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Abstract

The essence of the routing problem in real networks is theatréffic demand from a source
to destination must be satisfied by choosing a single pathdsst source and destination. The
splittable version of this problem is when demand can befgadi by many paths, namely a flow
from source to destination. The unsplittable, or discretsion of the problem is more realistic yet
is more complex from the algorithmic point of view; in som#isgs optimizing such unsplittable
traffic flow is computationally intractable.

In this paper, we assume this more realistic unsplittablelehcand investigate the "price
of anarchy”, or deterioration of network performance meegun total traffic latency under the
selfish user behavior. We show that for linear edge latenugtions the price of anarchy is exactly
2.618 for weighted demand and exactly5 for unweighted demand. These results are easily
extended to (weighted or unweighted) atomic "congestionas, where paths are replaced by
general subsets. We also show that for polynomials of degezige latency functions the price
of anarchy isi®(® . Our results hold also for mixed strategies.

Previous results of Roughgarden and Tardos showed thainfmarl edge latency functions
the price of anarchy is exactl§/ under the assumption that each user controls only a nelgligib
fraction of the overall traffic (this result also holds foethplittable case). Note that under the
assumption of negligible traffic pure and mixed strategresesuivalent and also splittable and
unsplittable models are equivalent.

1 Introduction

1.1 The model

A major component of any large-scale network system is thénmg mechanism, namely choosing a
communication path between a sender and a receiver of tréffimost cases, such as the Internet,
wireless networks, or overlay networks built on top of thiinet, traffic from a sender to a receiver
is sent over ainglepath; splitting the traffic causes the problem of packetse@bly at the receiver
and thus is generally avoided. When choosing routing pétlestypical objective is to minimize the
total latency. In most of these network systems it is infdasio maintain one centralized authority
that imposes efficient routing strategies on the networffidraAs a result users act independently and
“selfishly”: each user tries to minimize her traffic cost lthea current network traffic.

This problem can be mathematically formalized using ctadsjame theory as follows. The
network users are viewed as independent agents partigjpisitia noncooperative game. Each agent
wishes to use the minimum latency path from its source toéigidation, given the link congestion
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caused by the rest of the agents. This system is said to besh Eaquilibrium if no agent has an
incentive to change his path from its source to its destnatit is well known that Nash Equilibria
do not in general optimize the social welfare (see, e.g, 'Fhisoner's Dilemma” [9, 18]) and can be
far from the global optimum.

Equilibria can be defined for pure strategies, where a sipgth is chosen by each user and for
mixed strategies, where a probability distribution over gaths is used instead of a single path. In
this paper we consider both pure and mixed strategies. $lsdontrast to the case where each user
controls only a negligible fraction of the overall traffic which pure and mixed strategies are the
same [24].

An additional complication that raised when considerirtgteary unsplittable traffic is that in this
general case there is not necessarily pure Nash Equilibiesh [17] proved that every game has a
randomized Nash Equilibrium. In a classical paper Rosérj#] proved that every congestion game
(i.e. when all demands are of unit size) has a pure Nash Bqguith. Hence when the problem can
be represented as a congestion game a pure Nash Equilibkivayisaexists, e.g, when all network
users control the same amount of traffic. For general dentaed=xistence of pure Nash Equilibrium
is still open. Recently for linear edge latency functiondakes et. al [11] proved that pure Nash
Equilibrium always exists.

The degradation of network performance caused by the lack adntralized authority can be
measured using the worst-case coordination ratio (pricenafchy) suggested by Koutsoupias and
Papadimitriou [14, 19] which is the ratio between the worsigible Nash Equilibrium and the social
optimum.

Previous results (Roughgarden and Tardos [24]) showeditttr the assumption that each user
controls only a negligible fraction of the overall trafficetiprice of anarchy is exactl% for linear
edge latency functions and they also showed bicriteridtsefar continuous and nondecreasing edge
latency functions. The above results were extended to titeabfe case by Roughgarden [21].

1.2 Our Results
We prove the following results for general networks withplitgable flow:

e For linear latency functions we prove that the worst-caserdination ratio for weighted de-
mand is exactly2.618 for pure and mixed strategies. For unweighted demand we Hieivthe
worst-case coordination ratio is exaclys for pure strategies.

e For polynomials of degreé latency functions we prove that the worst-case coordinatitio
is d®(@ for pure and mixed strategies. More precisely the worsé-ca®rdination ratio is at
mostO(2¢d**+1) and at leasf(d%/?).

¢ All the above results can be extended to weighted and untezigitomic congestion games,
where arbitrary subsets are used instead of paths (see (QR@rldefinition of congestion
games).

