
Optimal Node Routing

Yossi Azar ∗ Yoel Chaiutin †

Abstract

We study route selection for packet switching in the competitive throughput model. In
contrast to previous papers which considered competitive algorithms for packet scheduling, we
consider the packet routing problem (output port selection in a node). We model the node
routing problem as follows: a node has an arbitrary number of input ports and an arbitrary
number of output queues. At each time unit, an arbitrary number of new packets may arrive,
each packet is associated with a subset of the output ports (which correspond to the next
edges on the allowed paths for the packet). Each output queue transmits packets in some
arbitrary manner. Arrival and transmission are arbitrary and controlled by an adversary. The
node routing algorithm has to route each packet to one of the allowed output ports, without
exceeding the size of the queues. The goal is to maximize the number of the transmitted packets.
In this paper, we show that all non-refusal algorithms are 2-competitive. Our main result is an
almost optimal e

e−1
≈ 1.58-competitive algorithm, for a large enough queue size. For packets

with arbitrary values (allowing preemption) we present a 2-competitive algorithm for any queue
size.

1 Introduction

Overview: A general network consists of nodes (routers) and communication links through which
packets of information flow. Generally, a node consists of input ports, a switching module and an
output buffer connected to each output port. A packet is received at an input port and then
forwarded through the switching module to an appropriate output buffer. If the output buffer is
full, the switching module must drop some packets. Most of previous works for competitive packet
routing/switching considered the packet scheduling problem in the buffers assuming the path of
the packet through the network is fixed and known. Moreover, to the best of our knowledge there
are no results for the routing problem (i.e. path or output selection) in the competitive throughput
model. In this paper we consider the simplest packet routing problem which is choosing a route in
a node.

Traditionally, similar problems were analyzed while assuming either a specific distribution of
the arrival rates (see [15, 22]), or some predefined structure of the sequence of arriving packets
such as in the Adversarial Queueing Theory (AQT), in which the adversary injects packets that
obey some capacity constraints, so that packet dropping is not necessary. It is interesting to note
that the first papers on AQT assumed fixed paths [5, 16, 17, 23] and only later papers began
considering the path selection problem [1, 6, 8, 9, 17]. Recently, throughput problems for various
types of switches, in special graphs and arbitrary graphs were studied while avoiding any a-priori
assumption on the input. As already mentioned, all these papers considered the packet scheduling
but not the packet routing or output port selection. Here we consider the simplest routing (path

∗
azar@tau.ac.il. School of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel. Supported in part

by the German-Israeli Foundation and by the Israel Science Foundation.
†
yoel1717@yahoo.com. School of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel.

1

selection or output port selection) which is node routing. Packets arrive at the input ports, while
each packet is associated with a subset of the output ports. The packet has to be routed into one
of these output ports.

We model the problem of node routing as follows: a node has an arbitrary number of input
ports and an arbitrary number of output queues (denoted by m). All the output queues are of size
B. At each time unit, an arbitrary number of new packets may arrive, each packet is associated
with a subset of the output ports (which corresponds to the next edges on the allowed paths for the
packet). Each output queue transmits packets in some arbitrary manner. Arrival and transmission
are arbitrary and controlled by an adversary. In contrast to the models where the path is fixed, and
hence each packet needs to be routed into a unique output queue, in our model the output queue
needs to be selected. In particular the main decision problem is into which output queue to send the
packet (among the allowed destination output queues). If the buffers are full, the packet must be
rejected. The goal of the routing algorithm is to maximize the number of the transmitted packets.
We also consider the model of packets with arbitrary values. In this model we allow preemption.

We use competitive analysis to evaluate the performance of online algorithms compared to the
optimal offline algorithm that knows the entire sequence in advance. Particulary, the competitive
ratio of an online algorithm is the supremum, taken all over finite sequences, of the ratio between
the online throughput and the optimal throughput on the same input.

Our results:

• We show that all non-refusal algorithms are 2-competitive for any queue size, and are optimal
for queues of size 1. Our main result is an optimal deterministic e

e−1 ≈ 1.58-competitive
algorithm for node routing, for a large enough size of the queues. This is done by designing
an optimal e

e−1 -competitive fractional algorithm and transforming it into a discrete algorithm

with a competitive ratio of e
e−1(1 + 2m+1

B
). We show that our algorithm is almost optimal

by providing a lower bound of e
e−1 −Θ(1

m
). We also show an optimal e

e−1 − o(1)-competitive
randomized algorithm for any B.

• Actually the discretization is more general. In fact, we present a generic technique for trans-
forming any fractional algorithm for the node routing problem to a discrete algorithm, using
the vector rounding algorithm of [3]. More specifically, given any c-competitive online frac-
tional algorithm for the node routing problem, we construct an online discrete algorithm with
a competitive ratio of c(1 + 2m+1

B
).

• For the preemptive model with arbitrary values, we present a 2-competitive algorithm for
any m and B. This is done using the zero-one principle presented in [13]. The algorithm is
optimal for B = 1.

Side results: We also consider a variant of our problem (described later) where the algorithm needs
to perform packet routing, admission control and packet scheduling. We show a 3-competitive
algorithm for this problem, once again using the zero-one principle of [13]. We provide a lower
bound of 3 − Θ(1

m
) for queues of size 1.

Our techniques: We start by constructing an online reduction from the fractional node routing
problem to the problem of finding a maximum fractional matching in a bipartite graph. Thus,
using algorithm WL from [10] which is e

e−1 -competitive, we obtain an e
e−1 -competitive fractional

algorithm. Then we present a generic technique for transforming any fractional algorithm for the
node routing problem to a discrete algorithm. Specifically, we present an algorithm with larger
queues and no packet loss that maintains a running simulation of the fractional algorithm. This is
done using the vector rounding algorithm of [3]. We then transform this algorithm to an algorithm
with queues of size B. For the model of packets with arbitrary values, we obtain the upper bound
by using the zero-one principle presented in [13].

2

We use the following results and techniques from previous papers:

• Vector rounding: The n-dimensional vector rounding problem is defined as follows (the
definition is taken from [3]): the input is a list of vectors (V1, V2, ...) arriving online, where
each Vt = (v1

t , ..., v
n
t) is a vector of length n over the reals which suffices

∑n
i=1 vi

t ∈ Z+.
The output is a list of integer vectors (Z1, Z2, ...) where Zt = (z1

t , ..., zn
t) is a rounding of

Vt that preserves the sum, i.e., for all 1 ≤ i ≤ n we have that zi
t ∈ {⌊vi

t⌋, ⌈vi
t⌉} and that∑n

i=1 zi
t =

∑n
i=1 vi

t. The goal is to make the accumulated difference in each entry as small as

possible, i.e., for every t we want max1≤i≤n|
∑t

j=1 zi
j −

∑t
j=1 vi

j| to be as small as possible.

In [3], the authors show an algorithm for the problem. They prove that the cost of their

algorithm is at most n, i.e., for every t, max1≤i≤n|
∑t

j=1 zi
j −

∑t
j=1 vi

j | ≤ n.

• Online matching: The online unweighted matching problem (as appears in [10]) consists
of a bipartite graph where vertices of one side arrive one by one and should be matched to
one of its adjacent vertices. The goal is to maximize the number of matched vertices. It
is easy to show that the greedy algorithm is 2-competitive. Karp et al. [19] introduced a
randomized algorithm RANKING with a competitive ratio of e

e−1 −o(1) and proved a lower

bound of e
e−1 − o(1), thus proving the optimality of RANKING, up to lower order terms.

The fractional model of the online unweighted matching problem was studied by Azar and
Litichevsky in [10]. They showed an online algorithm Water Level (WL) with competitiveness
of e

e−1 . They also proved a lower bound of e
e−1 −Θ(1

m
) for any deterministic algorithm, thus

obtained the optimality of WL.

• The zero-one principle: Azar and Richter [13] presented the zero-one principle. They
showed that for every comparison based switching algorithm, A is c-competitive if and only if
A is c-competitive for all packet sequences whose values are restricted to 0/1, with arbitrary
tie breaking.

