Optimal Oblivious Routing in Polynomial time

Yossi Azar* Edith Cohen’ Amos Fiat* Haim Kaplan®* Harald Récke?

February 5, 2003

Abstract

A recent seminal result of Récke is that for any network there is an oblivious routing al-
gorithm with a polylog competitive ratio with respect to congestion. Unfortunately, Ricke’s
construction is not polynomial time. We give a polynomial time construction that guarantee’s
Récke’s bounds, and more generally gives the true optimal ratio for any network.

1 Introduction

Communication routing is obviously one of the key technological issues today. The literature in-
cludes hundreds of papers and literally dozens of problem variants on this issue. Problem variants
are characterized by parameters such as packet routing vs. virtual circuit routing, fixed vs. infi-
nite buffers, specific vs. general networks, probabilistic input distribution models vs. worst case
input distributions, deterministic vs. randomized routing algorithms, online vs. offline routing al-
gorithms, distributed vs. centralized algorithms, etc. Examples of some surveys on this vast body
of literature are [6, 7.

In this paper we focus on the problem of online virtual circuit routing on general networks with
the goal of minimizing the congestion.

Two fundamental approaches towards routing in networks are to route adaptively depending
on the current loads in the network, or to route obliviously, without any knowledge of the current
state of the network.

Obviously, adaptive protocols may achieve reduced congestion but are harder to implement.

Raghavan and Thompson [9] designed an offline routing algorithm for routing virtual circuits

on general networks and any set of demands that well approximates the lowest possible congestion.

*School of computer science, Tel Aviv University, Tel Aviv 69978, Israel. E-mail:

{azar,fiat,haimk}@cs.tau.ac.il.
YAT&T research labs, 180 park ave. Florham park, NJ, USA. Email:edith@research.att.com.
'Department of Mathematics and Computer Science, University of Paderborn, 33095 Paderborn, Germany.

Email:harryQuni-paderborn.de.

The set of routes is chosen according to the specific demands and thus their algorithm may be
considered adaptive.

In the online setting, [1] design a routing algorithm that is logn competitive with respect to
congestion. This algorithm routes calls based on the current congestion on the various links in the
network, this can be achieved via centralized control and serializing the routing requests. [2] gave a
distributed algorithm that repeatedly scans the network so as to choose the routes. This algorithm
requires shared variables on the edges of the network and hence is hard to implement. Note that
both the online algorithms above depend on the demands and are therefore adaptive.

The first paper to perform a worst case theoretical analysis on oblivious routing is the paper
of Valiant and Brebner [10] who considered routing on specific network topologies such as the
hypercube. They give an efficient randomized oblivious routing network.

Borodin and Hopcroft [3] and subsequently [5] have shown that deterministic oblivious routing
algorithms cannot well approximate the minimal load on any non-trivial network. While the results
were given in terms of packet routing, it follows from their proof that it also holds for virtual circuit
routing.

In a recent paper, Récke [8] gives the very surprising construction of a polylog competitive
oblivious routing algorithm for general undirected networks. It seems truly astonishing that one
can come close to minimal congestion without any information on the current load in the network.
As Récke’s algorithm is oblivious, it can be trivially implemented in a distributed fashion. Récke’s
algorithm is randomized, and, consequent to the work of [3], randomization is required.

Although Réacke’s algorithm is randomized, it can be viewed as the randomized rounding of a
deterministic multi commodity flow. We call this multi commodity flow a routing. Racke’s oblivious
routing algorithm finds a unit flow between every pair of nodes 7, j. Such a flow can be translated
into a set of at most |E| paths, each of which carries some fraction of the unit flow. Récke chooses
the route between ¢ and j by choosing one of these paths with a probability equal to the flow
through the path.

Réacke’s main result is that for any network, there exists a routing such that for any set of
demands, the maximum edge congestion using this routing, is at most polylog(n) times the optimal
congestion for this specific set of demands. Unfortunately, his algorithm for producing this routing
requires solving N P-hard problems, and is therefore non-polynomial. Moreover, Réacke’s construc-
tion provides a uniform bound on all graphs. Hence, for any specific graph, a better routing may
potentially exist, i.e., one that guarantees a lower maximum edge congestion.

