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The set of routes is hosen aording to the spei� demands and thus their algorithm may beonsidered adaptive.In the online setting, [1℄ design a routing algorithm that is log n ompetitive with respet toongestion. This algorithm routes alls based on the urrent ongestion on the various links in thenetwork, this an be ahieved via entralized ontrol and serializing the routing requests. [2℄ gave adistributed algorithm that repeatedly sans the network so as to hoose the routes. This algorithmrequires shared variables on the edges of the network and hene is hard to implement. Note thatboth the online algorithms above depend on the demands and are therefore adaptive.The �rst paper to perform a worst ase theoretial analysis on oblivious routing is the paperof Valiant and Brebner [10℄ who onsidered routing on spei� network topologies suh as thehyperube. They give an eÆient randomized oblivious routing network.Borodin and Hoproft [3℄ and subsequently [5℄ have shown that deterministi oblivious routingalgorithms annot well approximate the minimal load on any non-trivial network. While the resultswere given in terms of paket routing, it follows from their proof that it also holds for virtual iruitrouting.In a reent paper, R�ake [8℄ gives the very surprising onstrution of a polylog ompetitiveoblivious routing algorithm for general undireted networks. It seems truly astonishing that onean ome lose to minimal ongestion without any information on the urrent load in the network.As R�ake's algorithm is oblivious, it an be trivially implemented in a distributed fashion. R�ake'salgorithm is randomized, and, onsequent to the work of [3℄, randomization is required.Although R�ake's algorithm is randomized, it an be viewed as the randomized rounding of adeterministi multi ommodity ow. We all this multi ommodity ow a routing. R�ake's obliviousrouting algorithm �nds a unit ow between every pair of nodes i, j. Suh a ow an be translatedinto a set of at most jEj paths, eah of whih arries some fration of the unit ow. R�ake hoosesthe route between i and j by hoosing one of these paths with a probability equal to the owthrough the path.R�ake's main result is that for any network, there exists a routing suh that for any set ofdemands, the maximum edge ongestion using this routing, is at most polylog(n) times the optimalongestion for this spei� set of demands. Unfortunately, his algorithm for produing this routingrequires solving NP -hard problems, and is therefore non-polynomial. Moreover, R�ake's onstru-tion provides a uniform bound on all graphs. Hene, for any spei� graph, a better routing maypotentially exist, i.e., one that guarantees a lower maximum edge ongestion.In this paper we give a polynomial time algorithm that produes the optimal routing for anynetwork. In partiular, this means that R�ake's onstrution is performed in polynomial time. Inaddition, we ompute the optimal routing for any given network. Our onstrution omputes theoptimal routing for both direted and undireted networks. However, we also show that R�ake'spolylog(n) upper bound is false for general direted graphs by providing a pn lower bound.2



Our tehniques are based on linear programming with an in�nite number of onstraints. Thus,we use the Ellipsoid algorithm with a separation orale [4℄. Our separating orale is itself imple-mented in polynomial time using a di�erent set of linear programs.2 PreliminariesConsider a graph G(V;E), direted or undireted, with apaities (e) > 0 for e 2 E.We use a well known redution from undireted to direted graphs that replaes an undiretededge e = (u; v), with apaity (e), with the direted gadget u; x; y; v whih onsists of direted edgese1 = (u; x); e2 = (v; x); e3 = (y; u); e4 = (y; v), all of whih have in�nite apaity, and the diretededge (x; y) with apaity (e). This transformation preserves the property a multi ommodity owis feasible on the undireted graph if and only if it is feasible on the direted graph.Thus, as of this point on we only onsider direted graphs1A multi-ommodity ow g in G is de�ned as a solution to the system8e 2 E 8i8j 6= i gij(e) � 08k8i 6= k8j 6= k; i Pe2out(k) gij(e)�Pe2in(k) gij(e) = 0 (1)eah set of values for gij(e) for e 2 E de�nes a single-ommodity ow from i to j. The demand (ofommodity ij) delivered from i to j isdij = Xe2out(i) gij(e)� Xe2in(i) gij(e) :The total ow indued by g on the edge e 2 E isflow(e;g) =Xij gij(e) :We now de�ne the ongestion inurred on an edge e 2 E by the ow g as the ratio of the ow onthe edge to the apaity of the edgeedge-ong(e;g) = flow(e;g)(e) :Sine we are interested in routing many di�erent sets of demands in the same way, we use thenotion of a routing from i to j as a ow of value 1 from i to j. We denote suh ow by fij, anddenote its value on an edge e 2 E by fij(e). We an use a routing to deliver demand of dij from i1The results of R�ake that the ongestion is polylog does not hold for digraphs, only for undireted graphs. Whatwe do is �nd the best oblivious routing for any direted graph. In partiular, for digraphs that are equivalent toundireted graphs the result of R�ake will hold. 3



to j simply by saling fij by a fator of dij . We shall refer to a set f of n(n� 1) routings from i toj 6= i for every pair (i; j) as a routing. Routings are spei�ed by the set of linear onstraints8e 2 E 8i8j 6= i fij(e) � 08i8j 6= i Pe2out(i) fij(e) �Pe2in(i) fij(e) = 18k8i 6= k8j 6= k; i Pe2out(k) fij(e)�Pe2in(k) fij(e) = 0 (2)A demand matrix is an n� n nonnegative matrix where the diagonal entries are 0. Instead oftalking diretly about multi ommodity ows, we will often �nd it onvenient to talk about a pairof a demand matrix and a routing. The ow on an edge e 2 E when routing the demand matrixD using the routing f is flow(e; f;D) =Xij Dij � fij(e):Similarly, the ongestion inurred on an edge e 2 E when routing the demand matrix D using therouting f is edge-ong(e; f;D) = flow(e; f;D)(e) :The ongestion of routing D using f is the maximum edge ongestion, that is,ongestion(f;D) = maxe2E edge-ong(e; f;D) :For a demand matrix D we denote by opt(D), the minimum ongestion possible by any routing.opt(D) is the solution of the LP minimize Z suh thatf is a routing8e 2 E; edge-ong(e; f;D) � Z:The variables of this LP are the mn(n � 1) variables fij(e) whih speify the routing and theminimization variable Z. Its solution onstitutes the optimal routing for the partiular set ofdemands D. The performane ratio of a routing f on demands D is the ratio of ongestion(f;D)and opt(D).We also de�ne the oblivious performane ratio of a routing f, whih is the maximum performaneratio it an obtain, over all demand matries, that is,obliv-perf-ratio(f) = supD ongestion(f;D)opt(D) : (3)We are interested in obtaining an optimal oblivious routing for a network G. An optimaloblivious routing minimizes the oblivious performane ratio (Equation 3), that isargminf obliv-perf-ratio(f) ;4



the performane ratio of an optimal oblivious routing is denote byobliv-opt(G) = minf obliv-perf-ratio(f) :For any graph G, an upper bound n2 on the value of obliv-opt(G) is immediate2 R�ake provedthat for undireted graphs this value is at most polylog(n).3 LP formulationWe are now ready to state our main theorem.Theorem 3.1 There is a polynomial time algorithm that for any input network G (direted orundireted) outputs a routing f suh that obliv-perf-ratio(f) = obliv-opt(G).The running time of our algorithm will be polynomial in the number of nodes n, and in rep(C),the size of the bit representation of the edge apaities. If the input network is undireted we applythe transformation disussed earlier. We �rst