Our results for the price of anarchy for bounded degree mohjals is a constant (independent
of the network size), which stands in contrast to the maxinad in the Koutsoupias/Papadimitriou
model. On the other hand we note that the lower bound for bedidegree polynomials implies that
there is no constant > 0 that applies for all polynomials such that the total latentgelfish users
is bounded from above by the total latency incurred by ogdtymauting ¢ times as much traffic.
We note that considering mixed strategies is essential dauinplication that does not exist in most
previous work), since Nash equilibrium for pure strategiesd not exist in this model (see [20]). We
also note that for unsplittable (atomic) network congestiames only special cases were previously
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considered. Recently and independently Christodouloukamdsoupias [4] showed similar results
to our results for the special case of unweighted demands.

Techniques: The lower bounds imply that the bounds of Roughgarden andiodior the splittable
model cannot carry over to this model, so new techniques bauseeded. In our proofs for evaluating
the price of anarchy for pure strategies we compare the dglaguntered by each agent to the delay
it would encounter if it changes to the optimal route. We comalthese bounds in a weighted fashion
and transform it to a relation between the total delay of thshiNEquilibrium and the total delay of
the optimal routes. For mixed strategies we separate tHagonointo two logical steps. In the first
step we consider the latency of the expected load of eachauha the second step we augment it
to the expectation of the total latency. The first step tumisto be equivalent to the pure strategies
case where requests are allowed to be split. The secondddspechnical complications that does
not occur in the proofs for pure strategies. Although theltedor pure strategies follows from the
results of mixed strategies for simplifying the preseptative start with proving the results for pure
strategies. We note that in our proofs we also use technigju@éequalities appear in [1, 25].

1.3 Related Work

Splittable or negligible flows. Unregulated traffic routing for general networks has beedeatenl as
network flow model since the 1950's [3, 26] (see [24] for ferthistorical references). Roughgarden
and Tardos [24] initiated the study of price of anarchy iis thiodel (dubbed worst-case coordination
ratio by Papadimitriou [14]). Note that under the assunmptibnegligible traffic as in Roughgarden
and Tardos model, splittable and unsplittable models aralgnt and also pure and mixed strategies
are equivalent. They proved that for linear latency fundighe worst-case coordination ratio is
exactly%. They also proved that for general continuous and nondsiag¢atency functions the total
latency of the routes chosen by selfish network users is ne mhan the total latency incurred by
optimally routing twice as much traffic. Specifically, forlpoomial of degreel they showed that the
coordination ratio is linear i. When network users can control a significant portion of therall
traffic, but are permitted to route their flow fractionally ifhgarden [21] showed that all known
bounds on the price of anarchy for nonatomic selfish routarges carry over to the atomic splittable
case. Roughgarden [23] also showed that the cost of unteduleaffic does not depend on the
complexity of network topology. He also studied the impddatency functions belonging to specific
classes. Roughgarden et al. [5, 6, 22] studied various veagsristruct and price networks such that
the cost incurred in unregulated traffic is minimized.

Coordination ratio for parallel links.  Most of the work on the parallel links model was done with
the maximum load measure. Koutsoupias and Papadimitricl] iffitiated the study of worst-case
coordination ratio in networks composed saf parallel links with possibly different speeds. They
showed that for two links the worst-case coordination r'aiiexactly% for identical links andp =

”T\/g for links with possibly different speeds. They also obtdim®n-tight bounds for the general
case ofm identical links. Mavronicolas and Spirakis [16] obtaingght results for the general case
of any number of links. Their results are for the special aasfilly-mixed strategies in which the
probability of assigning any task to any link is non-zeroey proved that for the identical links model
the worst-case coordination ra\tio@ts(lok’fgO ’gm). They proved the same result for the general related
links model where all tasks have equagi weights ang n. Czumaj and Vocking [8] improved these
results by proving tight bounds for the parallel links model. They showed that for the identical

links model the worst-case coordination rati(ﬁslolg"lgo?m) and for the general related links model

the worst-case coordination ratioegmﬂ%). In [2] additional models were considered. Czumaj




et. al [7] continued to study this problem and characteribhedcoordination and bicriteria ratios for
different families of cost functions. For other results imstmodel with other social costs see, e.qg,
[12, 13, 15, 25].

1.4 Paper structure

The paper is organized as follows. Section 2 includes fodeéhitions and notations. In section 3
we prove the results for networks with linear latency fumes. In section 4 we prove the results for
networks with polynomials of degreklatency functions.

