
A General Approah to Online Network Optimization ProblemsNoga Alon� Baruh Awerbuhy Yossi Azarz Niv Buhbinder xJoseph (SeÆ) Naor {AbstratWe study a wide range of online graph and network optimization problems, fousing on problems thatarise in the study of onnetivity and uts in graphs. In a general online network design problem, we have aommuniation network known to the algorithm in advane. What is not known in advane are the bandwidthor ut demands between nodes in the network. Our results inlude an O(logm log n) ompetitive randomizedalgorithm for the online non-metri faility loation and for a generalization of the problem alled the multiastproblem. In the non-metri faility loation m is the number of failities and n is the number of lients. Theompetitive ratio is nearly tight. We also present an O(log2 n log k) ompetitive randomized algorithm for theonline group Steiner problem in trees and an O(log3 n log k) ompetitive randomized algorithm for the problemin general graphs, where n is the number of verties in the graph and k is the number of groups. Finally,we design a deterministi O(log3 n log log n) ompetitive algorithm for the online multi-ut problem. Ouralgorithms are based on a uni�ed framework for designing online algorithms for problems involving onnetivityand uts. We �rst present a general O(logm)-deterministi algorithm for generating frational solution thatsatis�es the online onnetivity or ut demands, where m is the number of edges in the graph. This may beof independent interest for solving frational online bandwidth alloation problems, and is appliable to thenode version as well. The integral solutions are obtained by an online rounding of the frational solution. Thispart of the framework is problem dependent, and applies various tools inluding results on the approximatemax-ow min-ut for multiommodity ow, the HST method and its extensions, ertain rounding tehniquesfor dependent variables, and R�ake's new hierarhial deomposition of graphs.1 IntrodutionWe study a wide range of graph and network optimization problems, fousing on problems that arise in the studyof onnetivity and uts in graphs. Suh problems are assoiated with an input graph G = (V;E) (diretedor undireted), a ost funtion  : E ! R+ , and a requirement funtion f (to be de�ned for eah problemseparately). The goal is to �nd a minimum ost subgraph that satis�es f . Our model is online; that is, therequirement funtion is not known in advane and it is given \step by step" to the algorithm, while the inputgraph is known in advane.Network design problems are typially de�ned by a requirement funtion f that spei�es for eah ut in thegraph the minimum overage required for it. Sine we are onsidering an online version of network design problemswe onentrate on the following sublass whih we all generalized onnetivity. The requirement funtion f is aset of demands of the form D = (S; T ), where S and T are subsets of verties in the graph suh that S \ T = ;.A feasible solution is a set of edges, suh that for eah demand D = (S; T ) there is a path from a vertex in Sto a vertex in T . Examples of problems belonging to this lass are Steiner trees, generalized Steiner trees, and�Shools of Mathematis and Computer Siene, Raymond and Beverly Sakler Faulty of Exat Sienes, Tel Aviv University, TelAviv, Israel. Email: nogaa�post.tau.a.il. Researh supported in part by a US-Israel BSF grant, by the Israel Siene Foundationand by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University.yJohns Hopkins University, Baltimore, MD 21218. E-mail: baruh�blaze.s.jhu.edu. Supported by Air Fore ContratTNDGAFOSR-86-0078, ARPA/Army ontrat DABT63-93-C-0038, ARO ontrat DAAL03-86-K-0171, NSF ontrat 9114440-CCR,DARPA ontrat N00014-J-92-1799, and a speial grant from IBM.zShool of Computer Siene, Raymond and Beverly Sakler Faulty of Exat Sienes, Tel Aviv University, Tel Aviv, Israel.Email: azar�post.tau.a.il. Researh supported in part by the Israel Siene Foundation and by the IST Program of the EU.xComputer Siene Dept., Tehnion, Haifa 32000, Israel. E-mail: nivb�s.tehnion.a.il.{Computer Siene Dept., Tehnion, Haifa 32000, Israel. E-mail: naor�s.tehnion.a.il. Researh supported in part by a US-IsraelBSF grant, and by EU ontrat IST-1999-14084 (APPOL II).



