
O�-line Temporary Tasks AssignmentYossi Azar1 and Oded Regev21 Dept. of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel.azar@math.tau.ac.il ? ? ?2 Dept. of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel.odedr@math.tau.ac.ilAbstract. In this paper we consider the temporary tasks assignmentproblem. In this problem, there are m parallel machines and n inde-pendent jobs. Each job has an arrival time, a departure time and someweight. Each job should be assigned to one machine. The load on a ma-chine at a certain time is the sum of the weights of jobs assigned to itat that time. The objective is to �nd an assignment that minimizes themaximum load over machines and time.We present a polynomial time approximation scheme for the case inwhich the number of machines is �xed. We also show that for the casein which the number of machines is given as part of the input (i.e., not�xed), no algorithm can achieve a better approximation ratio than 43unless P = NP .1 IntroductionWe consider the o�-line problem of non-preemptive load balancing of temporarytasks on m identical machines. Each job has an arrival time, departure timeand some weight. Each job should be assigned to one machine. The load on amachine at a certain time is the sum of the weights of jobs assigned to it at thattime. The goal is to minimize the maximum load over machines and time. Notethat the weight and the time are two separate axes of the problem.The load balancing problem naturally arises in many applications involvingallocation of resources. As a simple concrete example, consider the case whereeach machine represents a communication channel with bounded bandwidth.The problem is to assign a set of requests for bandwidth, each with a speci�ctime interval, to the channels. The utilization of a channel at a speci�c time tis the total bandwidth of the requests, whose time interval contains t, which areassigned to this channel.Load balancing of permanent tasks is the special case in which jobs haveneither an arrival time nor a departure time. This special case is also known asthe classical scheduling problem which was �rst introduced by Graham [5, 6].He described a greedy algorithm called \List Scheduling" which has a 2 � 1mapproximation ratio where m is the number of machines. Interestingly, the same? ? ? Research supported in part by the Israel Science Foundation and by the US-IsraelBinational Science Foundation (BSF).

2analysis holds also for load balancing of temporary tasks. However, until now,it was not known whether better approximation algorithms for temporary tasksexist.For the special case of permanent tasks, there is a polynomial time approx-imation scheme (PTAS) for any �xed number of machines [6, 10] and also forarbitrary number of machines by Hochbaum and Shmoys [7]. That is, it is pos-sible to obtain a polynomial time (1 + �)-approximation algorithm for any �xed� > 0.In contrast we show in this paper that the model of load balancing of tempo-rary tasks behaves di�erently. Speci�cally, for the case in which the number ofmachines is �xed we present a PTAS. However, for the case in which the numberof machines is given as part of the input, we show that no algorithm can achievea better approximation ratio than 43 unless P = NP .Note that similar phenomena occur at other scheduling problems. For ex-ample, for scheduling (or equivalently, load balancing of permanent jobs) onunrelated machines, Lenstra et al. [9] showed on one hand a PTAS for a �xednumber of machines. On the other hand they showed that no algorithm with anapproximation ratio better than 32 for any number of machines can exist unlessP = NP .In contrast to our result, in the on-line setting it is impossible to improve theperformance of Graham's algorithm for temporary tasks even for a �xed numberof machines. Speci�cally, it is shown in [2] that for any m there is a lower boundof 2 � 1m on the performance ratio of any on-line algorithm (see also [1, 3]).Our algorithm works in four phases: the rounding phase, the combining phase,the solving phase and the converting phase. The rounding phase actually consistsof two subphases. In the �rst subphase the jobs' active time is extended: somejobs will arrive earlier, others will depart later. In the second subphase, theactive time is again extended but each job is extended in the opposite directionto which it was extended in the �rst subphase. In the combining phase, wecombine several jobs with the same arrival and departure time and unite theminto jobs with higher weights. Solving the resulting assignment problem in thesolving phase is easier and its solution can be converted into a solution for theoriginal problem in the converting phase.The novelty of our algorithm is in the rounding phase. Standard roundingtechniques are usually performed on the weights. If one applies similar techniquesto the time the resulting algorithm's running time is not polynomial. Thus, wehad to design a new rounding technique in order to overcome this problem.Our lower bound is proved directly by a reduction from exact cover by 3-sets.It remains as an open problem whether one can improve the lower bound usingmore sophisticated techniques such as PCP reductions.2 NotationWe are given a set of n jobs that should be assigned to one of m identicalmachines. We denote the sequence of events by � = �1; :::; �2n, where each event

