Off-line Temporary Tasks Assignment

Yossi Azar! and Oded Regev?

! Dept. of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel.
azar@math.tau.ac.il ***
2 Dept. of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel.
odedr@math.tau.ac.il

Abstract. In this paper we consider the temporary tasks assignment
problem. In this problem, there are m parallel machines and n inde-
pendent jobs. Each job has an arrival time, a departure time and some
weight. Each job should be assigned to one machine. The load on a ma-
chine at a certain time is the sum of the weights of jobs assigned to it
at that time. The objective is to find an assignment that minimizes the
maximum load over machines and time.

We present a polynomial time approximation scheme for the case in
which the number of machines is fixed. We also show that for the case
in which the number of machines is given as part of the input (i.e., not

fixed), no algorithm can achieve a better approximation ratio than

3
unless P = NP.

1 Introduction

We consider the off-line problem of non-preemptive load balancing of temporary
tasks on m identical machines. Each job has an arrival time, departure time
and some weight. Each job should be assigned to one machine. The load on a
machine at a certain time is the sum of the weights of jobs assigned to it at that
time. The goal is to minimize the maximum load over machines and time. Note
that the weight and the time are two separate axes of the problem.

The load balancing problem naturally arises in many applications involving
allocation of resources. As a simple concrete example, consider the case where
each machine represents a communication channel with bounded bandwidth.
The problem is to assign a set of requests for bandwidth, each with a specific
time interval, to the channels. The utilization of a channel at a specific time ¢
is the total bandwidth of the requests, whose time interval contains ¢, which are
assigned to this channel.

Load balancing of permanent tasks is the special case in which jobs have
neither an arrival time nor a departure time. This special case is also known as
the classical scheduling problem which was first introduced by Graham [5, 6].
He described a greedy algorithm called “List Scheduling” which has a 2 — %
approximation ratio where m is the number of machines. Interestingly, the same

*** Research supported in part by the Israel Science Foundation and by the US-Israel
Binational Science Foundation (BSF).



analysis holds also for load balancing of temporary tasks. However, until now,
it was not known whether better approximation algorithms for temporary tasks
exist.

For the special case of permanent tasks, there is a polynomial time approx-
imation scheme (PTAS) for any fixed number of machines [6, 10] and also for
arbitrary number of machines by Hochbaum and Shmoys [7]. That is, it is pos-
sible to obtain a polynomial time (1 + €)-approximation algorithm for any fixed
e> 0.

In contrast we show in this paper that the model of load balancing of tempo-
rary tasks behaves differently. Specifically, for the case in which the number of
machines is fixed we present a PTAS. However, for the case in which the number
of machines is given as part of the input, we show that no algorithm can achieve
a better approximation ratio than % unless P = NP.

Note that similar phenomena occur at other scheduling problems. For ex-
ample, for scheduling (or equivalently, load balancing of permanent jobs) on
unrelated machines, Lenstra et al. [9] showed on one hand a PTAS for a fixed
number of machines. On the other hand they showed that no algorithm with an
approximation ratio better than % for any number of machines can exist unless
P=NP.

In contrast to our result, in the on-line setting it is impossible to improve the
performance of Graham’s algorithm for temporary tasks even for a fixed number
of machines. Specifically, it is shown in [2] that for any m there is a lower bound
of 2 — % on the performance ratio of any on-line algorithm (see also [1, 3]).

Our algorithm works in four phases: the rounding phase, the combining phase,
the solving phase and the converting phase. The rounding phase actually consists
of two subphases. In the first subphase the jobs’ active time is extended: some
jobs will arrive earlier, others will depart later. In the second subphase, the
active time is again extended but each job is extended in the opposite direction
to which it was extended in the first subphase. In the combining phase, we
combine several jobs with the same arrival and departure time and unite them
into jobs with higher weights. Solving the resulting assignment problem in the
solving phase is easier and its solution can be converted into a solution for the
original problem in the converting phase.