the group Steiner problem. Less obvious examples are the set over problem and the non-metri faility loationproblem, desribed below.Cut problems in graphs involve separating sets of verties from eah other. We onentrate on a family of utproblems whih we all generalized uts. The requirement funtion f is a set of demands of the form D = (S; T ),where S and T are subsets of verties in the graph suh that S \ T = ;. A feasible solution is a set of edges thatseparates for eah demand D = (S; T ), any two verties s 2 S and t 2 T . Examples of problems belonging to thislass are multiway uts and multi-ut.There is a natural linear relaxation for the problems that we are onsidering. For generalized onnetivityproblems, a feasible frational solution assoiates a frational weight (apaity) with eah edge, suh that for eahdemand D = (S; T ) a unit of ow an be sent from S to T , where the ow on eah edge does not exeed its weight.For generalized uts, a feasible frational solution assoiates a frational weight (length) with eah edge, whihwe interpret as induing a distane funtion. The onstraint is that for eah demand D = (S; T ), the distanebetween any two verties s 2 S and t 2 T is at least 1. Sine many of the problems that we are onsidering areNP-hard, this linear relaxation is very useful for omputing an approximate solution. Please refer to [17℄ for moredetails. In addition, frational solutions have a motivation of their own in ertain network design problems andbandwidth alloation problems.Previous work: Network optimization problems in an online setting have been studied extensively. The onlineSteiner problem was onsidered in [14℄ who gave an O(log n)-ompetitive algorithm and showed that in a generalmetri spae this is indeed best possible. The generalized Steiner problem was onsidered in [3℄, where anO(log2 n)-ompetitive algorithm is given. This was improved to an O(log n)-ompetitive ratio algorithm by[5℄. The online version of the metri faility loation problem was also onsidered reently. Meyerson [15℄gave a randomized O(log n)-ompetitive algorithm whih was improved to a deterministi �( lognlog log n )-ompetitivealgorithm by Fotakis [7℄. Reently, a deterministi online O(log n logm)-ompetitive algorithm for the set overproblem was given by [1℄ where n is the number of elements and m is the number of sets. A lower bound of
( logn logmlog logm+log logn ) was also shown for any deterministi online algorithm for the online set over problem.There is a vast literature on eÆient approximation algorithms for problems involving onnetivity and uts.The reader is referred to [13, 17℄ for more details.1.1 Results. We study generalized onnetivity and uts problems in a uni�ed framework. The idea is to�rst ompute a frational solution online and then round this solution to an integral one. We provide a generaldeterministi proedure that omputes a near-optimal frational solution to any problem belonging to our lassof problems. Spei�ally, the ompetitive ratio that we ahieve is O(logm), where m is the number of edges inthe graph. This algorithm an easily be extended to the vertex ounterparts of the problems. We also show amathing lower bound of 
(logm) on the ompetitive ratio of any deterministi or randomized algorithm for thisproblem. Our algorithm draws on ideas taken from the algorithm of [1℄ for the online set over problem.We next desribe our results on onverting online a frational solution into an integral solution. This roundingis problem dependent and we desribe the rounding for eah of the speial ases onsidered.The �rst problem we onsider is non-metri faility loation. In this problem we are given a set of possiblefailities, eah with a setup ost, and a set of lients, eah with a onnetion ost to the failities. The goalis to �nd a solution that minimizes the sum of the setup osts and the servie osts. In the online ase of thenon-metri faility loation, lients arrive online. The set over problem is a speial ase of this problem in whihthe failities are sets and the onnetion ost is either zero or in�nite, depending on whether or not an elementbelongs to a set.Next, we onsider the multiast problem that generalizes the non-metri faility loation problem. In themultiast problem we are given a set of weighted rooted trees ontaining a set of terminals. Eah terminal isassoiated with at most one node in eah tree. The goal is to �nd a minimum weight set of subtrees that ontainall the terminals, where a subtree must ontain the root of the tree it belongs to. In the online ase, the terminalsarrive online, and upon arrival of a terminal it is neessary to onnet it to the root of a tree ontaining it. Thenon-metri faility loation is a speial ase of the multiast problem. Eah faility orresponds to a tree of depthtwo. A tree has one edge emanating from the root with weight equal to the setup ost of the faility, and thenthere are edges to the leaves, where eah leaf orresponds to a lient, and the weight of an edge is equal to theonnetion ost of the lient to the faility.Finally, in the realm of generalized onnetivity, we onsider the group Steiner problem on trees and general



