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h to Online Network Optimization ProblemsNoga Alon� Baru
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hy Yossi Azarz Niv Bu
hbinder xJoseph (SeÆ) Naor {Abstra
tWe study a wide range of online graph and network optimization problems, fo
using on problems thatarise in the study of 
onne
tivity and 
uts in graphs. In a general online network design problem, we have a
ommuni
ation network known to the algorithm in advan
e. What is not known in advan
e are the bandwidthor 
ut demands between nodes in the network. Our results in
lude an O(logm log n) 
ompetitive randomizedalgorithm for the online non-metri
 fa
ility lo
ation and for a generalization of the problem 
alled the multi
astproblem. In the non-metri
 fa
ility lo
ation m is the number of fa
ilities and n is the number of 
lients. The
ompetitive ratio is nearly tight. We also present an O(log2 n log k) 
ompetitive randomized algorithm for theonline group Steiner problem in trees and an O(log3 n log k) 
ompetitive randomized algorithm for the problemin general graphs, where n is the number of verti
es in the graph and k is the number of groups. Finally,we design a deterministi
 O(log3 n log log n) 
ompetitive algorithm for the online multi-
ut problem. Ouralgorithms are based on a uni�ed framework for designing online algorithms for problems involving 
onne
tivityand 
uts. We �rst present a general O(logm)-deterministi
 algorithm for generating fra
tional solution thatsatis�es the online 
onne
tivity or 
ut demands, where m is the number of edges in the graph. This may beof independent interest for solving fra
tional online bandwidth allo
ation problems, and is appli
able to thenode version as well. The integral solutions are obtained by an online rounding of the fra
tional solution. Thispart of the framework is problem dependent, and applies various tools in
luding results on the approximatemax-
ow min-
ut for multi
ommodity 
ow, the HST method and its extensions, 
ertain rounding te
hniquesfor dependent variables, and R�a
ke's new hierar
hi
al de
omposition of graphs.1 Introdu
tionWe study a wide range of graph and network optimization problems, fo
using on problems that arise in the studyof 
onne
tivity and 
uts in graphs. Su
h problems are asso
iated with an input graph G = (V;E) (dire
tedor undire
ted), a 
ost fun
tion 
 : E ! R+ , and a requirement fun
tion f (to be de�ned for ea
h problemseparately). The goal is to �nd a minimum 
ost subgraph that satis�es f . Our model is online; that is, therequirement fun
tion is not known in advan
e and it is given \step by step" to the algorithm, while the inputgraph is known in advan
e.Network design problems are typi
ally de�ned by a requirement fun
tion f that spe
i�es for ea
h 
ut in thegraph the minimum 
overage required for it. Sin
e we are 
onsidering an online version of network design problemswe 
on
entrate on the following sub
lass whi
h we 
all generalized 
onne
tivity. The requirement fun
tion f is aset of demands of the form D = (S; T ), where S and T are subsets of verti
es in the graph su
h that S \ T = ;.A feasible solution is a set of edges, su
h that for ea
h demand D = (S; T ) there is a path from a vertex in Sto a vertex in T . Examples of problems belonging to this 
lass are Steiner trees, generalized Steiner trees, and�S
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the group Steiner problem. Less obvious examples are the set 
over problem and the non-metri
 fa
ility lo
ationproblem, des
ribed below.Cut problems in graphs involve separating sets of verti
es from ea
h other. We 
on
entrate on a family of 
utproblems whi
h we 
all generalized 
uts. The requirement fun
tion f is a set of demands of the form D = (S; T ),where S and T are subsets of verti
es in the graph su
h that S \ T = ;. A feasible solution is a set of edges thatseparates for ea
h demand D = (S; T ), any two verti
es s 2 S and t 2 T . Examples of problems belonging to this
lass are multiway 
uts and multi-
ut.There is a natural linear relaxation for the problems that we are 
onsidering. For generalized 
onne
tivityproblems, a feasible fra
tional solution asso
iates a fra
tional weight (
apa
ity) with ea
h edge, su
h that for ea
hdemand D = (S; T ) a unit of 
ow 
an be sent from S to T , where the 
ow on ea
h edge does not ex
eed its weight.For generalized 
uts, a feasible fra
tional solution asso
iates a fra
tional weight (length) with ea
h edge, whi
