT

and the theorem follows. The case of µ < OPT is handled by using the same
analysis while replacing µ by OPT . 2

3.2 Lower bounds for restricted assignment

We begin by proving a tight lower bound for the pure strategies case, and then
extend it to the mixed strategies case. Our constructions are similar to those
used in the proof of Theorem 1.3 in [4]. We note that our lower bounds are
proved even for unit weight tasks.

Theorem 14 For pure strategies, R = Ω
(

log m

r·log(2+ log m
r

)

)

.

PROOF. We construct the following problem instance:

links: we allocate l + 1 link groups among the m links (the value of l will be

determined later) such that in group k = 0, . . . , l there are
√

m
⌊

l!
rl · rk

k!

⌋

links.
Denote the number of links in group k by nk.

tasks: we partition the tasks into l groups. In group k = 1, . . . , l there are k·nk

unit weight tasks, each can be assigned to any link from groups [k − 1, . . . , l].

4 We use the following Hoeffding bound which generalizes the Chernoff bound: Let
{Xi}N

i=1 be independent random variables (not necessarily from the same distribu-
tion), such that each Xi takes a value of 0 or zi ≤ 1. Then for X =

∑N
i=1 Xi, and

0 ≤ δ < 1, Pr[X ≥ (1 + δ)E[X]) ≤ e−
δ2E[X]

3 .
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Observe that OPT ≤ r + 1 for this problem instance. The optimal solution
assigns the tasks of group k (k = 1, . . . , l) to the links in group k − 1, at most
r+1 tasks per link. We define the following system of pure strategies, denoted
by S: all tasks from group k (k = 1, . . . , l) are assigned to links from group k,
k tasks per link.

Claim 15 The system S is in Nash equilibrium.

PROOF. Denote by Mk (k = 1, . . . , l) the set of links to which tasks from
task group k can be assigned. Let j be a task from group k and consider the
assignment of j to link i from link group k. Clearly, cij = k, and for each link
t ∈ Mk we have ctj ≥ (k − 1) + 1 = k ≥ cij. Hence the system S is in Nash
equilibrium. 2

We now turn to bound the coordination ratio. We should satisfy the inequal-
ity

√
m · l!

rl

∑l
k=1

rk

k!
≤ m. Since er ≥ ∑l

k=1
rk

k!
, it will suffice if the following

inequality holds:

∗
√

m · l!

rl
· er =

√
m · (1 + o(1))

√
2πl · ( l

e
)l

rl
· er ≤ m.

By taking l = βr, we conclude that R = Ω( l
r
) = Ω(β) = Ω

(

log m

r log(2+ log m
r

)

)

. 2

By substituting r = O( log m
ǫ2

) in the inequality (3.2) above we derive a tight
lower bound (for pure and mixed strategies) for the case where each user
controls a small fraction of the total traffic.

Corollary 16 For any 0 < ǫ < 1, if r = O( log m
ǫ2

), then R ≥ 1 + ǫ.

We can modify our construction from Theorem 14 to obtain a tight lower
bound for the mixed strategies case.

Theorem 17 For mixed strategies, R = Ω
(

log m

r·log log(2+ log m

r
)

)

.

PROOF. We slightly modify the problem instance constructed in the proof
of Theorem 14. Everything remains the same except task group l now contains
(l − 1) · nl tasks. Clearly, OPT ≤ r + 1. We introduce the following system of
mixed strategies, denote it by S:

• All tasks from group k (k = 1, . . . , l−1) are assigned to links from group k,
k tasks per link (the same as the construction in the proof of Theorem 14).
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• Each task from group l has uniform distribution over the links from group
l.

We first prove that the system S is in Nash equilibrium.

Claim 18 The system S is in Nash equilibrium.

PROOF. The cost of task j from group l on any link i in group l is: cij =
(l − 1) + (1 − 1/

√
m). On the other hand, for any link t not in group l:

ctj = (l− 1) + 1 > cij . The proof concerning tasks from groups [1, . . . , l− 1] is
identical to the proof given in Claim 15. 2

In the following claim we determine a lower bound on µS
max

.

Claim 19 µS
max

= Ω
(

log m

log log(2+ log m
r

)

)

.