The novelty of our algorithm is in the rounding phase. Standard rounding
techniques are usually performed on the weights. If one applies similar techniques
to the time the resulting algorithm’s running time is not polynomial. Thus, we
had to design a new rounding technique in order to overcome this problem.

Our lower bound is proved directly by a reduction from exact cover by 3-sets.
It remains as an open problem whether one can improve the lower bound using
more sophisticated techniques such as PCP reductions.

2 Notation

We are given a set of n jobs that should be assigned to one of m identical
machines. We denote the sequence of events by o = o074, ..., 025, where each event



is an arrival or a departure of a job. We view o as a sequence of times, the time
o; is the moment after the i** event happened. We denote the weight of job j
by wj, its arrival time by a; and its departure time by d;. We say that a job
is active at time 7 if a; < 7 < d;. An assignment algorithm for the temporary
tasks problem has to assign each job to a machine.

Let Q; = {jlaj < 0; < d;j} be the active jobs at time ¢;. For a given algorithm
Alet A; be the machine on which job j is assigned. Let

I (i) = > w

{il4;=k,7€Q:}

be the load on machine & at time o;, which is the sum of weights of all jobs
assigned to k and active at this time. The cost of an algorithm A is the maximum
load ever achieved by any of the machines, i.e., Cy = mami,klf (2). We compare
the performance of an algorithm to that of an optimal algorithm and define the
approximation ratio of A as r if for any sequence C4 < r-C,p; where Cypy is the
cost of the optimal solution.

3 The Polynomial Time Approximation Scheme

Assume without loss of generality that the optimal makespan is in the range
(1,2]. That is possible since Graham’s algorithm can approximate the optimal
solution up to a factor of 2, and thus, we can scale all the jobs’ weights by %
where ! denotes the value of Graham’s solution.

We perform a binary search for the value A in the range (1, 2]. For each value
we solve the (1 + ¢€) relaxed decision problem, that is, either to find a solution of
size (1 + €)X or to prove that there is no solution of size A. From now on we fix
the value of A.

Ja Js J Jr
[logn] g, Cs s [ cr
‘Jl C3 s C3
f c1

Fig. 1. Partitioning J into {J;}

In order to describe the rounding phase with its two subphases we begin with
defining the partitions based on which the rounding will be performed. We begin
by defining a partition {J;} of the set of jobs J. Let M; be a set of jobs and



consider the sequence of times o in which jobs of M; arrive and depart. Since
the number of such times is 2r for some r, let ¢; be any time between the r-th
and the r + 1-st elements in that set. The set J; contains the jobs in M; that
are active at time ¢;. The set M,; contains the jobs in M; that depart before
or at ¢; and the set Ma;;1 contains the jobs in M; that arrive after ¢;. We set
M, = J and define the M’s iteratively until we reach empty sets. The important
property of that partition is that the set of jobs that exist at a certain time is
partitioned into at most [logn| different sets J;.

1 2 ¢ 2 4l

Fig. 2. Partitioning J; into {Sj,Tij} (R; is not shown)

z

We continue by further partitioning the set J;. We separate the jobs whose
weight is greater than a certain constant a and denote them by R;. We order the
remaining jobs according to their arrival time. We denote the smallest prefix of
the jobs whose total weight is at least o by S}. Note that its total weight is less
than 2a. We order the same jobs as before according to their departure time.
We take the smallest suffix whose weight is at least a and denote that set by
T!. Note that there might be jobs that are both in S} and T}'. We remove the
jobs and repeat the process with the jobs left in J; and define S?, T2, ..., Sf", Tik".
The last pair of sets Sf" and Tik" may have a weight of less than o. We denote
by s{ the arrival time of the first job in Sg and by t{ the departure time of the
last job in TV. Note that s} < s? < .. < sF < ¢ <tF < .. <#2 <l

The first subphase of the rounding phase creates a new set of jobs J' which
contains the same jobs as in J with slightly longer active times. We change the
arrival time of all the jobs in S for j = 1,...,k; to s!. Also, we change the
departure time of all the jobs in Tij to t{ The jobs in R; are left unchanged. We
denote the sets resulting from the first subphase by J', J/, §7, T'1.