hwe interpret as indu
ing a distan
e fun
tion. The 
onstraint is that for ea
h demand D = (S; T ), the distan
ebetween any two verti
es s 2 S and t 2 T is at least 1. Sin
e many of the problems that we are 
onsidering areNP-hard, this linear relaxation is very useful for 
omputing an approximate solution. Please refer to [17℄ for moredetails. In addition, fra
tional solutions have a motivation of their own in 
ertain network design problems andbandwidth allo
ation problems.Previous work: Network optimization problems in an online setting have been studied extensively. The onlineSteiner problem was 
onsidered in [14℄ who gave an O(log n)-
ompetitive algorithm and showed that in a generalmetri
 spa
e this is indeed best possible. The generalized Steiner problem was 
onsidered in [3℄, where anO(log2 n)-
ompetitive algorithm is given. This was improved to an O(log n)-
ompetitive ratio algorithm by[5℄. The online version of the metri
 fa
ility lo
ation problem was also 
onsidered re
ently. Meyerson [15℄gave a randomized O(log n)-
ompetitive algorithm whi
h was improved to a deterministi
 �( lognlog log n )-
ompetitivealgorithm by Fotakis [7℄. Re
ently, a deterministi
 online O(log n logm)-
ompetitive algorithm for the set 
overproblem was given by [1℄ where n is the number of elements and m is the number of sets. A lower bound of
( logn logmlog logm+log logn ) was also shown for any deterministi
 online algorithm for the online set 
over problem.There is a vast literature on eÆ
ient approximation algorithms for problems involving 
onne
tivity and 
uts.The reader is referred to [13, 17℄ for more details.1.1 Results. We study generalized 
onne
tivity and 
uts problems in a uni�ed framework. The idea is to�rst 
ompute a fra
tional solution online and then round this solution to an integral one. We provide a generaldeterministi
 pro
edure that 
omputes a near-optimal fra
tional solution to any problem belonging to our 
lassof problems. Spe
i�
ally, the 
ompetitive ratio that we a
hieve is O(logm), where m is the number of edges inthe graph. This algorithm 
an easily be extended to the vertex 
ounterparts of the problems. We also show amat
hing lower bound of 
(logm) on the 
ompetitive ratio of any deterministi
 or randomized algorithm for thisproblem. Our algorithm draws on ideas taken from the algorithm of [1℄ for the online set 
over problem.We next des
ribe our results on 
onverting online a fra
tional solution into an integral solution. This roundingis problem dependent and we des
ribe the rounding for ea
h of the spe
ial 
ases 
onsidered.The �rst problem we 
onsider is non-metri
 fa
ility lo
ation. In this problem we are given a set of possiblefa
ilities, ea
h with a setup 
ost, and a set of 
lients, ea
h with a 
onne
tion 
ost to the fa
ilities. The goalis to �nd a solution that minimizes the sum of the setup 
osts and the servi
e 
osts. In the online 
ase of thenon-metri
 fa
ility lo
ation, 
lients arrive online. The set 
over problem is a spe
ial 
ase of this problem in whi
hthe fa
ilities are sets and the 
onne
tion 
ost is either zero or in�nite, depending on whether or not an elementbelongs to a set.Next, we 
onsider the multi
ast problem that generalizes the non-metri
 fa
ility lo
ation problem. In themulti
ast problem we are given a set of weighted rooted trees 
ontaining a set of terminals. Ea
h terminal isasso
iated with at most one node in ea
h tree. The goal is to �nd a minimum weight set of subtrees that 
ontainall the terminals, where a subtree must 
ontain the root of the tree it belongs to. In the online 
ase, the terminalsarrive online, and upon arrival of a terminal it is ne
essary to 
onne
t it to the root of a tree 
ontaining it. Thenon-metri
 fa
ility lo
ation is a spe
ial 
ase of the multi
ast problem. Ea
h fa
ility 
orresponds to a tree of depthtwo. A tree has one edge emanating from the root with weight equal to the setup 
ost of the fa
ility, and thenthere are edges to the leaves, where ea
h leaf 
orresponds to a 
lient, and the weight of an edge is equal to the
onne
tion 
ost of the 
lient to the fa
ility.Finally, in the realm of generalized 
onne
tivity, we 
onsider the group Steiner problem on trees and general



graphs [9℄. In the group Steiner tree problem on a rooted tree we are given a weighted rooted tree T = (V;E; r),and groups g1; g2; : : : gk � V . The goal is to �nd a minimum rooted subtree T 0 = (V 0; E0; r) that 
ontains at leastone vertex from ea