PROOF. Consider the assignment of tasks to links in group l. There are
(l − 1) · √m unit weight tasks each with uniform distribution over the

√
m

links. This corresponds to a model of throwing (l − 1) · √m balls uniformly
at random to

√
m bins (see e.g. [7]). In this model the expected maximum

occupancy is Ω
(

l + log m
log((log m)/l)

)

. In our case this lower bound corresponds to

µS
max

= Ω
(

log m

log log(2+ log m
r

)

)

. 2

Since OPT ≤ r + 1, our lower bound on the worst-case coordination ratio in
the case of mixed strategies follows directly from Claim 19. 2

4 Analysis of the unrelated links model

Recall that in the unrelated links model, a task j is associated with an m-
vector ~wj = (w1j , . . . , wmj) specifying its weight on each link. Clearly, this
model generalizes the restricted assignment model. We define the maximum
stretch in the system as s = maxj,i,l:wij<∞

wij

wlj
. In the next sections we show

tight bounds for pure and mixed strategies as functions of s. Note that by
increasing s the worst-case coordination ratio becomes arbitrarily large.
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4.1 Upper bounds for the unrelated links model

We begin by proving an upper bound on the maximum expected load in any
system in Nash equilibrium.

Lemma 20 Let S be a system in Nash equilibrium. Then µS = O
(

s + log m

log(2+ log m

s
)

)

·
OPT.

PROOF. We order the links by non-increasing order of their expected loads.
For every k ≥ 1, define mk to be the minimal integer such that E[Lmk+1] <
k · OPT (mk = m if there is no such integer). Let h = ⌊µS/OPT ⌋. The
following claim shows a relation between mk and mk+1.

Claim 21 For every k ≥ 1, mk

mk+1
≥ k+1

s
.

PROOF. Denote by Jk+1 the set of tasks assigned by S with positive proba-
bility to a link from [1, . . . , mk+1]. Suppose that there is a task j ∈ Jk+1 which
is assigned by OPT to a link t > mk, and let q ≤ mk+1 be a link to which j
is assigned by S with positive probability. Then,

cqj ≥ (k + 1) · OPT ≥ k · OPT + (1 − ptj)wtj > ctj ,

contradicting the assumption that S is in Nash equilibrium. Therefore, all the
tasks in Jk+1 are assigned by OPT to links from [1, . . . , mk]. Hence,

mk · OPT ≥
mk
∑

i=1

LOPT

i ≥
∑

j∈Jk+1

min
1≤i≤m

wij ≥
∑

j∈Jk+1

∑mk+1

i=1 pS
ij · wij

s

=

∑mk+1

i=1 E[LS
i ]

s
≥ (k + 1) · OPT

s
· mk+1,

and the claim follows. 2

Now, if h ≤ s then we are done. Otherwise, using Claim 21 we obtain that

m ≥ ms ≥
h(h − 1) · · · (s + 1)

sh−s
=

h!

s! · sh−s
≥
(

h

e1−s/hs

)h

.

By applying the analysis used in the proof of Theorem 6, it follows that h =

O
(

log m

log(2+ log m
s

)

)

. 2

13



The next two theorems bound the worst-case coordination ratio for pure and
mixed strategies. Theorem 22 follows directly from Lemma 20.

Theorem 22 For pure strategies R = O
(

s + log m

log(2+ log m
s

)

)

.

Theorem 23 For mixed strategies R = O
(

s·log m
log log m

+ s·log m

log(s·log(2+ log m
s

))

)

.

PROOF. The proof follows the same analysis used in the proof of Theo-
rem 10, hence we indicate only the differences. We begin by scaling the tasks
weights such that OPT = 1. Notice that as a consequence wij ≤ s for any
1 ≤ i ≤ m and 1 ≤ j ≤ n. Using Hoeffding inequality we derive that
Pr[Li ≥ c · µ] ≤ ( e

c
)

c·µ
s for every c > 1, and by the same analysis as in

Theorem 10 we obtain that µmax ≤ α · µ + (2 + 1/µ) ·mµ · (e/α)
α·µ
s , for every

integer α > 10. By taking α = Γ−1(ms/µ) + d, for some sufficiently large con-
stant d, and plugging in the bound on µ from Lemma 20, the desired bound
is obtained. 2

4.2 Lower bounds for the unrelated links model

In this section we show lower bounds that match the upper bounds proved in
Section 4.1

Theorem 24 For pure strategies, R = Ω
(

s + log m

log(2+ log m

s
)

)

.

PROOF. We prove the theorem by constructing two instances of the prob-
lem. Without loss of generality we assume that s is integral.

We first assume that s ≤ log m. We give a construction similar to the one in
Theorem 14: We partition the links into Ks+1 groups, where K ≤ Γ−1(m

1
3s ).

