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Abstract

The essence of the routing problem in real networks is that the traffic demand from a source
to destination must be satisfied by choosing a single path between source and destination. The
splittable version of this problem is when demand can be satisfied by many paths, namely a flow
from source to destination. The unsplittable, or discrete version of the problem is more realistic yet
is more complex from the algorithmic point of view; in some settings optimizing such unsplittable
traffic flow is computationally intractable.

In this paper, we assume this more realistic unsplittable model, and investigate the ”price
of anarchy”, or deterioration of network performance measured in total traffic latency under the
selfish user behavior. We show that for linear edge latency functions the price of anarchy is exactly
2.618 for weighted demand and exactly2.5 for unweighted demand. These results are easily
extended to (weighted or unweighted) atomic ”congestion games”, where paths are replaced by
general subsets. We also show that for polynomials of degreed edge latency functions the price
of anarchy isdΘ(d). Our results hold also for mixed strategies.

Previous results of Roughgarden and Tardos showed that for linear edge latency functions
the price of anarchy is exactly43 under the assumption that each user controls only a negligible
fraction of the overall traffic (this result also holds for the splittable case). Note that under the
assumption of negligible traffic pure and mixed strategies are equivalent and also splittable and
unsplittable models are equivalent.

1 Introduction

1.1 The model

A major component of any large-scale network system is the routing mechanism, namely choosing a
communication path between a sender and a receiver of traffic. In most cases, such as the Internet,
wireless networks, or overlay networks built on top of the Internet, traffic from a sender to a receiver
is sent over asinglepath; splitting the traffic causes the problem of packet reassembly at the receiver
and thus is generally avoided. When choosing routing paths,the typical objective is to minimize the
total latency. In most of these network systems it is infeasible to maintain one centralized authority
that imposes efficient routing strategies on the network traffic. As a result users act independently and
“selfishly”: each user tries to minimize her traffic cost based on current network traffic.

This problem can be mathematically formalized using classical game theory as follows. The
network users are viewed as independent agents participating in a noncooperative game. Each agent
wishes to use the minimum latency path from its source to its destination, given the link congestion
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caused by the rest of the agents. This system is said to be in Nash Equilibrium if no agent has an
incentive to change his path from its source to its destination. It is well known that Nash Equilibria
do not in general optimize the social welfare (see, e.g, ”ThePrisoner’s Dilemma” [9, 18]) and can be
far from the global optimum.

Equilibria can be defined for pure strategies, where a singlepath is chosen by each user and for
mixed strategies, where a probability distribution over the paths is used instead of a single path. In
this paper we consider both pure and mixed strategies. This is in contrast to the case where each user
controls only a negligible fraction of the overall traffic inwhich pure and mixed strategies are the
same [24].

An additional complication that raised when considering arbitrary unsplittable traffic is that in this
general case there is not necessarily pure Nash Equilibrium. Nash [17] proved that every game has a
randomized Nash Equilibrium. In a classical paper Rosenthal [20] proved that every congestion game
(i.e. when all demands are of unit size) has a pure Nash Equilibrium. Hence when the problem can
be represented as a congestion game a pure Nash Equilibrium always exists, e.g, when all network
users control the same amount of traffic. For general demandsthe existence of pure Nash Equilibrium
is still open. Recently for linear edge latency functions Fotakis et. al [11] proved that pure Nash
Equilibrium always exists.

The degradation of network performance caused by the lack ofa centralized authority can be
measured using the worst-case coordination ratio (price ofanarchy) suggested by Koutsoupias and
Papadimitriou [14, 19] which is the ratio between the worst possible Nash Equilibrium and the social
optimum.

Previous results (Roughgarden and Tardos [24]) showed thatunder the assumption that each user
controls only a negligible fraction of the overall traffic the price of anarchy is exactly43 for linear
edge latency functions and they also showed bicriteria results for continuous and nondecreasing edge
latency functions. The above results were extended to the splittable case by Roughgarden [21].

1.2 Our Results

We prove the following results for general networks with unsplittable flow:

• For linear latency functions we prove that the worst-case coordination ratio for weighted de-
mand is exactly2.618 for pure and mixed strategies. For unweighted demand we showthat the
worst-case coordination ratio is exactly2.5 for pure strategies.

• For polynomials of degreed latency functions we prove that the worst-case coordination ratio
is dΘ(d) for pure and mixed strategies. More precisely the worst-case coordination ratio is at
mostO(2ddd+1) and at leastΩ(dd/2).

• All the above results can be extended to weighted and unweighted atomic congestion games,
where arbitrary subsets are used instead of paths (see [20, 10] for definition of congestion
games).

Our results for the price of anarchy for bounded degree polynomials is a constant (independent
of the network size), which stands in contrast to the maximumload in the Koutsoupias/Papadimitriou
model. On the other hand we note that the lower bound for bounded degree polynomials implies that
there is no constantc > 0 that applies for all polynomials such that the total latencyof selfish users
is bounded from above by the total latency incurred by optimally routing c times as much traffic.
We note that considering mixed strategies is essential (anda complication that does not exist in most
previous work), since Nash equilibrium for pure strategiesneed not exist in this model (see [20]). We
also note that for unsplittable (atomic) network congestion games only special cases were previously
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considered. Recently and independently Christodoulou andKoutsoupias [4] showed similar results
to our results for the special case of unweighted demands.
Techniques: The lower bounds imply that the bounds of Roughgarden and Tardos for the splittable
model cannot carry over to this model, so new techniques mustbe needed. In our proofs for evaluating
the price of anarchy for pure strategies we compare the delayencountered by each agent to the delay
it would encounter if it changes to the optimal route. We combine these bounds in a weighted fashion
and transform it to a relation between the total delay of the Nash Equilibrium and the total delay of
the optimal routes. For mixed strategies we separate the problem into two logical steps. In the first
step we consider the latency of the expected load of each edgeand in the second step we augment it
to the expectation of the total latency. The first step turns out to be equivalent to the pure strategies
case where requests are allowed to be split. The second step adds technical complications that does
not occur in the proofs for pure strategies. Although the results for pure strategies follows from the
results of mixed strategies for simplifying the presentation we start with proving the results for pure
strategies. We note that in our proofs we also use techniquesand inequalities appear in [1, 25].