observe that the problem of omputing an optimaloblivious routing an be stated as an LP with mn(n � 1) + 1 variables, but in�nite (ontinuous)number of onstraints. The variables in this LP are the routing variables f and the minimizationparameter z. The onstraints of this LP are the routing onstraints (Equations 2) whih speifythat the variables f onstitute a routing, and for every demand matrix D, and an edge e 2 E, wehave the onstraint edge-ong(e; f;D) � zopt(D) (4)Note that the demand matries D and the respetive optimal ongestion values opt(D) are on-stants in this LP. We refer to this LP as BLP.Our solution essentially solves BLP using the Ellipsoid method with a separation orale. Theseparation orale algorithm either on�rms that a andidate routing f has a small enough obliv-perf-ratio(f),or return a \violated onstraint" from (4) (namely, a demand matrix D and edge e 2 E, whihmaximizes the ratio edge-ong(e; f;D)=opt(D).In order to establish, however, that the optimal value itself and the running time of the algorithmare polynomial, we need some additional arguments. In Setion 5 we will show that the onstraintsin (4) an be pruned as follows.Lemma 3.2 There exists an (exponential size) set V(H1) of demand matries suh that� Eah D 2 V(H1) has opt(D) = 1 and oeÆients of size polynomial in n and rep(C), and2The optimal ow with respet to ongestion is at least as bad as the worst ongestion obtained by routing a singlepair of soure/destination. Hene, if we use the optimal ow (wrt ongestion) for eah pair then the total ongestionis at most n2 times the ongestion of the worst ase pair whih results in an n2 approximation. To �nd the optimalow with respet to ongestion, we solve the max ow problem for the soure/destination pair, and use this routing.5



� It is suÆient to inlude in the representation of BLP only the onstraints (4)8e 2 E; 8D 2 V(H1) edge-ong(e; f;D) � z (5)(all other onstraints in (4) are redundant).An important orrolary of Lemma 3.2 is that the optimal solution of BLP has a polynomialtime representation, sine every onstraint has polynomial size and the number of variables ispolynomial.The Lemma 3.2 will also allow us to establish the polynomial time bound. First, the polynomialsize of the optimal value allow us to argue that the Ellipsoid algorithm an terminate within apolynomial number of iterations. Seond, the separation orale that we will provide returns as\violated onstraint" a onstraint from this restrited set. In partiular, the size of the onstraintis polynomial in n and rep(C) and does not depend on the input routing f. This implies that thesize of the numbers (representation of the Ellipsoid produed in eah iteration) remains polynomial.In the next Setion we show how BLP an be solved in polynomial time assuming Lemma 3.2and the existene of an appropriate \separation orale" (the orale algorithm will be presented inSetion 6.)4 Applying the Ellipsoid to BLPStandard transformation allows to solve any LP by solving a polynomial number of systems of linearinequalities. In our ase also, instead of working diretly with BLP we will work with systems oflinear inequalities LI(T ) spei�ed by a salar value T . The variables of LI(T ) is the routing f andthe onstraints are the routing onstraints (Equations 2) and the onstraints8D 2 V(H1) 8e 2 E edge-ong(e; f;D) � T : (6)It is not hard to see (using the fat that rep(obliv-opt(G)) is polynomial) that a binary searhusing a polynomial number of LI(T ) instanes with di�erent values of T would allow us to obtainobliv-opt(G). A binary searh on T 2 [1; n2℄ an �nd the smallest value of T for whih LI(T ) isfeasible. Reall that T ranges over [1; n2℄ for arbitrary direted graphs and [1;polylogn℄ for digraphsderived from undireted graphs. 