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Abstra
tLet X = f1; 2; : : : ; ng be a ground set of n elements, and let S be a family of subsets of X ,jSj = m, with a positive 
ost 
S asso
iated with ea
h S 2 S.Consider the following online version of the set 
over problem, des
ribed as a game betweenan algorithm and an adversary. An adversary gives elements to the algorithm from X one-by-one. On
e a new element is given, the algorithm has to 
over it by some set of S 
ontainingit. We assume that the elements of X and the members of S are known in advan
e to thealgorithm, however, the set X 0 � X of elements given by the adversary is not known in advan
eto the algorithm. (In general, X 0 may be a stri
t subset of X .) The obje
tive is to minimizethe total 
ost of the sets 
hosen by the algorithm. Let C denote the family of sets in S thatthe algorithm 
hooses. At the end of the game the adversary also produ
es (o�-line) a familyof sets COPT that 
overs X 0. The performan
e of the algorithm is the ratio between the 
ost ofC and the 
ost of COPT . The maximum ratio, taken over all input sequen
es, is the 
ompetitiveratio of the algorithm.We present an O(logm logn) 
ompetitive deterministi
 algorithm for the problem, and es-tablish a nearly mat
hing 
� logn logmlog logm+log logn� lower bound for all interesting values of m andn. The te
hniques used are motivated by similar te
hniques developed in 
omputational learn-ing theory for online predi
tion (e.g., the WINNOW algorithm) together with a novel way of
onverting the fra
tional solution they supply into a deterministi
 online algorithm.1 Introdu
tionThe set 
over problem is de�ned as follows. Let X = f1; 2; : : : ; ng be a ground set of n elements,and let S be a family of subsets of X, jSj = m. A 
over is a 
olle
tion of sets su
h that their unionis X. Ea
h S 2 S has a non-negative 
ost 
(S) asso
iated with it. The goal is to �nd a 
over of�S
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minimum 
ost. The set 
over problem is a 
lassi
 NP-hard problem that was studied extensivelyin the literature, and the best approximation fa
tor a
hievable for it in polynomial time (assumingP 6= NP ) is �(log n) [6, 7, 9, 10℄.Consider the following online version of the set 
over problem, des
ribed as a game betweenan algorithm and an adversary. An adversary gives elements to the algorithm from X one-by-one.On
e a new element is given, the algorithm has to 
over it by some set of S 
ontaining it. Denote byX 0 � X the set of elements given by the adversary. Our assumption is that the set 
over instan
e,i.e. the elements of X and the members of S, is known in advan
e to the algorithm. The obje
tiveis to minimize the total 
ost of the sets 
hosen by the algorithm. However, the algorithm does notknow in advan
e the set of elements X 0 given by the adversary, i.e., X 0 may be a stri
t subset of Xin general. Let C denote the family of sets in S that the algorithm 
hooses. At the end of the gamethe adversary also produ
es (o�-line) a family of sets COPT that 
overs all the elements belongingto X 0. The performan
e of the algorithm is de�ned to be the ratio between the 
ost of C and the
ost of COPT . The maximum ratio, taken over all input sequen
es, is de�ned to be the 
ompetitiveratio of the algorithm.The online set 
over problem 
aptures many pra
ti
al s
enarios. Consider, for example, serversin a network that provide a servi
e. There is a set of potential 
lients that may need the servi
eand ea
h server 
an provide the servi
e to a subset of them. (E.g., the subset is determined by thedistan
e from the server.) There is a setup 
ost, or a
tivation 
ost, asso
iated with the operationof a server. The 
lients arrive one-by-one. Upon arrival of a 
lient, the network manager has tode
ide whi
h server to a
tivate so that the 
lient re
eives the servi
e it requested. The networkmanager knows in advan
e the set of potential 
lients and the set of servers, however, it does notknow in advan
e whi
h 
lients will indeed request the servi
e.1.1 ResultsOur main result is an O(logm log n) 