In this paper we give a polynomial time algorithm that produces the optimal routing for any
network. In particular, this means that Racke’s construction is performed in polynomial time. In
addition, we compute the optimal routing for any given network. Our construction computes the
optimal routing for both directed and undirected networks. However, we also show that Récke’s

polylog(n) upper bound is false for general directed graphs by providing a y/n lower bound.

Our techniques are based on linear programming with an infinite number of constraints. Thus,
we use the Ellipsoid algorithm with a separation oracle [4]. Our separating oracle is itself imple-

mented in polynomial time using a different set of linear programs.

2 Preliminaries

Consider a graph G(V, E), directed or undirected, with capacities ¢(e) > 0 for e € E.

We use a well known reduction from undirected to directed graphs that replaces an undirected
edge e = (u,v), with capacity c(e), with the directed gadget u, x, y, v which consists of directed edges
e1 = (u,z),e9 = (v,z),e3 = (y,u),eq = (y,v), all of which have infinite capacity, and the directed
edge (z,y) with capacity c(e). This transformation preserves the property a multi commodity flow
is feasible on the undirected graph if and only if it is feasible on the directed graph.

Thus, as of this point on we only consider directed graphs'

A multi-commodity flow g in G is defined as a solution to the system
Ve € E ViVj #i gij(e) > 0 (1)
VKV # kVj # ki Yecoutr) 9ij(€) — Xecin) gijle) = 0

each set of values for g;;(e) for e € F defines a single-commodity flow from i to j. The demand (of

commodity 75) delivered from i to j is
dij = Z gij(e) — Z gij(e) .
ecOUT(i) ecIN(4)

The total flow induced by g on the edge e € F is
FLOW(e,g) = Zgij(e) .
ij

We now define the congestion incurred on an edge e € F by the flow g as the ratio of the flow on

the edge to the capacity of the edge

FLOW
EDGE-CONG(e, g) = %
cle

Since we are interested in routing many different sets of demands in the same way, we use the
notion of a routing from i to j as a flow of value 1 from ¢ to j. We denote such flow by f;;, and

denote its value on an edge e € F by f;;j(e). We can use a routing to deliver demand of d;; from i

!The results of Ricke that the congestion is polylog does not hold for digraphs, only for undirected graphs. What
we do is find the best oblivious routing for any directed graph. In particular, for digraphs that are equivalent to

undirected graphs the result of Récke will hold.

to j simply by scaling f;; by a factor of d;;. We shall refer to a set f of n(n — 1) routings from i to

j # i for every pair (i,7) as a routing. Routings are specified by the set of linear constraints

Vi¥j # i Yecout(i fij(€) = Xecnp) fijle) = 1 (2)
VEVi # kY] # ki Yecourpy fij(€) — Leemw) fijle) = 0

A demand matriz is an n X n nonnegative matrix where the diagonal entries are 0. Instead of
talking directly about multi commodity flows, we will often find it convenient to talk about a pair
of a demand matrix and a routing. The flow on an edge e € E when routing the demand matrix

D using the routing f is
FLOW(B, f, D) = Z ng * f”(e)
ij

Similarly, the congestion incurred on an edge e € E when routing the demand matrix D using the

routing f is
FLOW(e, f, D)

c(e)

The congestion of routing D using f is the maximum edge congestion, that is,

EDGE-CONG(e,f, D) =

CONGESTION(f, D) = max EDGE-CONG(e, f, D) .
ec

For a demand matrix D we denote by oPT(D), the minimum congestion possible by any routing.
oPT(D) is the solution of the LP

minimize Z such that
f is a routing
Ve € E, EDGE-CONG(e,f, D) < Z.

The variables of this LP are the mn(n — 1) variables f;;j(e) which specify the routing and the
minimization variable Z. TIts solution constitutes the optimal routing for the particular set of
demands D. The performance ratio of a routing f on demands D is the ratio of CONGESTION(f, D)
and oPT(D).

