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tA re
ent seminal result of R�a
ke is that for any network there is an oblivious routing al-gorithm with a polylog 
ompetitive ratio with respe
t to 
ongestion. Unfortunately, R�a
ke's
onstru
tion is not polynomial time. We give a polynomial time 
onstru
tion that guarantee'sR�a
ke's bounds, and more generally gives the true optimal ratio for any network.1 Introdu
tionCommuni
ation routing is obviously one of the key te
hnologi
al issues today. The literature in-
ludes hundreds of papers and literally dozens of problem variants on this issue. Problem variantsare 
hara
terized by parameters su
h as pa
ket routing vs. virtual 
ir
uit routing, �xed vs. in�-nite bu�ers, spe
i�
 vs. general networks, probabilisti
 input distribution models vs. worst 
aseinput distributions, deterministi
 vs. randomized routing algorithms, online vs. o�ine routing al-gorithms, distributed vs. 
entralized algorithms, et
. Examples of some surveys on this vast bodyof literature are [6, 7℄.In this paper we fo
us on the problem of online virtual 
ir
uit routing on general networks withthe goal of minimizing the 
ongestion.Two fundamental approa
hes towards routing in networks are to route adaptively dependingon the 
urrent loads in the network, or to route obliviously, without any knowledge of the 
urrentstate of the network.Obviously, adaptive proto
ols may a
hieve redu
ed 
ongestion but are harder to implement.Raghavan and Thompson [9℄ designed an o�ine routing algorithm for routing virtual 
ir
uitson general networks and any set of demands that well approximates the lowest possible 
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The set of routes is 
hosen a

ording to the spe
i�
 demands and thus their algorithm may be
onsidered adaptive.In the online setting, [1℄ design a routing algorithm that is log n 
ompetitive with respe
t to
ongestion. This algorithm routes 
alls based on the 
urrent 
ongestion on the various links in thenetwork, this 
an be a
hieved via 
entralized 
ontrol and serializing the routing requests. [2℄ gave adistributed algorithm that repeatedly s
ans the network so as to 
hoose the routes. This algorithmrequires shared variables on the edges of the network and hen
e is hard to implement. Note thatboth the online algorithms above depend on the demands and are therefore adaptive.The �rst paper to perform a worst 
ase theoreti
al analysis on oblivious routing is the paperof Valiant and Brebner [10℄ who 
onsidered routing on spe
i�
 network topologies su
h as thehyper
ube. They give an eÆ
ient randomized oblivious routing network.Borodin and Hop
roft [3℄ and subsequently [5℄ have shown that deterministi
 oblivious routingalgorithms 
annot well approximate the minimal load on any non-trivial network. While the resultswere given in terms of pa
ket routing, it follows from their proof that it also holds for virtual 
ir
uitrouting.In a re
ent paper, R�a
ke [8℄ gives the very surprising 
onstru
tion of a polylog 
ompetitiveoblivious routing algorithm for general undire
ted networks. It seems truly astonishing that one
an 
ome 
lose to minimal 
ongestion without any information on the 
urrent load in the network.As R�a
ke's algorithm is oblivious, it 
an be trivially implemented in a distributed fashion. R�a
ke'salgorithm is randomized, and, 
onsequent to the work of [3℄, randomization is required.Although R�a
ke's algorithm is randomized, it 
an be viewed as the randomized rounding of adeterministi
 multi 
ommodity 
ow. We 
all this multi 
ommodity 
ow a routing. R�a
ke's obliviousrouting algorithm �nds a unit 
ow between every pair of nodes i, j. Su
h a 
ow 
an be translatedinto a set of at most jEj paths, ea
h of whi
h 
arries some fra
tion of the unit 
ow. R�a
ke 
hoosesthe route between i and j by 
hoosing one of these paths with a probability equal to the 
owthrough the path.R�a
ke's main result is that for any network, there exists a routing su
h that for any set ofdemands, the maximum edge 
ongestion using this routing, is at most polylog(n) times the optimal
ongestion for this spe
i�
 set of demands. Unfortunately, his algorithm for produ
ing this routingrequires solving NP -hard problems, and is therefore non-polynomial. Moreover, R�a
ke's 
onstru
-tion provides a uniform bound on all graphs. Hen
e, for any spe
i�
 graph, a better routing maypotentially exist, i.e., one that guarantees a lower maximum edge 
ongestion.In this paper we give a polynomial time algorithm that produ
es the optimal routing for anynetwork. In parti
ular, this means that R�a
ke's 
onstru
tion is performed in polynomial time. Inaddition, we 
ompute the optimal routing for any given network. Our 
onstru
tion 
omputes theoptimal routing for both dire
ted and undire
ted networks. However, we also show that R�a
ke'spolylog(n) upper bound is false for general dire
ted graphs by providing a pn lower bound.2



