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Abstract. In this paper we consider the network design for selfish users
problem, where we assume the more realistic unsplittable model in which
the users can have general demands and each user must choose a single
path between its source and its destination. This model is also called
atomic (weighted) network congestion game. The problem can be pre-
sented as follows : given a network, which edges should be removed to
minimize the cost of the worst Nash equilibrium?

We consider both computational issues and existential issues (i.e. the
power of network design). We give inapproximability results and ap-
proximation algorithms for this network design problem. For networks
with linear edge latency functions we prove that there is no approx-
imation algorithm for this problem with approximation ratio less then
(3+

√
5)/2 ≈ 2.618 unless P = NP . We also show that for networks with

polynomials of degree d edge latency functions there is no approximation
algorithm for this problem with approximation ratio less then dΘ(d) un-
less P = NP . Moreover, we observe that the trivial algorithm that builds
the entire network is optimal for linear edge latency functions and has
an approximation ratio of dΘ(d) for polynomials of degree d edge latency
functions. Finally, we consider general continuous, non-decreasing edge
latency functions and show that the approximation ratio of any approx-
imation algorithm for this problem is unbounded, assuming P 6= NP . In
terms of existential issues we show that network design cannot improve
the maximum possible bound on the price of anarchy in the worst case.

Previous results of Roughgarden for networks with n vertices where each
user controls only a negligible fraction of the overall traffic showed op-
timal inapproximability results of 4/3 for linear edge latency functions,
Θ(d/ ln d) for polynomial edge latency functions and n/2 for general con-
tinuous non-decreasing edge latency functions. He also showed that the
trivial algorithm that builds the entire network is optimal for that case.
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1 Introduction

1.1 Selfish Routing

A major component of any large-scale network system is the routing mechanism,
namely choosing a communication path between a sender and a receiver of traffic.
In most cases, such as the Internet, wireless networks, or overlay networks built
on top of the Internet, traffic from a sender to a receiver is sent over a single path;
splitting the traffic causes the problem of packet reassembly at the receiver and
thus is generally avoided. When choosing routing paths, the typical objective is
to minimize the total latency. In most of these network systems it is infeasible
to maintain one centralized authority that imposes efficient routing strategies
on the network traffic. As a result users act independently and “selfishly”: each
user tries to minimize his traffic cost based on current network traffic.

This problem can be mathematically formalized using classical game theory
as follows. The network users are viewed as independent agents participating in
a non-cooperative game. Each agent wishes to use the minimum latency path
from its source to its destination, given the link congestion caused by the rest
of the agents. This system is said to be in Nash Equilibrium if no agent has an
incentive to change his path from its source to its destination. It is well known
that Nash Equilibria do not in general optimize the social welfare (see, e.g, ”The
Prisoner’s Dilemma” [7, 15]) and can be far from the global optimum.

Equilibria can be defined for pure strategies, where a single path is chosen
by each user and for mixed strategies, where a probability distribution over
the paths is used instead of a single path. Our hardness results hold for pure
strategies and hence also for mixed strategies. Nash equilibrium requires mixed
strategies, but in some cases pure strategies suffice [9, 14, 17].

The degradation of network performance caused by the lack of a centralized
authority can be measured using the worst-case coordination ratio (price of anar-
chy) suggested by Koutsoupias and Papadimitriou [10] and Papadimitriou [16]
which is the ratio between the worst possible Nash Equilibrium and the social
optimum, see, e.g., [1, 4–6, 10, 11, 16, 19–21].

Braess’s paradox is the counterintuitive phenomenon that removing edges
from a network can improve its performance. This paradox was first discovered
by Braess [3] and later reported by Murchland [12]. Braess’s paradox motivates
the following network design problem for improving the performance of a network
with selfish users: How can we design selfish users networks to minimize the
inefficiency inherent in Nash equilibrium?

Previous results of Roughgarden [18] for networks of n vertices with single
source-sink pair where each user controls only a negligible fraction of the overall
traffic showed optimal inapproximability results of 4/3 for linear edge latency
functions, Θ(d/ ln d) for polynomials of degree d edge latency functions and n/2
for general continuous non-decreasing edge latency functions. He also showed
that the trivial algorithm that builds the entire network is optimal. For linear
and polynomial edge latency functions these follow from price of anarchy results
of Roughgarden and Tardos [21].