2 Definitions and preliminaries

2.1 The Model

We consider the following model: there is a directed gréph- (V, E'). Each edge € E is given
a load-dependent latency functign : R*™ — R*. There aren users, where usgr(j = 1,...,n)
has a bandwidth request defined by a tuplg t;, w;), wheres;, t; € V are the source/destination
pair, andw; € R™ corresponds to the required bandwidth. We denote the seirople)s; — ¢;
paths byQ;. Reques} can be assigned to any paghfrom the set of pathg);, such that the required
bandwidthw; has to be reserved along the pgth

We assume that the users are non-cooperative and each dreswisminimize its own cost with
no regard to the global optimum. We consider two types ofsusegategy systems:

1. Pure strategies:user; selects a single pat) € Q; and assigns his request to it. Each user is
aware of the choices made by all other user when making hisidec

2. Mixed strategies: user; selects a probability distributiofip;} (Q € Q;) over all the set of
paths from the source; to the destination;. Each user is aware of the probability distributions
selected by all other users.

2.2 Pure strategies definition

First, we give some simpler notations we use for systewf pure strategies. LeD; be the path
associated with requegtand letQ = U;Q; be the set of paths associated with all the requests. We
defineJ(e) = {jle € Q} the set of requests assigned to a path containing the @dgke load on
edgee is defined byl. = ¢ ;) w;-

For the optimal routes &P} be the path associated with requgsind letQ* = U; Q7 be the set
of paths associated with all the requests. We defifle) = {j|e € Q*} the set of requests assigned
to a path containing the edge We denote the load on edgédy [} .

Definition 2.1 The latency of usef for assigning his request in syste$ito path(@ (instead of path
Q;) is defined as:

Q= Z Je(le) + Z fe(le + wy). 1)
(ecQ)N(e€Qy) (e€cQ)N(e€Q;)



2.3 Mixed strategies definition
Given a systend of mixed strategies with probability distributicjp; }, we denote the probability of
assigning requesgtto edgee by p. ;. We define the following random variables:
e Asetofindicator random variablgsY, ;} , whereX, ; indicates whether requegts assigned
to path@. By definition: Pr[Xq ; = 1] = pg ;.
e A set of indicator random variablgsX. ;} , whereX, ; indicates whether requegis assigned
to edgee. By definition: X¢ j = 3" .cq Xq,; andPrXe; = 1] = pe;.

e For each edge (e € E) we define a random variablg, indicating the total load on the edge:
le = Z?:l Xw-wj.

Definition 2.2 The expected latency of usgrfor assigning his request in systefhto path @ is
defined asrq,; = E[ZeeQ fe(le)‘XQ,j =1] = ZeGQ Elfe(le + (1 - XQ,j)wj)

Notice that for a syster§ of pure strategies we haveg ; = {0, 1}, matching equation 1.

2.4 Nash equilibrium and Coordination ratio

Nash equilibrium is characterized by the property thatelieno incentive for any user to change its
strategy and defined as follows

Definition 2.3 (Nash Equilibrium) A systen is said to be in Nash Equilibrium if and only if for
everyj € {1,...,n} and@, Q' € Q;, withpg ; > 0, cq ; < cgr ;-

Definition 2.4 The expected cost(S) for a given systen§ of pure or mixed strategies is defined as
the expected total latency incurred Bythat isC/(S) = E [} cp fe(le)le] -

We are interested in estimating the worst-case coordmattio when Nash equilibrium exists.
We denote the optimal system of pure strategiesthy

Definition 2.5 (Coordination Ratio) The coordination ratio is defined & = ma:cSL‘i), where

(s
the maximum is taken over all strategi8sn Nash equilibrium.

3 Nash Equilibrium for Linear Latency Functions

In this section we consider the case where the latency of edgé is linear in the edge congestion.
Specifically f.(z) = a.z + b, for each edge € E, wherea, andb, are nonnegative reals. We show
that for linear latency functions the worst-case coordimatatio is exactly2.618 for pure and mixed
strategies.

3.1 Upper Bounds for Linear Latency Functions

We begin by proving an upper bound on the worst-case codidimeatio in the case of linear latency
functions.



3.1.1 Pure Strategies

We start with the following Lemma.

Lemma 3.1 Let/, I’ be any load vectors of the edges. Then

D aclely < [ (aele +be)le Y (acl, + be)l,

ecF eeE ecE

Proof: We use Cauchy-Schwartz inequality and get

el < Y acl2d acl? <[> (acle +be)le Y (acl, + be)l

eElR ecl ecElR ecl ecE

This completes the proof. [

Theorem 3.1 For linear latency functions and pure strategies the waase coordination ratidR is
at mostiY5 ~ 2.618.