Our te
hniques are based on linear programming with an in�nite number of 
onstraints. Thus,we use the Ellipsoid algorithm with a separation ora
le [4℄. Our separating ora
le is itself imple-mented in polynomial time using a di�erent set of linear programs.2 PreliminariesConsider a graph G(V;E), dire
ted or undire
ted, with 
apa
ities 
(e) > 0 for e 2 E.We use a well known redu
tion from undire
ted to dire
ted graphs that repla
es an undire
tededge e = (u; v), with 
apa
ity 
(e), with the dire
ted gadget u; x; y; v whi
h 
onsists of dire
ted edgese1 = (u; x); e2 = (v; x); e3 = (y; u); e4 = (y; v), all of whi
h have in�nite 
apa
ity, and the dire
tededge (x; y) with 
apa
ity 
(e). This transformation preserves the property a multi 
ommodity 
owis feasible on the undire
ted graph if and only if it is feasible on the dire
ted graph.Thus, as of this point on we only 
onsider dire
ted graphs1A multi-
ommodity 
ow g in G is de�ned as a solution to the system8e 2 E 8i8j 6= i gij(e) � 08k8i 6= k8j 6= k; i Pe2out(k) gij(e)�Pe2in(k) gij(e) = 0 (1)ea
h set of values for gij(e) for e 2 E de�nes a single-
ommodity 
ow from i to j. The demand (of
ommodity ij) delivered from i to j isdij = Xe2out(i) gij(e)� Xe2in(i) gij(e) :The total 
ow indu
ed by g on the edge e 2 E isflow(e;g) =Xij gij(e) :We now de�ne the 
ongestion in
urred on an edge e 2 E by the 
ow g as the ratio of the 
ow onthe edge to the 
apa
ity of the edgeedge-
ong(e;g) = flow(e;g)
(e) :Sin
e we are interested in routing many di�erent sets of demands in the same way, we use thenotion of a routing from i to j as a 
ow of value 1 from i to j. We denote su
h 
ow by fij, anddenote its value on an edge e 2 E by fij(e). We 
an use a routing to deliver demand of dij from i1The results of R�a
ke that the 
ongestion is polylog does not hold for digraphs, only for undire
ted graphs. Whatwe do is �nd the best oblivious routing for any dire
ted graph. In parti
ular, for digraphs that are equivalent toundire
ted graphs the result of R�a
ke will hold. 3



to j simply by s
aling fij by a fa
tor of dij . We shall refer to a set f of n(n� 1) routings from i toj 6= i for every pair (i; j) as a routing. Routings are spe
i�ed by the set of linear 
onstraints8e 2 E 8i8j 6= i fij(e) � 08i8j 6= i Pe2out(i) fij(e) �Pe2in(i) fij(e) = 18k8i 6= k8j 6= k; i Pe2out(k) fij(e)�Pe2in(k) fij(e) = 0 (2)A demand matrix is an n� n nonnegative matrix where the diagonal entries are 0. Instead oftalking dire
tly about multi 
ommodity 
ows, we will often �nd it 
onvenient to talk about a pairof a demand matrix and a routing. The 
ow on an edge e 2 E when routing the demand matrixD using the routing f is flow(e; f;D) =Xij Dij � fij(e):Similarly, the 
ongestion in
urred on an edge e 2 E when routing the demand matrix D using therouting f is edge-
ong(e; f;D) = flow(e; f;D)
(e) :The 
ongestion of routing D using f is the maximum edge 
ongestion, that is,
ongestion(f;D) = maxe2E edge-
ong(e; f;D) :For a demand matrix D we denote by opt(D), the minimum 
ongestion possible by any routing.opt(D) is the solution of the LP minimize Z su
h thatf is a routing8e 2 E; edge-
ong(e; f;D) � Z:The variables of this LP are the mn(n � 1) variables fij(e) whi
h spe
ify the routing and theminimization variable Z. Its solution 
onstitutes the optimal routing for the parti
ular set ofdemands D. The performan
e ratio of a routing f on demands D is the ratio of 
ongestion(f;D)and opt(D).We also de�ne the oblivious performan
e ratio of a routing f, whi
h is the maximum performan
eratio it 
an obtain, over all demand matri
es, that is,obliv-perf-ratio(f) = supD 
ongestion(f;D)opt(D) : (3)We are interested in obtaining an optimal oblivious routing for a network G. An optimaloblivious routing minimizes the oblivious performan
e ratio (Equation 3), that isargminf obliv-perf-ratio(f) ;4