3is an arrival or a departure of a job. We view � as a sequence of times, the time�i is the moment after the ith event happened. We denote the weight of job jby wj, its arrival time by aj and its departure time by dj. We say that a jobis active at time � if aj � � < dj. An assignment algorithm for the temporarytasks problem has to assign each job to a machine.Let Qi = fjjaj � �i < djg be the active jobs at time �i. For a given algorithmA let Aj be the machine on which job j is assigned. LetlAk (i) = XfjjAj=k;j2Qigwjbe the load on machine k at time �i, which is the sum of weights of all jobsassigned to k and active at this time. The cost of an algorithmA is the maximumload ever achieved by any of the machines, i.e., CA = maxi;klAk (i). We comparethe performance of an algorithm to that of an optimal algorithm and de�ne theapproximation ratio of A as r if for any sequence CA � r �Copt where Copt is thecost of the optimal solution.3 The Polynomial Time Approximation SchemeAssume without loss of generality that the optimal makespan is in the range(1; 2]. That is possible since Graham's algorithm can approximate the optimalsolution up to a factor of 2, and thus, we can scale all the jobs' weights by 2lwhere l denotes the value of Graham's solution.We perform a binary search for the value � in the range (1; 2]. For each valuewe solve the (1 + �) relaxed decision problem, that is, either to �nd a solution ofsize (1 + �)� or to prove that there is no solution of size �. From now on we �xthe value of �. c1J1 c2J2 c3J3c4J4 c5J5 c6J6 c7J7::: ::: ::: :::dlogne8>>>>>>>><>>>>>>>>: Fig. 1. Partitioning J into fJigIn order to describe the rounding phase with its two subphases we begin withde�ning the partitions based on which the rounding will be performed. We beginby de�ning a partition fJig of the set of jobs J . Let Mi be a set of jobs and

4consider the sequence of times � in which jobs of Mi arrive and depart. Sincethe number of such times is 2r for some r, let ci be any time between the r-thand the r + 1-st elements in that set. The set Ji contains the jobs in Mi thatare active at time ci. The set M2i contains the jobs in Mi that depart beforeor at ci and the set M2i+1 contains the jobs in Mi that arrive after ci. We setM1 = J and de�ne the M 's iteratively until we reach empty sets. The importantproperty of that partition is that the set of jobs that exist at a certain time ispartitioned into at most dlogne di�erent sets Ji.S1i T 1i�:::2�� S2i T 2i�:::2��s1i t1is2i t2ici ::::::Fig. 2. Partitioning Ji into fSji ; T ji g (Ri is not shown)We continue by further partitioning the set Ji. We separate the jobs whoseweight is greater than a certain constant � and denote them by Ri. We order theremaining jobs according to their arrival time. We denote the smallest pre�x ofthe jobs whose total weight is at least � by S1i . Note that its total weight is lessthan 2�. We order the same jobs as before according to their departure time.We take the smallest su�x whose weight is at least � and denote that set byT 1i . Note that there might be jobs that are both in S1i and T 1i . We remove thejobs and repeat the process with the jobs left in Ji and de�ne S2i ; T 2i ; :::; Skii ; T kii .The last pair of sets Skii and T kii may have a weight of less than �. We denoteby sji the arrival time of the �rst job in Sji and by tji the departure time of thelast job in T ji . Note that s1i � s2i � ::: � skii � ci � tkii � ::: � t2i � t1i .The �rst subphase of the rounding phase creates a new set of jobs J 0 whichcontains the same jobs as in J with slightly longer active times. We change thearrival time of all the jobs in Sji for j = 1; :::; ki to sji . Also, we change thedeparture time of all the jobs in T ji to tji . The jobs in Ri are left unchanged. Wedenote the sets resulting from the �rst subphase by J 0, J 0i , S0ji , T 0ji .The second subphase of the rounding phase further extends the active timeof the jobs of the �rst subphase. We take one of the sets J 0i and the partition wede�ned earlier to Ri; S01i [T 01i ; S02i [T 02i ; :::; S0kii [T 0kii . We order the jobs in S0jiaccording to an increasing order of departure time. We take the smallest pre�xof this ordering whose total weight is at least �. We extend the departure timeof all the jobs in that pre�x to the departure time of the last job in that pre�x.The process is repeated until there are no more jobs in S0ji . The last pre�x may