1.2 Our Results

We prove the following results for the network design problem for general net-
works with unsplittable flow:

– For linear latency functions we prove that for any ǫ > 0 there is no (β − ǫ)-
approximation algorithm for network design where β = (3 +

√
5)/2 ≈ 2.618,

assuming P 6= NP . Price of anarchy results appearing in [1] imply that this
hardness result is optimal.

– For latency functions which are polynomials of degree d we prove that there
is no approximation algorithm for network design, with approximation ratio
less then dΘ(d), assuming P 6= NP . Price of anarchy results appearing in
[1] imply that the trivial algorithm has an approximation ratio of dΘ(d).
We note that our hardness result is Ω(dd/4) where the trivial algorithm’s
approximation ratio is O(2ddd+1).

– For general continuous, non-decreasing latency functions we show that the
approximation ratio of any polynomial time approximation algorithm for
NETWORK DESIGN is unbounded, assuming P 6= NP .

The above results deal with the computational issues related to the power of
network design. We also consider the existential issues. Specifically we also con-
sider the question whether network design can reduce the maximum bound on
the price of anarchy in the worst case. We answer this negatively.

– For linear edge latency functions there is a network with coordination ratio
at least β − ǫ where β = (3 +

√
5)/2 ≈ 2.618 for any ǫ > 0, for polynomi-

als of degree d edge latency functions there is a network with coordination
ratio at least Ω(dd/4) and for general latency functions (continuous and non-
decreasing) there is a network with unbounded coordination ratio such that
in these networks network design cannot decrease the cost of the worst Nash
equilibrium.

All our results hold for pure strategies and hence also for mixed strategies,
since these are hardness and non existential results.
Techniques: To prove our hardness results we first prove hardness results to SE-
LECTIVE NETWORK DESIGN which is an harder problem than NETWORK
DESIGN. Then we show a general way to transform many types of hardness
results of selective network design to hardness results of network design.

1.3 Paper structure

The paper is organized as follows. Section 2 includes formal definitions and
notations. In section 3 we prove inapproximability results for NETWORK DE-
SIGN and observe the approximation ratio of the trivial algorithm for linear and
polynomial latency functions. In section 4 we consider the existential issues of
NETWORK DESIGN and show that it cannot reduce the maximum bound on
the price of anarchy.



2 Definitions and preliminaries

2.1 The Model

We consider the following model which is called weighted network congestion
game: there is a directed graph G = (V, E). Each edge e ∈ E is given a load-
dependent latency function fe : R+ → R+. There are n users, where user j
(j = 1, . . . , n) has a bandwidth request defined by a tuple (sj , tj , wj), where
sj , tj ∈ V are the source/destination pair, and wj ∈ R+ corresponds to the
required bandwidth. We denote the set of (simple) sj − tj paths by Qj . Request
j can be assigned to any path Q from the set of paths Qj , such that the required
bandwidth wj has to be reserved along the path Q.

We assume that the users are non-cooperative and each one wishes to mini-
mize its own cost with no regard to the global optimum. In Pure strategies user
j selects a single path Q ∈ Qj and assigns his request to it. Each user is aware
of the choices made by all other users when making his decision.

2.2 Pure strategies definition

First, we give some simpler notations we use for a system S = (Q1, . . . , Qn)
of pure strategies. Let Qj be the path associated with request j. We define
J(e) = {j|e ∈ Qj} the set of requests assigned to a path containing the edge e.
The load on edge e is defined by: le =

∑
j∈J(e) wj .

For the optimal routes let Q∗
j be the path associated with request j. We

define J∗(e) = {j|e ∈ Q∗
j} the set of requests assigned to a path containing the

edge e. We denote the load on edge e by l∗e .