graphs [9℄. In the group Steiner tree problem on a rooted tree we are given a weighted rooted tree T = (V;E; r),and groups g1; g2; : : : gk � V . The goal is to �nd a minimum rooted subtree T 0 = (V 0; E0; r) that ontains at leastone vertex from eah group. In the online version of the problem, the groups arrive online. The multiast problemis a speial ase of the group Steiner problem on rooted trees. Given an instane of the multiast problem, theroots of the trees an be onneted to a joint root using edges of zero weight. A group ontains all the nodesassoiated with a partiular terminal. Notie that this redution reates a speial instane of the group Steinertree problem in whih any two paths from the root to verties belonging to the same group are disjoint.In the multi-ut problem we are given an undireted graph with osts (apaities) and a set of soure-sinkpairs. The goal is to �nd a minimum ost set of edges that disonnets eah soure-sink pair. In the online versionof the problem, the soure-sink pairs arrive online, and upon arrival of a pair it is neessary to disonnet it. Weshow an online algorithm for the multi-ut problem using the onstrutive version of a remarkable result of R�ake[16℄ for the hierarhial deomposition of graphs ([6℄ and [12℄) together with an approximate max-ow min-uttheorem on trees [11℄. This deomposition is used along with an online primal-dual algorithm for the problem ontrees.Spei�ally, we obtain the following results.� A randomized O(logm logn) ompetitive algorithm for the online multiast problem on trees, where m isthe number of edges, and n is the number of requested terminals.� A randomized O(logm logn) ompetitive algorithm for the online non-metri (and metri) faility loationproblem, where m is the number of possible failities and n is the number of lients.� A randomized O(log2 n log k)-ompetitive algorithm for the online group Steiner problem on trees, where kis the number of groups, and n is the number of leaves in the tree. This implies a randomized O(log3 n log k)-ompetitive algorithm for general graphs using hierarhially well-separated trees [4, 8℄� A deterministi O(log3 n log logn) ompetitive algorithm for the online multi-ut problem in general graphs.Improved bounds are obtained for planar graphs and for trees.2 PreliminariesIn this setion we formally de�ne our problems. Let G = (V;E) be a graph (direted or undireted) with ostfuntion  : E ! R+ assoiated with the edge set E. Suppose further that there is a weight funtion (or apaityfuntion) w : E ! R+ assoiated with the edge set E. The ost of w is de�ned to be Pe2E wee.Let A � V and B � V be subsets of V suh that A\B = ;. Let G0 be the graph obtained from G by addinga super-soure s onneted to all verties in A and a super-sink t onneted to all verties in B. The edges from sto A are direted into A and have in�nite weight, and the edges from B to t are direted into T and have in�niteweight. There is ow from A to B of value � if there exists a exists a legal ow funtion f that sends � units ofow from s to t satisfying the apaity funtion w. The shortest path from A to B is de�ned to be the shortestpath with respet to w from any vertex u 2 A to any vertex v 2 B (i.e. the minimal distane between any pairof verties in A and B)A requirement funtion is a set of demands of the form Di = (Si; Ti), 1 � i � k, where Si � V and Ti � Vand Si \ Ti = ;.We �rst de�ne the generalized onnetivity problem. The input is a requirement funtion f . A feasible integralsolution is an assignment of weights (apaities) w from f0; 1g to E, suh that for eah demand Di = (Si; Ti),1 � i � k, there is a ow funtion from Si to Ti of value at least 1. A feasible frational solution is an assignmentof weights (apaities) w from [0; 1℄ to E, suh that for eah demand Di = (Si; Ti), 1 � i � k, there is a owfuntion from Si to Ti of value at least 1. We note that the ow onstraint has to be satis�ed for eah demand(Si; Ti) separately. The ost of a solution is de�ned to be the ost of w.We now de�ne the generalized uts problem. The input is a requirement funtion f . A feasible integralsolution is a set of edges E0 � E that separates for eah demand Di = (Si; Ti) any two verties a 2 Si andb 2 Ti. Alternatively, we an think of eah edge e 2 E0 as having weight w(e) = 1. Thus, the weight funtion windues a distane funtion on the graph suh that the distane between verties separated by E0 is at least 1. Afeasible frational solution is an assignment of weights w from [0; 1℄ to E, suh that for eah demand Di = (Si; Ti),1 � i � k, the distane indued by w between eah a 2 Si and b 2 Ti is at least 1. The ost of a solution isde�ned to be the ost of w.



In an online setting, the graph G = (V;E) along with the ost funtion  is known to the algorithm (as wellas to the adversary) in advane. The set of requests of the form Di = (Si; Ti) is then given one-by-one to thealgorithm in an online fashion. Upon arrival of a new demand, the algorithm must satisfy it by inreasing theweights of edges in the graph. (The algorithm is not allowed to derease the weight of an edge.) Thus, previousdemands remain satis�ed. The performane of the algorithm, the ompetitive ratio, is de�ned to be the ratiobetween the ost of the solution produed by the algorithm and the ost of an optimal solution that satis�es thegiven demands with minimum ost.We now de�ne the speial ases that we onsider in the ontext of generalized onnetivity.The multiast problem in trees is de�ned as follows: Let X = f1; 2; : : : ; ng be a ground set of terminals, andlet T = fT1; T2; : : : ; Tmg be a family of rooted trees with a ost funtion  : E ! R+ assoiated with the edges.Eah tree leaf is assoiated with a subgroup of the terminals, where any terminal i belongs to at most one leafsubgroup in eah of the trees. A over is a olletion of rooted subtrees T 0 = fT 01; T 02; : : : ; T 0mg, where T 0i � Ti(1 � i � m), suh that the union of the subgroups of the leaves in T 0 is the set X . The ost of a over is the sumof the osts of the edges in the