the performan
e ratio of an optimal oblivious routing is denote byobliv-opt(G) = minf obliv-perf-ratio(f) :For any graph G, an upper bound n2 on the value of obliv-opt(G) is immediate2 R�a
ke provedthat for undire
ted graphs this value is at most polylog(n).3 LP formulationWe are now ready to state our main theorem.Theorem 3.1 There is a polynomial time algorithm that for any input network G (dire
ted orundire
ted) outputs a routing f su
h that obliv-perf-ratio(f) = obliv-opt(G).The running time of our algorithm will be polynomial in the number of nodes n, and in rep(C),the size of the bit representation of the edge 
apa
ities. If the input network is undire
ted we applythe transformation dis
ussed earlier. We �rst observe that the problem of 
omputing an optimaloblivious routing 
an be stated as an LP with mn(n � 1) + 1 variables, but in�nite (
ontinuous)number of 
onstraints. The variables in this LP are the routing variables f and the minimizationparameter z. The 
onstraints of this LP are the routing 
onstraints (Equations 2) whi
h spe
ifythat the variables f 
onstitute a routing, and for every demand matrix D, and an edge e 2 E, wehave the 
onstraint edge-
ong(e; f;D) � zopt(D) (4)Note that the demand matri
es D and the respe
tive optimal 
ongestion values opt(D) are 
on-stants in this LP. We refer to this LP as BLP.Our solution essentially solves BLP using the Ellipsoid method with a separation ora
le. Theseparation ora
le algorithm either 
on�rms that a 
andidate routing f has a small enough obliv-perf-ratio(f),or return a \violated 
onstraint" from (4) (namely, a demand matrix D and edge e 2 E, whi
hmaximizes the ratio edge-
ong(e; f;D)=opt(D).In order to establish, however, that the optimal value itself and the running time of the algorithmare polynomial, we need some additional arguments. In Se
tion 5 we will show that the 
onstraintsin (4) 
an be pruned as follows.Lemma 3.2 There exists an (exponential size) set V(H1) of demand matri
es su
h that� Ea
h D 2 V(H1) has opt(D) = 1 and 
oeÆ
ients of size polynomial in n and rep(C), and2The optimal 
ow with respe
t to 
ongestion is at least as bad as the worst 
ongestion obtained by routing a singlepair of sour
e/destination. Hen
e, if we use the optimal 
ow (wrt 
ongestion) for ea
h pair then the total 
ongestionis at most n2 times the 
ongestion of the worst 
ase pair whi
h results in an n2 approximation. To �nd the optimal
ow with respe
t to 
ongestion, we solve the max 
ow problem for the sour
e/destination pair, and use this routing.5