ompetitive algorithm for the online set 
over problem. We�rst present the algorithm for the unweighted 
ase, i.e., when all sets have unit 
ost. Then, wegeneralize the algorithm for the weighted 
ase, a
hieving the same 
ompetitive fa
tor. If ea
helement appears in at most d sets, and all sets have unit 
ost, then the 
ompetitive fa
tor of ouralgorithm 
an be improved to O(log d log n).The algorithm asso
iates a weight with ea
h set, initially all weights are equal. In ea
h iterationof the algorithm, when the adversary gives a new element, all the sets 
ontaining the elementmultiply their weight by a fa
tor (whi
h depends on the 
ost of the set, among other parameters).A set 
hooses itself to the solution with probability roughly proportional to the in
rease in itsweight. We de�ne a potential fun
tion that depends on the weight of the un
overed elements, the
ost of the sets already in the 
over, and the 
ost and weight of the sets not belonging to the 
over.The heart of our analysis is the 
laim that there exists a 
hoi
e of sets in ea
h iteration for whi
h thepotential fun
tion is non-in
reasing. This is proved by analyzing a suitable randomized 
hoi
e ofsets. We then show that the randomized 
hoi
e of the sets in ea
h iteration 
an be derandomized,thus making the online algorithm deterministi
, while maintaining the same 
ompetitive fa
tor.We note that knowing in advan
e the set 
over instan
e is 
ru
ial for making the online algorithmdeterministi
.A high level des
ription of the design of the algorithm is as follows. It starts by produ
ing online



a fra
tional solution to the problem, where the fra
tional solution (at least for the unweighted
ase) is motivated by similar te
hniques developed in 
omputational learning theory for onlinepredi
tion [11, 8℄ (e.g., the WINNOW algorithm). See also [5, 3, 4℄ for related te
hniques andadditional referen
es. Fra
tional solutions 
an often be 
onverted into randomized algorithms, butit is usually impossible to perform this 
onversion online. In our 
ase, however, this 
onversionis possible, be
ause of the way the fra
tional solution evolves in time. Finally, the randomizedalgorithm is 
onverted into a deterministi
 one by using an appropriate derandomization te
hnique.This derandomization is non-standard, as it has to apply to the online setting. The requirement tomaintain the properties of the online solution obtained leads to the potential fun
tion used.Our result is nearly tight. We prove a lower bound of 
� log n logmlog logm+log log n� on the 
ompetitivenessof any deterministi
 algorithm for the online set 
over problem for a wide range of the parametersm and n, and observe that this range 
annot be extended signi�
antly. Thus, our upper and lowerbounds almost mat
h for all interesting values of the parameters.We note that the problem 
onsidered here is di�erent from the online set 
over problem dis
ussedin [2℄. There, we are also given m sets and n elements that arrive one at a time. However, the goalof the online algorithm is to pi
k k sets so as to maximize the number of elements that are 
overed.The algorithm only gets 
redit for elements that are 
ontained in a set that it sele
ted before orduring the step in whi
h the element arrived. The authors of [2℄ showed a randomized �(logm log nk )
ompetitive algorithm for the problem, where the bound is optimal for many values of n, m, andk. This problem is di�erent from our problem here, as it deals with maximum bene�t, whereaswe 
onsider minimum 
ost. Indeed, it is easy to see that in 
ontrast to our 
ase, the problem in[2℄ does not yield any non-trivial deterministi
 algorithm, and the algorithms and te
hniques forthe two problems seem to be totally unrelated, despite the similarity in the des
ription of the twoproblems.2 The Unweighted CaseWe des
ribe in this se
tion an O(logm logn) 
ompetitive algorithm for the unweighted 
ase, i.e.,when all sets have unit 
ost.The algorithm maintains a weight wS > 0 for ea
h S 2 S. The weights 
an only in
rease duringthe run of the algorithm. Initially, wS = 1=(2m) for ea
h S 2 S. The weight of ea