For k = 0, . . . , K − 1 and i = 1, . . . , s, group number ks + i contains nks+i =√
m · (K!)s

(k!)s(k+1)i links, and group 0 contains n0 = m −∑Ks
l=1 nl links. Note that

√
m · (K!)s +

Ks
∑

l=1

nl ≤
√

m · (K!)s +
√

m ·
K−1
∑

k=0

s
(K!)s

(k!)s ≤
√

m · (K!)s (1 + es) ≤ m,

so n0 ≥
√

m · (K!)s.

The tasks are partitioned into Ks groups. For k = 0, . . . , K−1 and i = 1, . . . , s,
the (ks + i)-th group contains (k + 1) · nks+i tasks. Each task in that group
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has weight 1 on a link from group ks + i − 1, weight s − (s − i)/(k + 1) on a
link from group ks + i, and infinite weight on all other links.

The optimal assignment is to assign each task from the l-th group of tasks to
a distinct link in the (l− 1)-th group of links. Thus, OPT = 1. Now, consider
the following system S of pure strategies: The tasks of the l-th group of tasks
are evenly divided between the links of the l-th group of links. Clearly, the
load on a link from the l-th group is exactly l for l ≥ 1, and in particular, the
maximum load is Ks.

The system S is in Nash equilibrium: For a task j from the l-th group that
was assign to a link i, we have that cij = l, and for any link k 6= i, ckj ≥
(l − 1) + 1 = l. Therefore, the coordination ratio is Ω(Ks). Since we can take

K = Ω
(

log m

s·log(2+ log m
s

)

)

, it follows that R = Ω
(

log m

log(2+ log m
s

)

)

.

We now handle the case when s = Ω(log m). Consider the following problem
instance: there are m tasks, where task j has weight 1 on link j, weight s on
link (j + 1) mod m, and infinite weight on any other link (assume the links
are numbered [0, . . . , m − 1]).

Clearly, OPT = 1 by assigning task j to link j (j = 0, . . . , m−1). Consider the
system of pure strategies S where task j is assigned to link ((j + 1) mod m).
Clearly, the system S is in Nash equilibrium. Moreover, the load on each link
is s. Hence, the coordination ratio is Ω(s). 2

Theorem 25 For mixed strategies, R = Ω
(

s·log m
log log m

+ s·log m

log(s·log(2+ log m
s

))

)

.

PROOF. We prove the theorem by constructing two instances of the prob-
lem. Without loss of generality we assume that s is integral.

We first assume that s ≤ log m. We use the first problem instance from the
proof of Theorem 24 with the following slight modification: Each task that
belongs to group 1 ≤ l = ks+ i ≤ Ks−1 has weight 2 on any link from group
l − 1 and weight 2s− 2(s− i)/(k + 1) on any link from group l. Observe that
OPT = 2, by assigning each task from the l-th group of tasks to a distinct link
in the (l−1)-th group of links. Now, consider the following system S of mixed
strategies: For 1 ≤ l ≤ Ks − 1, the tasks of the l-th group are evenly divided
between the links of the l-th group of links. All tasks belonging to group Ks
have uniform distribution over the links of group Ks. It can be easily verified
that the system S is in Nash equilibrium. Note that the assignment of tasks to
links in group Ks corresponds to throwing K · √m balls (of size s) uniformly
at random to

√
m bins. In this model the expected maximum occupancy is

Ω
(

K + log m
log((log m)/K)

)

. Since we can take K = Ω
(

log m

s·log(2+ log m
s

)

)

, it follows that
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R ≥ µS
max/2 = Ω

(

s·log m

log(s·log(2+ log m

s
))

)

.

Next, we handle the case when s = Ω(log m), and construct the following
problem instance:

links: we partition the m links into two groups, denoted M1 and M2, each
consisting of m/2 links.

tasks: we have two task groups, J1 and J2, each consisting of m/2 tasks. The
weight vectors of the tasks are defined as follows. Task j (j = 0, . . . , m/2− 1)
from group J1 has weight s on all links of group M1, weight 1 on link j from
group M2, and infinite weight on all other links. Task j (j = 0, . . . , m/2 − 1)
from group J2 has weight 2 on link j from group M2, weight 2s on all other
links in M2, and infinite weight on all links of group M1.

Observe that OPT = 3, by assigning task j from group J1 together with task
j from group J2 to link j in group M2. Now consider the following system of
mixed strategies, denoted by S. Each task from group J1 has uniform distri-
bution over the links of group M1, and task j from group J2 is assigned (with
probability 1) to link ((j +1) mod m/2) in group M2. It can be easily verified
that the system S is in Nash equilibrium. Since the assignment of tasks from
group J1 to link group M1 corresponds to throwing m/2 balls (of size s) to
m/2 bins, we conclude that R ≥ µS

max/3 = Ω( s·log m
log log m

). 2
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