� It is suÆ
ient to in
lude in the representation of BLP only the 
onstraints (4)8e 2 E; 8D 2 V(H1) edge-
ong(e; f;D) � z (5)(all other 
onstraints in (4) are redundant).An important 
orrolary of Lemma 3.2 is that the optimal solution of BLP has a polynomialtime representation, sin
e every 
onstraint has polynomial size and the number of variables ispolynomial.The Lemma 3.2 will also allow us to establish the polynomial time bound. First, the polynomialsize of the optimal value allow us to argue that the Ellipsoid algorithm 
an terminate within apolynomial number of iterations. Se
ond, the separation ora
le that we will provide returns as\violated 
onstraint" a 
onstraint from this restri
ted set. In parti
ular, the size of the 
onstraintis polynomial in n and rep(C) and does not depend on the input routing f. This implies that thesize of the numbers (representation of the Ellipsoid produ
ed in ea
h iteration) remains polynomial.In the next Se
tion we show how BLP 
an be solved in polynomial time assuming Lemma 3.2and the existen
e of an appropriate \separation ora
le" (the or
ale algorithm will be presented inSe
tion 6.)4 Applying the Ellipsoid to BLPStandard transformation allows to solve any LP by solving a polynomial number of systems of linearinequalities. In our 
ase also, instead of working dire
tly with BLP we will work with systems oflinear inequalities LI(T ) spe
i�ed by a s
alar value T . The variables of LI(T ) is the routing f andthe 
onstraints are the routing 
onstraints (Equations 2) and the 
onstraints8D 2 V(H1) 8e 2 E edge-
ong(e; f;D) � T : (6)It is not hard to see (using the fa
t that rep(obliv-opt(G)) is polynomial) that a binary sear
husing a polynomial number of LI(T ) instan
es with di�erent values of T would allow us to obtainobliv-opt(G). A binary sear
h on T 2 [1; n2℄ 
an �nd the smallest value of T for whi
h LI(T ) isfeasible. Re
all that T ranges over [1; n2℄ for arbitrary dire
ted graphs and [1;polylogn℄ for digraphsderived from undire
ted graphs. 3 Using this simple redu
tion, Theorem 3.1 thus follows from thefollowing Theorem.Theorem 4.1 Given a network G, 
apa
ities 
(e), e 2 E, and a s
alar T > 0, in time polynomialin n, rep(C), and rep(T )43We 
omment that the Ellipsoid algorithm 
an be applied dire
tly with BLP, (that is, without performing abinary sear
h using LI(T )). In ea
h step the ora
le returns the pair (e;D) that maximizes 
ongestion for the 
urrent
andidate routing. We use the systems LI(T ) for 
onvenien
e of presentation, sin
e they are more 
ompatible withthe standard presentation of the Ellipsoid.4Sin
e rep(obliv-opt(G)) is polynomial, it suÆ
es to use T values su
h that rep(T ) is polynomial.6



� De
ide that the system LI(T ) is infeasible (that is, T < obliv-opt(G)). Or,� Find a routing f whi
h solves the system LI(T ).Our proof of Theorem 4.1 is based on applying the Ellipsoid algorithm to LI(T ) using thefollowing separation ora
le (the ora
le algorithm is provided in Se
tion 6).Separation Ora
le.� Input: A network G, 
apa
ities 
(e), and a routing f.� Output:{ obliv-perf-ratio(f){ A demand matrix D 2 V(H1) and an edge e, su
h thatobliv-perf-ratio(f) = edge-
ong(e; f;D)=opt(D) :If obliv-perf-ratio(f) � T , then f is a feasible point of LI(T ) and the algorithm terminates.Otherwise, edge-
ong(e; f;D) � T is a 
onstraint of LI(T ) violated by f.Our algorithm terminates if the separation ora
le 
erti�es that the 
urrent 
andidate f solvesLI(T ). If the algorithm does not terminate after some poly(n;rep(C);rep(T )) iterations (whererep(C) is the binary representation size of 
(e) e 2 E), we de
lare that the system LI(T ) isinfeasible. Corre
tness and polynomiality of this algorithm follow from the following two keyobservations First, the polynomial bound on the number of iterations follows using the standardbounds on the size of the initial ellipsoid and the smallest \volume" of the feasible set.The se
ond key observation is that ea
h iteration of the Ellipsoid algorithm 
an be performedin polynomial time. To see that it suÆ
es to show that the representation of ea
h new ellipsoidis polynomially bounded. This follows from the fa
t that the representation size of the \violated"
onstraint returned by the separation ora
le is polynomial in (n;rep(C)); sin
e the demand matrixD is in V(H1). Note that without this bound on the size of the \violated 
onstraint" (demandmatrix) returned, if the size depends on the input routing, we 
an be in a feedba
k situation wherethe representation of the ellipsoid grows by a polynomial fa
tor in ea
h iteration.To 
on
lude the proof of Theorem 4.1, it remains to show that the separation ora
le 
an be im-plemented in polynomial time in (n;rep(C);rep(f)) and that we 
an indeed restri
t the 
onstraintsto demand matri
es in V(H1).5 Restri
ting BLPObserve that if we s
ale a demand matrix D, the ratioedge-
ong(e; f;D)opt(D)7