h element j 2 Xis de�ned as wj =PS2Sj wS , where Sj denotes the 
olle
tion of sets 
ontaining element j. Initially,the algorithm starts with the empty 
over C = ;. De�ne C to be the set of all elements 
overedby the members of C. (Initially, C = ;.) The following potential fun
tion is used throughout thealgorithm: � = Xj 62C n2wjWe now give a high level des
ription of a single iteration of the algorithm in whi
h the adversarygives an element j and the algorithm 
hooses sets that 
over it.1. If wj � 1, then do not add any new set to C and do not update the weights of the sets.2. Else, (wj < 1), perform a weight augmentation:



(a) Let k be the minimal integer for whi
h 2k � wj > 1. (Clearly, 2k � wj < 2.)(b) For ea
h set S 2 Sj , wS  2k � wS .(
) Choose from Sj at most 4 log n sets to C so that the value of the potential fun
tion �does not ex
eed its value before the weight augmentation.In the following we analyze the performan
e of the algorithm and explain whi
h sets to add tothe 
over C in the weight augmentation step.Lemma 1. The total number of iterations in whi
h a weight augmentation step is performed is atmost jCOPT j � (logm+ 2).Proof. For ea
h subset S, wS � 2 always holds, sin
e the algorithm maintains in all iterationsthat wj � 2 for all elements j. Consider an iteration in whi
h the adversary gives element j. Aweight augmentation is performed in this iteration if and only if wj < 1. When doing a weightaugmentation, the weight of at least one set belonging to COPT is multiplied by a fa
tor greaterthan or equal to two. Sin
e the weight of ea
h set is initially 1=(2m) and at the end at most 2, itfollows that ea
h set 
an parti
ipate in at most log(4m) iterations in whi
h a weight augmentationis performed. Hen
e, the desired result follows.Lemma 2. Consider an iteration in whi
h a weight augmentation is performed. Let �s and �e bethe values of the potential fun
tion � before and after the iteration, respe
tively. Then, there existat most 4 log n sets that 
an be added to C during the iteration su
h that �e � �s.Proof. The proof is probabilisti
. Suppose that the adversary gives element j in the iteration.For ea
h set S 2 Sj , let wS and wS + ÆS denote the weight of S before and after the iteration,respe
tively. De�ne Æj =PS2Sj ÆS . The algorithm maintains that wj + Æj =PS2Sj (wS + ÆS) � 2.We now explain whi
h sets from Sj are added to C.Repeat 4 log n times:
hoose at most one set from Sj su
h that ea
h set S 2 Sj is 
hosen with probabilityÆS=2. (This 
an be implemented by 
hoosing a number uniformly at random in [0; 1℄,sin
e Æj=2 � 1.)Consider an element j0 2 X su
h that j0 =2 C. Let the weight of j0 before the iteration be wj0and let the weight after the iteration be wj0+ Æj0 . Element j0 
ontributes before the iteration to thepotential fun
tion the value n2wj0 . In ea
h random 
hoi
e, the probability that we do not 
hoosea set 
ontaining element j0 is 1 � Æj02 . The probability that this happens in all the 4 log n random
hoi
es is therefore (1� Æj02 )4 log n � n�2Æj0 .Therefore, the expe
ted 
ontribution of element j0 to the potential fun
tion after the iterationis at most n�2Æj0n2(wj0+Æj0 ) = n2wj0 :By linearity of expe
tation it follows that Exp[�e℄ � �s. Hen
e, there exists a 
hoi
e of at most4 log n sets su
h that �e � �s.



Theorem 3. At the end of the algorithm, C is a feasible 
over of X 0 and jCj is O(jCOPT j logm log n):Proof. Initially, the value of the potential fun
tion � is less than n �n = n2. It follows from Lemma2 that � is non-in
reasing throughout the iterations. Therefore, if wj � 1 for an element j duringthe algorithm, then j 2 C, otherwise � � n2wj � n2. Hen
e, C is a feasible 
over. It followsfrom Lemma 1 that the number of iterations is at most jCOPT j � (logm+ 2). By Lemma 2, in ea
hiteration we 
hoose at most 4 log n sets to C. Therefore, the total number of sets 
hosen by thealgorithm is as 
laimed.Remark: If every element appears in at most d sets, then the algorithm 
an be modi�ed by startingwith the weights wS = 1=(2d) for ea
h S 2 S, and the 
ompetitive fa
tor 
an be improved in this
ase to O(log d log n).3 The Weighted CaseWe des