5S01i T 01i�:::2�� S02i T 02i�:::2��s1i t1is2i t2ici ::::::Fig. 3. The set J 0i (after the �rst subphase)have a weight of less than �. Similarly, extend the arrival time of jobs in T 0ji .The jobs in Ri are left unchanged. We denote the sets resulting from the secondsubphase by J 00, J 00i , S00ji , T 00ji .S001i T 001i�:::2�� S002i T 002i�:::2��s1i t1is2i t2ici ::::::Fig. 4. The set J 00i (after the rounding phase)The combining phase of the algorithm involves the weight of the jobs. LetJ 00st be the set of jobs in J 00 that arrive at s and depart at t. Assume the totalweight of jobs whose weight is at most in J 00st is a. The combining phasereplaces these jobs by dae jobs of weight . We denote the resulting sets by J 000st .The set J 000 is created by replacing every J 00st with its corresponding J 000st , that is,J 000 = [s<tJ 000st .The solving phase of the algorithm solves the modi�ed decision problem ofJ 000 by building a layered graph. Every time �i 2 � in which jobs arrive or departhas its own set of vertices called a layer. In each layer we hold a vertex for everypossible assignment of the current active jobs to machines; that is, an assignmentwhose makespan is at most � for a certain �. Two vertices of adjacent layers areconnected by an edge if the transition from one assignment of the active jobs tothe other is consistent with the arrival and departure of jobs at time �i. Now wecan simply check if there is a path from the �rst layer to the last layer.In the converting phase the algorithm converts the assignment found for J 000into an assignment for J . Assume the number of jobs of weight in J 000st that are