remains �xed. It thus suÆ
es to use as the 
onstraints of BLP only demand matri
es that 
an berouted with minimum 
ongestion equal to 1, as all other demand matri
es are s
aled versions ofsu
h a matrix. We denote the demand matri
es D with opt(D) � 1 byH1 = fDjopt(D) � 1g :We thus 
an now 
onsider the equavalent LP, where the 
onstraints (4) are trimmed to in
ludeonly: for all D 2 H1 and e 2 E edge-
ong(e; f;D) � z (7)Re
all that every su
h 
onstraint (7) isXij Dij � fij(e) � z
(e) :We now show that H1 
onstitutes a polyhedron on n(n � 1) dimensional spa
e, de�ned by apolynomial (in n) number of inequalities, with 
oeÆ
ients in f�1; 
(e)e 2 Eg. We then argue thatwe 
an further trim the 
onstraints (7) to demand matri
es that 
onstitute the verti
es of H1.The polyhedron H1The polyhedron H1 is the proje
tion of the following on the variables D.1. The 
onservation 
onstraints that guarantee that for all i; j, g 
onstitutes a 
ow shipping Dijunits from i to j:8i8j 6= i Dij � 08e 2 E 8i8j 6= i gij(e) � 08i8j 6= i Pe2out(i) gij(e)�Pe2in(i) gij(e) = Dij8k8i 6= k8j 6= k; i Pe2out(k) gij(e) �Pe2in(k) gij(e) = 0 (8)2. Constraints that say that the 
ow g has 
ongestion at most 1.8e 2 E flow(e;g) � 
(e) (9)It is not hard to verify that the feasible solutions of this system are all demands matri
es D su
hthat the demands 
an be routed by some 
ow with 
ongestion of at most 1, that is, opt(D) � 1.The set V(H1) is the verti
es of the polyhedron H1. Sin
e the polyhedron has poly(n) 
on-straints and variables, with 
oeÆ
ients of size rep(C), ea
h vertex has representation of sizepoly(n;rep(C)).In Se
tion 6 we will see that for any routing f and an edge e, argmaxD2H1 edge-
ong(e; f;D)always in
ludes a vertex of H1. Thus, we 
an trim all non-vertex 
onstraints in (7).8



6 Separation Ora
le algorithm: Finding the \worst" demands fora given routing.The algorithm works by solving a set of LP's. For every edge e 2 E in turn the ora
le algorithmsolves the LP OLI(e;G; f) de�ned as follows. The LP OLI(e;G; f) has variables Dij , gij(a) for everyedge a 2 E. The obje
tive of OLI(e;G; f) isMaximize edge-
ong(e; f;D)subje
t to the 
onstraints D 2 H1.It is not hard to see thatobliv-perf-ratio(f) = maxe2E OLI(e;G; f) :Our ora
le algorithm �rst solves the jEj LP's OLI(e;G; f) e 2 E, and then sele
ts an edge e (andthe respe
tive D) for whi
h the returned value OLI(e;G; f) is maximized.It is well known that (at least one) of the maxima of a linear obje
tive fun
tion over a polyhedronare obtained on a vertex of the polyhedron and that polynomial time LP algorithms 
an obtainsu
h a vertex maximum. In the sequel, we assume that our poly time LP solver, when applied toea
h OLI(e;G; f), returns a demand matrix that is a vertex of H1.7 Dire
ted graphsIn this se
tion we show that there are dire
ted graphs in whi
h the value of obliv-opt(G) is large(i.e. mu
h more than polylog(n)). Spe
i�
ally, we show the following theorem.Theorem 7.1 There is a dire
ted graph G of n verti
es su
h that obliv-opt(G) is at least 
(pn).Proof: Consider a graph G with n = �k2� + k + 1 verti
es denoted by ai;j for all 1 � i < j � kand bi for 1 � i � k and a vertex t. The edges of the dire
ted graph are all of unit 
apa
ity andare as follows: (ai;j ; bi) and (ai;j ; bj) for all 1 � i < j � k and (bi; t) for 1 � i � k. Clearly, thereare exa
tly two paths between ai;j to t. One is ai;j; bi; t and the other is ai;j ; bj; t. Assume that theoblivious routing routes pi;j for i < j on the route ai;j; bi; t and qi;j = 1� pi;j on the route ai;j ; bj ; t.Let li =Pi�1j=1 qj;i +Pki+1 pi;j. ClearlykXi=1 li = kXi=1 i�1Xj=1 qj;i + kXi=1 kXi+1 pi;j =Xi<j(qi;j + pi;j) =  k2! � 1 = k(k � 1)=2 :Hen
e there exists lx su
h that lx � (k � 1)=2. Consider the following demands. A demand ofone from aj;x to t for all 1 � j � x � 1 and a demand of one from ax;j to t for all x+ 1 � j � k.Clearly by using the oblivious routing the load on the edge (bi; t) is lx � (k � 1)=2. However, theoptimal load is at most one sin
e we 
an route the demand from aj;x by the route aj;x; bj ; t and thedemand from ax;j by the route ax;j; bj ; t. Sin
e k = 
(pn) this 
ompletes the proof. 29