Proof: Let Q be the routes of systeid of pure strategies in Nash equilibrium and &t be the
optimal routes for these linear latency functions. LBtbe the path of requegtin Q and letQ;
be the path of requegtin @*. Recall that we denote bythe load vector of the syste in Nash
Equilibrium and we denote by the load vector of the global optimum. According to the déitini
of Nash Equilibrium 2.3 we have

Z aele+be < Z aele+be+ Z ae(le+wj)+be < Z ae(le+wj)+be‘

e€Qj (e€Q})N(e€Q;) (e€QIN(eZQ;) e€Q;
We multiply the above inequality by; and get
Z (aele + be)wj < Z (aele + be)w; + a,ew]2
e€Q; Qs
We sum all the above inequalities for gland get
Z Z (aele + be)wj < Z Z (aele + be)wj + aew?
J e€qy J e€Q;

Classifying the above sums according to the edges indi¢esfor the left hand-side and*(e) for
the right hand-side yields

Z Z (aele + be)wj < Z Z (aele + be)w; + aewjz. 2
ecE jeJ(e) ecE jeJ*(e)
Note that for anyl > 1 we have

Yowi=le, > owi=1l Y wi<id (3)

jeJ(e) j€J*(e) j€J*(e)



Substituting (3) in (2), we get

D (ele +be)le <Y (acle +be)lE + acli® = aclels + Y (acl} + be)l;.

ecF eclR ecl eElR

Applying Lemma 3.1 to the first term of the right-hand sidetef tnequality, we obtain

> (acle +be)le < [ (aele +be)le Y (acls +be)ls + > (ael; + be)l:.

eclR ecElR ecF ecl

We denote the square root of the ratio of the Nash routes ndgha optimal routes cost by

Y ecpltele +0 )l
€Tr =
ZeeE ael +b )
Then, we divide the above inequality By (a.l; +b.)I; and express the result in termsaofThus
x? < x4+ 1 and hence:? < % which completes the proof. ]

The result of Theorem 3.1 is tight as we show in the lower bewettion. However for un-
weighted demand the result can be improved as follows.

Theorem 3.2 For linear latency functions, unweighted demand and purategies the worst-case
coordination ratioR is at most2.5.

Proof: According to inequality ( 2) obtained in the proof of Theor&r for weighted network con-
gestion games with linear latency functions and pure gliegeve have

Z Z (acle + be) jSZ Z (aele+be)wj+aew]2.. (4)

eek jeJ(e) eEE jeJ*(e)

Substituting (3) in (4) and using the fact that = w?- =1, weget

D (ele +be)le <Y (acle + be)lE + acli =Y aelel? + acly + Y bel?. (5)

eclE eclE ecE ecE

The proof requires the following Lemma which propertiesemn [25] and have simple proofs.
Lemma 3.2 Leti > 0,5 > 0 be integers. Then
1ij =352 + 34% —

1
3
9,2 3 1/, 3.:\2 5z
2. gZ +§Z—§(]—§Z) SEZ

Applying property 1 of Lemma 3.2 to the first term of the ridgt&tnd side of inequality (5), we obtain

E : § 1 2 3 *2 1 3 *\ 2 * *
< — — - - —
(aele + be)le S Qe <3le + 416 3([6 216) + le> + bele,

eck ecE



and this is equivalent to

— < — — — —
(aele + 2be)le — ae <8l€ + 216 2(16 216) > + b l

eck ecE

Hence

9 *2 3 * 1 3 *\2 3 *
§ < E = y “bel*.
(aele + be)le < Qe <8le + 2le 2(le 2le) ) + 2bele

eckE ecl
Applying property 2 of Lemma 3.2 to the first term of the rigt#tnd side of the inequality, we obtain

5 *2 3 * 5 *2 *
E (aele + be)le < g §aele + §bele < §(aele + bel}).
ecE ecF

This completes the proof. [

3.1.2 Mixed Strategies

Theorem 3.3 For linear latency functions and mixed strategies the woeste coordination ratia?
is at mos£HY5 ~ 2.618.

Proof: Let {pq ;} be the probability distribution of the systeshof mixed strategies. LeD* be the
optimal routes for these linear latency functions. {gtbe the path of requegtin Q. According to
definition 2.2, the expected latency of ugdbr assigning his request to pathin systems is

€Q,j :E[Zae(l + (1 = Xqj)w;) + be] Zae le] + (1 = pg,j)w;) + be.
ec@ ecqQ

According to definition 2.3, at Nash Equilibrium we have faygathQ with pg ; > 0, the inequality
Q. < cq,j- By substitutingeg ; andcq: ; in the inequality we have

Zae(E[le] + (1 = pj)w;) +be < Z ae(E[le] + (1 _pQ;,j)wj) +be < Z ac(Elle] +w;) + be.
eeq eEQ; eEQ;f

We multiply the above inequality byg ; - w; and get

D (acElle] + be)pgjwj + ac(l = po j)poiw; < Y ac(Elllpg jw; + po jw}) + bepgjw;-
=) e€Q:

We sum all the above inequalities for all the path$or requestj and classifying them according to
the edges paths. This yields