ribe in this se
tion an O(logm log n) 
ompetitive algorithm for the weighted 
ase. For ea
hset S 2 S, a positive 
ost 
S is asso
iated with the set. The 
ost of the optimal solution, 
(COPT ),is denoted by �.Note, �rst, that we may assume, by doubling, that the value of � is known up to a fa
tor of 2.Indeed, we 
an start guessing � = minS2S
S , and run the algorithm with this value of the optimalsolution. If it turns out that the value of the optimal solution is already at least twi
e our 
urrentguess for it, (that is, the 
ost of C ex
eeds �(� logm log n)), then we \forget" about all sets 
hosenso far to C, update the value of � by doubling it, and 
ontinue on. We note that the 
ost of thesets that we have \forgotten" about 
an in
rease the 
ost of our solution by at most a fa
tor of 2,sin
e the value of � was doubled in ea
h step.We thus assume that � is known. Hen
e, we 
an ignore all sets of 
ost ex
eeding �, and also
hoose all sets of 
ost at most �=m to C. Thus, we assume that all 
osts are between �=m and �,and further normalize the 
osts so that the minimum 
ost is 1 (and hen
e the maximum 
ost is atmost m).We now des
ribe an online algorithm with 
ompetitive fa
tor (6 + o(1)) logm log n, (assumingthat � is known), where the o(1) term tends to zero as n and m tend to in�nity. It is worth notingthat the 
onstant 6 + o(1) 
an be improved to 2 + o(1) by being somewhat more 
areful, but weprefer to des
ribe the algorithm with the inferior 
onstant, to simplify the 
omputation. From nowon, all o(1) terms denote terms that tend to zero as n and m tend to in�nity. All logarithms are inthe natural basis e.As in the unweighed 
ase, the algorithm maintains a weight wS > 0 for ea
h S 2 S. Theweights 
an only in
rease during the run of the algorithm. Initially wS = 1=m2 for ea
h S 2 S.The weight of ea
h element j 2 X is de�ned as wj =PS2Sj wS, where Sj denotes the 
olle
tion ofsets 
ontaining element j.Initially, the algorithm starts with the empty 
over C = ;. De�ne C to be the set of all elements




overed by the members of C. The following potential fun
tion is used throughout the algorithm:� = Xj 62C n2wj + n � exp 12� XS2S(
S�C(S)� 3wS
S logn)! :The fun
tion �C above is the 
hara
teristi
 fun
tion of C, that is, �C(S) = 1 if S 2 C, and �C(S) = 0otherwise.We now give a high level des
ription of a single iteration of the algorithm in whi
h the adversarygives an element j and the algorithm 
hooses sets that 
over it.1. If wj � 1, then do not add any new set to C and do not update the weights of the sets.2. Else, (wj < 1), perform a sequen
e of weight augmentation steps as long as wj < 1:(a) For ea
h S 2 Sj , wS  wS � (1 + 1n�
S )(b) Choose from Sj sets to C so that the value of the potential fun
tion � does not ex
eedits value before the weight augmentation.In the following we analyze the performan
e of the algorithm and explain whi
h sets to add tothe 
over C in the weight augmentation step.Lemma 4. The total number of weight augmentation steps performed during the algorithm is atmost XS2COPT (n � 
S + 1) log�m2 �1 + 1n�� � (2 + o(1))n� logm:Proof. Obviously, for ea
h subset S, wS � 1 + 1n�
S always holds. Consider an iteration in whi
hthe adversary gives element j. A weight augmentation is performed in this iteration as long aswj < 1. When doing a weight augmentation, the weight of at least one set S 2 COPT is multipliedby a fa
tor of (1 + 1n�
S ). Sin
e the weight of ea
h set is initially 1=m2 and at the end at most(1 + 1=n), it follows that ea
h set S parti
ipates in at most (n � 
S + 1) log �m2 �1 + 1n�� steps inwhi
h a weight augmentation is performed. Hen
e, the desired result follows.Lemma 5. The following is maintained throughout the algorithm:XS2SwS
S � (2 + o(1))� logm:Proof. Consider an iteration in whi
h the adversary gives element j. We start with weights satis-fying XS2Sj wS � 1;and in
rease the weight of ea
h set S in Sj by wS=(n � 
S) in ea
h step. Thus, the total in
rease ofthe quantity PS2S wS
S in a step does not ex
eedXS2Sj wSn
S 
S = XS2Sj wSn � 1n:



Initially, PS2S wS