Related results:

• Packet switching: Competitive analysis was used for single-queue, multi-queue and CIOQ
(Combined Input and Output Queue - a m ∗ m switch) switches. In these models each
packet has a value and arrives to a specific queue. All packets are destined to the output
port. The algorithm has to perform an admission control on the packets arrival and a packet
scheduling at the transmission time, i.e., at transmission, the algorithm selects one queue
and transmits one packet from the head of the queue. The goal is to maximize the total
values of the transmitted packets. We emphasize that no routing decisions have to be made.
In the single-queue model, the greedy algorithm is 2-competitive, as shown in [21], and a
1.75-competitive algorithm was presented in [14]. For the more general multi-queue model,
there are various results: for unit value packets, the greedy algorithm is 2-competitive and a
more sophisticated 1.89-competitive algorithm was presented in [4]. For large queues, a 1.58-
competitive algorithm can be achieved [10]. For arbitrary values, the best known algorithm
was presented in [13] with competitiveness of 3. For the more realistic CIOQ switches, an
8-competitive algorithm for maximizing the total weighted throughput is presented in [12].

• Packet switching in various graph types: For line topology, Aiello et al.[2] presented

algorithm Nearest To Go (NTG) which is O(n
2

3)-competitive for unit value packets. Azar et
al. [13] showed that the greedy algorithm is (n+1)-competitive for arbitrary value packets. A
lower bound of Ω(

√
n) on the competitiveness of the greedy algorithm for unit value packets

was proved by Aiello et al.[2]. For directed trees, Kesselman et al. [20] investigated the
routing work conserving algorithms where packets arrive to the leaves and are destined to the
root. For general graphs, Awerbuch et al. [7] presented a load balance algorithm for packet

3

routing. Their algorithm is 1
1−ǫ

-competitive using buffers which are larger than those of the

optimal solution by a factor of up to O(n2

ǫ
) but at least O(n

ǫ
). In [2], Aiello et al. proved

that algorithm NTG (Nearest To Go) is O(md)-competitive for any topology, where m is
the number of edges in the network and d is the maximal length of a path traversed by any
packet. They also showed an O(md) competitiveness for every greedy algorithm on DAGs.
We emphasize that in all these papers, the paths of the packets through the graph are fixed
and known, there are no results for the path selection problem.

Paper structure: Section 2 includes formal definitions and notations. In section 3 we introduce
an optimal algorithm for the node routing problem. We show lower bounds for the problem in
section 4. In section 5 we provide an algorithm for the arbitrary-value node routing problem. We
address the multi queue switch routing problem in appendix A, where we present an algorithm for
the problem and a lower bound. All omitted proofs appear in appendix B.

2 Problem Definition and Notations

We start with our main model.

The node routing model: We model the problem as follows: a node has an arbitrary number
of input ports and m output queues {Q1, ..., Qm} each of size B. At each time unit, an arbitrary
number of new packets may arrive. Each packet p is associated with a subset of the output queues
Qp ⊆ {Q1, ..., Qm} (which corresponds to the next edges on the allowed paths for the packet).
All packets are of equal size and value. W.l.o.g. we assume that all m queues are empty at the
beginning. Each time unit is divided into two phases: in the arrival phase a set of packets arrive,
each packet p is associated with a specific subset of the output queues Qp. For each packet p, the
main decision problem is into which output queue to send it (among the allowed destination output
queues Qp). Each packet might be rejected at its arrival. If the queues Qp are full, the packet
must be rejected. Clearly, in this model there is no need for preemption since the preference of one
packet over the other is pointless. At the transmission phase, a subset of the queues (could be also
none or all the queues) is selected by the system, and a packet is transmitted from each of the heads
of these queues (only from the non empty queues). Both arrival and transmission are controlled
by an adversary, but we assume no starvation for each of the output queues, i.e., eventually all
queues will transmit and become empty. The goal of the algorithm is to maximize the number of
the transmitted packets.

We use the term non-refusal algorithm for algorithms that accept every packet which the queues
have space for. Obviously, every algorithm can be transformed into a non-refusal algorithm without
worsening its competitiveness.

The model above is the synchronous model in which all the packets of a single arrival phase
arrive together (and all the transmissions in the transmission phase are made together), so the
algorithm has full knowledge about the arrival phase before it has to make its routing decisions.
We also consider the event driven model where arrivals and transmissions occur in arbitrary times.
We denote by σ the sequence events. Each event in σ can be either an arrival event or a transmission
event. The algorithm must respond after every arrival event and route the packet (or discard it).
Note that the event driven model is stronger than the synchronous one. Nevertheless our upper
bounds hold even for the event driven model, and the lower bounds hold even for the synchronous
model (except for the arbitrary B lower bound).

We also consider the arbitrary-value model where each packet is associated with a non-negative
value. The goal is to maximize the sum of values of the transmitted packets. In this model we
allow preemption. A preempted packet is a packet which is dropped after residing in a queue. Our
results hold for both FIFO and non FIFO queues (e.g. priority queues). Note that the throughput

4

of the optimal algorithm is the same for FIFO and non FIFO models.

The multi queue switch routing model: We also consider a variant of our problem where
the algorithm needs to perform packet routing, admission control and packet scheduling. In this
model the output queues are parallel queues which are connected to a single output port. In a
transmission event the algorithm has to choose one of the output queues to transmit. In this
model, the transmission events in σ do not contain the transmitting queues. Here we consider only
the arbitrary-value model, with preemption.

Notations: We use the terms insert, accept and assign for packet insertion into one of the queues.
For packet rejection we use the terms drop and discard. We use the event driven model throughout
the paper, except for the lower bound sections. We denote by event t the t-th event, which can
be either an arrival or a transmission event. We use the term arrival event j to denote the j-th
arrival event, i.e., the arrival of the j-th packet. Similarly we denote by transmission event k the
k-th transmission event. For event t, we use the term load of queue Qi to refer to the number of
packets residing in that queue, at that time. For a given event t, the term space of queue Qi is
used to refer to its size minus its load, i.e., how many additional packets can be assigned to queue
Qi, at that event. Given an online routing algorithm A we denote by A(σ) the value of A given
the sequence σ, i.e., the total amount of transmitted packets after all the packets of the sequence
have arrived and all the queues have been emptied. We denote the optimal (offline) algorithm by
Opt. A deterministic online algorithm A is c-competitive for all maximization problems described
in this paper iff for every packet sequence σ we have: Opt(σ) ≤ c · A(σ).

3 Optimal Algorithm for Node Routing

First we discuss non-refusal algorithms. We note that every non-refusal algorithm is 2-competitive,
for every B ≥ 1 (this is optimal for B = 1, as shown in section 4). The general non-refusal algorithm
is defined as follows:

Non-Refusal Algorithm: For each incoming packet p: insert p into any queue Qi ∈ Qp which is
not full. If such a queue does not exist, discard p.

It can be proved directly that every non-refusal algorithm is 2-competitive, but it also follows
from Remark 3.1 or Theorem 5.4.

Next we describe our optimal algorithm which is e
e−1(1 + 2m+1

B
)-competitive (a lower bound of

e
e−1 − Θ(1

m
) is shown in section 4). Clearly, the competitive ratio of the algorithm asymptotically

approaches e
e−1 ≈ 1.58 for large size queues. In subsection 3.1 we present algorithm FR for the

fractional model, which is e
e−1 -competitive. In subsection 3.2, we present a generic technique to

transform any c-competitive online fractional algorithm for our problem into a discrete algorithm
with a competitive ratio of c(1+ 2m+1

B
). Specifically, we will take the fractional algorithm FR, and

transform it into a e
e−1(1 + 2m+1

B
)-competitive discrete algorithm. We begin with the fractional

routing algorithm in the following subsection.

3.1 Algorithm for the fractional version of node routing

In this subsection we consider the fractional model, which is a relaxation of the discrete model
that was presented in section 2. In the fractional model we allow the online algorithm to accept
fractional packets into the queues as well as to transmit fractional packets. More formally, the
model is defined as follows: we have a sequence of events, each event can be either an arrival of
packet p or a transmission from a queue. At arrival event t, one packet p associated with a subset
of the output queues Qp ⊆ {Q1, ..., Qm} arrives. The algorithm may split the packet into fractions
and insert them into the queues Qp (only into queues with sufficient free space), and may also

5

discard any of the fractions. The value of each fraction is equal to its size. We note by kt
i the total

amount of fractions of p inserted into queue Qi, at arrival event t. The total amount of fractions
inserted into all the queues, must not exceed the unit value, i.e.,

∑m
i=1 kt

i ≤ 1. In addition, Qi /∈ Qp

implies that kt
i = 0. The second type of event is the transmission event, where some specific queue

transmits a full packet from the head of that queue, if there are enough fractions in the queue. If
the total fractions in the queue are less then a unit, they will all be transmitted. We assume that
sequence σ consists of integral packets. In this subsection we show a fractional algorithm for the
problem with a competitive ratio of e

e−1 ≈ 1.58, even against an optimal algorithm which is allowed
to split incoming packets. We begin by introducing the problem of an online unweighted fractional
matching in a bipartite graph. Then we introduce a translation of our problem (the fractional
model) into the problem of the online unweighted fractional matching in a bipartite graph.