Definition 1. The latency of user j for assigning his request in system S to
path Q (instead of path Qj) is defined as:

cQ,j =
∑

(e∈Q)∧(e∈Qj)

fe(le) +
∑

(e∈Q)∧(e6∈Qj)

fe(le + wj). (1)

2.3 Nash equilibrium and Coordination ratio

Nash equilibrium is characterized by the property that there is no incentive for
any user to change its strategy and defined as follows

Definition 2. (Nash Equilibrium) A system S is said to be in pure Nash
Equilibrium if and only if for every j ∈ {1, . . . , n} and Q ∈ Qj, cQj ,j ≤ cQ,j.

Definition 3. The cost C(S) for a given system S of pure strategies is defined
as the total latency incurred by S, that is C(S) =

∑
e∈E fe(le)le.

We are interested in estimating the worst-case coordination ratio when pure
Nash equilibrium exists. We denote the optimal system of pure strategies by S∗.

Definition 4. (Coordination Ratio) The coordination ratio is defined as R =

maxS
C(S)
C(S∗) , where the maximum is taken over all strategies S in Nash equilib-

rium.



2.4 Formalizing the Network Design Problem

Let C(H,S) be the total latency incurred by a given system S of pure strategies
in Nash equilibrium for a subgraph H of G. If there is a user j such that Qj = ∅
in the subgraph H then C(H,S) = ∞. We denote by C(H) the maximum cost
obtained for the graph H , where the maximum is taken over all strategies S in
Nash equilibrium for the graph H . We note that for unsplittable flow we do not
know how to compute the value C(H) in polynomial time, while for the case of
splittable flow (or alternatively where each user controls a negligible amount of
the traffic) the value C(H) can be recovered from the subgraph H in polynomial
time via convex programming for positive convex functions (see [2]). Now we
define the network design and selective network design problems for unsplittable
flow.
The Network Design Problem: Given a weighted network congestion game
with directed graph G = (V, E), find a subgraph H of G that minimizes C(H).
The Selective Network Design Problem: Given a weighted network con-
gestion game with directed graph G = (V, E) and E1 ⊆ E, find a subgraph H
of G containing the edges of E1 that minimizes C(H).

The above formulation of the SELECTIVE NETWORK DESIGN problem
is itself interesting, but the main purpose of the presentation of this problem is
for proving inapproximability results for the NETWORK DESIGN problem. In
particular we first prove hardness results for the selective network design problem
(which is a harder problem than the network design problem and hence it is easier
to show hardness results for this problem) and then we modify the instance of
the selective network design problem used in the proof of inapproximability of
selective network design to an instance of the network design problem to show
its inapproximability result.

3 Inapproximabilty of Network Design

In this section we consider the computational issues of NETWORK DESIGN.
Specifically we prove inapproximabilty results for NETWORK DESIGN and
observe the approximation ratio of the trivial algorithm for linear and polynomial
latency functions.

3.1 Linear Latency Functions

In this section we consider the case where the latency of each edge is linear in
the edge congestion. Specifically fe(x) = aex + be for each edge e ∈ E, where ae

and be are nonnegative reals. Let β = (3 +
√

5)/2 ≈ 2.618.
A trivial algorithm for the problem outputs the entire network G. We be-

gin by observing that this trivial algorithm for NETWORK DESIGN is a β-
approximation algorithm, where the latency functions are linear. This will follow
easily from a result of Awerbuch et al. [1]. They proved that in every network
with linear latency functions and unsplittable flow, the cost of unsplittable flow



at Nash equilibrium is at most β times that of every other feasible unsplittable
flow.

Proposition 1. ( [1]) For linear latency functions and weighted demands let S∗

be a system of strategies and let S be a system of strategies in Nash equilibrium.
Then C(S) ≤ β · C(S∗).

Corollary 1. The trivial algorithm is a β-approximation for linear latency func-
tions and weighted demands.

Proof. Consider an instance of the problem with subgraph H of G minimizing
C(H). Let S and S∗ denote systems of strategies at Nash equilibrium for the
graphs G and H , respectively. Since S∗ can be viewed as a system of strategies
for the graph G, it follows from proposition 1 that C(G, S) ≤ β · C(G, S∗) and
hence C(G) ≤ β · C(H).

The main result of this section is a lower bound on the approximation ratio
of any polynomial algorithm (unless P=NP).