Y (acEl +be) Y pojwi+ > ac Y, (1—pgj)pew;

c€E Qlecq ccE  Qle€Q

<Zae wj—{—w)—kbw] ,
eEQ*



where in the right-hand side we use the fact that po ; = 1. We sum all the above inequalities for
all j, exchange the order of summation in the left hand-side oinbguality and get

Y (@Bl +b) Y D> pojwit Yy acy ¥ (poj—po )

ecE J QleeQ eckE J Qle€@
<ZZae wj+w)+bwj (6)
J e€qQ;

The proof requires the following Lemmas.
Lemma 3.3 For any system of mixed strategieB[i;] — (E[lc])* = 3= pe j(1 — pe j)w]
Proof: We have

Blig] - (Blle)* = Varll Zpej — Pej)w

The first equality follows from the definition of the varianc€he second equality follows from the
linearity of expectation and the independence of the indiceandom variables. ; and X ; for
j # k. This completes the proof of the Lemma. [

The proof of the following Lemma appears in Appendix A.1.

Lemma 3.4 For any system of mixed strategies:

Z Z(aeE[le] + be) Z PQ.;w;+ Z Qe Z Z (pQ,j _ng,j)w]z > Z aeE[lz] + Z beE[le]

e€EE j Qlee eck J Qlee@ eck eck

The proof of the following Lemma appears in Appendix A.2.

Lemma 3.5 For any system of mixed strategies and for the global optsoAltion:

> ac(Ellew; + w} +bw]_\/2ae 2] + b Ell, \/Zael*2+bl*+2ael*+b )E.

J eEQ* eeE eeE eeE

To complete the proof of Theorem 3.3 we apply Lemma 3.4 andrmhar.5 to inequality (6) and
obtain

> acEIZ)+ ) beEll] > B2+ beElle], [ acls® +belz + > (acli + bl

eck ecFE eeE ecE eeE

We denote the square root of the ratio of the Nash routes ndgha optimal routes cost by

ZeeEae 2]+ beElle]
T ael Fo)lr

eEE

Then we divide the above inequality By, . ;(acl} + b )l and express the result in termsaofThus,
22 < z + 1 and therefore:2 < % which completes the proof of the Theorem. m
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Figure 1: A network congestion game

3.2 Lower Bounds for Linear Latency Functions

In this section we prove a lower bound on the worst-case daatidn ratio in the case of linear latency
functions.

Theorem 3.4 For pure strategies and linear latency functiords,> 2.618.

Proof: Let denote the golden ratio by = % We construct the following example which uses
the network shown in Figure 1. We consider an atomic weighediork congestion game with four
players. Playet has a bandwidth reque@l, V, ¢) (player1 has to moves unit of bandwidth from
U to V), player2 has a bandwidth reque@V, W, ¢), player3 has a bandwidth requegt’, W, 1) and
player4 has a bandwidth reque@t’, V, 1). In the optimal solution player uses the pattV'V/, player

2 uses the patlV W/, player3 uses the patly W and player4 uses the patfl’V'. The costs of the
players arey?, ¢?, 1 and1 respectively. The total cost #5 + 2. If player 1 chooses the pattiiW'V/,
player2 chooses the patf VIV, player3 uses the patv UW and player4 uses the pathV UV,
then this is a Nash equilibrium and the costs of the playessé2o + 1), $(2¢ + 1), (¢ + 1) and
(¢ + 1) respectively. The total cost isp? + 4¢ + 2. ThusR = (4¢% + 4¢ + 2)/(2¢* + 2) =
(8¢ +6)/(2¢ +4) = 1 + ¢ ~ 2.618, by the fact thaty? = ¢ + 1. This completes the proof. [

Theorem 3.5 For pure strategies, unweighted demand and linear latenogtions,R > 2.5.

Proof: We construct the same example as in the proof of Theorem &g modification that here
we setp = 1. We obtain the same optimal solution and the same Nash leduiti as in the proof of
Theorem 3.4. Thu® = (462 + 4¢ + 2)/(2¢? + 2) = 10/4 = 2.5. This completes the proof. =

4 Nash Equilibrium for Polynomial Latency Functions

In this section we consider the case where the latency of edgh is a polynomial of degrekin the
edge congestion. Specificalff(z) = 3. a.;x* for each edge € E, whereq, ; are nonnegative
reals. We show that for polynomials of degrééatency functions the worst-case coordination ratio
is at mostO(2%d?+1) for pure and mixed strategies and we show that for polynanoéldegreel
latency functions the worst-case coordination ratio isdoounded by(d4/?).
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4.1 Upper Bounds for Polynomial Latency Functions

We begin by proving an upper bound on the worst-case codidimeatio in the case of polynomial
of degreed latency functions.

4.1.1 Pure Strategies

The proof of the following Theorem appears in Appendix A.3.

Theorem 4.1 For polynomial latency functions of degréand pure strategies, we have= O(2%d%+1).