1.3 Related Work

Splittable or negligible flows. Unregulated traffic routing for general networks has been modeled as
network flow model since the 1950’s [3, 26] (see [24] for further historical references). Roughgarden
and Tardos [24] initiated the study of price of anarchy in this model (dubbed worst-case coordination
ratio by Papadimitriou [14]). Note that under the assumption of negligible traffic as in Roughgarden
and Tardos model, splittable and unsplittable models are equivalent and also pure and mixed strategies
are equivalent. They proved that for linear latency functions the worst-case coordination ratio is
exactly 4

3 . They also proved that for general continuous and nondecreasing latency functions the total
latency of the routes chosen by selfish network users is no more than the total latency incurred by
optimally routing twice as much traffic. Specifically, for polynomial of degreed they showed that the
coordination ratio is linear ind. When network users can control a significant portion of the overall
traffic, but are permitted to route their flow fractionally Roughgarden [21] showed that all known
bounds on the price of anarchy for nonatomic selfish routing games carry over to the atomic splittable
case. Roughgarden [23] also showed that the cost of unregulated traffic does not depend on the
complexity of network topology. He also studied the impact of latency functions belonging to specific
classes. Roughgarden et al. [5, 6, 22] studied various ways to construct and price networks such that
the cost incurred in unregulated traffic is minimized.

Coordination ratio for parallel links. Most of the work on the parallel links model was done with
the maximum load measure. Koutsoupias and Papadimitriou [14] initiated the study of worst-case
coordination ratio in networks composed ofm parallel links with possibly different speeds. They
showed that for two links the worst-case coordination ratiois exactly 3

2 for identical links andφ =
1+

√
5

2 for links with possibly different speeds. They also obtained non-tight bounds for the general
case ofm identical links. Mavronicolas and Spirakis [16] obtained tight results for the general case
of any number of links. Their results are for the special caseof fully-mixed strategies in which the
probability of assigning any task to any link is non-zero. They proved that for the identical links model
the worst-case coordination ratio isΘ( log m

log log m). They proved the same result for the general related
links model where all tasks have equal weights andm ≤ n. Czumaj and Vöcking [8] improved these
results by proving tight bounds for them parallel links model. They showed that for the identical
links model the worst-case coordination ratio isΘ( log m

log log m) and for the general related links model

the worst-case coordination ratio isΘ( log m
log log log m). In [2] additional models were considered. Czumaj
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et. al [7] continued to study this problem and characterizedthe coordination and bicriteria ratios for
different families of cost functions. For other results in this model with other social costs see, e.g,
[12, 13, 15, 25].

1.4 Paper structure

The paper is organized as follows. Section 2 includes formaldefinitions and notations. In section 3
we prove the results for networks with linear latency functions. In section 4 we prove the results for
networks with polynomials of degreed latency functions.

2 Definitions and preliminaries

2.1 The Model

We consider the following model: there is a directed graphG = (V,E). Each edgee ∈ E is given
a load-dependent latency functionfe : R+ → R+. There aren users, where userj (j = 1, . . . , n)
has a bandwidth request defined by a tuple(sj, tj , wj), wheresj, tj ∈ V are the source/destination
pair, andwj ∈ R+ corresponds to the required bandwidth. We denote the set of (simple)sj − tj
paths byQj . Requestj can be assigned to any pathQ from the set of pathsQj, such that the required
bandwidthwj has to be reserved along the pathQ.

We assume that the users are non-cooperative and each one wishes to minimize its own cost with
no regard to the global optimum. We consider two types of users strategy systems:

1. Pure strategies:userj selects a single pathQ ∈ Qj and assigns his request to it. Each user is
aware of the choices made by all other user when making his decision.

2. Mixed strategies: userj selects a probability distribution{pj} (Q ∈ Qj) over all the set of
paths from the sourcesj to the destinationtj . Each user is aware of the probability distributions
selected by all other users.

2.2 Pure strategies definition

First, we give some simpler notations we use for systemS of pure strategies. LetQj be the path
associated with requestj and letQ = ∪jQj be the set of paths associated with all the requests. We
defineJ(e) = {j|e ∈ Q} the set of requests assigned to a path containing the edgee. The load on
edgee is defined by:le =

∑

j∈J(e) wj.
For the optimal routes letQ∗

j be the path associated with requestj and letQ∗ = ∪jQ
∗
j be the set

of paths associated with all the requests. We defineJ∗(e) = {j|e ∈ Q∗} the set of requests assigned
to a path containing the edgee. We denote the load on edgee by l∗e .

Definition 2.1 The latency of userj for assigning his request in systemS to pathQ (instead of path
Qj) is defined as:

cQ,j =
∑

(e∈Q)∧(e∈Qj)

fe(le) +
∑

(e∈Q)∧(e 6∈Qj)

fe(le + wj). (1)
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2.3 Mixed strategies definition

Given a systemS of mixed strategies with probability distribution{pj}, we denote the probability of
assigning requestj to edgee by pe,j. We define the following random variables:

• A set of indicator random variables{XQ,j} , whereXQ,j indicates whether requestj is assigned
to pathQ. By definition:Pr[XQ,j = 1] = pQ,j.

• A set of indicator random variables{Xe,j} , whereXe,j indicates whether requestj is assigned
to edgee. By definition:Xe,j =

∑

Q|e∈Q XQ,j andPr[Xe,j = 1] = pe,j.

• For each edgee (e ∈ E) we define a random variablele, indicating the total load on the edge:
le =

∑n
j=1 Xe,jwj .