Fig. 1. Proof of Theorem 1

Theorem 1. For linear latency functions and weighted demands assuming P 6=
NP there is no (β − ǫ)-approximation algorithm for SELECTIVE NETWORK
DESIGN (recall that β = (3 +

√
5)/2 ≈ 2.618).

Proof. We reduce from the problem 2 Directed Disjoint Paths (2DDP): Given
a directed graph G = (V, E) and distinct vertices s1, s2, t1, t2 ∈ V , are there
si-ti paths P1 and P2, such that P1 and P2 are vertex disjoint? Fortune et
al. [8] proved that this problems is NP-complete. We will show that for linear
latency functions and weighted demands (β−ǫ)-approximation algorithm for the
SELECTIVE NETWORK DESIGN problem can be used to distinguish ”yes”
and ”no” instances of 2DDP in polynomial time. Consider an instance I of 2DDP,
as above. We add the vertices w1, w2, v1 and v2 to the vertex set V and include
directed edges (t1, w1), (t2, w2), (w1, v1), (w2, v2), (v1, v2), (v2, v1), (v1, w2) and
(v2, w1) as shown in Figure 1. We denote the new network by G′ = (V ′, E′). Let
E1 := E′ − E be the group of edges that the subgraph H of G′ should contain.
We define the following linear latency functions f for the edges of E′: the edges



(w1, v1), (w2, v2), (v1, v2), (v2, v1) are given the latency functions f(x) = x and all

other edges are given the latency functions f(x) = 0. We later choose φ = 1+
√

5
2

which is the golden ratio. We consider an atomic weighted network congestion
game with six players that uses the network G′. Player 1 has a bandwidth request
(s1, v1, φ) (player 1 has to move φ units of bandwidth from s1 to v1), player 2
has a bandwidth request (s2, v2, φ), player 3 has a bandwidth request (v1, v2, 1),
player 4 has a bandwidth request (v2, v1, 1), player 5 has a bandwidth request
(s1, t1, 1) and player 6 has a bandwidth request (s2, t2, 1). The new instance I ′

can be constructed from I in polynomial time. To complete the proof, it suffices
to show the following two statements.

1. If I is a ”yes” instance of 2DDP, then G′ contains a subgraph H of G′ with
C(H) = 2φ2 + 2.

2. If I is a ”no” instance of 2DDP, then C(H) ≥ 2(φ+1)2+2φ2 for all subgraphs
H of G′.

Recall that the subgraph H of G′ should contain the edges in E1. To prove
(1), let P1 and P2 be vertex-disjoint paths in G, respectively, and obtain H by
deleting all edges of G not contained in some Pi. Then, H is a subgraph of G′

that contains the paths s1 − t1 − w1 − v1, s2 − t2 − w2 − v2, v1 − v2, v2 − v1,
s1− t1 and s2− t2. These paths are the direct paths of players 1−6 respectively.
The optimal solution S1 is obtained when each player chooses its direct path
and this solution is the only Nash equilibrium for I ′ in which the costs of players
1 − 6 are φ2, φ2, 1, 1,0 and 0 respectively. The total cost C(H, S1) = 2φ2 + 2.
This solution is the unique Nash Equilibrium, since the dominant strategy of
each of the players 1, 2, 5, 6 is to choose its direct path which is its unique simple
path and given these strategies of players 1, 2, 5, 6 the best response of each of
the players 3 and 4 is its direct path. For (2), we may assume that H contains
s1− t1 and s2− t2 paths. In this case the paths s1− t1 and s2− t2 are not disjoint
and hence H must contain s1 − t2 and s2 − t1 paths. Let S2 be the system of
strategies where player 1 uses its indirect path s1−t2−w2−v2−v1, player 2 uses
its indirect path s2− t1−w1−v1−v2, player 3 uses its indirect path v1−w2−v2,
player 4 uses its indirect path v2 − w1 − v1, player 5 uses its direct path s1 − t1
and player 6 uses its direct path s2 − t2. Then this is a Nash equilibrium and
the costs of players 1 − 6 are 2φ + 1, 2φ + 1, φ + 1, φ + 1, 0 and 0 respectively.
The total cost C(H, S2) = 2(φ+1)2 +2φ2. The ratio of the total costs C(H, S2)
and C(H, S1) is :

2(φ + 1)2 + 2φ2

2φ2 + 2
.