3 Using this simple redution, Theorem 3.1 thus follows from thefollowing Theorem.Theorem 4.1 Given a network G, apaities (e), e 2 E, and a salar T > 0, in time polynomialin n, rep(C), and rep(T )43We omment that the Ellipsoid algorithm an be applied diretly with BLP, (that is, without performing abinary searh using LI(T )). In eah step the orale returns the pair (e;D) that maximizes ongestion for the urrentandidate routing. We use the systems LI(T ) for onveniene of presentation, sine they are more ompatible withthe standard presentation of the Ellipsoid.4Sine rep(obliv-opt(G)) is polynomial, it suÆes to use T values suh that rep(T ) is polynomial.6



� Deide that the system LI(T ) is infeasible (that is, T < obliv-opt(G)). Or,� Find a routing f whih solves the system LI(T ).Our proof of Theorem 4.1 is based on applying the Ellipsoid algorithm to LI(T ) using thefollowing separation orale (the orale algorithm is provided in Setion 6).Separation Orale.� Input: A network G, apaities (e), and a routing f.� Output:{ obliv-perf-ratio(f){ A demand matrix D 2 V(H1) and an edge e, suh thatobliv-perf-ratio(f) = edge-ong(e; f;D)=opt(D) :If obliv-perf-ratio(f) � T , then f is a feasible point of LI(T ) and the algorithm terminates.Otherwise, edge-ong(e; f;D) � T is a onstraint of LI(T ) violated by f.Our algorithm terminates if the separation orale erti�es that the urrent andidate f solvesLI(T ). If the algorithm does not terminate after some poly(n;rep(C);rep(T )) iterations (whererep(C) is the binary representation size of (e) e 2 E), we delare that the system LI(T ) isinfeasible. Corretness and polynomiality of this algorithm follow from the following two keyobservations First, the polynomial bound on the number of iterations follows using the standardbounds on the size of the initial ellipsoid and the smallest \volume" of the feasible set.The seond key observation is that eah iteration of the Ellipsoid algorithm an be performedin polynomial time. To see that it suÆes to show that the representation of eah new ellipsoidis polynomially bounded. This follows from the fat that the representation size of the \violated"onstraint returned by the separation orale is polynomial in (n;rep(C)); sine the demand matrixD is in V(H1). Note that without this bound on the size of the \violated onstraint" (demandmatrix) returned, if the size depends on the input routing, we an be in a feedbak situation wherethe representation of the ellipsoid grows by a polynomial fator in eah iteration.To onlude the proof of Theorem 4.1, it remains to show that the separation orale an be im-plemented in polynomial time in (n;rep(C);rep(f)) and that we an indeed restrit the onstraintsto demand matries in V(H1).5 Restriting BLPObserve that if we sale a demand matrix D, the ratioedge-ong(e; f;D)opt(D)7



remains �xed. It thus suÆes to use as the onstraints of BLP only demand matries that an berouted with minimum ongestion equal to 1, as all other demand matries are saled versions ofsuh a matrix. We denote the demand matries D with opt(D) � 1 byH1 = fDjopt(D) � 1g :We thus an now onsider the equavalent LP, where the onstraints (4) are trimmed to inludeonly: for all D 2 H1 and e 2 E edge-ong(e; f;D) � z (7)Reall that every suh onstraint (7) isXij Dij � fij(e) � z(e) :We now show that H1 onstitutes a polyhedron on n(n � 1) dimensional spae, de�ned by apolynomial (in n) number of inequalities, with oeÆients in f�1; (e)e 2 Eg. We then argue thatwe an further trim the onstraints (7) to demand matries that onstitute the verties of H1.The polyhedron H1The polyhedron H1 is the projetion of the following on the variables D.1. The onservation onstraints that guarantee that for all i; j, g onstitutes a ow shipping Dijunits from i to j:8i8j 6= i Dij � 08e 2 E 8i8j 6= i gij(e) � 08i8j 6= i Pe2out(i) gij(e)�Pe2in(i) gij(e) = Dij8k8i 6= k8j 6= k; i Pe2out(k) gij(e) �Pe2in(k) gij(e) = 0 (8)2. Constraints