The second subphase of the rounding phase further extends the active time
of the jobs of the first subphase. We take one of the sets J] and the partition we
defined earlier to R;, S’ UT'}, S'2UT'?, ..., S" UT'¥. We order the jobs in 5"
according to an increasing order of departure time. We take the smallest prefix
of this ordering whose total weight is at least 8. We extend the departure time
of all the jobs in that prefix to the departure time of the last job in that prefix.
The process is repeated until there are no more jobs in §'7. The last prefix may



T2

1

!

1 2 ¢ 2 4l

SI? ’_'_'_,_:—'_'_’_'_r

—

.
gy

Fig. 3. The set J; (after the first subphase)

have a weight of less than 3. Similarly, extend the arrival time of jobs in T’{.
The jobs in R; are left unchanged. We denote the sets resulting from the second
subphase by J”, JI', §"1, T"I.

SH? ’_I_’_l \_\—\_‘ T”?

gnt ’_,_l‘ \_i !

1 2 ¢ 2 4l

—

Fig. 4. The set J;' (after the rounding phase)

The combining phase of the algorithm involves the weight of the jobs. Let
J!, be the set of jobs in J” that arrive at s and depart at ¢. Assume the total
weight of jobs whose weight is at most v in J}} is ay. The combining phase
replaces these jobs by [a] jobs of weight v. We denote the resulting sets by J1}.
The set J'' is created by replacing every J,; with its corresponding J}}, that is,
J" = Us<t ‘:Itl‘

The solving phase of the algorithm solves the modified decision problem of
J'"" by building a layered graph. Every time o; € ¢ in which jobs arrive or depart
has its own set of vertices called a layer. In each layer we hold a vertex for every
possible assignment of the current active jobs to machines; that is, an assignment
whose makespan is at most A for a certain A. Two vertices of adjacent layers are
connected by an edge if the transition from one assignment of the active jobs to
the other is consistent with the arrival and departure of jobs at time ;. Now we
can simply check if there is a path from the first layer to the last layer.

In the converting phase the algorithm converts the assignment found for J'
into an assignment for J. Assume the number of jobs of weight v in J}} that are



assigned to a certain machine 7 is r;. Replace these with jobs smaller than v in

14 of total weight of at most (r; + 1)y. Note that all the jobs will be assigned
that way since the replacement involves jobs whose weight is at most y and from
volume consideration there is always at least one machine with a load of at most
r; of these jobs. The assignment for J” is also an assignment for J' and J.

4 Analysis

Lemma 1. Fora = m, given a solution whose makespan is A to the origi-
nal problem J, the same solution applied to J' has a makespan of at most X +¢.
Also, given a solution whose makespan is X to J', the same solution applied to
J has a makespan of at most A.

Proof. The second claim is obvious since the jobs in J are shorter than their
perspective jobs in J'. As for the first claim, every time 7 is contained in at
most [logn] sets J;. Consider the added load at 7 from jobs in a certain set J;.
Ifr< sil orT > til then the same load is caused by J and J;. Assume 7 < ¢; and
define sf"‘"l = ¢4, the other case is symmetrical. Then for some j, s{ <7< s{"’l
and the added load at 7 is at most the total load of Sg which is at most 2a.
Summing on all sets J;, we conclude that the maximal load has increased by at

most 2a[logn] =e.

Lemma 2. For 8 = ﬁ, given a solution whose makespan is A to the
gn]

problem J', the same solution applied to J' has a makespan of at most A(1+¢).

Also, given a solution whose makespan is A to J'', the same solution applied to

J' has a makespan of at most A.