We choose φ = 1+
√

5
2 which is the golden ratio and get a ratio β = φ+1 ≈ 2.618.

This completes the proof.

We call a family X of latency functions nice if all of its functions are non-
negative, continuous and non-decreasing and the family is closed under non-
negative linear combinations. Note that ,obviously, linear and polynomial latency
functions satisfy this definition.



The following Lemma provides a way to transform inapproximability result of
SELECTIVE NETWORK DESIGN to inapproximability result of NETWORK
DESIGN.

Lemma 1. Given a direct reduction from a hard problem Q to SELECTIVE
NETWORK DESIGN for a nice family of latency functions that shows that it is
hard to c-approximate selective network design, then one can create a similar re-
duction from Q to NETWORK DESIGN for the same family of latency functions
that shows that it is hard to c-approximate network design, if the following condi-
tion applies : for every instance of selective network design created by the reduc-
tion with weighted network congestion game consisting of graph G′ = (V ′, E′),
E1 ⊆ E′ and every subgraph H ⊆ G′ that has been considered in the proof (i.e.
that contains E1) it holds that in the worst Nash equilibrium each player has a
unique best response (best strategy).

Proof. For every instance of SELECTIVE NETWORK DESIGN created by the
reduction with weighted network congestion game consisting of graph G′ =
(V ′, E′), E1 ⊆ E′ and every subgraph H ⊆ G′ that has been considered in
the proof (i.e. that contains E1) we do the following. Let δ > 0. For each edge
e ∈ E1 we make the following local modification. First we split the edge by
adding a new vertex we and replacing the edge e = (u, v) by the two edges
e1 = (u, we) and e2 = (we, v). The new edges e1 and e2 will posses the latency
function 1

2fe. Then we add two players with requests (u, we, δ) and (we, v, δ).
We denote the modified network created from H by H∗ = (V ∗, E∗). Since the
costs of the players change continuously as a function of δ, for sufficiently small
constant δ it holds that in the new weighted network congestion game the worst
Nash equilibrium remains a Nash equilibrium where each player uses its original
strategy and this strategy is its unique best response (the new players choose
their unique strategy). Moreover, the total cost changes continuously as a func-
tion of δ and hence the new total cost is arbitrarily close to the original total cost
as a function of δ. Additionally, each of the edges in E1 cannot be deleted since
it is a unique strategy of a new player. Hence the inapproximablity proof for
SELECTIVE NETWORK DESIGN is also a proof for NETWORK DESIGN.

Unfortunately we cannot use Lemma 1 to prove Theorem 2 according to the
result of Theorem 1, hence we have to modify the weighed network congestion
game used in the proof of Theorem 1 to satisfy the condition required by Lemma
1.

Theorem 2. For linear latency functions and weighted demands assuming P 6=
NP there is no (β−ǫ)-approximation algorithm for NETWORK DESIGN (recall
that β = (3 +

√
5)/2 ≈ 2.618).

Proof. We modify the weighted network congestion game defined in the proof
of Theorem 1 as follows : Let ǫ > 0. First we modify the network G′ = (V ′, E′)
shown in Figure 1 and obtain the network G′′ = (V ′′, E′′) shown in Figure 2.
Next we modify the requests of players 3 and 4. Player 3 has a bandwidth request



Fig. 2. Proof of Theorem 2

(z1, z2, 1) (its previous request was (v1, v2, 1)) and player 4 has a bandwidth
request (z2, z1, 1) (its previous request was (z2, v1, 1)). The direct paths of players
1− 6 are s1 − t1 −w1 − y1 − v1, s2 − t2 −w2 − y2 − v2, z1 − y4 − z2, z2 − y3 − z1,
s1 − t1 and s2 − t2 respectively. The indirect paths of players 1 − 4 are s1 −
t2 − w2 − y2 − z2 − y3 − v1, s2 − t1 − w1 − y1 − z1 − y4 − v2, z1 − w2 − y2 − z2,
z2 −w1 − y1 − z1 respectively. Now it is easy to verify according to the proof of
Theorem 1 that the following properties hold:

1. The optimum which is the best Nash equilibrium is obtained when each
player chooses its direct path.

2. The worst Nash equilibrium is obtained when each of the players 1−4 chooses
its indirect path and players 5, 6 choose their direct path.