The online unweighted matching in a bipartite graph problem is defined as follows (as appears in
[10]): first, consider an online version of the maximum bipartite matching on a graph G = (S,R,E),
where S and R are the disjoint vertex sets and E is the set of edges. We refer to sets S and R as
the servers and the requests, respectively. The objective is to match a request to a server. At step
t, a vertex rt ∈ R along with all of its incident edges, arrives online. Algorithm A can either reject
rt, or irreversibly match it to an unmatched vertex si ∈ S adjacent to rt. The goal of the online
algorithm is to maximize the size of the matching.

The fractional version of the online unweighted matching is as follows: each request rt has a
size xt which is the amount of work needed to service it. Algorithm A can match a fraction of size
kt

i ∈ [0, xt] to each vertex si ∈ S adjacent to rt. If request t is matched partially to some server i

with weight kt
i then

∑|S|
i=1 kt

i ≤ xt. But the load of each server i, which is
∑n

t=1 kt
i where n is the

length of σ, must be at most 1. We use the terms match and assign interchangeably. The goal of
the online algorithm is to maximize the sum of matched fractions, i.e., to maximize

∑
t,i k

t
i .

Our translation of the fractional routing problem into the problem of online unweighted frac-
tional matching in a bipartite graph, opposes, in some sense, the translations in [10, 11]. In our
translation, the incoming packets are the requests and they are matched to the queues which are
the servers, while in [10, 11] the requests are the transmission events and they are matched to the
packets, which are the servers.

Given a sequence σ, we translate it into the bipartite graph Gσ = (R,S,E), which is defined as
follows:

• Let T denote the total number of packets. We define the set of requests as R = {r1, ..., rT }
all with unit sizes, i.e., xi = 1 for each 1 ≤ i ≤ T . Each request corresponds to a packet.

• For each queue Qi we define a set of servers Si, which represents the queue over time. Specif-
ically, each Si (1 ≤ i ≤ m) contains T + B servers: Si = {s1

i , ..., s
T+B
i }. The Si’s are disjoint

and the full set of servers is defined as S =
⋃m

i=1 Si.

• Let yt
i denote the number of times queue Qi was selected for transmission until arrival event

t. We denote by St
i the B servers in Si that represent queue Qi at arrival event t. We define

St
i = {syt

i+1
i , ..., s

yt
i+B

i } ⊆ Si. Consider packet p arriving at arrival event t, associated with the
subset Qp. In the bipartite graph problem, at step t a request rt arrives along with its incident
edges, which are the edges connecting it to all servers in St

i for each i such that Qi ∈ Qp.
More formally, rt arrives with the following incident edges: {(s, rt)|s ∈ St

i , Qi ∈ Qp}.

Definition 3.1 A route RT for a sequence of arriving packets σ, for the fractional node routing
problem, is a set of triplets of the form (t,Qi, k

t
i) for each 1 ≤ i ≤ m and 1 ≤ t ≤ T . Each triplet

expresses that at arrival event t, queue Qi gets the fraction kt
i ≥ 0 of the packet p. The size of the

route, denoted by |RT |, is the total amount of fractions transmitted. Since all accepted fractions of
packets are transmitted, clearly |RT | =

∑
t,i k

t
i .

6

Definition 3.2 A route RT for a sequence σ is called legal if for every triplet (t,Qi, k
t
i), queue Qi

has free space of at least kt
i at arrival event t (the empty space is a function of accepted fractions

and transmissions which are in σ) and
∑m

i=1 kt
i ≤ 1, and Qi /∈ Qp implies that kt

i = 0.

The following lemmas connect bipartite fractional matching to our problem.

Lemma 3.1 Every legal fractional route RT for the sequence σ can be mapped, in an online fashion,
to a fractional matching M in Gσ such that |RT | = |M |.

Lemma 3.2 Every fractional matching M in Gσ can be translated, in an online fashion in poly-
nomial time, to a legal fractional route RT for σ such that |RT | = |M |.

The following corollary result directly from Lemmas 3.1 and 3.2.

Corollary 3.3 For any sequence σ, the size of the optimal fractional route for σ is equal to the
size of a maximum fractional matching in Gσ.

Remark 3.1 Actually, Lemmas 3.1 and 3.2 hold also for integral node routing and integral online
matching. This implies that every non-refusal algorithm for node routing is 2-competitive. Note that
every non-refusal node routing algorithm corresponds to a non-refusal online matching algorithm,
which yields a maximal matching. Since every maximal matching is at least half of the maximum
matching, we conclude that every non-refusal algorithm for node routing is 2-competitive.

Remark 3.2 We note that by using the above reduction from the integral node routing to the
integral online matching, and applying the randomized algorithm RANKING of Karp et al. [19],
we obtain a randomized e

e−1 − o(1)-competitive algorithm. Our main focus is on a deterministic
algorithm.

We use algorithm WL for the unweighted fractional matching problem, presented in [10], and
its results.

Algorithm WL: For each request rt adjacent to servers {s1, ..., sn}, match a fraction of size kt
j for

each adjacent sj, where kt
j = (h − lj)+ and h ≤ 1 is the maximum number such that

∑n
j=1 kt

j ≤ 1.

By (f)+ we mean max{f, 0}.

Theorem 3.4 [10] Algorithm WL is e
e−1-competitive and optimal for the bipartite unweighted frac-

tional matching problem.

Now we present a fractional routing algorithm FR for the fractional node routing problem. Since
the bipartite unweighted fractional matching problem is connected to the fractional node routing
problem, we use algorithm WL. Algorithm FR intuitively bases its decisions on the matching
constructed by algorithm WL, in the online constructed graph Gσ.

Algorithm Fractional Routing (FR):

• Maintain a running simulation of WL in the online constructed graph Gσ.

• Routing: For arrival event t, translate the matching of rt to servers made by WL, us-
ing Lemma 3.2, to legal routing triplets (t,Qi, k

t
i). Recall that each triplet corresponds to

assigning a kt
i fraction of p to queue Qi.

Note that FR is not a non-refusal algorithm (because in Gσ , the total load of the servers in St
i

might be bigger than the load of queue Qi at arrival event t).

Theorem 3.5 For every sequence σ, Opt(σ) ≤ e
e−1FR(σ) for the fractional node routing.

7

3.2 The discretization of the fractional algorithm

In this subsection we introduce a generic technique for the discretization of any fractional algorithm
for the node routing problem. In particular, we will use this technique for the discretization of
algorithm FR, which was presented in subsection 3.1. We present in subsection 3.2.1 a general
technique for the discretization of the routing decisions of any fractional algorithm A, for the
unbounded queues version of the problem. We will use this technique in subsection 3.2.2 for the
discretization of the routing of any fractional algorithm A, for our version of the node routing
problem (bounded queues).

3.2.1 The unbounded queues node routing problem

Consider the node routing problem, but assume that the queues are unbounded. Thus all packets
are accepted into the queues. In this case, we may consider the minimization of the maximum queue
size (notice that it is a cost problem). More formally, we are given a node with m output queues,
where queues have an unbounded size. At the beginning, all m queues are empty. We denote the
online finite event sequence by σ. Each event is either an arrival event or a transmission event. In
an arrival event one packet p arrives to the queues, associated with some subset of the queues Qp.
Packet p must be inserted by the algorithm into one of the queues Qp. At a transmission event, the
adversary selects one of the queues which in turn transmits the packet at the head of that queue
(if such exists). We define the cost of the online algorithm A (denoted by cost(A)), given a finite
sequence σ, as the maximum length of a queue taken over all queues and times. The goal is to
minimize the maximum cost, i.e., minimize the maximum queue size over time.

We now turn to consider a relaxation of the model and allow an online algorithm to split packets
and assign fractions of packets to the queues, provided that for every packet p, the total size of the
accepted fractions of p into queues Qp is exactly 1, i.e., the algorithm is not allowed to discard any
fraction of the packet. We denote by A the online fractional algorithm. We now introduce a general
technique for the discretization of the routing decisions of algorithm A, given a finite sequence of
integral packets σ while adding an additive cost of at most 2m to the cost of A.

Now, we define a discrete algorithm M which gets the fractional algorithm A as a parameter
and denote it by MA. At each packet arrival, in order to decide which queue to serve, MA computes
the load seen by A and uses this information for making its decisions. Given arrival event t, let lAi
and li be the simulated load of A and the actual load of MA on queue Qi at that event, respectively.