6assigned to a certain machine i is ri. Replace these with jobs smaller than inJ 00st of total weight of at most (ri + 1). Note that all the jobs will be assignedthat way since the replacement involves jobs whose weight is at most and fromvolume consideration there is always at least one machine with a load of at mostri of these jobs. The assignment for J 00 is also an assignment for J 0 and J .4 AnalysisLemma 1. For � = �2dlogne , given a solution whose makespan is � to the origi-nal problem J , the same solution applied to J 0 has a makespan of at most �+ �.Also, given a solution whose makespan is � to J 0, the same solution applied toJ has a makespan of at most �.Proof. The second claim is obvious since the jobs in J are shorter than theirperspective jobs in J 0. As for the �rst claim, every time � is contained in atmost dlogne sets Ji. Consider the added load at � from jobs in a certain set Ji.If � < s1i or � � t1i then the same load is caused by J 0i and Ji. Assume � < ci andde�ne ski+1i = ci, the other case is symmetrical. Then for some j, sji � � < sj+1iand the added load at � is at most the total load of Sji which is at most 2�.Summing on all sets Ji, we conclude that the maximal load has increased by atmost 2�dlogne = �.Lemma 2. For � = �24mdlogne , given a solution whose makespan is � to theproblem J 0, the same solution applied to J 00 has a makespan of at most �(1 + �).Also, given a solution whose makespan is � to J 00, the same solution applied toJ 0 has a makespan of at most �.Proof. The second claim is obvious since the jobs in J 0 are shorter than theirperspective jobs in J 00. As for the �rst claim, given a time � and a pair of setsS0ji , T 0ji from J 0i we examine the increase in load at � . If � < sji or � � tji itis not a�ected by the transformation because no job in T 0ji [S0ji arrives beforesji or departs after tji . Assume that � < ci, the other case is symmetrical. So� is a�ected by the decrease in arrival time of jobs in T 0ji . It is clear that theway we extend the jobs in T 0ji increases the load at � by at most �. Also, since� � sji , we know that the load caused by S0ji is at least � if j < ki. Thus,an extra load of at most � is created by every pair S0ji , T 0ji for 1 � j < kionly if the pair contributes at least � to the load. Also, Skii for all i contributesan extra load of at most �dlog ne. Since the total load on all machines at anytime is at most �m, the increase in load and therefore in makespan is at most���m + �dlog ne = ��2 + �24m � ��.Lemma 3. For = ��m = �34m2dlogne , given a solution whose makespan is �to the problem J 00, the modi�ed problem J 000 has a solution with a makespan of�(1+�). Also, given a solution whose makespan is � to the modi�ed problem J 000,the solution given by the converting phase for the problem J 00 has a makespan ofat most �(1 + �).

7Proof. Consider a solution whose makespan is � to J 00. If the load of jobs smallerthan in a certain J 00st on a certain machine i is ri, we replace it by at most driejobs of weight . Note that this is an assignment to J 000 and that the increasein load on every machine is at most times the number of sets J 00st that containjobs which are scheduled on that machine. As for the other direction, consider asolution whose makespan is � to J 000. The increase in load on every machine bythe replacement described in the algorithm is also at most times the numberof sets J 00st that contain jobs which are scheduled on that machine.The number of sets J 00st that can coexist at a certain time is at most �m� sincethe weight of each set is at least � and the total load at any time is at most �m.Therefore, the increase in makespan is at most �m� = ��.Lemma 4. The running time of the algorithm for solving the relaxed decisionproblem for � is bounded by O(n16�m3 logm��3+1). The running time of the PTASis the above bound times O(log1=�).Proof. Every layer in the graph stores all the possible assignments of jobs tomachines. Since the smallest job is of weight , the maximum number of activejobs at a certain time is �m . So, the maximum number of edges in the graphis nm2�m and the running time of the relaxed decision problem algorithms isO(nm2�m) = O(nm8�m3dlogne 1�3) = O(n16�m3 logm��3+1). The running time ofthe PTAS is the above bound times O(log 1=�) since there are O(log1=�) phasesin the binary search for the appropriate �.5 The unrestricted number of machines caseIn this section we show that in case the number of machines is given as part of theinput, the problem cannot be approximated up to a factor of 4=3 in polynomialtime unless P = NP . We show a reduction from the exact cover by 3-sets (X3C)which is known to be NP-complete [4, 8]. In that problem, we are given a set of3n elements, A = fa1; a2; :::; a3ng, and a family F = fT1; :::; Tmg of m triples,F � A �A �A. Our goal is to �nd a covering in F , i.e. a subfamily F 0 for whichjF 0j = n and [Ti2F 0Ti = A.Given an instance for the X3C problem we construct an instance for ourproblem. The number of machines is m, the number of triples in the originalproblem. There are three phases in time. First, there are times 1; :::;m, eachcorresponding to one triple. Then, times m + 1; :::;m+ 3n each correspondingto an element of A. And �nally, the two times m+ 3n+ 1;m+ 3n+ 2.There are four types of jobs. The �rst type are m jobs of weight 3 startingat time 0. Job r, 1 � r � m ends at time r. For any appearance of aj in a tripleTi corresponds a job of the second type of weight 1 that starts at i and ends atm + j and another job of the third type of weight 1 that starts at time m + j.Among all the jobs that start at time m + j, one ends at m + 3n+ 2 while therest end at m+ 3n+ 1. The fourth type of jobs are m� n jobs of weight 3 thatstart at m+ 3n+ 1 and end at m+ 3n+ 2.