Definition 2.2 The expected latency of userj for assigning his request in systemS to path Q is
defined as:cQ,j = E[

∑

e∈Q fe(le)|XQ,j = 1] =
∑

e∈Q E[fe(le + (1 − XQ,j)wj)

Notice that for a systemS of pure strategies we haveXQ,j = {0, 1}, matching equation 1.

2.4 Nash equilibrium and Coordination ratio

Nash equilibrium is characterized by the property that there is no incentive for any user to change its
strategy and defined as follows

Definition 2.3 (Nash Equilibrium) A systemS is said to be in Nash Equilibrium if and only if for
everyj ∈ {1, . . . , n} andQ,Q′ ∈ Qj , with pQ,j > 0, cQ,j ≤ cQ′,j.

Definition 2.4 The expected costC(S) for a given systemS of pure or mixed strategies is defined as
the expected total latency incurred byS, that isC(S) = E

[
∑

e∈E fe(le)le
]

.

We are interested in estimating the worst-case coordination ratio when Nash equilibrium exists.
We denote the optimal system of pure strategies byS∗.

Definition 2.5 (Coordination Ratio) The coordination ratio is defined asR = maxS
C(S)
C(S∗) , where

the maximum is taken over all strategiesS in Nash equilibrium.

3 Nash Equilibrium for Linear Latency Functions

In this section we consider the case where the latency of eachedge is linear in the edge congestion.
Specificallyfe(x) = aex + be for each edgee ∈ E, whereae andbe are nonnegative reals. We show
that for linear latency functions the worst-case coordination ratio is exactly2.618 for pure and mixed
strategies.

3.1 Upper Bounds for Linear Latency Functions

We begin by proving an upper bound on the worst-case coordination ratio in the case of linear latency
functions.

5



3.1.1 Pure Strategies

We start with the following Lemma.

Lemma 3.1 Let~l, ~l′ be any load vectors of the edges. Then

∑

e∈E

aelel
′

e ≤

√

∑

e∈E

(aele + be)le
∑

e∈E

(ael
′

e + be)l
′

e.

Proof: We use Cauchy-Schwartz inequality and get

∑

e∈E

aelel
′

e ≤

√

∑

e∈E

ael2e
∑

e∈E

ael
′

e
2
≤

√

∑

e∈E

(aele + be)le
∑

e∈E

(ael
′

e + be)l
′

e.

This completes the proof.

Theorem 3.1 For linear latency functions and pure strategies the worst-case coordination ratioR is
at most3+

√
5

2 ≈ 2.618.

Proof: Let Q be the routes of systemS of pure strategies in Nash equilibrium and letQ∗ be the
optimal routes for these linear latency functions. LetQj be the path of requestj in Q and letQ∗

j

be the path of requestj in Q∗. Recall that we denote byl the load vector of the systemS in Nash
Equilibrium and we denote byl∗ the load vector of the global optimum. According to the definition
of Nash Equilibrium 2.3 we have

∑

e∈Qj

aele + be ≤
∑

(e∈Q∗
j
)∧(e∈Qj)

aele + be +
∑

(e∈Q∗
j
)∧(e 6∈Qj)

ae(le + wj) + be ≤
∑

e∈Q∗
j

ae(le + wj) + be.

We multiply the above inequality bywj and get

∑

e∈Qj

(aele + be)wj ≤
∑

e∈Q∗
j

(aele + be)wj + aew
2
j .

We sum all the above inequalities for allj and get

∑

j

∑

e∈Qj

(aele + be)wj ≤
∑

j

∑

e∈Q∗
j

(aele + be)wj + aew
2
j .

Classifying the above sums according to the edges indicesJ(e) for the left hand-side andJ∗(e) for
the right hand-side yields

∑

e∈E

∑

j∈J(e)

(aele + be)wj ≤
∑

e∈E

∑

j∈J∗(e)

(aele + be)wj + aew
2
j . (2)

Note that for anyd ≥ 1 we have
∑

j∈J(e)

wj = le,
∑

j∈J∗(e)

wj = l∗e ,
∑

j∈J∗(e)

wd
j ≤ l∗e

d. (3)
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Substituting (3) in (2), we get

∑

e∈E

(aele + be)le ≤
∑

e∈E

(aele + be)l
∗
e + ael

∗
e
2 =

∑

e∈E

aelel
∗
e +

∑

e∈E

(ael
∗
e + be)l

∗
e .

Applying Lemma 3.1 to the first term of the right-hand side of the inequality, we obtain

∑

e∈E

(aele + be)le ≤

√

∑

e∈E

(aele + be)le
∑

e∈E

(ael∗e + be)l∗e +
∑

e∈E

(ael
∗
e + be)l

∗
e .

We denote the square root of the ratio of the Nash routes cost and the optimal routes cost by

x =

√

∑

e∈E(aele + be)le
∑

e∈E(ael∗e + be)l∗e
.

Then, we divide the above inequality by
∑

e∈E(ael
∗
e + be)l

∗
e and express the result in terms ofx. Thus

x2 ≤ x + 1 and hencex2 ≤ 3+
√

5
2 , which completes the proof.

The result of Theorem 3.1 is tight as we show in the lower bounds section. However for un-
weighted demand the result can be improved as follows.

Theorem 3.2 For linear latency functions, unweighted demand and pure strategies the worst-case
coordination ratioR is at most2.5.

Proof: According to inequality ( 2) obtained in the proof of Theorem3.1 for weighted network con-
gestion games with linear latency functions and pure strategies we have

∑

e∈E

∑

j∈J(e)

(aele + be)wj ≤
∑

e∈E

∑

j∈J∗(e)

(aele + be)wj + aew
2
j . (4)

Substituting (3) in (4) and using the fact thatwj = w2
j = 1 , we get

∑

e∈E

(aele + be)le ≤
∑

e∈E

(aele + be)l
∗
e + ael

∗
e =

∑

e∈E

aelel
∗
e + ael

∗
e +

∑

e∈E

bel
∗
e . (5)

The proof requires the following Lemma which properties appear in [25] and have simple proofs.