For the decisions of MA we use a theorem for the vector rounding problem which applies to
our problem. We address the vector rounding problem as presented in [3]1. The m-dimensional
vector rounding problem is this: the input is a list of vectors (V1, V2, ...) arriving online, where each
Vt = (v1

t , ..., v
m
t) is a vector of length m over the reals which suffices

∑m
i=1 vi

t ∈ Z+. The output
is a list of integer vectors (Z1, Z2, ...) where Zt = (z1

t , ..., zm
t) is a rounding of Vt that preserves

the sum, i.e., for all 1 ≤ i ≤ m we have that zi
t ∈ {⌊vi

t⌋, ⌈vi
t⌉} and that

∑m
i=1 zi

t =
∑m

i=1 vi
t. The

goal is to make the accumulated difference in each entry as small as possible, i.e., for every t we
want max1≤i≤m|∑t

j=1 zi
j −

∑t
j=1 vi

j | to be as small as possible. The cost of the algorithm is the
unfairness, which is the maximum accumulated difference in each entry over all time units. The
goal is to minimize the unfairness.

The major special case we will be interested in is when vectors Vt satisfy 0 ≤ vi
t ≤ 1 and∑m

i=1 vi
t = 1. Since the output vector Zt satisfies zi

t ∈ {⌊vi
t⌋, ⌈vi

t⌉} and
∑m

i=1 zi
t =

∑m
i=1 vi

t = 1, we

conclude that Zt will be all zeros except for one entry zi′

t = 1 where i′ satisfies vi′

t > 0.

In [3], the authors show a way to build an algorithm (we call it V R) for the online vector rounding
problem. Algorithm V R is based on another algorithm which is a greedy algorithm for a degenerate

1The vector rounding problem is a generalization of the car pool problem.

8

online vector rounding problem (also called 2-person carpool problem): each vector Vt consists of
zeros, except for two entries: vi1 = vi2 = 1/2, i1 6= i2.

Theorem 3.6 [3] For the vector rounding problem, algorithm V R’s unfairness is at most m, i.e.,

for every t, max1≤i≤m|
∑t

j=1 zi
j −

∑t
j=1 vi

j | ≤ m.

Now we present the discrete algorithm MA.

Algorithm MA:

Maintain a running online simulation of algorithm A. For each arrival event t of a packet p let
kt

i denote the fractions inserted into the queue Qi by A, i.e.,
∑

Qi∈Qp kt
i = 1, and Qi /∈ Qp implies

that kt
i = 0. For each arrival event t of a packet p do:

• Build an input vector Vt for the vector rounding problem Vt = (v1
t , ..., v

m
t) where vi

t = kt
i .

• Get the output vector Zt = (z1
t , ..., zm

t) from the simulated algorithm V R given the input
vectors (V1, ..., Vt).

• Insert p into queue Qi which satisfies zi
t = 1.

Note that our algorithm is not affected by the transmissions. We also note that the insertion
of p is legal, because all the input vectors of V R are of the form Vt = (v1

t , ..., v
m
t) = (kt

1, ..., k
t
m) and

satisfy 0 ≤ kt
i ≤ 1 and

∑m
i=1 kt

i = 1, and as mentioned, this implies that Zt consists of zeros except

for one entry zi′

t = 1, where i′ satisfies kt
i′ > 0, this implies that Qi′ ∈ Qp.

Now we introduce our main theorem for this subsection.

Theorem 3.7 For every sequence σ, cost(MA) ≤ cost(A) + 2m. Alternatively, for sequences in
which A needs queues of size B, MA needs queues of size B + 2m.

3.2.2 The discretization of the fractional algorithm

In this subsection we return to the standard node routing model (with bounded queues). We show a
general technique to transform any c-competitive fractional algorithm for the node routing problem
into a discrete algorithm with a competitive ratio of c(1 + 2m+1

B
). Specifically, we will apply this

technique for the discretization of algorithm FR, which was presented in subsection 3.1.

For our discretization process we rely on the results of the unbounded problem, which were
presented in subsection 3.2.1. We want to address the packets which were accepted by FR as
the input sequence σ for the cost problem studied in subsection 3.2.1, in a way which we will
present later. Recall that algorithm FR might accept fractional packets due to insufficient queue
space. Since in the model of the unbounded problem we study the case where σ consists of integral
packets, we want FR to only accept packets integrally, i.e., for every packet p, to accept kt

i such
that

∑m
i=1 kt

i = 1. Hence, we continue by considering the following problem: assume we are given

an online c-competitive algorithm A. We want to produce a competitive algorithm Â which assigns
only integral packets. We provide algorithm Â which has queues of size B+1 (algorithm A maintains

queues of size B); we will get rid of this assumption later on. Intuitively, Â emulates the routing
of A and accepts only integral packets.

Definition 3.3 We denote fractional algorithms that accept integral packets whenever there is suf-
ficient space for a whole packet, and otherwise discard the whole packet, as discrete non-refusal
algorithms.

9

We now define the transformation of a given algorithm A with queues of size B into algorithm
Â with queues of size B + 1, which is a discrete non-refusal algorithm. Let lti and l̂ti be the loads of

queue Qi at event t in A and Â, respectively.

Algorithm Â:

• Maintain a running simulation of A. Let kt
i be the fraction size which was inserted by

algorithm A at arrival event t into queue Qi.

• If the queues in Qp do not have sufficient space (the total free space is less than a unit),
discard p.

• Otherwise, assign to queue Qi amount of min(B + 1− l̂i, k
t
i), i.e., assign kt

i if there is enough
space or just fill the queue. After assigning to all the queues in Qp, if the total inserted
volume is less than a unit, insert the rest of p arbitrarily into any subset of the queues in Qp

which has sufficient empty space.

Obviously, Â is a discrete non-refusal algorithm. Now we prove that A(σ) ≤ Â(σ) for every σ.

Theorem 3.8 For a given algorithm A with queues of size B, algorithm Â with queues of size
B + 1 has at least the same throughput as A, given the same sequence σ.

Now, we consider algorithm M presented in subsection 3.2.1. Recall that M simulates some
fractional algorithm which fully accepts every incoming packet (since the queues are unbounded).

We want to use algorithm M on algorithm Â (denoted by M Â) which is a discrete non-refusal

algorithm. Since Â has queues of size B + 1, algorithm M Â will use queues of size B + 1 + 2m.
Still, we cannot use M on Â since Â rejects packets when there is no sufficient free space in queues
Qp. Therefore we extend algorithm M to work on algorithms that reject whole packets. This is
done by skipping the events in which packets are rejected. We now present the following lemma:

Lemma 3.9 Algorithm M Â with queues of size B + 1 + 2m has the same throughput as algorithm
Â with queues of size B + 1, given the same sequence σ.

We now return to our original model where queues are of size B. By Theorem 3.8 and

Lemma 3.9, if M Â had queues of size B + 1 + 2m, then algorithm M Â would have had at least
the same throughput as A. Unfortunately, this is not the case, so we continue by emulating an
algorithm with large queues with an algorithm with small queues.

We use the emulation presented in [10]: assume we are given an online competitive discrete
algorithm A with queues of size y and we want to produce a competitive algorithm EA with queues
of size y′ < y. We present algorithm EA, and the corresponding theorem from [10].

Algorithm EA: Maintain a running simulation of algorithm A. Accept a packet into queue Qi if
A accepts it to queue Qi and the queue is not full.

Theorem 3.10 [10] Given two switching algorithms A and B with queue sizes y and y′ respectively,
and y > y′. If B accepts the same packets to the same queues as A when it has sufficient free space
(otherwise it discards the packets), and B transmits from the same queues as A when they are not
empty (otherwise B does not transmit) then A(σ) ≤ y

y′ B(σ).

Corollary 3.11 Obviously, by applying Theorem 3.10, we conclude that A(σ) ≤ y
y′EA(σ).

10

We prove the main result of this section with the next theorem.

Theorem 3.12 Given any c-competitive fractional algorithm A for the node routing problem, al-

gorithm EM Â
is a c(1 + 2m+1

B
)-competitive discrete algorithm for the node routing problem.

Corollary 3.13 Applying Theorem 3.12 on algorithm FR, produces algorithm EM F̂ R
which is

e
e−1(1 + 2m+1

B
)-competitive. For B ≫ m the competitive ratio of EM F̂ R

approaches e
e−1 ≈ 1.58.

4 Lower Bounds

In this section we show some lower bounds for the node routing problem. We first show that an
e

e−1 -competitive algorithm for node routing is optimal. The lower bound holds even for randomized
algorithms.