We also define the oblivious performance ratio of a routing f, which is the maximum performance

ratio it can obtain, over all demand matrices, that is,

CONGESTION(f, D)
OBLIV-PERF-RATIO(f) = sup

D opT(D) 3)

We are interested in obtaining an optimal oblivious routing for a network G. An optimal

oblivious routing minimizes the oblivious performance ratio (Equation 3), that is

arg mfi_n OBLIV-PERF-RATIO(f) ,

the performance ratio of an optimal oblivious routing is denote by

OBLIV-OPT(G) = mfin OBLIV-PERF-RATIO(f) .

For any graph G, an upper bound n? on the value of OBLIV-OPT(G) is immediate? Ricke proved
that for undirected graphs this value is at most polylog(n).

3 LP formulation
We are now ready to state our main theorem.

Theorem 3.1 There is a polynomial time algorithm that for any input network G (directed or
undirected) outputs a routing f such that OBLIV-PERF-RATIO(f) = OBLIV-OPT(G).

The running time of our algorithm will be polynomial in the number of nodes n, and in REP(C'),
the size of the bit representation of the edge capacities. If the input network is undirected we apply
the transformation discussed earlier. We first observe that the problem of computing an optimal
oblivious routing can be stated as an LP with mn(n — 1) + 1 variables, but infinite (continuous)
number of constraints. The variables in this LP are the routing variables f and the minimization
parameter z. The constraints of this LP are the routing constraints (Equations 2) which specify
that the variables f constitute a routing, and for every demand matrix D, and an edge e € F, we
have the constraint

EDGE-CONG(e, f,D) < zorT(D) (4)

Note that the demand matrices D and the respective optimal congestion values OPT(D) are con-
stants in this LP. We refer to this LP as BLP.

Our solution essentially solves BLP using the Ellipsoid method with a separation oracle. The
separation oracle algorithm either confirms that a candidate routing f has a small enough OBLIV-PERF-RATIO(f),
or return a “violated constraint” from (4) (namely, a demand matrix D and edge e € E, which
maximizes the ratio EDGE-CONG(e, f,D)/opT(D).

In order to establish, however, that the optimal value itself and the running time of the algorithm
are polynomial, we need some additional arguments. In Section 5 we will show that the constraints

in (4) can be pruned as follows.
Lemma 3.2 There exists an (exponential size) set V(Hy) of demand matrices such that

e Each D € V(Hy) has opT(D) = 1 and coefficients of size polynomial in n and REP(C), and

2The optimal flow with respect to congestion is at least as bad as the worst congestion obtained by routing a single
pair of source/destination. Hence, if we use the optimal flow (wrt congestion) for each pair then the total congestion
is at most n? times the congestion of the worst case pair which results in an n? approximation. To find the optimal
flow with respect to congestion, we solve the max flow problem for the source/destination pair, and use this routing.

e [t is sufficient to include in the representation of BLP only the constraints (4)
Ve € E, VD € V(H;) EDGE-CONG(e, f,D) < z (5)
(all other constraints in (4) are redundant).

An important corrolary of Lemma 3.2 is that the optimal solution of BLP has a polynomial
time representation, since every constraint has polynomial size and the number of variables is
polynomial.

The Lemma 3.2 will also allow us to establish the polynomial time bound. First, the polynomial
size of the optimal value allow us to argue that the Ellipsoid algorithm can terminate within a
polynomial number of iterations. Second, the separation oracle that we will provide returns as
“violated constraint” a constraint from this restricted set. In particular, the size of the constraint
is polynomial in n and REP(C') and does not depend on the input routing f. This implies that the
size of the numbers (representation of the Ellipsoid produced in each iteration) remains polynomial.

In the next Section we show how BLP can be solved in polynomial time assuming Lemma 3.2
and the existence of an appropriate “separation oracle” (the orcale algorithm will be presented in
Section 6.)

4 Applying the Ellipsoid to BLP

Standard transformation allows to solve any LP by solving a polynomial number of systems of linear
inequalities. In our case also, instead of working directly with BLP we will work with systems of
linear inequalities LI(T') specified by a scalar value T. The variables of LI(T') is the routing f and

the constraints are the routing constraints (Equations 2) and the constraints
VD € V(H;) Ve € E EDGE-CONG(e,f,D) < T . (6)

It is not hard to see (using the fact that REP(OBLIV-OPT(G)) is polynomial) that a binary search
using a polynomial number of LI(T') instances with different values of T' would allow us to obtain
OBLIV-OPT(G). A binary search on T € [1,n2] can find the smallest value of T' for which LI(T) is
feasible. Recall that T ranges over [1,n?] for arbitrary directed graphs and [1, polylogn] for digraphs
derived from undirected graphs. Using this simple reduction, Theorem 3.1 thus follows from the

following Theorem.