subtrees in T 0. The goal is to �nd a over of minimum ost.This problem is a natural generalization of the set over problem. Think of eah set as being represented bya tree ontaining only one edge, where one vertex is a root and the other vertex a leaf. The ost of the edge isequal to the ost of the set and the leaf is assoiated with the elements belonging to the set. We note that themultiast problem in trees has an O(log n)-approximation algorithm.The non-metri faility loation problem is a speial ase of the multiast problem. In the non-metri failityloation problem there are m possible loations for opening failities denoted by F = ff1; f2; : : : ; fmg. There isa setup ost for opening eah of the failities. There are also n lients R = fr1; r2; : : : ; rng and a onnetion ostfuntion  : F �R! R+ denoting the ost of onneting eah lient to eah faility. A solution is a subset F 0 � Fand a mapping of the lients to the failities in F 0. The goal is to minimize the ost of the solution whih isde�ned to be the setup ost of the failities in F 0 plus the onnetion ost of the lients as de�ned by the mappingof lients to failities in F 0. The problem is learly an instane of the multiast problem, where there is a treeorresponding to eah faility and all trees have depth two. The ost of the \root" edge is equal to the setup ostof the faility and the ost of eah \leaf" edge (that orresponds to a lient) is equal to the ost of onneting thelient to the faility.The group Steiner tree problem in a rooted tree is de�ned as follows. We are given a rooted tree T = (V;E; r)with non-negative ost funtion  : E ! R+ , and groups g1; g2; : : : gk � V . The objetive is to �nd a minimumost rooted subtree T 0 that ontains at least one vertex from eah of the groups gi, 1 � i � k. The multiastproblem is a speial ase of this problem. Given an instane of the multiast problem, we an onnet the rootsof all the multiast trees using edges of ost 0 to a joint root r. Group gi, 1 � i � n, is de�ned to be the setof leaves ontaining terminal ti. Notie that this redution reates a speial instane of the group Steiner treeproblem in whih any two paths from the root to verties belonging to the same group are disjoint.The group Steiner tree problem has an O(log n log k) approximation algorithm, where k is the number ofgroups, and n is the number of leaves in the tree [9℄. In general (undireted graphs, the best approximation fatorknown for the group Steiner problem is O(log2 n log k) by ombining [9℄ with [8℄.Themulti-ut problem in undireted graphs is a speial ase of the previously de�ned generalized uts problem,where the requirement funtion f is a set of soure-sink pairs fsi; tig, 1 � i � k. The best approximation fatorfor this problem is O(log k) [10℄.3 Computing a frational solution onlineIn this setion we desribe our online algorithm for omputing a near-optimal frational solution for both thegeneralized onnetivity and the generalized uts problems. We �rst desribe the algorithm for the generalizedonnetivity problem (Setion 3.1) and then explain the hanges needed for the generalized uts problem (Setion3.2). Let jV j = n and jEj = m. The ompetitive ratio of our algorithm is O(logm) and it is de�ned with respetto an optimal o�ine frational solution. We note that our method is appliable to both vertex and edge versionsof our problems, as well as for direted and undireted graphs.Let us denote the ost of an optimal frational solution, OPT, by �. We �rst laim that by using thedoubling tehnique, we an assume that the value of � is known up to a fator of 2. Initially, we an startguessing � = mine2E e, and then run the algorithm with this bound on the optimal solution. If it turns out thatthe value of the optimal solution is larger than our urrent guess for it, (that is, the ost of the frational solutionexeeds �(� logm)), then we an \forget" about all weights given so far to the edges, update the value of � by



doubling it, and ontinue on. We note that the frational ost of the edges that we have \forgotten" about aninrease the ost of our solution by at most a fator of 2, sine the value of � is doubled in eah step.We thus assume that � is known. We next laim that we an assume that for all edges having weight stritlyless than 1 in the online solution, their ost is between 1 and 2m2. This is justi�ed as follows. First, we doublethe weights of all the edges in OPT and round down to zero all edges that have weight less than 1=m. This resultsin a feasible solution of ost 2� whih we denote by OPT0. Sine the weights of the edges in OPT0 are at least1=m, the ost of the edges in OPT0 annot exeed 2m�. Hene, all edges in the graph having ost more than2m� an be ignored. We now set to 1 in our solution the weight of all edges having ost less than �=m. This aninrease the ompetitive fator of our algorithm by at most a fator of 2. Thus, the osts of all the edges in thegraph are between �=m and 2m�, and the osts an further be normalized so that the minimum ost is 1 and themaximum ost is at most 2m2.We note that by ignoring edges in the graph we mean that they are not onsidered by our online algorithm.For the generalized onnetivity problem it means that we do not use these edges to onnet verties, and henethey an be removed from the graph. For the generalized ut problem it means that suh edges do not partiipatein a ut, and hene we an identify the two endpoints of suh edges.3.1 Generalized Connetivity. We desribe an online algorithm with ompetitive fator O(logm). Alllogarithms are to the base 2. Initially, the algorithm gives eah edge a frational weight of 1=2m3. Assumenow that the algorithm reeives a new demand (S; T ). The following is performed in this ase.1. If the maximum ow from S to T is at least 1, then do nothing.2. Else: While the ow between S and T is less than 1, perform a weight augmentation:� Compute a minimum ut C between S and T .