Theorem 4.1 Every algorithm for the node routing problem is at least e
e−1 − Θ(1

m
)-competitive,

for every B.

Now we show an easy proof for lower bound of 2 for deterministic algorithms, even for the
synchronous model, using queues of size 1. Note that w.l.o.g. we may assume that every algorithm
is a non-refusal algorithm.

Theorem 4.2 Every algorithm for the node routing problem is at least 2-competitive, for B = 1
and any m ≥ 2.

5 Algorithm for arbitrary-value node routing

In this section we consider the arbitrary-value node routing problem. We introduce algorithm
greedy routing (GR) which is 2-competitive, for the problem.

Algorithm Greedy Routing (GR):

When packet p associated with the subset Qp arrives:

• If there exists queue Qi (Qi ∈ Qp) which is not full, insert p into Qi.

• Otherwise, we note by p′ a packet with the smallest value in Qp and by queue Qi′ (Qi′ ∈ Qp)
we note its queue.

– If the value of p′ is smaller than the value of p, preempt p′ and insert p into queue Qi′ .

– Otherwise, drop p.

In order to prove that GR is 2-competitive, we use the zero-one principle from [13]. We begin
by presenting the principle.

Theorem 5.1 [13] Let A be a comparison based deterministic switching algorithm. A is a c-
competitive algorithm if and only if A is c-competitive for all packet sequences whose values are
restricted to 0/1, breaking ties arbitrarily.

11

The term comparison based means that the algorithm bases its decisions solely on the relative
order between values (full definition is given in [13]). Clearly, algorithm GR is comparison based.

We analyze how algorithm GR acts on 0/1 sequences: it fills the queues Qp if possible. If the
queues Qp are all full, there are some possible cases: if a 0-packet p arrives and the queues Qp

contain some 0-packets, then since ties may be broken arbitrarily, GR may discard p or preempt
one of the 0-packets in Qp. If a 0-packet p arrives and the queues Qp contain only 1-packets, GR
must discard p. If a 1-packet p arrives and the queues Qp contain some 0-packets, GR must preempt
one of the 0-packets in Qp. If a 1-packet p arrives and the queues Qp contain only 1-packets, then
since ties may be broken arbitrarily, GR may discard p or preempt one of the 1-packets in Qp.

According to the zero-one principle we need only show that the algorithm is 2-competitive for
0/1 sequences. With a slight abuse of notations, let GR(σ) denote the set of 1-packets transmitted
by GR, given the input sequence σ. Similarly, let Opt(σ) denote the set of packets transmitted by
Opt. Note that we may assume that Opt accepts and transmits only 1-packets, and never preempts
packets, since it is the offline optimal algorithm. We show a matching from (Opt(σ) \ GR(σ)) to
GR(σ). First we prove the following claim.

Claim 5.2 If there exists a matching from (Opt(σ)\GR(σ)) to GR(σ) in which each 1-packet from
GR(σ) is matched at most once, then GR is 2-competitive for 0/1 sequences.

The matching is done by the following marking scheme.

Marking Scheme

For each incoming 1-packet p do:

1. If p is accepted by GR, consider it as an unmarked packet. In case that a marked 1-packet p′

was preempted from queue Qi because of p, mark the first unmarked 1-packet in queue Qi of
GR, starting from the head of the queue.

2. If p is not accepted by GR but accepted by Opt (into queue Qi′ (Qi′ ∈ Qp)), mark the first
unmarked 1-packet in queue Qi′ of GR, starting from the head of the queue.

Clearly, for each 1-packet in (Opt(σ) \ GR(σ)) we mark one 1-packet in GR(σ), and each 1-
packet in GR(σ) can be marked at most once. Obviously, if a marking is needed in step 1, there
exists at least one unmarked 1-packet (e.g. the new packet p). For the marking to be valid we have
to show that in step 2, an unmarked 1-packet always exists. Now we prove the marking validity.

Lemma 5.3 The marking scheme is valid, hence there is a matching from (Opt(σ) \ GR(σ)) to
GR(σ) in which each 1-packet from GR(σ) is matched at most once.

Now we present the main theorem of this section:

Theorem 5.4 Algorithm GR is 2-competitive for the arbitrary-value node routing problem.

Corollary 5.5 For the unit-value model, algorithm GR includes all non-refusal algorithms, hence
every non-refusal algorithm is 2-competitive in the unit-value model.

References

[1] W. Aiello, E. Kushilevitz, R. Ostrovsky, and A. Rosén. Adaptive packet routing for bursty
adversarial traffic. In Proc. of the 30th ACM Symp. on Theory of Computing (STOC), pages
359–368, 1998.

12

[2] W. Aiello, R. Ostrovsky, E. Kushilevitz, and A. Rosén. Dynamic routing on networks with
fixed-size buffers. In Proc. 14th ACM-SIAM Symp. on Discrete Algorithms, pages 771–780,
2003.

[3] Miklos Ajtai, James Aspnes, Moni Naor, Yuval Rabani, Leonard J. Schulman, and Orli Waarts.
Fairness in scheduling. Journal of Algorithms, 29(2):306–357, November 1998.

[4] S. Albers and M. Schmidt. On the performance of greedy algorithms in packet buffering. In
Proc. 36th ACM Symp. on Theory of Computing, pages 35–44, 2004.

[5] M. Andrews, B. Awerbuch, A. Fernández, J. Kleinberg, T. Leighton, and Z. Liu. Universal
stability results for greedy contention-resolution protocols. In Proc. 37th IEEE Symp. on
Found. of Comp. Science, pages 380–389, 1996.

[6] B. Awerbuch, P. Berenbrink, A. Brinkmann, and C. Scheideler. Simple online strategies for
adversarial systems. In Proc. of the 42nd IEEE Symp. on Foundation of Comupter Science
(FOCS), 2001.

[7] B. Awerbuch, A. Brinkmann, and C. Scheideler. Anycasting and multicasting in adversarial
systems: Routing and admission control. In Proc. 30th ICALP, pages 1153–1168, 2003.

[8] B. Awerbuch and F. Leighton. Improved approximation algorithms for the multi-commodity
flow problem and local competitive routing in dynamic networks. In Proc. of the 26th ACM
Symp. on Theory of Computing (STOC), pages 487–496, 1994.

[9] B. Awerbuch, Y. Mansour, and N. Shavit. End-to-end communication with polynomial over-
head. In Proc. of the 30th IEEE Symp. on Foundation of Comupter Science (FOCS), pages
358–363, 1989.

[10] Y. Azar and A. Litichevskey. Maximizing throughput in multi-queue switches. In Proc. 12th
Annual European Symposium on Algorithms, pages 53–64, 2004.

[11] Y. Azar and Y. Richter. Management of multi-queue switches in QoS networks. In Proc. 35th
ACM Symp. on Theory of Computing, pages 82–89, 2003.

[12] Y. Azar and Y. Richter. An improved algorithm for CIOQ switches. In Proc. 12th Annual
European Symposium on Algorithms, pages 65–76, 2004.

[13] Y. Azar and Y. Richter. The zero-one principle for switching networks. In Proc. 36th ACM
Symp. on Theory of Computing, 2004. 64–71.

[14] N. Bansal, L. Fleischer, T. Kimbrel, M. Mahdian, B. Schieber, and M. Sviridenko. Further
improvements in competitive guarantees for QoS buffering. pages 196–207, 2004.

[15] A. Birman, H. R. Gail, S. L. Hantler, Z. Rosberg, and M. Sidi. An optimal service policy
for buffer systems. Journal of the Association Computing Machinery (JACM), 42(3):641–657,
1995.

[16] A. Borodin, J.Kleinberg, P. Raghavan, M. Sudan, and D. Williamson. Adversarial queuing
theory. In Proc. 28th ACM Symp. on Theory of Computing, pages 376–385, 1996.

[17] D. Gamarnik. Stability of adaptive and non-adaptive packet routing policies in adversarial
queueing networks. In Proc. of the 31st ACM Symp. on Theory of Computing (STOC), pages
206–214, 1999.

[18] B. Kalyanasundaram and K. R. Pruhs. An optimal deterministic algorithm for online b-
matching. Theoretical Computer Science, 233:319–325, 2000.

13

[19] R. Karp, U. Vazirani, and V. Vazirani. An optimal algorithm for on-line bipartite matching. In
Proceedings of 22nd Annual ACM Symposium on Theory of Computing, pages 352–358, may
1990.

[20] A. Kesselman, Z. Lotker, Y. Mansour, and B. Patt-Shamir. Buffer overflows of merging
streams. In Proc. 11th Annual European Symposium on Algorithms, pages 349–360, 2003.