Theorem 4.1 Given a network G, capacities c(e), e € E, and a scalar T > 0, in time polynomial
in n, REP(C), and REP(T)*

3We comment that the Ellipsoid algorithm can be applied directly with BLP, (that is, without performing a
binary search using LI(T)). In each step the oracle returns the pair (e, D) that maximizes congestion for the current
candidate routing. We use the systems LI(T') for convenience of presentation, since they are more compatible with

the standard presentation of the Ellipsoid.
Since REP(0OBLIV-0PT(G)) is polynomial, it suffices to use T values such that REP(T') is polynomial.

e Decide that the system LI(T) is infeasible (that is, T < OBLIV-OPT(G)). Or,
e Find a routing f which solves the system LI(T).

Our proof of Theorem 4.1 is based on applying the Ellipsoid algorithm to LI(7) using the

following separation oracle (the oracle algorithm is provided in Section 6).

Separation Oracle.

e Input: A network G, capacities ¢(e), and a routing f.
e Output:

— OBLIV-PERF-RATIO(f)

— A demand matrix D € V(H;) and an edge e, such that
OBLIV-PERF-RATIO(f) = EDGE-CONG(e, f,D)/orPT(D) .

If OBLIV-PERF-RATIO(f) < T, then f is a feasible point of LI(T) and the algorithm terminates.
Otherwise, EDGE-CONG(e, f,D) < T is a constraint of LI(T) violated by f.

Our algorithm terminates if the separation oracle certifies that the current candidate f solves
LI(T). If the algorithm does not terminate after some poly(n,REP(C), REP(T)) iterations (where
REP(C) is the binary representation size of c(e) e € F), we declare that the system LI(T) is
infeasible. Correctness and polynomiality of this algorithm follow from the following two key
observations First, the polynomial bound on the number of iterations follows using the standard
bounds on the size of the initial ellipsoid and the smallest “volume” of the feasible set.

The second key observation is that each iteration of the Ellipsoid algorithm can be performed
in polynomial time. To see that it suffices to show that the representation of each new ellipsoid
is polynomially bounded. This follows from the fact that the representation size of the “violated”
constraint returned by the separation oracle is polynomial in (n, REP(C)); since the demand matrix
D is in V(H;). Note that without this bound on the size of the “violated constraint” (demand
matrix) returned, if the size depends on the input routing, we can be in a feedback situation where
the representation of the ellipsoid grows by a polynomial factor in each iteration.

To conclude the proof of Theorem 4.1, it remains to show that the separation oracle can be im-
plemented in polynomial time in (n, REP(C), REP(f)) and that we can indeed restrict the constraints

to demand matrices in V(H;).

5 Restricting BLP

Observe that if we scale a demand matrix D, the ratio
EDGE-CONG(e, f, D)
opT(D)

7

remains fixed. It thus suffices to use as the constraints of BLP only demand matrices that can be
routed with minimum congestion equal to 1, as all other demand matrices are scaled versions of

such a matrix. We denote the demand matrices D with opT(D) < 1 by
H; = {D|joprT(D) < 1} .

We thus can now consider the equavalent LP, where the constraints (4) are trimmed to include
only: forall D € Hy and e € F
EDGE-CONG(e, £, D) < z (7)

Recall that every such constraint (7) is
ZD” * fij(e) < zc(e) .

We now show that Hy constitutes a polyhedron on n(n — 1) dimensional space, defined by a
polynomial (in n) number of inequalities, with coefficients in {£1, c¢(e)e € E'}. We then argue that

we can further trim the constraints (7) to demand matrices that constitute the vertices of Hj.

The polyhedron H;

The polyhedron Hj is the projection of the following on the variables D.