� For eah edge e 2 C, we  we(1 + 1e ).We now analyze the performane of the algorithm upon termination, i.e., when the algorithm gets the fullrequirement funtion.Lemma 3.1. When the algorithm terminates, all onnetivity demands are satis�ed.Proof. Follows immediately from the algorithm.Lemma 3.2. The number of weight augmentation steps performed during the run of the algorithm is at most6� log2m+ 4� = O(� logm):Proof. Obviously, for eah edge e 2 E, we � 1 + 1e always holds, sine an edge whih has weight exeeding 1annot be part of a minimum ut with total weight less than 1. Consider the following potential funtion:� =Xe2E ew�e log2(we)where w�e is the weight of edge e in OPT0. We now show three properties of �:� The initial value of the potential funtion is: �6� log2m� 2�.� The potential funtion never exeeds 2�.� In eah weight augmentation step, the potential funtion inreases by at least 1.The �rst two properties follow diretly from the initial value and from the fat that no edge gets a weight of morethan 2. Consider an iteration in whih the adversary gives a onnetivity demand (S; T ). A weight augmentationof a ut C is performed as long as the onnetivity between S and T is less than 1. The total weight assigned by



OPT0 to edges in C is at least 1. Thus, the inrease of the potential funtion is at least:�� = Xe2C ew�e log2�we �1 + 1e��� Xe2C ew�e log2 we= Xe2C ew�e log2�1 + 1e� � Xe2C w�e � 1Theorem 3.1. The above algorithm is O(logm)-ompetitive for the frational generalized onnetivity problem.Proof. It suÆes to show that the following is maintained throughout the algorithm:Xe2Ewee � 6� log2m+ 4�+ 1 = O(� logm):Consider an iteration in whih a onnetivity demand (S; T ) is given. Let C be a ut that has weight less than1, i.e., Pe2C we < 1. The weight of eah edge e 2 C inreases by we=e in eah weight augmentation step. Thus,the total inrease of the quantity Pe2E wee in a weight augmentation step does not exeedXe2C wee e =Xe2C we < 1:Initially,Pe2E wee � m � 12m3 � 2m2 = 1, and the laim thus follows from Lemma 3.2 that bounds the number ofweight augmentation steps.3.2 Generalized Cuts. We now present an O(logm)-ompetitive algorithm for the generalized uts problem.It is essentially the same as the algorithm for the generalized onnetivity problem presented in the previoussetion. We highlight the hanges needed.Initially, the algorithm assigns eah edge a length of 1=2m3. Assume now that the adversary gives thealgorithm a new request (S; T ). The algorithm is as follows.1. If the length of the shortest path from S to T is already at least 1, then do nothing.2. Else: While the length of the shortest path from S to T is less than 1 perform a lengthaugmentation:� Compute the shortest path P between S and T .� For eah edge e 2 P , we  we(1 + 1e ).Clearly, the above algorithm produes a feasible frational solution to the problem. Proving the ompetitivefator in this ase follows losely the proof in the ase of generalized onnetivity. Hene we onlude:Theorem 3.2. The above algorithm is O(logm)-ompetitive for the frational generalized ut problem.3.3 Lower Bounds. We now show that our algorithm is optimal for the frational generalized onnetivityand generalized uts problems. In order to show that we prove two lemmas. The �rst one provides a lower boundon the ompetitive ratio of either a deterministi or a randomized algorithm for the generalized onnetivityproblem. The lemma also holds with respet to an integral optimal solution. The seond lemma provides thesame lower bound with respet to the generalized uts problem.Lemma 3.3. Any deterministi or randomized algorithm for the online frational onnetivity problem has aompetitive ratio of at least 
 (logm) with respet to both an integral optimal solution and a frational optimalsolution. This holds even when the graph is an undireted star.



Proof. Let A be any deterministi or randomized online algorithm. Let T be a star with n leaves (and edges)v1; v2; : : : ; vn, a root r, n = 2k . We desribe the strategy of the adversary. The adversary starts by asking thedemand (S; T ), S = frg, T = (v1; v2; : : : ; vn). This is de�ned to be iteration zero. Algorithm A must inreasethe ow from the root to all the leaves to be equal to 1. This means that the expeted ow to either the n=2�rst terminals or to the n=2 last terminals is at least half. Thus, in the next iteration the adversary hangesT to be either (v1; v2; : : : ; vn=2) or (v(n=2)+1; : : : ; vn), hoosing the set with the smaller expeted ow value. Inthe kth iteration, if the previous demand was (frg; fvi; vi+1; : : : ; vjg), j > i, then the next demand is either(frg; fvi; : : : ; v i+j2 g) or (frg; fv i+j2 +1; : : : ; vjg) hoosing the set with the less expeted ow. It is not hard to seethat the expeted ost of Algorithm A in the frational ase is at least,lognXi=1 12 = 
(log n) = 
(logm):The optimal integral solution an assign a weight of 1 only to the edge adjaent to the last vertex asked, ompletingthe proof of the lower bound.Lemma 3.4. Any deterministi or randomized algorithm for the online frational uts problem has a ompetitiveratio of at least 