Lemma 3.2 Let i ≥ 0, j ≥ 0 be integers. Then

1. ij = 1
3j2 + 3

4 i2 − 1
3(j − 3

2 i)2

2. 9
8 i2 + 3

2 i − 1
2(j − 3

2 i)2 ≤ 5
2 i2.

Applying property 1 of Lemma 3.2 to the first term of the right-hand side of inequality (5), we obtain

∑

e∈E

(aele + be)le ≤
∑

e∈E

ae

(

1

3
l2e +

3

4
l∗e

2 −
1

3
(le −

3

2
l∗e)

2 + l∗e

)

+ bel
∗
e ,
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and this is equivalent to

∑

e∈E

(aele +
3

2
be)le ≤

∑

e∈E

ae

(

9

8
l∗e

2 +
3

2
l∗e −

1

2
(le −

3

2
l∗e)

2

)

+
3

2
bel

∗
e .

Hence
∑

e∈E

(aele + be)le ≤
∑

e∈E

ae

(

9

8
l∗e

2 +
3

2
l∗e −

1

2
(le −

3

2
l∗e)

2

)

+
3

2
bel

∗
e .

Applying property 2 of Lemma 3.2 to the first term of the right-hand side of the inequality, we obtain

∑

e∈E

(aele + be)le ≤
∑

e∈E

5

2
ael

∗
e
2 +

3

2
bel

∗
e ≤

5

2
(ael

∗
e
2 + bel

∗
e).

This completes the proof.

3.1.2 Mixed Strategies

Theorem 3.3 For linear latency functions and mixed strategies the worst-case coordination ratioR
is at most3+

√
5

2 ≈ 2.618.

Proof: Let {pQ,j} be the probability distribution of the systemS of mixed strategies. LetQ∗ be the
optimal routes for these linear latency functions. LetQ∗

j be the path of requestj in Q∗. According to
definition 2.2, the expected latency of userj for assigning his request to pathQ in systemS is

cQ,j = E[
∑

e∈Q

ae(le + (1 − XQ,j)wj) + be] =
∑

e∈Q

ae(E[le] + (1 − pQ,j)wj) + be.

According to definition 2.3, at Nash Equilibrium we have for any pathQ with pQ,j > 0, the inequality
cQ,j ≤ cQ∗

j
,j. By substitutingcQ,j andcQ∗

j
,j in the inequality we have

∑

e∈Q

ae(E[le] + (1 − pQ,j)wj) + be ≤
∑

e∈Q∗
j

ae(E[le] + (1 − pQ∗
j
,j)wj) + be ≤

∑

e∈Q∗
j

ae(E[le] + wj) + be.

We multiply the above inequality bypQ,j · wj and get

∑

e∈Q

(aeE[le] + be)pQ,jwj + ae(1 − pQ,j)pQ,jw
2
j ≤

∑

e∈Q∗
j

ae(E[le]pQ,jwj + pQ,jw
2
j ) + bepQ,jwj.

We sum all the above inequalities for all the pathsQ for requestj and classifying them according to
the edges paths. This yields

∑

e∈E

(aeE[le] + be)
∑

Q|e∈Q

pQ,jwj +
∑

e∈E

ae

∑

Q|e∈Q

(1 − pQ,j)pQ,jw
2
j

≤
∑

e∈Q∗
j

ae(E[le]wj + w2
j ) + bewj ,
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where in the right-hand side we use the fact that
∑

Q pQ,j = 1. We sum all the above inequalities for
all j, exchange the order of summation in the left hand-side of theinequality and get

∑

e∈E

(aeE[le] + be)
∑

j

∑

Q|e∈Q

pQ,jwj +
∑

e∈E

ae

∑

j

∑

Q|e∈Q

(pQ,j − p2
Q,j)w

2
j

≤
∑

j

∑

e∈Q∗
j

ae(E[le]wj + w2
j ) + bewj . (6)

The proof requires the following Lemmas.

Lemma 3.3 For any system of mixed strategies:E[l2e ] − (E[le])
2 =

∑

j pe,j(1 − pe,j)w
2
j .

Proof: We have

E[l2e ] − (E[le])
2 = V ar[le] =

∑

j

pe,j(1 − pe,j)w
2
j .

The first equality follows from the definition of the variance. The second equality follows from the
linearity of expectation and the independence of the indicator random variablesXe,j andXe,k for
j 6= k. This completes the proof of the Lemma.

The proof of the following Lemma appears in Appendix A.1.

Lemma 3.4 For any system of mixed strategies:
∑

e∈E

∑

j

(aeE[le]+ be)
∑

Q|e∈Q

pQ,jwj +
∑

e∈E

ae

∑

j

∑

Q|e∈Q

(pQ,j −p2
Q,j)w

2
j ≥

∑

e∈E

aeE[l2e ]+
∑

e∈E

beE[le].

The proof of the following Lemma appears in Appendix A.2.

Lemma 3.5 For any system of mixed strategies and for the global optimalsolution:

∑

j

∑

e∈Q∗
j

ae(E[le]wj + w2
j ) + bewj ≤

√

∑

e∈E

aeE[l2e ] + beE[le]

√

∑

e∈E

ael∗e
2 + bel∗e +

∑

e∈E

(ael
∗
e + be)l

∗
e .

To complete the proof of Theorem 3.3 we apply Lemma 3.4 and Lemma 3.5 to inequality (6) and
obtain

∑

e∈E

aeE[l2e ] +
∑

e∈E

beE[le] ≤

√

∑

e∈E

aeE[l2e ] + beE[le]

√

∑

e∈E

ael∗e
2 + bel∗e +

∑

e∈E

(ael
∗
e + be)l

∗
e .