h group. In the online version of the problem, the groups arrive online. The multi
ast problemis a spe
ial 
ase of the group Steiner problem on rooted trees. Given an instan
e of the multi
ast problem, theroots of the trees 
an be 
onne
ted to a joint root using edges of zero weight. A group 
ontains all the nodesasso
iated with a parti
ular terminal. Noti
e that this redu
tion 
reates a spe
ial instan
e of the group Steinertree problem in whi
h any two paths from the root to verti
es belonging to the same group are disjoint.In the multi-
ut problem we are given an undire
ted graph with 
osts (
apa
ities) and a set of sour
e-sinkpairs. The goal is to �nd a minimum 
ost set of edges that dis
onne
ts ea
h sour
e-sink pair. In the online versionof the problem, the sour
e-sink pairs arrive online, and upon arrival of a pair it is ne
essary to dis
onne
t it. Weshow an online algorithm for the multi-
ut problem using the 
onstru
tive version of a remarkable result of R�a
ke[16℄ for the hierar
hi
al de
omposition of graphs ([6℄ and [12℄) together with an approximate max-
ow min-
uttheorem on trees [11℄. This de
omposition is used along with an online primal-dual algorithm for the problem ontrees.Spe
i�
ally, we obtain the following results.� A randomized O(logm logn) 
ompetitive algorithm for the online multi
ast problem on trees, where m isthe number of edges, and n is the number of requested terminals.� A randomized O(logm logn) 
ompetitive algorithm for the online non-metri
 (and metri
) fa
ility lo
ationproblem, where m is the number of possible fa
ilities and n is the number of 
lients.� A randomized O(log2 n log k)-
ompetitive algorithm for the online group Steiner problem on trees, where kis the number of groups, and n is the number of leaves in the tree. This implies a randomized O(log3 n log k)-
ompetitive algorithm for general graphs using hierar
hi
ally well-separated trees [4, 8℄� A deterministi
 O(log3 n log logn) 
ompetitive algorithm for the online multi-
ut problem in general graphs.Improved bounds are obtained for planar graphs and for trees.2 PreliminariesIn this se
tion we formally de�ne our problems. Let G = (V;E) be a graph (dire
ted or undire
ted) with 
ostfun
tion 
 : E ! R+ asso
iated with the edge set E. Suppose further that there is a weight fun
tion (or 
apa
ityfun
tion) w : E ! R+ asso
iated with the edge set E. The 
ost of w is de�ned to be Pe2E we
e.Let A � V and B � V be subsets of V su
h that A\B = ;. Let G0 be the graph obtained from G by addinga super-sour
e s 
onne
ted to all verti
es in A and a super-sink t 
onne
ted to all verti
es in B. The edges from sto A are dire
ted into A and have in�nite weight, and the edges from B to t are dire
ted into T and have in�niteweight. There is 
ow from A to B of value � if there exists a exists a legal 
ow fun
tion f that sends � units of
ow from s to t satisfying the 
apa
ity fun
tion w. The shortest path from A to B is de�ned to be the shortestpath with respe
t to w from any vertex u 2 A to any vertex v 2 B (i.e. the minimal distan
e between any pairof verti
es in A and B)A requirement fun
tion is a set of demands of the form Di = (Si; Ti), 1 � i � k, where Si � V and Ti � Vand Si \ Ti = ;.We �rst de�ne the generalized 
onne
tivity problem. The input is a requirement fun
tion f . A feasible integralsolution is an assignment of weights (
apa
ities) w from f0; 1g to E, su
h that for ea
h demand Di = (Si; Ti),1 � i � k, there is a 
ow fun
tion from Si to Ti of value at least 1. A feasible fra
tional solution is an assignmentof weights (
apa
ities) w from [0; 1℄ to E, su
h that for ea
h demand Di = (Si; Ti), 1 � i � k, there is a 
owfun
tion from Si to Ti of value at least 1. We note that the 
ow 
onstraint has to be satis�ed for ea
h demand(Si; Ti) separately. The 
ost of a solution is de�ned to be the 
ost of w.We now de�ne the generalized 
uts problem. The input is a requirement fun
tion f . A feasible integralsolution is a set of edges E0 � E that separates for ea
h demand Di = (Si; Ti) any two verti
es a 2 Si andb 2 Ti. Alternatively, we 
an think of ea
h edge e 2 E0 as having weight w(e) = 1. Thus, the weight fun
tion windu
es a distan
e fun
tion on the graph su
h that the distan
e between verti
es separated by E0 is at least 1. Afeasible fra
tional solution is an assignment of weights w from [0; 1℄ to E, su
h that for ea
h demand Di = (Si; Ti),1 � i � k, the distan
e indu
ed by w between ea
h a 2 Si and b 2 Ti is at least 1. The 
ost of a solution isde�ned to be the 
ost of w.