 (logm) with respet to both an integral optimal solution and a frational optimal solution. Thisis true even when the graph is a line and the uts demands groups are of size 1.Proof. Let A be any deterministi or randomized online algorithm. Let G be a line with verties v1; v2; : : : ; vn(n = 2k + 1). We desribe the strategy of the adversary. The adversary starts with the demand (fv1g; fvng).This is de�ned to be iteration zero. Algorithm A must inrease the distane from v1 to vn to be 1. This meansthat the expeted distane from either v1 to v(n+1)=2 or from v(n+1)=2 to vn is at least half. Thus, in the nextiteration the adversary ontinues with either (fv1g; fv(n+1)=2g) or (fv(n+1)=2g; fvng), hoosing the path whih hasthe shorter expeted distane. The adversary an ontinue doing so until it asks two onseutive verties. It isnot hard to see that the expeted ost of Algorithm A in the frational ase is at least,log(n�1)Xi=1 12 = 
(logn) = 
(logm)The optimal integral solution an assign a length of 1 to the edge separating the last two verties, ompleting theproof of the lower bound.We remark that the proofs of the lower bounds in this setion annot be applied to the frational onlineSteiner tree problem, as well as for the frational online generalized Steiner tree. However, a lower boundon the ompetitive ratio for any deterministi or randomized online algorithm for these problems follows in astraightforward manner from the lower bound shown for the integral Steiner tree problem in [14℄.4 Appliations - Integral Connetivity and Cuts ProblemsWe an use the algorithms desribed in the previous setion as a basis for an eÆient randomized online algorithmfor speial ases of the integral onnetivity and uts problems as well. This an be done by rounding online thefrational solution generated by the algorithm in the previous setion. This is the heart of our general approahto online network optimization problems. The rounding algorithms use the online algorithms for generating afrational solution as a \blak box". We present here four problems in whih suh a rounding is appliable.In setion 4.1 we onsider the multiast problem and the non-metri faility loation problem. In setion 4.2we onsider the group Steiner problem on a tree. Then, in setion 4.3 we onsider the group Steiner tree problemin general graphs. We onlude with the online multi-ut problem in Setion 4.4.4.1 Multiast and Non-metri Faility Loation Problems. We desribe a randomized algorithm for themultiast problem. Following eah request, we �rst ompute an O(logm)-ompetitive frational solution. Wenow explain how the rounding of the frational solution is performed.Initially, the algorithm starts with an empty over C = ;. The algorithm keeps for every tree Ti 2 T ,2dlog(n0 + 1)e random independent variables, X(Ti; j), 1 � j � 2dlog(n0 + 1)e, distributed uniformly in the



interval [0; 1℄. The value of n0 is the number of terminals asked so far by the adversary. As n0 hanges wegradually inrease the number of random variables. De�ne the threshold of tree Ti to be:�(Ti) = 2dlog(n0+1)eminj=1 X(Ti; j):The rounding method is very simple. Take to the solution C all edges e for whih we > �(Te), where Te is the treeontaining edge e. That is, the weight of edge e has exeeded the threshold of the tree ontaining it. We notethat inreasing n0 adds more random variables whih an only derease the thresholds of the trees, and heneinrease the probability of taking edges to the solution. Thus, when inreasing n0, it is neessary to reonsiderpreviously onsidered edges.Let � be the value of an optimal frational solution to the instane given so far. We now analyze theperformane of the algorithm.Lemma 4.1. The following holds throughout the algorithm:1. The expeted ost of the solution produed by the algorithm is O(� logn0 logm).2. For any terminal t, the probability that t is requested, yet it is not overed, is at most 1=n02.Proof. We begin by proving (1). For eah edge e and j, 1 � j � 2 logn, let Y (e; j) be the indiator randomvariable of the event that we > X(Te; j). Thus,Exp"Xe2C e# � Xe2E 2dlog(n0+1)eXj=1 e � Exp[(Y (e; j)℄= Xe2E 2dlog(n0+1)eXj=1 ewe� 2dlog(n0 + 1)e(2� logm+ �+ 1)= O(� logn0 logm):We now prove (2). Consider a terminal t. The frational solution guarantees that the total amount of owthat an be sent from the roots of the trees in T to the verties that are assoiated with t is at least 1. Let fTt bethe ow to terminal t in tree T . Thus, the probability that terminal t is not overed is bounded from above bythe probability that the threshold of eah tree T ontaining t is larger than fTt . Reall that the weight of eahedge on a path to t is at least the ow going to the terminal on the path.For any tree T and j, 1 � j � 2dlog(n0 + 1)e, the probability that the ow to t in T is at most X(T; j) is1� fTt . Thus, the probability that none of the ow paths to t exeeds X(T; j) isYT2T (1� fTt ) � e�PT2T fTt < 1e ;where the last inequality follows from the fat that PT fTt = ft � 1. Thus, the probability that the terminal isnot overed by any 1 � j � 2dlog(n0 + 1)e is less than 1=n02.Lemma 4.1 suggests the following hange to the algorithm to guarantee that a feasible solution is alwaysomputed. We run the algorithm. If at any time a terminal t is requested, but is not overed, then we hoose theheapest path from a root of a tree in T to t to the over. The ost of this path is ertainly a lower bound onthe optimal solution. Sine this event happens with probability at most 1=n02 for eah terminal, its e�et on theexpeted ost of the algorithm is negligible. Thus, we obtain the following theorems.Theorem 4.1. There exists a randomized algorithm for the online multi-ast problem in trees that isO(log n0 logm) ompetitive.