4.1.2 Mixed Strategies

The proof of the following Theorem appears in Appendix A.4.

Theorem 4.2 For polynomial latency functions of degrekand mixed strategies, we have =
O(2ddd+1)_

4.2 Lower Bounds for Polynomial Latency Functions

In this section we prove a lower bound on the worst-case @aatidn ratio in the case of polynomial
of degreed latency functions. The proof of the following Theorem apgda Appendix A.5.

Theorem 4.3 For pure strategies and polynomial latency functions ofrdeg, R = Q(d%?).
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Appendix

A Omitted proofs

A.1 Proof of Lemma 3.4

We have

SN @Bl +b) Y pojui+ > ae Y. > (o, —phw

e€E j Qlec@ ecE J Qle€q

> ZZ Cle +b pe]w]+zaez pe,j pe,]
ecE j ecl j

= >0y Bllepejw;+ (pej — P03 + D be Y pejw;
eck 7 ecl J

= > ac [(BLD* + D pe (1 —pej)w] | + Y beEll
ecE i eck

= > B+ beE[l],
ecE eckE

where the first inequality follows from the fact that; = 3" .co po,;- The second equality follows
from the fact that’(le) =}, pe jw;. The last equality follows from Lemma 3.3. This completes th

proof of the Lemma.
A.2 Proof of Lemma 3.5
Classifying the sum of the optimal paths according to theeedigdices/*(e), we get

ZZae w]+w + bew; = Zae Z w]+w)+bw] @)
J e€Qj el jeJ*(e)
Substituting (3) in (7), we obtain

Zae Z w]—|—w)—i—bw]

eeE  jeJ*(e)

< ) ao(Bll]lE +15%) + bl

ecE
= ) @Bl + > (ael; + be)l;
eckE eck
< DD aeBUD? Y acs® + Y (acly + be)l
eck eck eck
< Zae 2] + b Ell, Zael*2+bl*+2ael*+b
ecFE eck eckE

where the second inequality follows from Lemma 3.1. Theilzstjuality follows from the fact that
E[1?] > (E[l.])%. This completes the proof of the Lemma.
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A.3 Proof of Theorem 4.1

Let Q be the routes of systeid of pure strategies in Nash equilibrium and &t be the optimal
routes for these polynomial latency functions. Lgtbe the path of requegtin Q and letQ? be the

path of requesj in Q*. According to definition 2.3 of Nash Equilibrium we have

Z Z ae,ilé < Z Z ae,ili + Z Z aei(le + wj)i

eeQ; i (e€QFIN(e€Q;) @ (e€Q)IN(eZQ;) 1

Z Z CL&Z'(ZQ —+ ’U)J)Z

eeQ; %

IN

We multiply the above inequality by; and get
DN aciliw; < 30> aeille + wy) w;
e€Q; i eeQs i
Next, we sum all the above inequalities for alio get
DD D aeilew; 3 ) Y aealle + wy)'w;
Jj e€Q; i joe€q; i

Classifying the above sums according to the edges indi¢esfor the left hand-side and*(e) for
the right hand-side yields

ZZ Z aezlzw]<zz Z aezl ‘|"U)J (8)

eck i jeld(e) ecl i jeJ*(e)

The proof requires the following Lemma which appears in fid &as simple proof.

Lemma A.1 The functionf(z,y) = (z + y)¢ is bounded bycz? + (y (% + 1))d foranyc > 1.

Inc

We also need the following Lemmas.

LemmaA.2 Let f(z) = >, ae;x' be the polynomial of degre¢ Then for any system of pure

strategy:
Z Z Z e, zl eW; = Z fe(le)le

eclk i jeld(e) eel

Proof: We have

Z Z Z e lewj - Z Zaeail?_l = Z fe(le)le7

ecFE 1 ]EJ ecE 1 eckE

where the first equality follows from the fact thiat= 3. ;) w; and the second equality follows
from the definition of the polynomiaf.(z). This completes the proof of the Lemma. [

To simplify the notation throughout the entire paper we asst’ = 0.
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LemmaA.3 Letf.(z) = Y, a2’ be the polynomial of degreeand letc > 1. Then for any system
of pure strategies and for the global optimal solution:

S5 Y anille +wy)wy < eld+ 1)(Y £l )Y DS f ()Y@,

ecFE 1 ]EJ*(e eckE eclE

Proof: We have

ZZ Z ae7i(le+wj)iwj = ZZaeﬂ- Z (le‘i‘w]‘)iwj

e€E i jeJ*(e) e€E i jeJ*(e)