We denote the square root of the ratio of the Nash routes cost and the optimal routes cost by

x =

√

∑

e∈E aeE[l2e ] + beE[le]
∑

e∈E(ael∗e + be)l∗e
.

Then we divide the above inequality by
∑

e∈E(ael
∗
e + be)l

∗
e and express the result in terms ofx. Thus,

x2 ≤ x + 1 and thereforex2 ≤ 3+
√

5
2 , which completes the proof of the Theorem.
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Figure 1: A network congestion game

3.2 Lower Bounds for Linear Latency Functions

In this section we prove a lower bound on the worst-case coordination ratio in the case of linear latency
functions.

Theorem 3.4 For pure strategies and linear latency functions,R ≥ 2.618.

Proof: Let denote the golden ratio byφ = 1+
√

5
2 . We construct the following example which uses

the network shown in Figure 1. We consider an atomic weightednetwork congestion game with four
players. Player1 has a bandwidth request(U, V, φ) (player1 has to moveφ unit of bandwidth from
U to V ), player2 has a bandwidth request(U,W,φ), player3 has a bandwidth request(V,W, 1) and
player4 has a bandwidth request(W,V, 1). In the optimal solution player1 uses the pathUV , player
2 uses the pathUW , player3 uses the pathV W and player4 uses the pathWV . The costs of the
players areφ2, φ2, 1 and1 respectively. The total cost is2φ2 + 2. If player1 chooses the pathUWV ,
player2 chooses the pathUV W , player3 uses the pathV UW and player4 uses the pathWUV ,
then this is a Nash equilibrium and the costs of the players are φ(2φ + 1), φ(2φ + 1), (φ + 1) and
(φ + 1) respectively. The total cost is4φ2 + 4φ + 2. ThusR = (4φ2 + 4φ + 2)/(2φ2 + 2) =
(8φ + 6)/(2φ + 4) = 1 + φ ≈ 2.618, by the fact thatφ2 = φ + 1. This completes the proof.

Theorem 3.5 For pure strategies, unweighted demand and linear latency functions,R ≥ 2.5.

Proof: We construct the same example as in the proof of Theorem 3.4 with the modification that here
we setφ = 1. We obtain the same optimal solution and the same Nash equilibrium as in the proof of
Theorem 3.4. ThusR = (4φ2 + 4φ + 2)/(2φ2 + 2) = 10/4 = 2.5. This completes the proof.

4 Nash Equilibrium for Polynomial Latency Functions

In this section we consider the case where the latency of eachedge is a polynomial of degreed in the
edge congestion. Specificallyfe(x) =

∑

i ae,ix
i for each edgee ∈ E, whereae,i are nonnegative

reals. We show that for polynomials of degreed latency functions the worst-case coordination ratio
is at mostO(2ddd+1) for pure and mixed strategies and we show that for polynomials of degreed
latency functions the worst-case coordination ratio is lower bounded byΩ(dd/2).
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4.1 Upper Bounds for Polynomial Latency Functions

We begin by proving an upper bound on the worst-case coordination ratio in the case of polynomial
of degreed latency functions.

4.1.1 Pure Strategies

The proof of the following Theorem appears in Appendix A.3.

Theorem 4.1 For polynomial latency functions of degreed and pure strategies, we haveR = O(2ddd+1).

4.1.2 Mixed Strategies

The proof of the following Theorem appears in Appendix A.4.

Theorem 4.2 For polynomial latency functions of degreed and mixed strategies, we haveR =
O(2ddd+1).

4.2 Lower Bounds for Polynomial Latency Functions

In this section we prove a lower bound on the worst-case coordination ratio in the case of polynomial
of degreed latency functions. The proof of the following Theorem appears in Appendix A.5.

Theorem 4.3 For pure strategies and polynomial latency functions of degreed, R = Ω(dd/2).
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Appendix

A Omitted proofs

A.1 Proof of Lemma 3.4

We have
∑

e∈E

∑

j

(aeE[le] + be)
∑

Q|e∈Q

pQ,jwj +
∑

e∈E

ae

∑

j

∑

Q|e∈Q

(pQ,j − p2
Q,j)w

2
j

≥
∑

e∈E

∑

j

(aeE[le] + be)pe,jwj +
∑

e∈E

ae

∑

j

(pe,j − p2
e,j)w

2
j

=
∑

e∈E

ae

∑

j

E[le]pe,jwj + (pe,j − p2
e,j)w

2
j +

∑

e∈E

be

∑

j

pe,jwj

=
∑

e∈E

ae



(E[le])
2 +

∑

j

pe,j(1 − pe,j)w
2
j



+
∑

e∈E

beE[le]

=
∑

e∈E

aeE[l2e ] +
∑

e∈E

beE[le],

where the first inequality follows from the fact thatpe,j =
∑

Q|e∈Q pQ,j. The second equality follows
from the fact thatE(le) =

∑

j pe,jwj . The last equality follows from Lemma 3.3. This completes the
proof of the Lemma.