[21] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, and M. Sviridenko. Buffer
overflow management in QoS switches. In Proc. 33rd ACM Symp. on Theory of Computing,
pages 520–529, 2001.

[22] M. May, J. C. Bolot, A. Jean-Marie, and C. Diot. Simple performance models of differentiated
services for the internet. In Proceedings of the IEEE INFOCOM ’1999, pages 1385–1394.

[23] C. Scheideler and B. Vocking. From static to dynamic routing: efficient transformations
of store-and-forward protocols. In Proc. of the 31st ACM Symp. on Theory of Computing
(STOC), pages 215–224, 1999.

A Appendix

Multi Queue Switch Routing In this section we analyze the multi queue switch routing model,
in which the algorithm has to make the packet scheduling decisions (choose a queue for trans-
mission whenever a transmission event occurs) in addition to the routing decisions. We consider
the arbitrary-value model, allowing preemption. We present algorithm transmit from largest head
(TLH) which is 3-competitive (similar to algorithm TLH in [13]). We also show a lower bound of
3 − Θ(1

m
) for B = 1.

A.1 Algorithm for multi queue switch routing

In this subsection we present algorithm transmit from largest head (TLH) which is 3-competitive.
The algorithm and the proof are based on algorithm TLH in [13]. The proof in this section is
similar to the proof in section 5 (but slightly more complicated), hence we use the same notations.
Now we introduce algorithm TLH.

Algorithm Transmit From Largest Head (TLH):

• Routing: Use algorithm GR (from section 5).

• Scheduling: At each transmission event, transmit a packet with the largest value among all
packets at the heads of the queues.

We use again the zero-one principle [13], presented in section 5. Clearly, algorithm TLH is com-
parison based.

We analyze how algorithm TLH acts on 0/1 sequences:

• At packet arrivals: It acts the same as GR.

• At packet transmissions: If there exist 1-packets in any of the heads of the queues, one of
them will be transmitted. Otherwise, a 0-packet will be transmitted (unless all queues are
empty).

14

According to the zero-one principle we need only show that the algorithm is 3-competitive for 0/1
sequences. We show a matching from (Opt(σ) \ TLH(σ)) to TLH(σ), using the matching we will
prove that TLH is 3-competitive. First we prove the following claim.

Claim A.1 If there is a matching from (Opt(σ) \ TLH(σ)) to TLH(σ) in which each 1-packet
from TLH(σ) is matched at most twice, then TLH is 3-competitive for 0/1 sequences.

Proof: It immediately follows from the matching that:

|Opt(σ)| ≤ |Opt(σ) \ TLH(σ)| + |TLH(σ)| ≤ 3 · |TLH(σ)|

The matching is done using the same marking scheme as in [13].

Marking scheme

1. For each incoming 1-packet p associated with the subset Qp do:

(a) If p is accepted by TLH, consider it as an unmarked packet. In case that a marked 1-
packet p′ was preempted from queue Qi because of p, mark the first unmarked 1-packet
in queue Qi of TLH, starting from the head of the queue.

(b) If p is not accepted by TLH but accepted by Opt (into queue Qi′ (Qi′ ∈ Qp)), mark the
first unmarked 1-packet in queue Qi′ of TLH, starting from the head of the queue.

2. For a transmission event, whenever Opt transmits a packet do:

(a) If Opt and TLH use the same queue for transmission, do nothing.

(b) Otherwise, let Qi and Qi′ (i 6= i′) be the queues used by TLH and Opt, respectively. If
queue Qi′ of TLH contains marked packets, unmark the marked 1-packet closest to the
tail in queue Qi′ and mark the packet transmitted from queue Qi.

Clearly, for each 1-packet in (Opt(σ) \ TLH(σ)) we mark one 1-packet in TLH(σ). Each 1-
packet in TLH(σ) can be marked at most twice, once while it resides in the queue and once while
it is transmitted. Obviously, if a marking is needed in step 1a, there exists at least one unmarked
1-packet (e.g. the new packet p). For the marking to be valid, we have to prove the invariants in
the next two claims.

Claim A.2 Validity of incoming marking (marking step 1b): Whenever incoming packet p is ac-
cepted by Opt into queue Qi′ but not accepted by TLH, queue Qi′ contains an unmarked 1-packet.

Claim A.3 Validity of transmission marking (marking step 2b): Whenever TLH and Opt trans-
mit from different queues Qi and Qi′ , respectively, and queue Qi′ contains marked packets, TLH
transmits a 1-packet.

In proving the validation of the marking, we ignore the insertion, rejection or exchange of 0-
packets since they do not interfere with the marking scheme. In addition, we assume that Opt does
not preempt 1-packets as it is an offline algorithm. Now we prove the validity of the marking:

Lemma A.4 The marking scheme is valid, hence there exists a matching from (Opt(σ)\TLH(σ))
to TLH(σ) in which each 1-packet from TLH(σ) is matched at most twice.

15

Proof: All we have to prove is the two invariants: the validity of incoming marking (Claim A.2)
and the validity of transmission marking (Claim A.3). We start with the validity of transmission
marking (Claim A.3).

Proof: We use the same claim as in section 5:

Claim A.5 For each event t, if the packet in the head of queue Qi is unmarked, then all the packets
in queue Qi are unmarked.

Proof: Same as for Claim B.6.

The next claim is from [13], it concludes the proof of the validity of transmission marking.

Claim A.6 For every transmission event t′, if the queues hold any marked packets, then TLH
transmits a 1-packet.

Proof: From Claim A.5 we conclude that if queue Qi holds a marked packet then the head of the
queue is marked, i.e., it is a 1-packet. Since TLH transmits the largest head, a 0-packet cannot be
transmitted.

This completes the proof of the validity of transmission marking (Claim A.3).

Now we prove the validity of incoming marking (Claim A.2):

Proof: We use the same notations as in section 5. The next claim proves the validity of incoming
marking and thus concludes the proof.

Claim A.7 For each state Sj, (1 ≤ j ≤ r), and queue Qi, (1 ≤ i ≤ m), U j
i ≥ TLHj

i − Optji , and
the incoming marking is possible if required at that state.

Proof: First we show that if the inequality holds for state Sj, incoming marking is possible if
required at that state. Consider the arrival of 1-packet p ∈ (Opt(σ) \TLH(σ)) (we note by Qi′ the
queue into which Opt inserted p). Since TLH did not accept p, we conclude that all the queues in
Qp must be full of 1-packets only. So TLHi′ = B but Opti′ < B because Opt had place for p in
queue Qi′ . From the inequality it follows that Ui′ > 0; therefore the incoming marking is valid for
state Sj.

We prove the inequality by induction on the states. For the initial state S1 the inequality clearly
holds. We assume correctness for state Sj and prove that the inequality holds for state Sj+1. We
consider two types of events:

1. Consider the arrival of a 1-packet p associated with the subset Qp. The proof for this case is
the same as the proof for the arrival event in Claim B.7 (for algorithm GR).

2. Consider the transmission events. TLH and Opt transmit p and p′ from queues Qi and Qi′ ,
respectively (if the queues are not empty).

Observation A.1 For each queue whose head is unmarked, the inequality still holds after
transmission. It holds since from Claim A.5 we conclude that all the packets in the queue
are unmarked. After any transmission all the packets will be still unmarked. Therefore Ui =
TLHi, and since Opti ≥ 0 the inequality holds.

16

We have four possible cases, we consider only the cases when p is marked or when queue Qi′

contains marked packets (because of Observation A.1):

(a) All the queues in TLH are empty (only Opt transmits): Ui′ = 0, TLHi′ = 0 and
Opti′ ≥ 0, therefore, the inequality holds.

(b) All the queues in Opt are empty (only TLH transmits): p is marked (Observation A.1),
TLHi is decreased, so the inequality holds.

(c) i = i′: p is marked (Observation A.1), both TLHi and Opti are decreased by 1, so the
inequality holds.

(d) i 6= i′: We prove two inequalities:

i. For queue Qi: p is marked (Observation A.1), TLHi is decreased, so the inequality
holds.

ii. For queue Qi′ : Queue Qi′ contains marked packets (Observation A.1), Opti′ is de-
creased, but Ui′ is increased because of the marking exchange (step 2b), so the
inequality holds. This does not affect the inequality of queue Qi.

This concludes the proof of Claim A.7.

The incoming marking validity (Claim A.2) follows immediately from Claim A.7.

This completes the proof of the validity of the marking (Lemma A.4).

Now we present the main theorem of this subsection.

Theorem A.8 Algorithm TLH is 3-competitive for the arbitrary-value multi queue switch routing.