< DY aes Y, (Cléijr(lLJFl)Zw;‘H)
ecE i jeJ*(e) ne

< ) lzl* d 1 dl*iJrl

< ;;aw Cee+<m+ > e

d

S0 3) SURC/ES (CRENID D) Sl

ecE 1 ecE i

where the first inequality follows from Lemma A.1. The secameuality follows from (3) and the
fact that the functior(ﬁ + 1)9” is an increasing function far > 0. We apply Holder’s inequality:

pots() (5

fora + 3 = 1. We uses; = a.;I5+1, b; = a2 a=i/(i + 1), andB = 1/(i + 1). This yields

S Yttt u)u

el i jeJ*(e)

d
< CZ(Z ae,iléﬂ)z’/(iﬂ)(zaeilziﬂ)l/(z’ﬂ) + <1jc + 1> Zzae,il:m

i eck eck ecE 1
SCQZZ%WW“ZZ%WWW+@—YZZwW
i eclE k eeE k ! eeE i
d
= Y )Y LD (iﬂ) A
i eck eck Inc eck

where the equality follows from the definition of the polyniaif.(x). Next, we use the fact that for
x>y >0andl > o> o > 0we have

«

T ylfa > wa’y

1—aof

We apply it forz = C(S) = > g fe(le)le andy = C(S*) = > g fe(I2)1; to get
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ZZ Z e i(le —i—w]

eeE i jeJ*(e)

< CZ Zf d/(d+1) Zf 1/(d+1) + < ) Zfe

i e€eFE ecl ecl
d
= ld+ D LN LY+ (1) X
eck eck ne eck
This completes the proof of the Lemma. [

To complete the proof of Theorem 4.1 we Apply Lemma A.2 to #fethand side of (8) and we
apply Lemma A.3 to the right-hand side of (8). This yields

d
> felle)le < e(d+ 1)) feolle)le) D folp)in) Y 4+ (%H) PR A1

ecE eckE eckE eckE
Let
S fello)le)
(Feep fell2)i)

Then we divide the above inequality BY .., f(I?)l; and express the result in termszofThus,

d d
e < e(d+1)2d + <— + 1) .
Inc

1
z<c(d+1)+ <Q>
xr

It is easy to see that far = 2 — ¢ we getz < 2(d + 1). Hence% = g1 = O(24d%*1). This
completes the proof of the Theorem.

Next we divide byz? to get

A.4 Proof of Theorem 4.2

Let {pg,;} be the probability distribution of the systefhof mixed strategies. LeR* be the optimal
routes for these polynomial latency functions. LEtbe the path of requegtin Q.

According to definition (2.2), the expected latency of uséar assigning his request to pathin
systemsS is

€Q.j = Z Elfe(le + (1 = Xqj)w;)]
eeq
According to definition 2.3, at Nash Equilibrium we have falygpathQ with pg ; > 0, the
inequalitycq,; < cq+ ;. By substitutingcq,; andcq: ; in the inequality we have

Y E[felle+ (1= Xg)w)] < Y Elfelle + (1 = Xg,j)w))]
eceq e€Q;

> Elfelle +w;)).

eGQ;f

IN
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We multiply the above inequality byg ; - w; and get

ZE[fe(le+ — Xq.j)wj)lpg,w; < Z [fe(le + wj)lpq,jw;-
eceq) ecQ;

Then, we sum all the above inequalities for all the paphand classify them according to the edges
paths. This Yields

Z Z [felle + (1 = X 5)wj)lpgw; < Z [fe(le + wj)]wj,

e€FE QlecQ ecQ;

where in the right-hand side of the inequality we use thetfaat) _, pg ; = 1. We sum all the above
inequalities for allj and get

ZZ Z [felle + (1 = Xq j)wj)lpgjw; < ZZ [fe(le + wj)]w;. (10)

J ecEQlee@ J e€Qj

The proof requires the following Lemmas.

Lemma A.4 For any system of mixed strategies:

= Elfelle + (1 = Xej)w;)]pe,jw;.
j

Proof: We have

Elfe(le)l] = ZX,]wJ fe(le) ij Xejfe(le)]
= Zw]Pr ej = 0|E[X, e,jfe( )| Xej = 0] +w; Pr(Xe; = 1E[Xcjfe(le)| Xe,; = 1]
= Zpejw] Xejfe(le)| Xe; =1]

= ZE fe le + 1 - Xe,j)wj)]p€7jwj7
J

where the second equality follows from the linearity of extadion and the fourth equality follows
from the fact thap. ; = Pr[X. ; = 1]. This completes the proof of the Lemma. u

Lemma A.5 For any system of mixed strategies:

S5 Blfulle + (1 - Xo)w)lpg w; > Y Elfelle)le]

J e€EQlec@ ecF
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Proof: We have

Y30 Elfelle+ (1= Xgwlpgw; > .Y > Elfelle + (1 — Xej)w;)pg.jw;

J e€E Qlec J e€E Qlec

= D D E[felle + (1 = Xe j)w;)]pe,jw;