A.2 Proof of Lemma 3.5

Classifying the sum of the optimal paths according to the edges indicesJ∗(e), we get
∑

j

∑

e∈Q∗
j

ae(E[le]wj + w2
j ) + bewj =

∑

e∈E

ae

∑

j∈J∗(e)

(E[le]wj + w2
j ) + bewj. (7)

Substituting (3) in (7), we obtain
∑

e∈E

ae

∑

j∈J∗(e)

(E[le]wj + w2
j ) + bewj

≤
∑

e∈E

ae(E[le]l
∗
e + l∗e

2) + bel
∗
e

=
∑

e∈E

aeE[le]l
∗
e +

∑

e∈E

(ael
∗
e + be)l

∗
e

≤

√

∑

e∈E

ae(E[le])2
∑

e∈E

ael∗e
2 +

∑

e∈E

(ael
∗
e + be)l

∗
e

≤

√

∑

e∈E

aeE[l2e ] + beE[le]

√

∑

e∈E

ael∗e
2 + bel∗e +

∑

e∈E

(ael
∗
e + be)l

∗
e ,

where the second inequality follows from Lemma 3.1. The lastinequality follows from the fact that
E[l2e ] ≥ (E[le])

2. This completes the proof of the Lemma.
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A.3 Proof of Theorem 4.1

Let Q be the routes of systemS of pure strategies in Nash equilibrium and letQ∗ be the optimal
routes for these polynomial latency functions. LetQj be the path of requestj in Q and letQ∗

j be the
path of requestj in Q∗. According to definition 2.3 of Nash Equilibrium we have1

∑

e∈Qj

∑

i

ae,il
i
e ≤

∑

(e∈Q∗
j
)∧(e∈Qj)

∑

i

ae,il
i
e +

∑

(e∈Q∗
j
)∧(e 6∈Qj)

∑

i

ae,i(le + wj)
i

≤
∑

e∈Q∗
j

∑

i

ae,i(le + wj)
i.

We multiply the above inequality bywj and get

∑

e∈Qj

∑

i

ae,il
i
ewj ≤

∑

e∈Q∗
j

∑

i

ae,i(le + wj)
iwj .

Next, we sum all the above inequalities for allj to get

∑

j

∑

e∈Qj

∑

i

ae,il
i
ewj ≤

∑

j

∑

e∈Q∗
j

∑

i

ae,i(le + wj)
iwj .

Classifying the above sums according to the edges indicesJ(e) for the left hand-side andJ∗(e) for
the right hand-side yields

∑

e∈E

∑

i

∑

j∈J(e)

ae,il
i
ewj ≤

∑

e∈E

∑

i

∑

j∈J∗(e)

ae,i(le + wj)
iwj. (8)

The proof requires the following Lemma which appears in [1] and has simple proof.

Lemma A.1 The functionf(x, y) = (x + y)d is bounded by:cxd +
(

y
(

d
ln c + 1

))d
for anyc > 1.

We also need the following Lemmas.

Lemma A.2 Let fe(x) =
∑

i ae,ix
i be the polynomial of degreed. Then for any system of pure

strategy:
∑

e∈E

∑

i

∑

j∈J(e)

ae,il
i
ewj =

∑

e∈E

fe(le)le.

Proof: We have
∑

e∈E

∑

i

∑

j∈J(e)

ae,il
i
ewj =

∑

e∈E

∑

i

ae,il
i+1
e =

∑

e∈E

fe(le)le,

where the first equality follows from the fact thatle =
∑

j∈J(e) wj and the second equality follows
from the definition of the polynomialfe(x). This completes the proof of the Lemma.

1To simplify the notation throughout the entire paper we assume0
0

= 0.
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Lemma A.3 Letfe(x) =
∑

i ae,ix
i be the polynomial of degreed and letc > 1. Then for any system

of pure strategies and for the global optimal solution:

∑

e∈E

∑

i

∑

j∈J∗(e)

ae,i(le + wj)
iwj ≤ c(d + 1)(

∑

e∈E

fe(le)le)
d/(d+1)(

∑

e∈E

fe(l
∗
e)l

∗
e)

1/(d+1).

Proof: We have

∑

e∈E

∑

i

∑

j∈J∗(e)

ae,i(le + wj)
iwj =

∑

e∈E

∑

i

ae,i

∑

j∈J∗(e)

(le + wj)
iwj

≤
∑

e∈E

∑

i

ae,i

∑

j∈J∗(e)

(

cliewj +

(

i

ln c
+ 1

)i

wi+1
j

)

≤
∑

e∈E

∑

i

ae,i

(

cliel
∗
e +

(

d

ln c
+ 1

)d

l∗e
i+1

)

= c
∑

e∈E

∑

i

ae,il
i
el
∗
e +

(

d

ln c
+ 1

)d
∑

e∈E

∑

i

ae,il
∗
e
i+1,

where the first inequality follows from Lemma A.1. The secondinequality follows from (3) and the
fact that the function

(

x
ln c + 1

)x
is an increasing function forx ≥ 0. We apply Holder’s inequality:

∑

i

aα
i bβ

i ≤

(

∑

i

ai

)α(
∑

i

bi

)β

, (9)

for α + β = 1. We useai = ae,il
i+1
e , bi = ae,il

∗
e
i+1, α = i/(i + 1), andβ = 1/(i + 1). This yields

∑

e∈E

∑

i

∑

j∈J∗(e)

ae,i(le + wj)
iwj

≤ c
∑

i

(
∑

e∈E

ae,il
i+1
e )i/(i+1)(

∑

e∈E

ae,il
∗
e
i+1)1/(i+1) +

(

d

ln c
+ 1

)d
∑

e∈E

∑

i

ae,il
∗
e
i+1

≤ c
∑

i

(
∑

e∈E

∑

k

ae,kl
k+1
e )i/(i+1)(

∑

e∈E

∑

k

ae,kl
∗
e
k+1)1/(i+1) +

(

d

ln c
+ 1

)d
∑

e∈E

∑

i

ae,il
∗
e
i+1

= c
∑

i

(
∑

e∈E

fe(le)le)
i/(i+1)(

∑

e∈E

fe(l
∗
e)l

∗
e)

1/(i+1) +

(

d

ln c
+ 1

)d
∑

e∈E

fe(l
∗
e)l

∗
e

where the equality follows from the definition of the polynomial fe(x). Next, we use the fact that for
x ≥ y > 0 and1 ≥ α ≥ α′ ≥ 0 we have

xαy1−α ≥ xα′

y1−α′

.