8 Undire
ted graphsA notion relevant to undire
ted networks is symmetry of a routing. For this dis
ussion, repla
eea
h undire
ted edge e by two dire
ted edges e0 and e00. A routing f is symmetri
 if for all e 2 Eand nodes i and j we have fij(e0) = fji(e00).Lemma 8.1 When G is undire
ted, there is always a symmetri
 optimal oblivious routing.Proof: Consider a lower triangular matrix L with Lij = 0 for j � i and Lij � 0 otherwise. We referto all demand matri
es su
h that Dij +Dji = Lij as being in the same equivalen
e 
lass. We �rst
laim that all demand matri
es D in the same equivalen
e 
lass have the same opt(D). To see the
laim, 
onsider a demand D and a routing f. Consider now the symmetri
 routing f0 
onstru
tedas follows f 0ij(e0) = f 0ji(e00) = Dijfij(e0) +Djifji(e00)Dij +Dji :It is not hard to verify that the 
ongestion of routing D a

ording to f is the same as when routingit a

ording to f0. Moreover, all demand matri
es in the equivalen
e 
lass of D in
ur the same
ongestion when routed a

ording to f0. The 
laim follows.Consider an optimal oblivious routing f̂ whi
h is not symmetri
, and 
onsider the symmetri
routing where f ij(e0) = (f̂ij(e0)+f̂ji(e00))=2. First note that the symmetri
 routing f in
urs the same
ongestion (and thus the same performan
e ratio, using the 
laim above) on all demand matri
esthat are in the same equivalen
e 
lass. We next show that f is at least as good as f̂, that is in
ursa better worst performan
e ratio. To do that it is suÆ
ient to show that for any demand matrixD, there is a matrix D0 in D's equivalen
e 
lass su
h that
ongestion(f;D) � 
ongestion(̂f;D0) :(Re
all that 
ongestion(f;D) is the same for all matri
es in the equivalen
e 
lass.) To see that,
onsider an edge e. We 
onstru
t the matrix De in the equivalen
e 
lass that maximizes the
ongestion on e: that is, if f̂ij(e0) > f̂ji(e00) we set Deij = Lij and Deji = 0, and set the reverseotherwise. The 
ongestion in
urred by routing D a

ording to f on the ar
s e0 and e00 is at mostthat of routing De a

ording to f̂. We now 
onsider all edges e 2 E in turn and 
hoose D0 to beDe with maximum 
ongestion. 2The lemma shows that when the input network is undire
ted, it is suÆ
ient to sear
h for asymmetri
 optimal routing (whi
h are spe
i�ed by mn(n� 1) rather than 2mn(n� 1) variables).9 ExtensionsThis writeup fo
used on minimizing edge 
ongestion, but a 
loser look at our method reveals thatit is able to perform many di�erent optimizations, some of them may be relevant in pra
ti
e. One10



example is minimizing node 
ongestion (this 
orresponds to router load on IP networks) whi
his the ratio of the total traÆ
 traversing a node to its 
apa
ity. It is also possible to 
onsideredge and node 
ongestion simultaneously; to 
onsider linear 
ombinations of edges or nodes; toadd additive fa
tor to the 
ongestion formula; and to limit the 
lass of demand matri
es in someways (for example limit the sum of demands or partial sums of 
ertain demands, require 0 demandbetween 
ertain pairs), limiting dilation, and so forth. The limiting fa
tor in the sele
tion of theoptimization fun
tion is preserving the ability to express the problem and the separation ora
leusing linear 
onstraints.Referen
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