3. In the best and worst Nash equilibria the total cost was increased by at most
8ǫ.

4. In the best and worst Nash equilibria each player has a unique best response
(best setrategy).

Let E1 = E′′ − E be the group of edges that the subgraph H of G′′ should
contain. It follows from the above properties and the proof of Theorem 1 that
the above modified weighted network congestion game can be used to prove
Theorem 1. It also follows that for every subgraph considered in the new proof
of Theorem 1 which uses the modified weighted network congestion game, in the
worst Nash equilibrium each player has a unique best response (best startegy).
Applying Lemma 1 completes the proof.

3.2 Polynomial Latency Functions

In this section we consider the case where the latency of each edge is a polynomial
of degree d in the edge congestion. Specifically fe(x) =

∑
i ae,ix

i for each edge
e ∈ E, where ae,i are nonnegative reals.

Proposition 2. ( [1]) For polynomial of degree d latency functions and weighted
demands let S∗ be a system of strategies and let S be a system of strategies in
Nash equilibrium. Then C(S) ≤ O(2ddd+1) · C(S∗).



Corollary 2. The trivial algorithm is a O(2ddd+1)-approximation for linear la-
tency functions and weighted demands.

The main results of this section are lower bounds on the approximation ratio
of any polynomial algorithm for weighted demands (unless P=NP).

Fig. 3. Proof of Theorem 3. In this example n = 4

Theorem 3. For polynomials of degree d latency functions and weighted de-
mands assuming P 6= NP there is a lower bound of Ω(dd/4) on the approxi-
mation ratio of any polynomial time approximation algorithm for SELECTIVE
NETWORK DESIGN.

Proof. Let c = 2,let d = 2k (we can assume that d is even), let n = k
√

k/c. We
reduce from the problem 2 Directed Disjoint Paths (2DDP): Given a directed
graph G = (V, E) and distinct vertices s1, s2, t1, t2 ∈ V , are there si-ti paths P1

and P2, such that P1 and P2 are vertex disjoint? Fortune et al. [8] proved that
this problems is NP-complete. We will show that for polynomials of degree d la-
tency functions and weighted demands O(dd/4)-approximation algorithm for the
SELECTIVE NETWORK DESIGN problem can be used to distinguish ”yes”
and ”no” instances of 2DDP in polynomial time. Consider an instance I of
2DDP, as above. We now build the graph G′ = (V ′, E′) shown in Figure 3. Let
E1 = E′ − E be the group of edges that the subgraph H of G′ should contain.
We begin by adding the vertices w and v0, . . . , vn to the vertex set V and include
directed edges (v0, s1), (t1, v1), (t2, w), (vi, vi+1) for i = 1, . . . , n − 1, (vi, v0) for
i = 1, . . . , n and (w, vi) for i = 1, . . . , n. Next we add the edge latency functions.
Edges (t1, v1) and (vi, vi+1) for i = 1, . . . , n − 1 will possess the latency func-
tion f(x) = x2k, edge (t2, w) will possess the latency function f(x) = k2xk, all
other edges will possess the latency function f(x) = 0. Let δ > 0 be sufficiently
small. We consider an atomic weighted network congestion game with n+3 play-
ers that use the network G′. Player 1 has a bandwidth request (s2, vn, k). For
i = 2 . . . n + 1 player i has a bandwidth request (vi−2, vi−1, c

√
k). Player n + 2



has a bandwidth request (s1, t1, δ) and player n + 3 has a bandwidth request
(s2, t2, δ). The new instance I ′ can be constructed from I in polynomial time.
To complete the proof, it suffices to show the following two statements.