Theorem 4.2. There exists an O(log n logm) ompetitive randomized algorithm for the non-metri failityloation, where m is the number of failities and n is the number of lients.We remark that both the online multi-ast problem in trees and the online non-metri faility loation aregeneralizations of the online set-over problem introdued in [1℄. Thus, the lower bound of 
( logn logmlog logm+log logn )proved in [1℄ for any deterministi algorithm for the online set-over problem applies to these problems as well.4.2 The Group Steiner Problem on Trees We desribe a randomized algorithm for the group Steiner treeproblem on trees. Following eah request, we �rst ompute an O(logm)-ompetitive frational solution. We nowexplain how the rounding of the frational solution is performed. To this end, we use an online variation on themethod of [9℄.Initially, the algorithm starts with an empty over C = ;. Applying the tehnique of [9℄ requires that thefrational weights on a path from the root to a terminal are monotonially dereasing. However, the frationalsolution that we ompute may not neessarily satisfy this property. Therefore, we de�ne the weight of eah edgeto be the maximum ow through the edge going to a terminal in the edge's subtree. Thus, we abuse notation andlet we denote the ow on edge e instead of the atual weight of e. Note that by doing so we an only dereasethe value of the frational solution that serves as our baseline for performing the ompetitive analysis, sine theow value on an edge an only be less than the atual weight of the edge.Consider a weight augmentation iteration in the frational algorithm. For eah edge e, let we and w0e = we+Æedenote the weight of e before and after the weight augmentation iteration, respetively. For an edge e, let f bethe edge adjaent to e and loser to the root r. The rounding algorithm proesses the edges in topologial order(from top to bottom). For eah edge e, the following is performed:� If w0e > 1, then add e to C.� If e is inident on r, or w0f > 1, then add e to C with probability Æe=(1� we).� If f 2 C, then add e to C with probability Æe=(w0f � we).Note that for eah edge e, the probability Æe=(w0f � we) � Æe=(w0e � we) = 1, sine w0e < w0f . The edges areonsidered in topologial order so that C indues a (onneted) subtree of T , sine an edge is added to C only ifthe path onneting it to the root r already belongs to C. We prove the following lemma:Lemma 4.2. At any point of time t in the algorithm, the probability that an edge e belongs to C is we(t), wherewe(t) is the weight of e at time t. If we > 1, then e 2 C.Proof. The rounding algorithm adds eah edge e to C for whih we > 1.Consider an edge e and let the path from the root r to e be e0; e1; : : : ep = e. The proof is by indution onthe time t.Indution Basis: At t = 0, the probability that e is added to C is equal to we0 �Qpi=1 wei=wei�1 = wep .Indutive Step: Consider a time t > 0 where we is raised to we + Æe. By the indutive hypothesis, eah edgeei, 0 � i � p� 1, belongs to C with probability minfw0ei ; 1g, and e 2 C with probability we.We need another (internal) indution on p, the length of the path from r to e. The base ase is when e isinident on r. Then, the probability that e belongs to C iswe + Æe � (1� we)(1� we) = we + Æe = w0e:If w0e > 1 then edge e belongs to C with probability 1.Let e be an edge of depth p. By the (internal) indutive hypothesis, the probability that ep�1 is added to Cis w0p�1. The probability that e is added to C is equal towe + Æe � (w0p�1 � we)(w0p�1 � we) = we + Æe = w0e:The above LHS is the probability that e was previously added to C plus the probability that e was not previouslyadded to C, but ep�1 was previously added to C and e is added to C in the urrent step.



If w0p�1 > 1, then the probability that e is added to C in the urrent step iswe + Æe � (1� we)(1� we) = we + Æe = w0e:If w0e > 1, then edge e belongs to C. Thus, the laim holds.Lemma 4.3. At any point of time t in the algorithm, the expeted ost of the edges added to C is at mostPe2T ewe(t).Proof. From Lemma 4.2 it follows that the probability at any time t that edge e belongs to C is at most we. Bylinearity of the expetation the laim follows.We now analyze the probability that a group g is overed when wg > 1.Lemma 4.4. For any group g, onsider the �rst time t suh that wg > 1. Then, the probability that a vertexbelonging to g is in at time t is 
(1= logN), where N is the maximum size of a group.Proof. Our proof uses [9, Thm. 3.4, p. 72℄. This requires proving that the probability of the \good" eventsremains the same and that the dependeny between them remains the same. The �rst laim follows from lemma4.2. In order to prove the seond laim we need to show that the probability of two \good" events is the same asin Theorem 3:4 of [9℄. This follows from the fat that the probability that e is hosen to the solution given thath, an edge loser to the root, is hosen is exatly we=wh. The events for e and f are independent, given that h,their least ommon anestor, is hosen. Thus, the probability for e and f is wewf=wh, and we are done.Atually, in order to use the original proof of [9℄, we are required to prove a stronger assertion about theindependene of the orresponding events. However, this is not needed, sine the proof of [9℄ an be modi�ed sothat only the seond moment of the variable whih is the number of paths from the root to a vertex in g needsto be omputed. This follows from the assertion of [2, Se. 4.8, Ex. 1℄. Therefore, the above independene resultsuÆes.Lemma 4.4 suggests the following randomized online algorithm. Run O(log k logN) independent trials inparallel using the randomized rounding desribed, where k is the number of groups asked by the adversary. Thisresults in a randomized algorithm with ompetitive ratio O(log k logN) that overs all the groups with probabilityat