that say that the ow g has ongestion at most 1.8e 2 E flow(e;g) � (e) (9)It is not hard to verify that the feasible solutions of this system are all demands matries D suhthat the demands an be routed by some ow with ongestion of at most 1, that is, opt(D) � 1.The set V(H1) is the verties of the polyhedron H1. Sine the polyhedron has poly(n) on-straints and variables, with oeÆients of size rep(C), eah vertex has representation of sizepoly(n;rep(C)).In Setion 6 we will see that for any routing f and an edge e, argmaxD2H1 edge-ong(e; f;D)always inludes a vertex of H1. Thus, we an trim all non-vertex onstraints in (7).8



6 Separation Orale algorithm: Finding the \worst" demands fora given routing.The algorithm works by solving a set of LP's. For every edge e 2 E in turn the orale algorithmsolves the LP OLI(e;G; f) de�ned as follows. The LP OLI(e;G; f) has variables Dij , gij(a) for everyedge a 2 E. The objetive of OLI(e;G; f) isMaximize edge-ong(e; f;D)subjet to the onstraints D 2 H1.It is not hard to see thatobliv-perf-ratio(f) = maxe2E OLI(e;G; f) :Our orale algorithm �rst solves the jEj LP's OLI(e;G; f) e 2 E, and then selets an edge e (andthe respetive D) for whih the returned value OLI(e;G; f) is maximized.It is well known that (at least one) of the maxima of a linear objetive funtion over a polyhedronare obtained on a vertex of the polyhedron and that polynomial time LP algorithms an obtainsuh a vertex maximum. In the sequel, we assume that our poly time LP solver, when applied toeah OLI(e;G; f), returns a demand matrix that is a vertex of H1.7 Direted graphsIn this setion we show that there are direted graphs in whih the value of obliv-opt(G) is large(i.e. muh more than polylog(n)). Spei�ally, we show the following theorem.Theorem 7.1 There is a direted graph G of n verties suh that obliv-opt(G) is at least 
(pn).Proof: Consider a graph G with n = �k2� + k + 1 verties denoted by ai;j for all 1 � i < j � kand bi for 1 � i � k and a vertex t. The edges of the direted graph are all of unit apaity andare as follows: (ai;j ; bi) and (ai;j ; bj) for all 1 � i < j � k and (bi; t) for 1 � i � k. Clearly, thereare exatly two paths between ai;j to t. One is ai;j; bi; t and the other is ai;j ; bj; t. Assume that theoblivious routing routes pi;j for i < j on the route ai;j; bi; t and qi;j = 1� pi;j on the route ai;j ; bj ; t.Let li =Pi�1j=1 qj;i +Pki+1 pi;j. ClearlykXi=1 li = kXi=1 i�1Xj=1 qj;i + kXi=1 kXi+1 pi;j =Xi<j(qi;j + pi;j) =  k2! � 1 = k(k � 1)=2 :Hene there exists lx suh that lx � (k � 1)=2. Consider the following demands. A demand ofone from aj;x to t for all 1 � j � x � 1 and a demand of one from ax;j to t for all x+ 1 � j � k.Clearly by using the oblivious routing the load on the edge (bi; t) is lx � (k � 1)=2. However, theoptimal load is at most one sine we an route the demand from aj;x by the route aj;x; bj ; t and thedemand from ax;j by the route ax;j; bj ; t. Sine k = 
(pn) this ompletes the proof. 29



8 Undireted graphsA notion relevant to undireted networks is symmetry of a routing. For this disussion, replaeeah undireted edge e by two direted edges e0 and e00. A routing f is symmetri if for all e 2 Eand nodes i and j we have fij(e0) = fji(e00).Lemma 8.1 When G is undireted, there is always a symmetri optimal oblivious routing.Proof: Consider a lower triangular matrix L with Lij = 0 for j � i and Lij � 0 otherwise. We referto all demand matries suh that Dij +Dji = Lij as being in the same equivalene lass. We �rstlaim that all demand matries D in the same equivalene lass have the same opt(D). To see thelaim, onsider a demand D and a routing f. Consider now the symmetri routing f0 onstrutedas follows f 0ij(e0) = f 0ji(e00) = Dijfij(e0) +Djifji(e00)Dij +Dji :It is not hard to verify that the ongestion of routing D aording to f is the same