Proof. The second claim is obvious since the jobs in J' are shorter than their
perspective jobs in J”. As for the first claim, given a time 7 and a pair of sets
$"7. T from J! we examine the increase in load at 7. If 7 < s or 7 > & it
is not affected by the transformation because no job in T’{ U S'{ arrives before
s! or departs after ¢J. Assume that 7 < ¢;, the other case is symmetrical. So
7 1s affected by the decrease in arrival time of jobs in T’g. It is clear that the
way we extend the jobs in T’{ increases the load at 7 by at most 3. Also, since
T > s{, we know that the load caused by S'{ is at least a if 7 < k;. Thus,
an extra load of at most 8 is created by every pair S’{, T’{ for 1 < j < ky
only if the pair contributes at least o to the load. Also, Sf" for all ¢ contributes
an extra load of at most B[logn]. Since the total load on all machines at any
time is at most Am, the increase in load and therefore in makespan is at most
Bxm 4 Bllogn] = 2 + % < e

B8

Lemma 3. For v = 2

= W, given a solution whose makespan is A
to the problem J", the modified problem J'' has a solution with & makespan of
A(l+€). Also, given a solution whose makespan is A to the modified problem J'",
the solution given by the converting phase for the problem J" has a makespan of
at most A(1 + ¢).



Proof. Consider a solution whose makespan is A to J". If the load of jobs smaller
than « in a certain J]; on a certain machine % is r;y, we replace it by at most [r;]
jobs of weight v. Note that this is an assignment to J'"' and that the increase
in load on every machine is at most v times the number of sets J}; that contain
jobs which are scheduled on that machine. As for the other direction, consider a
solution whose makespan is A to J'"’. The increase in load on every machine by
the replacement described in the algorithm is also at most v times the number
of sets J!, that contain jobs which are scheduled on that machine.

The number of sets J!} that can coexist at a certain time is at most Am since
the weight of each set is at least 8 and the total load at any time is at most Am.
Therefore, the increase in makespan is at most ’y"Tm =€

Lemma 4. The running time of the algorithm for solving the relazed decision
problem for X is bounded by O(n18*™ 1°6™me™"+1)  The punning time of the PTAS
is the above bound times O(log1/e).

Proof. Every layer in the graph stores all the possible assignments of jobs to
machines. Since the smallest job is of weight v, the maximum number of active
jobs at a certain time is )‘Tm So, the maximum number of edges in the graph

is nm?*% and the running time of the relaxed decision problem algorithms is

O(nm?*7%) = O(nmSAms[bg"]ﬁ) = O(n16*m*logme™*+1) The running time of
the PTAS is the above bound times O(log 1/¢) since there are O(log 1/¢) phases
in the binary search for the appropriate A.

5 The unrestricted number of machines case

In this section we show that in case the number of machines is given as part of the
input, the problem cannot be approximated up to a factor of 4/3 in polynomial
time unless P = N P. We show a reduction from the exact cover by 3-sets (X3C)
which is known to be NP-complete [4, 8]. In that problem, we are given a set of
3n elements, A = {a1,aq,...,a3,}, and a family F = {T4, ..., T} of m triples,
F CAxAxA. Our goal is to find a covering in F, i.e. a subfamily F' for which
|F’| = n and Ur,ermT; = A.

Given an instance for the X3C problem we construct an instance for our
problem. The number of machines is m, the number of triples in the original
problem. There are three phases in time. First, there are times 1,...,m, each
corresponding to one triple. Then, times m + 1,...,m 4 3n each corresponding
to an element of A. And finally, the two times m+3n+ 1,m + 3n + 2.