1. The conservation constraints that guarantee that for all 4, j, g constitutes a flow shipping D;;

units from ¢ to j:

ViVy # 4 D;; > 0
Ve € E ViVj # i gijle) > 0 (8)
ViVj # i ZeEOUT(9ij(e) — ZeEIN g9ij(e) = Djj
VEVi # kY] # kyi Yecoutr) 9ii(€) = Xeernw) 9ij(€) = 0
2. Constraints that say that the flow g has congestion at most 1.
Ve € E FLOW(e,g) < c(e) 9)

It is not hard to verify that the feasible solutions of this system are all demands matrices D such
that the demands can be routed by some flow with congestion of at most 1, that is, opT(D) < 1.

The set V(Hy) is the vertices of the polyhedron Hy. Since the polyhedron has poly(n) con-
straints and variables, with coefficients of size REP(C'), each vertex has representation of size
poly(n, REP(C)).

In Section 6 we will see that for any routing f and an edge e, arg maxp. [, EDGE-CONG(e, f, D)

always includes a vertex of Hy. Thus, we can trim all non-vertex constraints in (7).

6 Separation Oracle algorithm: Finding the “worst” demands for

a given routing.

The algorithm works by solving a set of LP’s. For every edge e € F in turn the oracle algorithm
solves the LP OLI(e, G, f) defined as follows. The LP OLI(e, G, f) has variables D;;, g;;(a) for every
edge a € E. The objective of OLI(e, G, f) is

Maximize EDGE-CONG(e, f, D)

subject to the constraints D € H;.
It is not hard to see that

OBLIV-PERF-RATIO(f) = max OLI(e, G,f) .
ec

Our oracle algorithm first solves the |E| LP’s OLI(e, G,f) e € E, and then selects an edge e (and
the respective D) for which the returned value OLI(e, G, f) is maximized.

It is well known that (at least one) of the maxima of a linear objective function over a polyhedron
are obtained on a vertex of the polyhedron and that polynomial time LP algorithms can obtain
such a vertex maximum. In the sequel, we assume that our poly time LP solver, when applied to

each OLI(e, G, f), returns a demand matrix that is a vertex of Hj.

7 Directed graphs

In this section we show that there are directed graphs in which the value of OBLIV-OPT(G) is large
(i.e. much more than polylog(n)). Specifically, we show the following theorem.

Theorem 7.1 There is a directed graph G of n vertices such that OBLIV-OPT(QG) is at least Q(y/n).
Proof: Consider a graph G with n = (g) + k + 1 vertices denoted by a;; forall 1 <i < j <k
and b; for 1 < ¢ < k and a vertex t. The edges of the directed graph are all of unit capacity and
are as follows: (a; j,b;) and (a;;,b;) for all 1 <i < j <k and (b;,t) for 1 < i < k. Clearly, there
are exactly two paths between a; j to . One is a; j, b;,t and the other is a; ;,b;,t. Assume that the
oblivious routing routes p; ; for < < j on the route a; ;,b;,t and ¢; ; = 1 — p; ; on the route a; j,b;, 1.
Let I; = ;;11 qji + Zi%rl p;,j- Clearly

k k i—1 k k k
IEDIHIILS 3 FED wUSEEY (4 RES RN
i=1 i=1j=1 i=1i+1 i<j

Hence there exists [, such that I, > (k — 1)/2. Consider the following demands. A demand of
one from a;, to t for all 1 < j <z — 1 and a demand of one from a,; to ¢ for all z +1 < j < k.
Clearly by using the oblivious routing the load on the edge (b;,t) is I, > (k — 1)/2. However, the
optimal load is at most one since we can route the demand from a; , by the route a; ., b;,t and the

demand from a, ; by the route a, j,b;,t. Since k = Q(/n) this completes the proof. O

8 Undirected graphs

A notion relevant to undirected networks is symmetry of a routing. For this discussion, replace
each undirected edge e by two directed edges €’ and €”. A routing f is symmetric if for all e € F

and nodes ¢ and j we have f;;(e') = fji(e”).
Lemma 8.1 When G is undirected, there is always a symmetric optimal oblivious routing.