8
0 1 2 3 4 5 6 7 8 9 10 11 12(a1) (a2) (a3) (a4) (a5) (a6)

Type I Type II Type III Type IVType I Type II Type III Type IV0123012301230123load 4321 machineFig. 5. An assignment for the scheduling problem corresponding to m = 4, n = 2,F = f(1; 2; 3); (1; 4; 5); (4; 5; 6); (2; 3; 4)gWe show that there is a schedule with makespan at most 3 if and only ifthere is an exact cover by 3-sets. Suppose there is a cover. We schedule a jobof the �rst type that ends at time i to machine i. We schedule the three jobs ofthe second type corresponding to Ti to machine i. At time m + j, some jobs oftype two depart and the same number of jobs of type three arrives. One of thesejobs is longer than the others since it ends at time m+3n+2. We schedule thatlonger job to machine i where Ti is the triple in the covering that contains j. Attime m+ 3n+ 1 many jobs depart. We are left with 3n jobs, three jobs on eachof the n machines corresponding to the 3-sets chosen in the cover. Therefore, wecan schedule the m � n jobs of the fourth type on the remaining machines.Now, assume that there is a schedule whose makespan is at most 3. Oneimportant property of our scheduling problem is that at any time � , 0 � � <m+ 3n+ 2 the total load remains at 3m so the load on each machine has to be3. We look at the schedule at time m + 3n+ 1. Many jobs of type three departand only the long ones stay. The number of these jobs is 3n and their weight is1. Since m � n jobs of weight 3 arrive at time m + 3n+ 1, the 3n jobs must bescheduled on n machines. We take the triples corresponding to the n machines tobe our covering. Assume by contradiction that this is not a covering. Therefore,there are two 3-sets that contain the same element, say aj . At time m + j onlyone long job arrives. The machine in which a shorter job was scheduled remainswith a load of 3 until time m + 3n + 1 and then the short job departs and itsload decreases to at most 2. This is a contradiction since at time m + 3n + 1there are n machines each with 3 long jobs.Corollary 1. For every � < 43 , there does not exist a polynomial �-approximationalgorithm for the temporary tasks assignment problem unless P = NP .

96 AcknowledgmentsWe are grateful to Ji�r�� Sgall and Gerhard J. Woeginger for their helpful discus-sions.References[1] Y. Azar. On-line load balancing. In A. Fiat and G. Woeginger, editors, OnlineAlgorithms - The State of the Art, chapter 8, pages 178{195. Springer, 1998.[2] Y. Azar and L. Epstein. On-line load balancing of temporary tasks on identicalmachines. In 5th Israeli Symp. on Theory of Computing and Systems, pages 119{125, 1997.[3] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis.Cambridge University Press, 1998.[4] M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman andCompany, San Francisco, 1979.[5] R.L. Graham. Bounds for certain multiprocessor anomalies. Bell System TechnicalJournal, 45:1563{1581, 1966.[6] R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math,17:263{269, 1969.[7] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms forscheduling problems: Theoretical and practical results. J. of the ACM, 34(1):144{162, January 1987.[8] R.M. Karp. Reducibility among Combinatorial Problems, R.E. Miller andJ.W. Thatcher (eds.), Complexity of Computer Computations. Plenum Press,1972.[9] J.K. Lenstra, D.B. Shmoys, and E. Tardos. Approximation algorithms for schedul-ing unrelated parallel machines. mathprog, 46:259{271, 1990.[10] S. Sahni. Algorithms for scheduling independent tasks. Journal of the Associationfor Computing Machinery, 23:116{127, 1976.