In an online setting, the graph G = (V;E) along with the 
ost fun
tion 
 is known to the algorithm (as wellas to the adversary) in advan
e. The set of requests of the form Di = (Si; Ti) is then given one-by-one to thealgorithm in an online fashion. Upon arrival of a new demand, the algorithm must satisfy it by in
reasing theweights of edges in the graph. (The algorithm is not allowed to de
rease the weight of an edge.) Thus, previousdemands remain satis�ed. The performan
e of the algorithm, the 
ompetitive ratio, is de�ned to be the ratiobetween the 
ost of the solution produ
ed by the algorithm and the 
ost of an optimal solution that satis�es thegiven demands with minimum 
ost.We now de�ne the spe
ial 
ases that we 
onsider in the 
ontext of generalized 
onne
tivity.The multi
ast problem in trees is de�ned as follows: Let X = f1; 2; : : : ; ng be a ground set of terminals, andlet T = fT1; T2; : : : ; Tmg be a family of rooted trees with a 
ost fun
tion 
 : E ! R+ asso
iated with the edges.Ea
h tree leaf is asso
iated with a subgroup of the terminals, where any terminal i belongs to at most one leafsubgroup in ea
h of the trees. A 
over is a 
olle
tion of rooted subtrees T 0 = fT 01; T 02; : : : ; T 0mg, where T 0i � Ti(1 � i � m), su
h that the union of the subgroups of the leaves in T 0 is the set X . The 
ost of a 
over is the sumof the 
osts of the edges in the subtrees in T 0. The goal is to �nd a 
over of minimum 
ost.This problem is a natural generalization of the set 
over problem. Think of ea
h set as being represented bya tree 
ontaining only one edge, where one vertex is a root and the other vertex a leaf. The 
ost of the edge isequal to the 
ost of the set and the leaf is asso
iated with the elements belonging to the set. We note that themulti
ast problem in trees has an O(log n)-approximation algorithm.The non-metri
 fa
ility lo
ation problem is a spe
ial 
ase of the multi
ast problem. In the non-metri
 fa
ilitylo
ation problem there are m possible lo
ations for opening fa
ilities denoted by F = ff1; f2; : : : ; fmg. There isa setup 
ost for opening ea
h of the fa
ilities. There are also n 
lients R = fr1; r2; : : : ; rng and a 
onne
tion 
ostfun
tion 
 : F �R! R+ denoting the 
ost of 
onne
ting ea
h 
lient to ea
h fa
ility. A solution is a subset F 0 � Fand a mapping of the 
lients to the fa
ilities in F 0. The goal is to minimize the 
ost of the solution whi
h isde�ned to be the setup 
ost of the fa
ilities in F 0 plus the 
onne
tion 
ost of the 
lients as de�ned by the mappingof 
lients to fa
ilities in F 0. The problem is 
learly an instan
e of the multi
ast problem, where there is a tree
orresponding to ea
h fa
ility and all trees have depth two. The 
ost of the \root" edge is equal to the setup 
ostof the fa
ility and the 
ost of ea
h \leaf" edge (that 
orresponds to a 
lient) is equal to the 
ost of 
onne
ting the
lient to the fa
ility.The group Steiner tree problem in a rooted tree is de�ned as follows. We are given a rooted tree T = (V;E; r)with non-negative 
ost fun
tion 
 : E ! R+ , and groups g1; g2; : : : gk � V . The obje
tive is to �nd a minimum
ost rooted subtree T 0 that 
ontains at least one vertex from ea
h of the groups gi, 1 � i � k. The multi
astproblem is a spe
ial 
ase of this problem. Given an instan
e of the multi
ast problem, we 
an 
onne
t the rootsof all the multi
ast trees using edges of 
ost 0 to a joint root r. Group gi, 1 � i � n, is de�ned to be the setof leaves 
ontaining terminal ti. Noti
e that this redu
tion 
reates a spe
ial instan
e of the group Steiner treeproblem in whi
h any two paths from the root to verti
es belonging to the same group are disjoint.The group Steiner tree problem has an O(log n log k) approximation algorithm, where k is the number ofgroups, and n is the number of leaves in the tree [9℄. In general (undire
ted graphs, the best approximation fa
torknown for the group Steiner problem is O(log2 n log k) by 
ombining [9℄ with [8℄.Themulti-
ut problem in undire
ted graphs is a spe
ial 