There are four types of jobs. The first type are m jobs of weight 3 starting
at time 0. Job r, 1 <7 < m ends at time r. For any appearance of a; in a triple
T; corresponds a job of the second type of weight 1 that starts at 7 and ends at
m + j and another job of the third type of weight 1 that starts at time m + j.
Among all the jobs that start at time m + j, one ends at m + 3n + 2 while the
rest end at m + 3n + 1. The fourth type of jobs are m — n jobs of weight 3 that
start at m+ 3n + 1 and end at m + 3n + 2.



IType'Il |Type'II| |Type'III| -

: 1
—
8 =

: 33

‘0 | 2 3 4 5 6 7 8 9 10 11 12

(a1) (a2) (as) (as) (as) (ae)
Fig.5. An assignment for the scheduling problem corresponding to m = 4, n = 2,

F={(1,2,3),(1,4,5),(4,5,6),(2,3,4)}

We show that there is a schedule with makespan at most 3 if and only if
there is an exact cover by 3-sets. Suppose there is a cover. We schedule a job
of the first type that ends at time 7 to machine i. We schedule the three jobs of
the second type corresponding to T; to machine i. At time m + j, some jobs of
type two depart and the same number of jobs of type three arrives. One of these
jobs is longer than the others since it ends at time m+ 3n + 2. We schedule that
longer job to machine 7 where 7; is the triple in the covering that contains j. At
time m + 3n 4+ 1 many jobs depart. We are left with 3n jobs, three jobs on each
of the n machines corresponding to the 3-sets chosen in the cover. Therefore, we
can schedule the m — n jobs of the fourth type on the remaining machines.

Now, assume that there is a schedule whose makespan is at most 3. One
important property of our scheduling problem is that at any time 7, 0 < 7 <
m+ 3n + 2 the total load remains at 3m so the load on each machine has to be
3. We look at the schedule at time m + 3n + 1. Many jobs of type three depart
and only the long ones stay. The number of these jobs is 3n and their weight is
1. Since m — n jobs of weight 3 arrive at time m + 3n + 1, the 3n jobs must be
scheduled on n machines. We take the triples corresponding to the n machines to
be our covering. Assume by contradiction that this is not a covering. Therefore,
there are two 3-sets that contain the same element, say a;. At time m 4 j only
one long job arrives. The machine in which a shorter job was scheduled remains
with a load of 3 until time m + 3n + 1 and then the short job departs and its
load decreases to at most 2. This is a contradiction since at time m + 3n + 1
there are n machines each with 3 long jobs.

Corollary 1. For everyp < %, there does not exist a polynomzial p-approzimation
algorithm for the temporary tasks assignment problem unless P = NP.



6

Acknowledgments

We are grateful to Jifi Sgall and Gerhard J. Woeginger for their helpful discus-

sions.

References

[1]

[9]

[10]

Y. Azar. On-line load balancing. In A. Fiat and G. Woeginger, editors, Online
Algorithms - The State of the Art, chapter 8, pages 178-195. Springer, 1998.

Y. Azar and L. Epstein. On-line load balancing of temporary tasks on identical
machines. In 5th Israeli Symp. on Theory of Computing and Systems, pages 119—
125, 1997.

A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman and
Company, San Francisco, 1979.

R.L. Graham. Bounds for certain multiprocessor anomalies. Bell System Technical
Journal, 45:1563-1581, 1966.

R.L. Graham. Bounds on multiprocessing timing anomalies. STAM J. Appl. Math,
17:263-269, 1969.

D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for
scheduling problems: Theoretical and practical results. J. of the ACM, 34(1):144-
162, January 1987.

R.M. Karp. Reducibility among Combinatorial Problems, R.E. Miller and
J.W. Thatcher (eds.), Complezity of Computer Computations. Plenum Press,
1972.

J.K. Lenstra, D.B. Shmoys, and E. Tardos. Approximation algorithms for schedul-
ing unrelated parallel machines. mathprog, 46:259-271, 1990.

S. Sahni. Algorithms for scheduling independent tasks. Journal of the Association
for Computing Machinery, 23:116-127, 1976.