S � m � 1m2 �m = 1, and the result thus follows from Lemma 4 that bounds thenumber of weight augmentation steps.Lemma 6. Consider a step in whi
h a weight augmentation is performed. Let �s and �e be thevalues of the potential fun
tion � before and after the step, respe
tively. Then, there exist sets that
an be added to C during the step su
h that �e � �s.Proof. The proof is probabilisti
. Suppose that the adversary gives element j in the iteration. Forea
h set S 2 Sj , let wS and wS + ÆS denote the weight of S before and after the step, respe
tively.De�ne Æj =PS2Sj ÆS .We now explain whi
h sets from Sj are added to C. Independently, for ea
h S 2 Sj , set S isadded to C with probabilty 1 � n�2ÆS . (This is roughly the same as 
hoosing S with probabilityÆS=2 and repeating this 4 log n times.) Let C0 denote the 
over obtained from C by adding to it therandomly 
hosen sets.We �rst bound the expe
ted value of the �rst term of the potential fun
tion. This is similar tothe unweighted 
ase. Consider an element j0 2 X su
h that j0 =2 C. Let the weight of j0 before thestep be wj0 and let the weight after the step be wj0 + Æj0 . Element j0 
ontributes before the step tothe �rst term of the potential fun
tion the value n2wj0 . The probability that we do not 
hoose a set
ontaining element j0 is n�2Æj0 . Therefore, the expe
ted 
ontribution of element j0 to the potentialfun
tion after the step is at most n�2Æj0n2(wj0+Æj0 ) = n2wj0 : By linearity of expe
tation it followsthat the expe
ted value of Pj 62C n2wj after the step is pre
isely its value before the step.It remains to bound the expe
ted value of the se
ond term of the potential fun
tion. LetT = n � exp 12� XS2S(
S�C(S)� 3wS
S log n)!denote the value of the se
ond term of the potential fun
tion before the step, and let T 0 denote thesame term with respe
t to the 
over C0. Sin
e the 
hoi
es of di�erent sets are independent, andthe random variable T 0 
an be viewed as a produ
t of independent random variables, its expe
tedvalue is the produ
t of the 
orresponding expe
ted values. Therefore,Exp[T 0℄ = n � exp � 12� XS2S 3(wS + ÆS)
S logn!� YS2SExp �exp� 12�
S�C0(S)�� (1)Fix an S 2 S. If the weight of S was not 
hanged during the step, or if it was 
hanged even thoughS 2 C (i.e., j is 
overed, but wj < 1), then the expe
ted value of exp( 12� � 
S�C0(S)) is pre
isely itsvalue before the step. Therefore, if we let S 0 denote the family of all sets S 2 S n C whose weightswere 
hanged during the weight augmentation step, then the expe
ted value in (1) is pre
iselyExp[T 0℄ = T � exp � 12� XS2S 3ÆS
S log n!� YS2S0Exp �exp� 12�
S�C0(S)�� : (2)



Consider, now, an S 2 S 0. S did not belong to C before the step, and after the step, the probabilitythat �C0(S) = 1 is 1� n�2ÆS . Thus,Exp �exp� 12�
S�C0(S)�� (3)= n�2ÆS + (1� n�2ÆS) � exp� 
S2�� (4)� 1� 2ÆS logn+ 2ÆS logn exp� 
S2�� (5)= 1 + 2ÆS logn�exp� 
S2��� 1� (6)� 1 + 2ÆS logn3
S4� (7)� exp�3ÆS
S log n2� � : (8)Here, (5) follows sin
e for all x � 0 and z � 1, e�x + (1� e�x) � z � 1� x+ x � z, (7) follows sin
eey� 1 � 3y=2 for all 0 � y � 1=2, and (8) follows sin
e 1+x � ex for all x � 0. Plugging in (2), we
on
lude that the expe
ted value of the se
ond term after the step and random 
hoi
es is at mostExp[T 0℄ = T � exp � 12� XS2S 3ÆS
S log n!� YS2S0 exp� 12�3ÆS
S logn� � T:By linearity of expe
tation it now follows that Exp[�e℄ � �s. Therefore, there exists a 
hoi
e ofsets from Sj su
h that �e � �s.Theorem 7. Throughout the algorithm, the following properties hold.(i)Every j 2 X of weight wj � 1 is 
overed, that is, j 2 C.(ii) PS2C 
S � (6 + o(1))� logm log n:Proof. Initially, the value of the potential fun
tion � is at most n �n2=m+n < n2, and hen
e it stayssmaller than n2 during the whole algorithm. Therefore, if wj � 1 for some j during the pro
ess,then j 2 C, sin
e otherwise the 
ontribution of the term n2wj itself would be at least n2. Thisproves part (i). To prove part (ii), note that by the same argument, throughout the algorithmn � exp 12� XS2S 
S�C(S)� 3wS
S logn! < n2:Therefore, XS2S 
S�C(S) � XS2S 3wS
S log n+ 2� logn;and the desired result follows from Lemma 5.