as when routingit aording to f0. Moreover, all demand matries in the equivalene lass of D inur the sameongestion when routed aording to f0. The laim follows.Consider an optimal oblivious routing f̂ whih is not symmetri, and onsider the symmetrirouting where f ij(e0) = (f̂ij(e0)+f̂ji(e00))=2. First note that the symmetri routing f inurs the sameongestion (and thus the same performane ratio, using the laim above) on all demand matriesthat are in the same equivalene lass. We next show that f is at least as good as f̂, that is inursa better worst performane ratio. To do that it is suÆient to show that for any demand matrixD, there is a matrix D0 in D's equivalene lass suh thatongestion(f;D) � ongestion(̂f;D0) :(Reall that ongestion(f;D) is the same for all matries in the equivalene lass.) To see that,onsider an edge e. We onstrut the matrix De in the equivalene lass that maximizes theongestion on e: that is, if f̂ij(e0) > f̂ji(e00) we set Deij = Lij and Deji = 0, and set the reverseotherwise. The ongestion inurred by routing D aording to f on the ars e0 and e00 is at mostthat of routing De aording to f̂. We now onsider all edges e 2 E in turn and hoose D0 to beDe with maximum ongestion. 2The lemma shows that when the input network is undireted, it is suÆient to searh for asymmetri optimal routing (whih are spei�ed by mn(n� 1) rather than 2mn(n� 1) variables).9 ExtensionsThis writeup foused on minimizing edge ongestion, but a loser look at our method reveals thatit is able to perform many di�erent optimizations, some of them may be relevant in pratie. One10



example is minimizing node ongestion (this orresponds to router load on IP networks) whihis the ratio of the total traÆ traversing a node to its apaity. It is also possible to onsideredge and node ongestion simultaneously; to onsider linear ombinations of edges or nodes; toadd additive fator to the ongestion formula; and to limit the lass of demand matries in someways (for example limit the sum of demands or partial sums of ertain demands, require 0 demandbetween ertain pairs), limiting dilation, and so forth. The limiting fator in the seletion of theoptimization funtion is preserving the ability to express the problem and the separation oraleusing linear onstraints.Referenes[1℄ J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line routing of virtual iruits withappliations to load balaning and mahine sheduling. Journal of the ACM, 44(3):486{504,1997. Also in Pro. 25th ACM STOC, 1993, pp. 623-631.[2℄ B. Awerbuh and Y. Azar. Loal optimization of global objetives: ompetitive distributeddeadlok resulution and resoure alloation. In FOCS 35, pages 240{249, 1994.[3℄ A. Borodin and J. E. Hoproft. Routing, merging and sorting on parallel models of omputa-tion. Journal of Computer and System Sienes, 30(1):130{145, 1985.[4℄ B. Gr�otshel, L. Lovasz, and Shrijver A. Geometri algorithms and ombinatorial optimiza-tion. Springer-Verlag, New York, 1988.[5℄ C. Kaklamanis, D. Krizan, and A. Tsantilas. Tight bounds for oblivious routing in thehyperube. In Pro. 2nd Annual ACM Symposium on Parallel Algorithms and Arhitetures,pages 31{36, 1990.[6℄ F. T. Leighton. Introdution to Parallel Algorithms and Arhitetures Arrays, Trees, Hyper-ubes,. MorganKaufmann Publishers, 1992.[7℄ S. Leonardi. On-line network routing. In A. Fiat and G. Woeginger, editors, Online Algorithms- The State of the Art, hapter 11, pages 242{267. Springer, 1998.[8℄ H. R�ake. Minimizing ongestion in general networks. In To appear FOCS 43, 2002.[9℄ P. Raghavan and C. D. Thompson. Randomized rounding: a tehnique for provably goodalgorithms and algorithmi proofs. Combinatoria, 7:365{374, 1987.[10℄ L. G. Valiant and G. Brebner. Universal shemes for parallel ommuniation. In Proeedingsof the 13th ACM Symposium on Theory of Computing, pages 263{277, 1981.11