ase of the previously de�ned generalized 
uts problem,where the requirement fun
tion f is a set of sour
e-sink pairs fsi; tig, 1 � i � k. The best approximation fa
torfor this problem is O(log k) [10℄.3 Computing a fra
tional solution onlineIn this se
tion we des
ribe our online algorithm for 
omputing a near-optimal fra
tional solution for both thegeneralized 
onne
tivity and the generalized 
uts problems. We �rst des
ribe the algorithm for the generalized
onne
tivity problem (Se
tion 3.1) and then explain the 
hanges needed for the generalized 
uts problem (Se
tion3.2). Let jV j = n and jEj = m. The 
ompetitive ratio of our algorithm is O(logm) and it is de�ned with respe
tto an optimal o�ine fra
tional solution. We note that our method is appli
able to both vertex and edge versionsof our problems, as well as for dire
ted and undire
ted graphs.Let us denote the 
ost of an optimal fra
tional solution, OPT, by �. We �rst 
laim that by using thedoubling te
hnique, we 
an assume that the value of � is known up to a fa
tor of 2. Initially, we 
an startguessing � = mine2E 
e, and then run the algorithm with this bound on the optimal solution. If it turns out thatthe value of the optimal solution is larger than our 
urrent guess for it, (that is, the 
ost of the fra
tional solutionex
eeds �(� logm)), then we 
an \forget" about all weights given so far to the edges, update the value of � by



doubling it, and 
ontinue on. We note that the fra
tional 
ost of the edges that we have \forgotten" about 
anin
rease the 
ost of our solution by at most a fa
tor of 2, sin
e the value of � is doubled in ea
h step.We thus assume that � is known. We next 
laim that we 
an assume that for all edges having weight stri
tlyless than 1 in the online solution, their 
ost is between 1 and 2m2. This is justi�ed as follows. First, we doublethe weights of all the edges in OPT and round down to zero all edges that have weight less than 1=m. This resultsin a feasible solution of 
ost 2� whi
h we denote by OPT0. Sin
e the weights of the edges in OPT0 are at least1=m, the 
ost of the edges in OPT0 
annot ex
eed 2m�. Hen
e, all edges in the graph having 
ost more than2m� 
an be ignored. We now set to 1 in our solution the weight of all edges having 
ost less than �=m. This 
anin
rease the 
ompetitive fa
tor of our algorithm by at most a fa
tor of 2. Thus, the 
osts of all the edges in thegraph are between �=m and 2m�, and the 
osts 
an further be normalized so that the minimum 
ost is 1 and themaximum 
ost is at most 2m2.We note that by ignoring edges in the graph we mean that they are not 
onsidered by our online algorithm.For the generalized 
onne
tivity problem it means that we do not use these edges to 
onne
t verti
es, and hen
ethey 
an be removed from the graph. For the generalized 
ut problem it means that su
h edges do not parti
ipatein a 
ut, and hen
e we 
an identify the two endpoints of su
h edges.3.1 Generalized Conne
tivity. We des
ribe an online algorithm with 
ompetitive fa
tor O(logm). Alllogarithms are to the base 2. Initially, the algorithm gives ea
h edge a fra
tional weight of 1=2m3. Assumenow that the algorithm re
eives a new demand (S; T ). The following is performed in this 
ase.1. If the maximum 
ow from S to T is at least 1, then do nothing.2. Else: While the 
ow between S and T is less than 1, perform a weight augmentation:� Compute a minimum 
ut C between S and T .� For ea
h edge e 2 C, we  we(1 + 1
e ).We now analyze the performan
e of the algorithm upon termination, i.e., when the algorithm gets the fullrequirement fun
tion.Lemma 3.1. When the algorithm terminates, all 
onne
tivity demands are satis�ed.Proof. Follows immediately from the algorithm.Lemma 3.2. The number of weight augmentation steps performed during the run of the algorithm is at most6� log2m+ 4� = O(� logm):Proof. Obviously, for ea
h edge e 2 E, we � 1 + 1
e always holds, sin
e an edge whi
h has weight ex
eeding 1
annot be part of a minimum 
ut with total weight less than 1. Consider the following potential fun