1. If I is a ”yes” instance of 2DDP, then G′ contains a subgraph H of G′ with
C(H) = kk+222k + kk+3.

2. If I is a ”no” instance of 2DDP, then C(H) ≥ k2k+4 for all subgraphs H of
G′.

To prove (1), let P1 and P2 be vertex-disjoint paths in G, respectively, and
obtain H by deleting all edges of G not contained in some Pi. Then, H is a
subgraph of G′. There is one simple path for each player. The optimal solution
is obtained when each player chooses its direct path as follows. Player 1 chooses
the path s2 − t2 − w − vn ,player 2 chooses the path v0 − s1 − t1 − v1, for
i = 3, . . . n+1 player i chooses the path vi−2−vi−1, player n+2 chooses the path
s1 − t1 and player n + 3 chooses the path s2 − t2. This solution is the only Nash
equilibrium for I ′, in which C(H, S) =

∑
e∈E fe(le)le = n(2

√
k)2k+1+k2 ·kk+1 =

k
√

k/2(2
√

k)2k+1 + k2 · kk+1 = kk+222k + kk+3. For (2), we may assume that H
contains s1− t1 and s2− t2 paths. In this case H must contain s1− t2 and s2− t1
paths to satisfy the requests for paths s1 − t1 and s2 − t2. If player 1 uses its
indirect path s2−t1−v1−v2− . . .−vn, for i = 2 . . . n+1 player i uses its indirect
path vi−2 −v0−s1− t2−w−vi−1, player n+2 uses its direct path s1− t1 which
must exist and player n + 3 uses its direct path s2 − t2 if it exists, otherwise it
uses its indirect path s2 − t1 − v1 − v0 − s1 − t2, then this is a Nash equilibrium
with C(H, S) ≥ k2 ·k2k+2 +k ·k2k+3/2/2 = k2k+4 +k2k+5/2/2. To show that this
is a Nash equilibrium we have to show that no player benefits from changing its
path. We assume that player n+3 uses its indirect path s2−t1−v1−v0−s1−t2.
The analysis of the case when player n + 3 uses its direct path s2 − t2 follows
from this case. The cost of player 1 on path s2 − t1 − v1 − v2 − . . . − vn is
k
√

k/2 · k2k = k2k+3/2/2. The cost of player 1 on path s2 − t2 − w − vn is
k2 · (k2 + k + δ)k > k2k+2, which is greater. For i = 2 . . . n + 1 the cost of player
i on path vi−2 − v0 − s1 − t2 − w − vi−1 is k2 · (k2 + δ)k ≥ k2k+2. The cost of
player i on path vi−2 − vi−1 is (k + 2

√
k)2k > k2 · (k2 + δ)k for sufficiently small

δ (but at least one divided by a polynomial in k). Players n+2 and n+3 cannot
decrease their cost by changing path (if one exists). This completes the proof.

Theorem 4. For polynomials of degree d latency functions and weighted de-
mands assuming P 6= NP there is a lower bound of Ω(dd/4) on the approxi-
mation ratio of any polynomial time approximation algorithm for NETWORK
DESIGN.

Proof. In any Nash equilibrium considered in the proof of Theorem 3 every
player has a unique best response, hence the result follows from Lemma 1.

3.3 General Latency Functions

In this section we consider the case where the latency of each edge is continuous
and non-decreasing in the edge congestion. We show that the approximation
ratio of any approximation algorithm is unbounded even as a function of n.



Fig. 4. Proof of Theorem 5. In this example n = 4

Theorem 5. For general continuous, non-decreasing latency functions assum-
ing P 6= NP the approximation ratio of any polynomial time approximation
algorithm for NETWORK DESIGN is unbounded.

Proof. We show that it is NP-hard to differentiate between zero cost and positive
cost. We reduce from the NP-complete problem PARTITION: we are given q
positive integers {a1, a2, . . . , aq} and seek for a subset T ⊆ {1, 2, . . . , q} such

that
∑

j∈T

aj =
1

2

q∑

j=1

aj [13]. Consider an instance I of PARTITION, as above.

We now build the directed graph G = (V, E) shown in Figure 4. Let n = q,
let A =

∑q
j=1 aj , V = {s, t, v1, v2, . . . , vn} and E includes the edges (si, v1) for

i = 1, . . . , n, (si, v2) for i = 1, . . . , n, (v1, t) and (v2, t). The edges (v1, t) and
(v2, t) will posses the latency function f satisfying f(x) = 0 for x ≤ A/2 and
f(x) = x − A/2 for x ≥ A/2, all other edges will posses the latency function
f(x) = 0. We consider an atomic weighted network congestion game with n
players that uses the network G. For i = 1 . . . n player i has a bandwidth request
(si, t, ai).