4 DerandomizationThe 
hoi
es of the various sets S to be added to C after ea
h iteration 
an be done deterministi
allyand eÆ
iently, by the method of 
onditional probabilities, 
.f., e.g., [1℄, 
hapter 15. In fa
t, this
an be done here in a very simple way. A 
lose look at the proof in the last se
tion shows that we
an simply de
ide, after ea
h weight augmentation, for ea
h set whose weight has been in
reasedin its turn, if we add it to C or not, making sure that the potential fun
tion will not in
rease afterea
h su
h 
hoi
e. The details will appear in the full version of the paper.We note that knowing in advan
e the set 
over instan
e is 
ru
ial for making the online algorithmdeterministi
. To see this, 
onsider the following example where the sets 
ontaining an elementj are revealed only when the adversary gives element j to the algorithm. The set 
over instan
e
ontains elements f1; 2; : : : ; ng and sets S1; : : : Sn. The adversary gives the algorithm the elementsin the order 1; 2; : : : ; n. Assume indu
tively that the algorithm has used sets S1; : : : Si for 
overingelements 1; : : : ; i. When element i+1 is given, the sets 
ontaining it are Si+1; : : : ; Sn. Without lossof generality we 
an assume that the algorithm used set Si+1 for 
overing element i + 1. Clearly,the adversary 
an 
over all the elements with a single set, Sn, yielding a 
ompetitive ratio of n.5 Lower BoundIn this se
tion we show that for every �xed Æ > 0 and every m and n satisfyinglog n � m � en1=2�Æ ; (9)there is a family F of m subsets of X, jXj = n, so that the 
ompetitive ratio of any deterministi
online algorithm for the (unweighted) online set 
over problem with X and F is at least
� logn logmlog logm+ log logn� : (10)Before des
ribing the proof, we note that the assumption (9) is essentially optimal. Let OPTdenote the value of the optimum (o�-line) solution to the problem. Note, �rst, that the problemhas a trivial algorithm with 
ompetitive ratio m (that simply takes all sets after the �rst elementappears), showing that for m < (log n)1�� the above lower bound (10) fails. (In fa
t, we may alwaysassume that m � log2 n, sin
e all the elements that lie in the same 
ell of the Venn diagram of thesets in F 
an be repla
ed by a single element, without any 
hange in the problem.) It is also easy tosee that the problem has a simple algorithm with 
ompetitive ratio O(pn); when the �rst elementarrives, we pi
k, repeatedly, all sets that 
over at least pn members of X among those not 
overedso far. Note that after this pro
ess terminates, there are at most OPTpn yet un
overed elementsthat 
an appear, and hen
e even if from now on we pi
k an arbitrarily 
hosen set for ea
h newelement, the algorithm will 
hoose at most pn + OPTpn sets altogether. (By being a bit more
areful we 
an a
tually get an O(pn=OPT )-
ompetitive algorithm this way. The details are left tothe reader). This dis
ussion shows that for m > en1=2+Æ the lower bound (10) also fails. Therefore,both inequalities in the assumption (9) are needed.Proposition 8. Let X = f0; 1; 2; : : : ; n� 1g be a set of n = 2k elements. For ea
h 1 � i � k, letFi be the set of all elements j of X so that the ith bit in the binary representation of j is on, and



let F be the family of all k sets Fi. Then, the 
ompetitive ratio of the best deterministi
 algorithmfor the online set 
over problem (X;F) is jFj = k = log2 n.Proof. The adversary starts by giving the number n� 1 in whi
h all bits are on. If the algorithm
overs it by Fi1 , then the adversary gives the number in whi
h all bits are on besides the i1th bit.The algorithm 
overs it by Fi2 and the adversary gives the number in whi
h all bits are on besidesthe i1th and i2th bits, and so on. Clearly, the algorithm will have to 
hoose this way all k sets,while the optimal solution 
onsists of only one set: the last set 
hosen by the algorithm.The above proposition and some obvious modi�
ation of the family F for bigger values of mimplies that the lower bound (10) holds for all m satisfying, say, log2 n � m � (log2 n)3. It thusremains to establish the lower bound for pairs n;m satisfying (log n)3 � m � en1=2�Æ . This is donein what follows.Let k; r be positive integers. Suppose n � 2kkr2, and let X1;X2; : : : ;Xkr2 be kr2 pairwisedisjoint blo