least 1 � 1=k. In order to guarantee that the algorithm always produes a feasible solution, we an use theshortest path to a group in ase the algorithm fails to over it. The ost of this path is a lower bound on theoptimal solution, and sine this event happens with probability at most 1=k, it hanges the expeted ompetitiveratio of the algorithm by a negligible fator. Sine we do not know in advane the value of k we may inrease thenumber of trials gradually as more groups are asked, similar to Setion 4.1.4.3 The Group Steiner Problem on General Graphs. We now onsider the Group Steiner tree algorithmon general graphs. To this end, we use hierarhially well-separated trees (HST-s) [4, 8℄. A set of metri spaes Sover V is said to �-probabilistially approximate a metri spaeM over V , if: (1) for every x; y 2 V and S 2 S,dS(x; y) � dM(x; y) and (2) there exists a probability distribution D over the metri spaes in S suh that for allx; y 2 V , E [dD(x; y)℄ � �dM(x; y). Reently, the following theorem was proved in [8℄, improving upon the basiapproah of [4℄.Theorem 4.3. Every weighted onneted graph G on n verties an be �-probabilistially approximated by a setof weighted trees, where � = O(log n). The probability distribution an be omputed in polynomial time.We use this theorem to obtain the following bounds.Theorem 4.4. There is a randomized online algorithm for the group Steiner problem in general graphs with aompetitive ratio of O(log3 n log k).Proof. We �rst use Theorem 4.3 to randomly hoose a tree T from the distribution D. Then, we run the onlinealgorithm from Setion 4.2 on the tree T . When a new vertex v is being onneted to the root r, we just onnetit in the graph via its losest neighbor in the tree that is already onneted to the root. Sine the tree is an HST,the ost of this path in the tree is only twie the onnetion ost of v to the least ommon anestor of v and itslosest previously onneted neighbor. Thus, on the average, we are paying at most twie the streth fator of thepaths, and the theorem follows diretly from Theorem 4.3 and the guarantee on the performane of the algorithmin Setion 4.2



4.4 The multi-ut problem In this setion we onsider the online multi-ut problem in undireted graphs.The online algorithm we present here does not �t the general framework developed in the paper, where a frationalsolution is omputed online and then rounded online into an integral solution.In [16℄, R�ake desribes a proedure for �nding a hierarhial deomposition of any undireted graphG = (V;E) with apaities on the edges. An eÆient proedure for �nding suh a deomposition tree TG appearsin [6℄ and [12℄. This remarkable deomposition enables us to transform the problem from a general graph to atree. We later on present an online algorithm for the multi-ut problem on trees with ompetitive ratio �, where� may depend on the height of the tree.The nodes of the deomposition tree TG orrespond to a laminar family of subsets of V . There is a 1-1orrespondene between V and the leaves of the tree. The edges of TG orrespond to uts in G and eah treeedge is assoiated with a apaity (or ost) whih is equal to the apaity (or ost) of the orresponding ut inG. The tree TG has the property that for any hoie of soure-sink pairs, any feasible multi-ommodity owfuntion in TG an be routed in G ausing a ongestion of at most �. The best value of � is O(log2 n log logn) forgeneral graphs and O(log n log logn)) for planar graphs, and it is given by [12℄ together with a polynomial-timeonstrution of TG.Thus, the multi-ut problem in G translates into a multi-ut problem in the deomposition tree TG, where thegoal is to separate between the leaves ontaining the soure-sink pairs. We run an �-ompetitive online algorithmfor the (online) multi-ut problem in TG. A multi-ut in TG is a set of edges whih translate bak in G into a setof uts having at most the apaity of the multi-ut in TG. Clearly, this translation an be done online.Theorem 4.5. There is a deterministi polynomial-time algorithm for the online multi-ut problem that ahievesa ompetitive ratio of:� O(log3 n log logn) for general graphs.� O(log2 n log logn) for planar graphs.� O(log2 n) for trees.Proof. (Sketh) Let Conl(G) and Conl(TG) denote the multi-uts found by the online algorithm in G and in TG,respetively. Let Copt(TG) denote the optimal multi-ut in TG, and let MCFopt(TG) be the maximum multi-ommodity ow in TG between the soure-sink pairs. By [11℄, in a tree, Copt(TG) � 2 �MCFopt(TG). Hene,Conl(G) � Conl(TG) � � � Copt(TG)� 2� �MCFopt(TG):Let f� be a maximum multi-ommodity ow between the soure-sink pairs in TG. Let MCFopt(G) denote amaximum multi-ommodity ow in G between the soure-sink pairs. Sine f� an be routed in G with a ongestionof at most �, we get that, MCFopt(G) � 1�MCFopt(TG);yielding that Conl(G) � 2�� �MCFopt(G):Sine MCFopt(G) lower bounds the optimal multi-ut in G, we get that our algorithm is (2��)-ompetitive.Substituting the appropriate values for �, and setting � = O(log n), the laimed bounds follow.We now proeed and show an online algorithm for the multi-ut problem in trees. First, note that there is asimple redution from the online multi-ut problem in trees to the online set over problem. Eah pair of vertiesin the tree orresponds to an element; eah edge of the tree orresponds to a set. A set ontains an elementif the orresponding edge separates the two verties orresponding to the element. Hene, by the main resultof [1℄, (whih follows the basi general approah developed here), there is a deterministi O(log2 n)-ompetitivealgorithm for the online minimum multi-ut tree problem.The above redution applies to any tree. However, when onsidering the deomposition trees produed by[12℄, we observe that their height is only O(log n). We use this to improve on the ompetitive ratio by providing
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