The new instance I ′ can be constructed from I in polynomial time. To com-
plete the proof, it suffices to show the following two statements.

1. If I is a ”yes” instance of PARTITION, then G contains a subgraph H of G
with C(H) = 0.

2. If I is a ”no” instance of PARTITION, then C(H) > 0 for all subgraphs H
of G.

To prove (1), let the subset Y be the solution to the instance I, we obtain
H by deleting all edges (si, v2) for i ∈ Y and deleting all edges (si, v1) for i not
in Y . Each player has a unique path (strategy) in the graph H . The load on
each of the edges (v1, t) and (v2, t) is A/2 and hence C(H, S) = 0. For (2), we
may assume that H contains si − t path for each i = 1, . . . , n. Let Y ′ be the
subset of players using paths containing the edge (v1, t) (all other players use
paths containing the edge (v2, t)), then it holds that the load of one of the edges
(v1, t) and (v2, t) is greater then A/2 and hence C(H, S) > 0.



4 The Limitation on the Power of Network Design

In this section we consider the existential issues of NETWORK DESIGN. Specif-
ically we consider the question whether network design can reduce the maximum
bound on the price of anarchy. We answer this negatively.

Theorem 6. For any ǫ > 0 and for linear latency functions there is a network
with coordination ratio at least β − ǫ in which NETWORK DESIGN cannot
decrease the cost of the worst Nash equilibrium (recall that β = (3 +

√
5)/2 ≈

2.618).

Proof. The proof follows from the weighted network congestion game with the
graph G′′ constructed in the proof of Theorem 2 where the graph G is contracted
to a single vertex. For each edge in the graph G′′ we apply the local modification
described in the proof of Lemma 1 and obtain a new weighted network congestion
game with coordination ratio at least β − ǫ where edges cannot be removed.

Theorem 7. For polynomial of degree d latency functions there is a network
with coordination ratio at least Ω(dd/4) in which NETWORK DESIGN cannot
decrease the cost of the worst Nash equilibrium.

Proof. The proof follows from the weighted network congestion game with the
graph G′ constructed in the proof of Theorem 3 where the graph G is contracted
to a single vertex. For each edge in the graph G′ we apply the local modification
described in the proof of Lemma 1 and obtain a new weighted network congestion
game with coordination ratio at least Ω(dd/4) where edges cannot be removed.

Theorem 8. For general latency functions (continuous and non-decreasing) there
is a network with unbounded coordination ratio such that in this network NET-
WORK DESIGN cannot decrease the cost of the worst Nash equilibrium.

Proof. We prove the result by showing a weighted network congestion game for
network with edges that cannot be removed (since each edge is a unique path of
a player). In this game there is Nash equilibrium with zero cost and Nash equi-
librium with positive cost as follows. We consider a weighted network congestion
game that uses the network defined in the proof of Theorem 5 and shown in
Figure 4. We denote the new network by G = (V, E). Let the number of source
vertices n = 4 and let A = 12. We define the following players: players 1−4 have
bandwidth requests (s1, t, 2), (s2, t, 3), (s3, t, 2), (s4, t, 3) respectively. For each
i = 1 − 4 we add two players with requests (si, v1, 1) and (si, v2, 1). Addition-
ally we add two players with requests (v1, t, 1) and (v2, t, 1). When players 1, 2
choose their simple paths containing the edge (v1, t), players 3, 4 choose their
simple paths containing the edge (v2, t) and all other players use their unique
path, then this is the optimal solution and it is also the best Nash equilibrium
with cost C(H, S1) = 0. Additional Nash equilibrium is obtained when play-
ers 1, 3 choose their simple paths containing the edge (v1, t), players 2, 4 choose
their simple path containing the edge (v2, t) and all other players use their unique
path. The cost of this Nash equilibrium C(H, S2) > 0.
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