ks of elements in X = f1; 2; : : : ; ng, ea
h of size 2k. For a blo
k Xb and a bit lo
ationt, with 1 � t � k, let Xb(t) denote the set of all elements in Xb in whi
h the tth bit is on. For ea
hsubset R = fb1; b2; : : : ; brg of size r of f1; 2; : : : ; kr2g, with b1 < b2 : : : < br, and for ea
h sequen
eof 
hoi
es of bit lo
ations I = (i1; i2; : : : ; ir), where 1 � it � k for all t, de�neFR;I = [rt=1Xbt(it):Note that ea
h su
h set 
ontains elements from r blo
ks, and in ea
h su
h blo
k it 
ontains half ofthe elements. Let F denote the family of all sets FR;I as above. Therefore, m = jFj = �kr2r �kr.We next show that given any deterministi
 algorithm, an adversary 
an 
hoose kr elements inX, for
ing the algorithm to pi
k kr sets from F , while keeping the value of the optimum solutionto be 1. The adversary starts by pi
king a blo
k, say the �rst one, and by following the strategydes
ribed in the proof of Proposition 8 in this blo
k. That is, the �rst 
hosen element is the memberof X1 in whi
h all bits are on, when the algorithm 
overs it by a set in whi
h the i1 is on in X1,the adversary 
hooses the element of X1 in whi
h all bits are on besides i1, and so on. After k su
hsteps the algorithm used already k sets. These sets 
ontain elements in at most 1 + (r � 1)k < krdistin
t blo
ks. The adversary will not 
hoose any elements of these blo
ks from now on, pi
kanother blo
k, and repeat the same pro
ess of making k 
hoi
es in this blo
k. This 
an be repeatedr times, while still enabling the adversary to 
over all elements pi
ked by one set, implying thedesired result.By adding, if needed, some extra 2kkr2 elements and some of their subsets whi
h we will notuse, this implies the following.Proposition 9. For every positive integers k; r, and every n;m satisfying n � 2k+1kr2 and 22kkr2 �m � �kr2r �kr, there is an example of an online set 
over problem with n elements and m sets inwhi
h the 
ompetitive ratio of any deterministi
 algorithm is at least kr.Suppose, now, that n;m are large and satisfy (9). If m � (log n)3, the required lower bound(10) follows from Proposition 8, as mentioned after its proof. Otherwise, one 
an de�ne r =�( logmlog logm+log log n) and k = 
(logn) su
h that n � 2k+1kr2 and 22kkr2 � m � �kr2r �kr. Therequired bound now follows from Proposition 9.



6 Con
luding remarks� We des
ribed a deterministi
 O(logm log n) 
ompetitive algorithm for the online weightedset 
over problem for a set X, jXj = n and a family F , jFj = m, and showed that this isoptimal, up to a log logn+ log logm fa
tor. For some families of subsets F , one 
an obtainonline algorithms with better performan
e. It may be interesting to identify properties of thefamily F that imply the existen
e of algorithms with better performan
e.� In ea
h weight augmentation step in the algorithm des
ribed in Se
tion 3, the weight wS ofea
h set S is in
reased by a fa
tor of (1 + 1n
S ). The fa
tor n appearing here is simply forthe sake of obtaining a better absolute 
onstant in the analysis, and one 
an in fa
t augmentthe weight of S by a fa
tor of (1 + 1
S ) without any real 
hange in the performan
e. Thisis useful when we 
are about the eÆ
ien
y of our algorithm, as it de
reases the number ofsteps in whi
h we have to add sets to the 
olle
tion C. In fa
t, it is possible to des
ribe aslightly modi�ed version of the algorithm where after the adversary presents an element jwith wj < 1, the weight of ea
h set S 
ontaining j is in
reased from wS to wS � exp( x
S ),where x > 0 is 
hosen so that after the augmentation wj = 1. This, and the brief dis
ussionin Se
tion 4, enables the algorithm to 
onsider all the sets 
ontaining j only on
e after theadversary presents it.� The te
hnique of 
onverting an online fra
tional solution into a randomized algorithm (andlater a deterministi
 one) used here 
an be applied when the fra
tional solution is monotonein
reasing during the algorithm. We believe that this method is likely to be useful in futureappli
ations as well.A
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