Proof: Using the marking scheme with Lemma A.4 and Claim A.1 we conclude that TLH is 3-
competitive for 0/1 sequences. Then by using the zero-one principle (Theorem 5.1) we complete
the proof.

A.2 Lower bound for multi queue switch routing

We show a lower bound for this problem when B = 1, even for the unit-value, synchronous model.
Note that w.l.o.g. we may assume that every algorithm is non-preemptive and non-refusal.

Theorem A.9 Every algorithm for the unit-value multi queue switch routing problem is at least
(3 − 6

m
)-competitive.

Proof: Consider queues of size 1. Given an algorithm A for our problem. We construct the following
sequence σA:

1. At the first arrival phase (t = 1), m
2 packets arrive, every packet is associated with the whole

set of queues {Q1, ..., Qm}.
W.l.o.g we may assume that A inserts the m

2 packets into queues Q1, ..., Qm
2

, and then trans-

mits a packet from Qm
2

.

2. In the next arrival phase, (t = 2), m
2 − 1 packets arrive, every packet associated with subset

of the queues {Q1, ..., Qm
2
−1}.

17

3. In the next m
2 − 2 arrival phases (time units t = 3, ..., m

2), one packet arrives to one full queue
in A (such a queue always exists).

4. The above sequence is repeated many times.

We now analyze the competitive ratio of A, by looking on each sequence repetition. Clearly,
after step 2, algorithm A has only queues {Q1, ..., Qm

2
−1} full. While Opt can accept all the m− 1

packets. In step 3, A transmits all its packets, but does not gain any new packets. On the other
hand Opt accepts all the new m

2 − 2 packets by transmitting from the queue which will receive a
packet in the next time unit. Hence:

Opt(σA)

A(σA)
=

3m
2 − 3

m
2

= 3 − 6

m

B Appendix

Proof of Lemma 3.1. Let RT be a legal route for σ. For each 1 ≤ i ≤ m and 1 ≤ t ≤ T we have
(t,Qi, k

t
i) ∈ RT . We construct the desired matching M incrementally while moving ahead in time.

In step t request rt arrives, we match a fraction of size min{kt
i , 1− lji } from request rt to server sj

i ,

where j = min{k|sk
i ∈ St

i , l
k
i < 1} and lji is the load on server sj

i . If kt
i is not matched completely

on sj
i we match the rest of kt

i to a new server sj′

i , where j′ = j + 1. With simple induction, it is
easy to show that for each arrival event t and queue Qi, the sum of matched fractions of servers in
St

i is equal to the total load of queue Qi at arrival event t, according to RT . Hence, every fraction
assigned to a queue (and thus transmitted) can be mapped to a fraction matched in M . Clearly,
by the construction, |RT | = |M |. �

Proof of Lemma 3.2. Let M be a matching in Gσ. We construct a legal route RT for σ
incrementally, while going over the requests in R, starting from r1. The set of servers fractionally
matched to request rt in M are denoted by Drt . Obviously from the construction of Gσ, Drt ⊆⋃

1≤i≤m St
i . We define a set I = {i|St

i ∩ Drt 6= φ}. For each i ∈ I we define kt
i to be the total

sum of fractions matched from request rt to each sj
i ∈ St

i . For each 1 ≤ i ≤ m such that i /∈ I we
define kt

i = 0. We add the triplet (t,Qi, k
t
i) to the route RT , for each i. With simple induction, it

is easy to show that for every 1 ≤ i ≤ m and 1 ≤ t ≤ T , the total load of servers in St
i is at least

the load of queue Qi at arrival event t according to RT (this is because in transmission the load of
the queue is decreased by a full packet, while in Gσ , St

i ’s load might be decreased by less than a
unit). Therefore, we can always translate matched fractions in M to a fraction assigned to a queue
in RT and thus it is also transmitted. Clearly by construction

∑m
i=1 kt

i ≤ 1, and Qi /∈ Qp implies
that kt

i = 0, so our obtained route is legal. Obviously, this translation takes polynomial time and,
by the construction, |RT | = |M |. �

Proof of Theorem 3.5. The theorem follows immediately from Corollary 3.3, the construction
of FR and Lemma 3.2. �

Proof of Theorem 3.7. First we define:

Definition B.1 Given an event t, let lAi and li be the simulated load of A and the actual load of
MA on queue Qi at that event, respectively. The residual load of queue Qi at event t is defined as
lres
i = li − lAi .

Obviously, the next lemma completes the proof.

18

Lemma B.1 For each event t and queue Qi, lres
i ≤ 2m.

Proof: Consider a relaxation to our problem in which packets arrive but are never transmitted.

Claim B.2 If there are no transmissions then |lres
i | ≤ m.

Proof: Since there is no packet loss,
∑t

j=1 vi
j and

∑t
j=1 zi

j express the load of queue Qi at arrival

event t for algorithms A and MA, respectively. Using Theorem 3.6 we conclude that |lres
i | ≤ m.

Before we proceed with our proof, we present a few definitions.

Definition B.2 We call a transmission as A-loss when A transmits more than MA, i.e., A trans-
mits a packet (or a fraction of a packet) but MA does not (the queue is empty in MA). Similarly, we
call a transmission as MA-loss when MA transmits more than A. Finally, we call a transmission
as regular when both A and MA transmit a packet.

Observation B.1 For each queue i, an A-loss transmission is possible only when lres
i < 0, and a

MA-loss transmission is possible only when lres
i > 0.

Definition B.3 For arrival event t, let Transt
i(A) and Transt

i(M
A) denote the total sum of pack-

ets (and fractions of packets) transmitted so far from queue Qi in A and MA, respectively.

Definition B.4 The residual input of queue i at arrival event t is defined as RIt
i =

∑t
j=1 zi

j −∑t
j=1 vi

j. Similarly, the residual transmission of queue Qi at arrival event t is defined as RT t
i =

Transt
i(M

A) − Transt
i(A).

Observation B.2 For regular transmissions △RTi = 0. If there were only MA-loss and regular
transmissions from queue Qi between two arrival events t1 < t2 then △RTi ≥ 0 (i.e. RT t1

i ≤ RT t2
i).

Now we prove Lemma B.1 for the full model. We prove it for each arrival event. For transmission
events it will follow easily, as we remark at the end of the proof. Obviously, for each arrival event
t, li =

∑t
j=1 zi

j − Transt
i(M

A) and lAi =
∑t

j=1 vi
j − Transt

i(A). Therefore

lres
i =

t∑

j=1

zi
j −

t∑

j=1

vi
j + Transt

i(A) − Transt
i(M

A) = RIt
i − RT t

i

Clearly, for arrival events in which lres
i is non-positive, lres

i ≤ 2m. Therefore we look on a
portion of the arrival events sequence t1 ≤ t ≤ t2 in which the series lres

i begins being positive, i.e.,
for every arrival event t, t1 ≤ t ≤ t2 it holds lres

i > 0 but for arrival event t1 − 1 it holds lres
i ≤ 0.

Claim B.3 For every arrival event t, t1 ≤ t ≤ t2, it holds: RT t1−1
i − RT t

i ≤ 0.

Proof: Since lres
i > 0 in the portion, using Observation B.1 we conclude that there are no A-loss

transmissions in this portion, from Observation B.2 it follows that RT t1−1
i ≤ RT t

i .

Claim B.4 For arrival event t1 − 1 it holds: RT t1−1
i ≥ RIt1−1

i .

19

Proof: It simply follows from the fact that for arrival event t1 − 1: 0 ≥ lres
i = RIt1−1

i − RT t1−1
i .

Now it is easy to see that for every arrival event t, t1 ≤ t ≤ t2, it holds:

lres
i = RIt

i − RT t
i = RIt

i − RT t1−1
i + (RT t1−1

i − RT t
i) ≤ RIt

i − RIt1−1
i ≤ 2m

The first inequality follows from claims B.3 and B.4. The last inequality follows from Theo-
rem 3.6 which implies that for every t, |RIt

i | = |∑t
j=1 zi

j −
∑t

j=1 vi
j | ≤ m.

We have proved Lemma B.1 for every arrival event but since transmissions can only decrease
|lres

i |, the inequality holds for both arrival and transmission events.

This completes the proof of Theorem 3.7. �

Proof of Theorem 3.8. The theorem follows directly from the next lemma.

Lemma B.5 For each queue Qi and event t, l̂ti ≥ lti.