We apply it forx = C(S) =
∑

e∈E fe(le)le andy = C(S∗) =
∑

e∈E fe(l
∗
e)l

∗
e to get
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∑

e∈E

∑

i

∑

j∈J∗(e)

ae,i(le + wj)
iwj

≤ c
∑

i

(
∑

e∈E

fe(le)le)
d/(d+1)(

∑

e∈E

fe(l
∗
e)l

∗
e)

1/(d+1) +

(

d

ln c
+ 1

)d
∑

e∈E

fe(l
∗
e)l

∗
e

= c(d + 1)(
∑

e∈E

fe(le)le)
d/(d+1)(

∑

e∈E

fe(l
∗
e)l

∗
e)

1/(d+1) +

(

d

ln c
+ 1

)d
∑

e∈E

fe(l
∗
e)l

∗
e .

This completes the proof of the Lemma.

To complete the proof of Theorem 4.1 we Apply Lemma A.2 to the left-hand side of (8) and we
apply Lemma A.3 to the right-hand side of (8). This yields

∑

e∈E

fe(le)le ≤ c(d + 1)(
∑

e∈E

fe(le)le)
d/(d+1)(

∑

e∈E

fe(l
∗
e)l

∗
e)

1/(d+1) +

(

d

ln c
+ 1

)d
∑

e∈E

fe(l
∗
e)l

∗
e .

Let

x =
(
∑

e∈E fe(le)le))
1/d

(
∑

e∈E fe(l∗e)l∗e))1/d
.

Then we divide the above inequality by
∑

e∈E fe(l
∗
e)l

∗
e and express the result in terms ofx. Thus,

xd+1 ≤ c(d + 1)xd +

(

d

ln c
+ 1

)d

.

Next we divide byxd to get

x ≤ c(d + 1) +

(

d
ln c + 1

x

)d

.

It is easy to see that forc = 2 − ǫ we getx ≤ 2(d + 1). Hence C(Q)
C(Q∗) = xd+1 = O(2ddd+1). This

completes the proof of the Theorem.

A.4 Proof of Theorem 4.2

Let {pQ,j} be the probability distribution of the systemS of mixed strategies. LetQ∗ be the optimal
routes for these polynomial latency functions. LetQ∗

j be the path of requestj in Q∗.
According to definition (2.2), the expected latency of userj for assigning his request to pathQ in

systemS is

cQ,j =
∑

e∈Q

E[fe(le + (1 − XQ,j)wj)]

According to definition 2.3, at Nash Equilibrium we have for any pathQ with pQ,j > 0, the
inequalitycQ,j ≤ cQ∗

j
,j. By substitutingcQ,j andcQ∗

j
,j in the inequality we have

∑

e∈Q

E[fe(le + (1 − XQ,j)wj)] ≤
∑

e∈Q∗
j

E[fe(le + (1 − XQ∗
j
,j)wj)]

≤
∑

e∈Q∗
j

E[fe(le + wj)].
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We multiply the above inequality bypQ,j · wj and get

∑

e∈Q

E[fe(le + (1 − XQ,j)wj)]pQ,jwj ≤
∑

e∈Q∗
j

E[fe(le + wj)]pQ,jwj .

Then, we sum all the above inequalities for all the pathsQ and classify them according to the edges
paths. This Yields

∑

e∈E

∑

Q|e∈Q

E[fe(le + (1 − XQ,j)wj)]pQ,jwj ≤
∑

e∈Q∗
j

E[fe(le + wj)]wj ,

where in the right-hand side of the inequality we use the factthat
∑

Q pQ,j = 1. We sum all the above
inequalities for allj and get

∑

j

∑

e∈E

∑

Q|e∈Q

E[fe(le + (1 − XQ,j)wj)]pQ,jwj ≤
∑

j

∑

e∈Q∗
j

E[fe(le + wj)]wj . (10)

The proof requires the following Lemmas.

Lemma A.4 For any system of mixed strategies:

E[fe(le)le] =
∑

j

E[fe(le + (1 − Xe,j)wj)]pe,jwj .

Proof: We have

E[fe(le)le] = E[(
∑

j

Xe,jwj)fe(le)] =
∑

j

wjE[Xe,jfe(le)]

=
∑

j

wjPr[Xe,j = 0]E[Xe,jfe(le)|Xe,j = 0] + wjPr[Xe,j = 1]E[Xe,jfe(le)|Xe,j = 1]

=
∑

j

pe,jwjE[Xe,jfe(le)|Xe,j = 1]

=
∑

j

E[fe(le + (1 − Xe,j)wj)]pe,jwj ,

where the second equality follows from the linearity of expectation and the fourth equality follows
from the fact thatpe,j = Pr[Xe,j = 1]. This completes the proof of the Lemma.

Lemma A.5 For any system of mixed strategies:

∑

j

∑

e∈E

∑

Q|e∈Q

E[fe(le + (1 − XQ,j)wj)]pQ,jwj ≥
∑

e∈E

E[fe(le)le]
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Proof: We have
∑

j

∑

e∈E

∑

Q|e∈Q

E[fe(le + (1 − XQ,j)wj)]pQ,jwj ≥
∑

j

∑

e∈E

∑

Q|e∈Q

E[fe(le + (1 − Xe,j)wj)]pQ,jwj

=
∑

j

∑

e∈E

E[fe(le + (1 − Xe,j)wj)]pe,jwj

=
∑

e∈E

∑

j

E[fe(le + (1 − Xe,j)wj)]pe,jwj

=
∑

e∈E

E[fe(le)le].

The inequality follows from the fact that for every edgee ∈ Q, it holds Xe,j ≥ XQ,j. The first
equality follows from the fact thatpe,j =

∑

Q|e∈Q pQ,j. The last equality follows from Lemma A.4.
This completes the proof of the Lemma.