J e€E

= D D E[felle + (1 = Xe j)w;)]|pe,jw;

ecE j

= Z E[fe(le)le]

eckE

The inequality follows from the fact that for every edges @, it holds X.; > X ;. The first
equality follows from the fact that. ; = >_¢|.cq Po,;- The last equality follows from Lemma A.4.
This completes the proof of the Lemma. [

Lemma A.6 Letc > 1. Then for any system of mixed strategies and for the glohtihapsolution:

> Elfelletw))w; < e(d+1)() ] Elfe(le)l)) D fe(i)iz) /) 4 ( > S 100

J eeQ* eck eck eck

Proof: To simplify the proof we first consider only the polynomiatdacy functions of degreéd
fo(z) = z?. Then we extend it to the general case. We have

ZZ [(le 4+ w;)?] j:ZZ [(le + w;)?w;

J eEQ* ecE jeJ*(e)
d a d+1
< Z Z <m + 1> w;
e€E jeJ*(e)
- ere Inc €
eck
= Y B + (i + 1>d S,
el‘e Inc e
ecE ecF

The first equality is obtained by classifying the sums adogrtb the edges indiceg*(e). The first
inequality follows from Lemma A.1 and from the linearity ofpectation. The second inequality
follows from (3). We apply Holder's inequality (9), where weea; = E[¢)(@+1)/d p; = [rd+1]
a=d/(d+1),ands = 1/(d + 1). This yields

ZZ l+w] wj

J e€qQ;

\ d e
< C(Z E[l;l](d-i-l)/d)d/(d—f—l)(zled+1)1/(d+1)+ <m+1> ZledJrl

ecF ecE ecE

: d ‘o
C(Z E[lgﬂ])d/(dﬂ)(zled+1)1/(d+1)+ <ﬂ+1> Zled+17

ecE ecElR ecElR

IN
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where the last inequality follows from the fact th&fl¢+1] > E[19](¢+1)/d, Since we assumed that
fe(lo) = 12 then the last inequality is

S 3 By < oS PGS £ 0 (1) S g

i eeQ* eck eck eck

Now we return to the case of general polynomiflszr) = >, ae;x' of degreed for the latency
functions. By the linearity of expectation and by the samesaterations we used in Theorem 4.1, we
obtain

DN Elfelletwy)w; < e(d+1)(O Elfe(le)l))Y IO )iz 4+ <lnc >Zfe

J eeQ* eck eck eck
This completes the proof of the Lemma. ]

To complete the proof of Theorem 4.2 we apply Lemma A.5 to éfficHand side of (10) and we
apply Lemma A.6 to the right-hand side of (10). This yields

ST E[ L] < cld+ 1) BV IS Lo 1/<d+1>+< ) S 00

eckE ecF = >
Let
= (ZeEE E[fe(le)le)])l/d .
(Cecp fell2)12)7

Then we divide the above inequality BY .., fc(1)I; and express the result in termsaofThus,
d d
2T < e(d+ 1)z + (— + 1)
Inc
and hence as in Theorem 4.1 we obt&in= O(22d%*+1). This completes the proof of the Theorem.

A.5 Proof of Theorem 4.3

We use the construction given for the maximum latency in [®] apply it for the average latency.
This construction can be easily modelled as a directed gr&y construct the following problem
instance for the restricted assignment model.’Let 0 and let! > 0 be large enough. We consider
[ + 1 groups of links such that in group= 0, ...,[ there are,% links. Denote the number of links
in groupk by n,. For each link we consider the latency functipfr) = z?. We partition the tasks
to [ groups. In group: = 1,...,[ there arek - n; unit jobs, each can be assigned to any link from
groups[k — 1, ...,1]. Observe that the optimal solution assigns the jobs of gkolip=1,...,[) to
the links in groupk — 1, one job per link. We define the following system of pure s&s, denote

it by S: all jobs from groupk (k = 1,...,1) are assigned to links from group k jobs per link. We
choos€l’ = I! to maintain integrality.

Lemma A.7 The systens is in Nash Equilibrium.
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Proof: Denote bySy (k =1,...,1) the set of links to which jobs from job groupcan be assigned.
Let j be a job from grougk and consider the assignment jofo link ¢ from link group k. Clearly,
cij = k%, and for each link € Sj, we havec;; > ((k — 1) + 1)¢ = k? = ¢;;. Hence the systeif is
in Nash Equilibrium. This completes the proof. [

We assume thdt> d. We denote the optimal solution cost &y°T'. For large enoughwe have

and

l
T T
C8) =) 7 k' > = T ("d/27)* =T - Q(d"?),
k=1

where the second equality follows from Stirling’s formuldence

cs) _
R>oor = Q(d??).

QS

This completes the proof.
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