Proof: Consider a lower triangular matrix L with L;; = 0 for § > 4 and L;; > 0 otherwise. We refer
to all demand matrices such that D;; + Dj; = L;; as being in the same equivalence class. We first
claim that all demand matrices D in the same equivalence class have the same OoPT(D). To see the
claim, consider a demand D and a routing f. Consider now the symmetric routing f' constructed

as follows , "
Di;fij(€') + Djifji(e")
Dij + Dji

It is not hard to verify that the congestion of routing D according to f is the same as when routing

filj(el) = f;"z’(eu) =

it according to f. Moreover, all demand matrices in the equivalence class of D incur the same
congestion when routed according to f'. The claim follows.

Consider an optimal oblivious routing f which is not symmetric, and consider the symmetric
routing where f,;(e’) = (fij(€")+ fii(€"))/2. First note that the symmetric routing f incurs the same
congestion (and thus the same performance ratio, using the claim above) on all demand matrices
that are in the same equivalence class. We next show that f is at least as good as f', that is incurs
a better worst performance ratio. To do that it is sufficient to show that for any demand matrix

D, there is a matrix D’ in D’s equivalence class such that
conGesTION(f, D) < congEsTION(f, D’) .

(Recall that cONGESTION(f, D) is the same for all matrices in the equivalence class.) To see that,
consider an edge e. We construct the matrix D¢ in the equivalence class that maximizes the
congestion on e: that is, if fi;(e') > fji(e") we set Df; = Lij and Dj; = 0, and set the reverse
otherwise. The congestion incurred by routing D according to f on the arcs ¢’ and €” is at most
that of routing D¢ according to f. We now consider all edges e € F in turn and choose D’ to be

D¢ with maximum congestion. O

The lemma, shows that when the input network is undirected, it is sufficient to search for a

symmetric optimal routing (which are specified by mn(n — 1) rather than 2mn(n — 1) variables).

9 Extensions

This writeup focused on minimizing edge congestion, but a closer look at our method reveals that

it is able to perform many different optimizations, some of them may be relevant in practice. One

10

example is minimizing node congestion (this corresponds to router load on IP networks) which

is the ratio of the total traffic traversing a node to its capacity. It is also possible to consider

edge and node congestion simultaneously; to consider linear combinations of edges or nodes; to

add additive factor to the congestion formula; and to limit the class of demand matrices in some

ways (for example limit the sum of demands or partial sums of certain demands, require 0 demand

between certain pairs), limiting dilation, and so forth. The limiting factor in the selection of the

optimization function is preserving the ability to express the problem and the separation oracle

using linear constraints.

References

[1]

J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line routing of virtual circuits with
applications to load balancing and machine scheduling. Journal of the ACM, 44(3):486-504,
1997. Also in Proc. 25th ACM STOC, 1993, pp. 623-631.

B. Awerbuch and Y. Azar. Local optimization of global objectives: competitive distributed
deadlock resulution and resource allocation. In FOCS 35, pages 240-249, 1994.

A. Borodin and J. E. Hopcroft. Routing, merging and sorting on parallel models of computa-
tion. Journal of Computer and System Sciences, 30(1):130-145, 1985.

B. Grotschel, L. Lovasz, and Schrijver A. Geometric algorithms and combinatorial optimiza-

tion. Springer-Verlag, New York, 1988.

C. Kaklamanis, D. Krizanc, and A. Tsantilas. Tight bounds for oblivious routing in the
hypercube. In Proc. 2nd Annual ACM Symposium on Parallel Algorithms and Architectures,
pages 31-36, 1990.

F. T. Leighton. Introduction to Parallel Algorithms and Architectures Arrays, Trees, Hyper-
cubes,. MorganKaufmann Publishers, 1992.

S. Leonardi. On-line network routing. In A. Fiat and G. Woeginger, editors, Online Algorithms
- The State of the Art, chapter 11, pages 242-267. Springer, 1998.

H. Racke. Minimizing congestion in general networks. In To appear FOCS 43, 2002.

P. Raghavan and C. D. Thompson. Randomized rounding: a technique for provably good
algorithms and algorithmic proofs. Combinatorica, 7:365-374, 1987.

L. G. Valiant and G. Brebner. Universal schemes for parallel communication. In Proceedings
of the 13th ACM Symposium on Theory of Computing, pages 263-277, 1981.

11