Lemma A.6 Let c > 1. Then for any system of mixed strategies and for the global optimal solution:

∑

j

∑

e∈Q∗
j

E[fe(le+wj)]wj ≤ c(d+1)(
∑

e∈E

E[fe(le)le])
d/(d+1)(

∑

e∈E

fe(l
∗
e)l

∗
e)

1/(d+1)+

(

d

ln c
+ 1

)d
∑

e∈E

fe(l
∗
e)l

∗
e .

Proof: To simplify the proof we first consider only the polynomial latency functions of degreed
fe(x) = xd. Then we extend it to the general case. We have

∑

j

∑

e∈Q∗
j

E[(le + wj)
d]wj =

∑

e∈E

∑

j∈J∗(e)

E[(le + wj)
d]wj

≤
∑

e∈E

∑

j∈J∗(e)

(

cE[lde ]wj +

(

d

ln c
+ 1

)d

wd+1
j

)

≤
∑

e∈E

(

cE[lde ]l∗e +

(

d

ln c
+ 1

)d

l∗e
d+1

)

= c
∑

e∈E

E[lde ]l
∗
e +

(

d

ln c
+ 1

)d
∑

e∈E

l∗e
d+1.

The first equality is obtained by classifying the sums according to the edges indicesJ∗(e). The first
inequality follows from Lemma A.1 and from the linearity of expectation. The second inequality
follows from (3). We apply Holder’s inequality (9), where weuseai = E[lde ]

(d+1)/d, bi = l∗e
d+1,

α = d/(d + 1), andβ = 1/(d + 1). This yields
∑

j

∑

e∈Q∗
j

E[(le + wj)
d]wj

≤ c(
∑

e∈E

E[lde ]
(d+1)/d)d/(d+1)(

∑

e∈E

l∗e
d+1)1/(d+1) +

(

d

ln c
+ 1

)d
∑

e∈E

l∗e
d+1

≤ c(
∑

e∈E

E[ld+1
e ])d/(d+1)(

∑

e∈E

l∗e
d+1)1/(d+1) +

(

d

ln c
+ 1

)d
∑

e∈E

l∗e
d+1,
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where the last inequality follows from the fact thatE[ld+1
e ] ≥ E[lde ]

(d+1)/d. Since we assumed that
fe(le) = lde then the last inequality is

∑

j

∑

e∈Q∗
j

E[fe(le+wj)]wj ≤ c(
∑

e∈E

E[fe(le)le])
d/(d+1)(

∑

e∈E

fe(l
∗
e)l

∗
e)

1/(d+1)+

(

d

ln c
+ 1

)d
∑

e∈E

fe(l
∗
e)l

∗
e .

Now we return to the case of general polynomialsfe(x) =
∑

i ae,ix
i of degreed for the latency

functions. By the linearity of expectation and by the same considerations we used in Theorem 4.1, we
obtain

∑

j

∑

e∈Q∗
j

E[fe(le+wj)]wj ≤ c(d+1)(
∑

e∈E

E[fe(le)le])
d/(d+1)(

∑

e∈E

fe(l
∗
e)l

∗
e)

1/(d+1)+

(

d

ln c
+ 1

)d
∑

e∈E

fe(l
∗
e)l

∗
e .

This completes the proof of the Lemma.

To complete the proof of Theorem 4.2 we apply Lemma A.5 to the left-hand side of (10) and we
apply Lemma A.6 to the right-hand side of (10). This yields

∑

e∈E

E[fe(le)le] ≤ c(d+1)(
∑

e∈E

E[fe(le)le])
d/(d+1)(

∑

e∈E

fe(l
∗
e)l

∗
e)

1/(d+1) +

(

d

ln c
+ 1

)d
∑

e∈E

fe(l
∗
e)l

∗
e .

Let

x =
(
∑

e∈E E[fe(le)le)])
1/d

(
∑

e∈E fe(l∗e)l∗e))1/d
.

Then we divide the above inequality by
∑

e∈E fe(l
∗
e)l

∗
e and express the result in terms ofx. Thus,

xd+1 ≤ c(d + 1)xd +

(

d

ln c
+ 1

)d

and hence as in Theorem 4.1 we obtainR = O(2ddd+1). This completes the proof of the Theorem.

A.5 Proof of Theorem 4.3

We use the construction given for the maximum latency in [2] and apply it for the average latency.
This construction can be easily modelled as a directed graph. We construct the following problem
instance for the restricted assignment model. LetT > 0 and letl > 0 be large enough. We consider
l + 1 groups of links such that in groupk = 0, . . . , l there areT

k! links. Denote the number of links
in groupk by nk. For each link we consider the latency functionf(x) = xd. We partition the tasks
to l groups. In groupk = 1, . . . , l there arek · nk unit jobs, each can be assigned to any link from
groups[k − 1, . . . , l]. Observe that the optimal solution assigns the jobs of groupk (k = 1, . . . , l) to
the links in groupk − 1, one job per link. We define the following system of pure strategies, denote
it by S: all jobs from groupk (k = 1, . . . , l) are assigned to links from groupk, k jobs per link. We
chooseT = l! to maintain integrality.

Lemma A.7 The systemS is in Nash Equilibrium.

19



Proof: Denote bySk (k = 1, . . . , l) the set of links to which jobs from job groupk can be assigned.
Let j be a job from groupk and consider the assignment ofj to link i from link groupk. Clearly,
cij = kd, and for each linkt ∈ Sk we havectj ≥ ((k − 1) + 1)d = kd = cij . Hence the systemS is
in Nash Equilibrium. This completes the proof.

We assume thatl > d. We denote the optimal solution cost byOPT . For large enoughl we have

OPT =

l−1
∑

k=0

T

k!
· 1d = T

l−1
∑

k=0

1

k!
≈ T · e.

and

C(S) =

l
∑

k=1

T

k!
· kd ≥

T

pd/2q!
· (pd/2q)d = T · Ω(dd/2),

where the second equality follows from Stirling’s formula.Hence

R ≥
C(S)

OPT
= Ω(dd/2).

This completes the proof.
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