Proof: The proof is by induction on events for each queue Qi. For t = 0 the claim is trivial. Suppose
the claim is true for t, and consider t+1. If t+1 is a transmission event, then the inequality clearly
holds after the transmission, because either the same amount was transmitted from the queues or
lti = 0 after the transmission, anyway the inequality holds. If t + 1 is an arrival event of packet p,
then after the arrival we consider a few possible cases:

• Packet p was discarded by Â: This means that the empty space in the queues Qp is less than
a unit, thus we conclude that all the queues Qp in Â have a load greater than B. Since the
queues in A are only of size B the inequality holds.

• Packet p was accepted by Â, and min(B + 1 − l̂i, k
t+1
i) = kt+1

i in queue Qi: Algorithm A

inserted kt+1
i while algorithm Â inserted at least kt+1

i , so the inequality holds for queue Qi.

• Packet p was accepted, and min(B + 1 − l̂i, k
t+1
i) < kt+1

i in queue Qi: This means that Â’s

queue Qi is filled, i.e., l̂i = B + 1, so the inequality holds for queue Qi.

From Lemma B.5, at each transmission event, Â transmits at least the same size as algorithm
A. This completes the proof of Theorem 3.8. �

Proof of Lemma 3.9. Consider the sequence of packets which was accepted by Â as a
sequence for the unbounded node routing problem. Since the sequence of packets which is given to

M Â consists solely of the packets which were accepted by Â, using Theorem 3.7 we conclude that

if the queues were of size B + 1 + 2m no packet loss may occur for M Â. Thus the throughput of

M Â equals the throughput of Â. �

Proof of Theorem 3.12. Let AX denote an online algorithm A which works on queues of size
X, where X ≥ 0. Then:

OptB(σ) ≤ c · AB(σ)

≤ c · ÂB+1(σ)

= c · M Â
B+2m+1(σ)

≤ c · (1 +
2m + 1

B
)EM Â

B (σ)

20

where the second inequality is obtained from Theorem 3.8, the equality from Lemma 3.9, and the

last inequality from Corollary 3.11. Note that EM Â

B is a discrete algorithm. �

Proof of Theorem 4.1. The online unweighted matching problem (defined in subsection 3.1)
was generalized by Kalyanasundaram and Pruhs in [18] to the b-matching problem. In this model
each vertex ri ∈ R can be matched to a single adjacent vertex sj ∈ S, while every sj can be
matched up to b times. It is easy to see that in the node routing problem, if we consider only the
sequences in which all the transmissions occur after all the packets have arrived, then the node
routing problem is equivalent to the b-matching problem with B = b. Hence a lower bound for the
b-matching is also a lower bound for the node routing problem. In [10] the authors show a lower
bound for the unweighted fractional online matching (defined in subsection 3.1) of e

e−1 − Θ(1
m

)
even against an integral offline algorithm. This implies a deterministic and a randomized lower
bound for the b-matching problem with an arbitrary b by duplicating each request b times. Hence,

e
e−1 − Θ(1

m
) is a lower bound for the node routing problem.

Remark B.1 Actually, Kalyanasundaram et al. proved a tight upper and lower bound of
(1+ 1

b
)b

(1+ 1

b
)b−1

.

We cannot use this lower bound since it only applies for m > b.

�

Proof of Theorem 4.2. Let A be an algorithm for our problem. We construct the following
sequence σA: at first arrival phase, a packet arrives to queues {Q1, Q2}. W.l.o.g, algorithm A
inserts the packet into Q1. Then Q2 transmits. In the second arrival phase a packet arrives to Q1,
and then Q1 transmits. The above sequence is repeated many times. It is easy to see that in every
sequence repetition, A can transmit one packet at most, while Opt can transmit two packets. �

Proof of Claim 5.2. It immediately follows from the matching that:

|Opt(σ)| ≤ |Opt(σ) \ GR(σ)| + |GR(σ)| ≤ 2 · |GR(σ)|

�

Proof of Lemma 5.3. What is needed to be shown is that in step 2 an unmarked 1-packet
always exists hence the marking is valid. Recall the way algorithm GR acts on 0/1 sequences. In
the marking analysis, we can ignore the arrival of 0-packets since rejecting, inserting or exchanging
0-packets does not interfere with the marking scheme. We first prove the following simple claim.

Claim B.6 For each event t, if the packet in the head of queue Qi is unmarked, then all the packets
in queue Qi are unmarked.

Proof: Let queue Qi hold a marked packet p at event t. When p was marked, queue Qi contained
no 0-packets, hence all the packets closer to the head than p were 1-packets and marked (since the
marking scheme marks the unmarked 1-packet which is closest to the head). Transmissions and
preemptions might have decreased the number of packets closer to the head than p, but obviously
they are still marked. In particular, the packet at the head of queue Qi is marked.

Before we proceed we introduce some notations. We describe the state of the system at a certain
point by the contents of the queues in GR and Opt. Let r denote the total number of states. Denote
the sequence of states, starting from the initial state, by [S1, ..., Sr]. A change of state can occur

whenever a packet arrival or transmission takes place. We denote by U j
i (j = 1, ..., r) the number

of unmarked 1-packets in queue Qi (of GR) at state Sj. Finally, we denote by GRj
i and Optji the

number of 1-packets in queue Qi at state Sj in GR and Opt, respectively. For simplicity of notation
we drop the superscript j whenever the state is clear from context.

21

To complete the proof all that is left to show is that whenever a 1-packet p associated with
subset Qp is rejected by GR but accepted by Opt into queue Qi′ (Qi′ ∈ Qp), queue Qi′ contains
unmarked packets.

Claim B.7 For each state Sj, (1 ≤ j ≤ r), and queue Qi, (1 ≤ i ≤ m), U j
i ≥ GRj

i −Optji , and an
unmarked 1-packet is available in queue Qi if required at that state.

Proof: First we show that if the inequality holds for state Sj, then an unmarked 1-packet is available
if required at that state. Consider the arrival of 1-packet p ∈ (Opt(σ) \ GR(σ)) (we note by Qi′

the queue into which Opt inserted p). Since GR did not accept p, we conclude that all the queues

in Qp are full of 1-packets only. So GRj
i′ = B but Optji′ < B because Opt had place for p in queue

Qi′ . From the inequality it follows that Ui′ > 0; therefore the marking is possible.

We prove the inequality by induction on the states. For the initial state S1 the inequality clearly
holds. We assume correctness for state Sj and prove that the inequality holds for state Sj+1. We
consider two types of events:

1. Consider the arrival of 1-packet p associated with the subset Qp. We note by Qi and Qi′ the
queues into which GR and Opt insert p, respectively (if such queues exist). In the case of a
preempted 1-packet in queue Qi of GR, both Ui and GRi do not change, while Opti′ might
be increased by 1 (if p ∈ Opt(σ)), so the inequality holds for all the queues (even if i = i′).
Thus we ignore the preemption of 1-packets in the following possible cases:

(a) p /∈ GR(σ) and p /∈ Opt(σ): The state of the system is not changed.

(b) p ∈ (GR(σ) \ Opt(σ)): Both Ui and GRi are increased by 1, so the inequality holds.

(c) p ∈ (Opt(σ) \ GR(σ)): We have a marking in this case (we already showed that if the
inequality is valid for state Sj, a marking is possible at that state). The value of Opti′ is
increased by 1, while Ui′ is decreased by 1 because of the marking, hence the inequality
holds.

(d) p ∈ (Opt(σ) ∩ GR(σ)): Here we have two cases:

i. i = i′: GRi, Opti and Ui are increased by 1, hence the inequality holds.

ii. i 6= i′: In the queue Qi, both GRi and Ui are increased by 1. In the queue Qi′ only
Opti′ is increased. Hence, both inequalities hold.

2. Consider the transmission event. A packet p is transmitted from queue Qi (if such exists).
We have three possible cases:

(a) Queue Qi is empty in GR: Ui = 0, GRi = 0 and Opti ≥ 0, therefore, the inequality
holds.

(b) Packet p is marked: GRi is decreased by 1, Opti might be decreased by 1 (if queue Qi

is not empty in Opt). In any case, the inequality holds.

(c) Packet p is unmarked: Since the head of queue Qi was unmarked, using Claim B.6 we
conclude that all the packets in queue Qi are unmarked, therefore Ui = GRi. Since
Opti ≥ 0 the inequality holds.

This completes the proof of Claim B.7.

Obviously, Lemma 5.3 follows immediately from Claim B.7. �

Proof of Theorem 5.4. Using the marking scheme with Lemma 5.3 and Claim 5.2 we conclude
that GR is 2-competitive for 0/1 sequences. Then by using the zero-one principle (Theorem 5.1)
we complete the proof. �

22