tion:� =Xe2E 
ew�e log2(we)where w�e is the weight of edge e in OPT0. We now show three properties of �:� The initial value of the potential fun
tion is: �6� log2m� 2�.� The potential fun
tion never ex
eeds 2�.� In ea
h weight augmentation step, the potential fun
tion in
reases by at least 1.The �rst two properties follow dire
tly from the initial value and from the fa
t that no edge gets a weight of morethan 2. Consider an iteration in whi
h the adversary gives a 
onne
tivity demand (S; T ). A weight augmentationof a 
ut C is performed as long as the 
onne
tivity between S and T is less than 1. The total weight assigned by



OPT0 to edges in C is at least 1. Thus, the in
rease of the potential fun
tion is at least:�� = Xe2C 
ew�e log2�we �1 + 1
e��� Xe2C 
ew�e log2 we= Xe2C 
ew�e log2�1 + 1
e� � Xe2C w�e � 1Theorem 3.1. The above algorithm is O(logm)-
ompetitive for the fra
tional generalized 
onne
tivity problem.Proof. It suÆ
es to show that the following is maintained throughout the algorithm:Xe2Ewe
e � 6� log2m+ 4�+ 1 = O(� logm):Consider an iteration in whi
h a 
onne
tivity demand (S; T ) is given. Let C be a 
ut that has weight less than1, i.e., Pe2C we < 1. The weight of ea
h edge e 2 C in
reases by we=
e in ea
h weight augmentation step. Thus,the total in
rease of the quantity Pe2E we
e in a weight augmentation step does not ex
eedXe2C we
e 
e =Xe2C we < 1:Initially,Pe2E we
e � m � 12m3 � 2m2 = 1, and the 
laim thus follows from Lemma 3.2 that bounds the number ofweight augmentation steps.3.2 Generalized Cuts. We now present an O(logm)-
ompetitive algorithm for the generalized 
uts problem.It is essentially the same as the algorithm for the generalized 
onne
tivity problem presented in the previousse
tion. We highlight the 
hanges needed.Initially, the algorithm assigns ea
h edge a length of 1=2m3. Assume now that the adversary gives thealgorithm a new request (S; T ). The algorithm is as follows.1. If the length of the shortest path from S to T is already at least 1, then do nothing.2. Else: While the length of the shortest path from S to T is less than 1 perform a lengthaugmentation:� Compute the shortest path P between S and T .� For ea
h edge e 2 P , we  we(1 + 1
e ).Clearly, the above algorithm produ
es a feasible fra
tional solution to the problem. Proving the 
ompetitivefa
tor in this 
ase follows 
losely the proof in the 
ase of generalized 
onne
tivity. Hen
e we 
on
lude:Theorem 3.2. The above algorithm is O(logm)-
ompetitive for the fra
tional generalized 
ut problem.3.3 Lower Bounds. We now show that our algorithm is optimal for the fra
tional generalized 
onne
tivityand generalized 
uts problems. In order to show that we prove two lemmas. The �rst one provides a lower boundon the 
ompetitive ratio of either a deterministi
 or a randomized algorithm for the generalized 
onne
tivityproblem. The lemma also holds with respe
t to an integral optimal solution. The se
ond lemma provides thesame lower bound with respe
t to the generalized 
uts problem.Lemma 3.3. Any deterministi
 or randomized algorithm for the online fra
tional 
onne
tivity problem has a
ompetitive ratio of at least 
 (logm) with respe
t to both an integral optimal solution and a fra
tional optimalsolution. This holds even when the graph is an undire
ted star.



Proof. Let A be any deterministi
 or randomized online algorithm. Let T be a star with n leaves (and edges)v1; v2; : : : ; vn, a root r, n = 2k . We des
ribe the strategy of the adversary. The adversary starts by asking thedemand (S; T ), S = frg, T = (v1; v2; : : : ; vn). This is de�ned to be iteration zero. Algorithm A must in
reasethe 
ow from the root to all the leaves to be equal to 1. This means that the expe
ted 
ow to either the n=2�rst terminals or to the n=2 last terminals is at least half. Thus, in the next iteration the adversary 
hangesT to be either (v1; v2; : : : ; vn=2) or (v(n=2)+1; : : : ; vn), 
hoosing the set with the smaller expe
ted 
ow value. Inthe kth iteration, if the previous demand was (frg; fvi; vi+1; : : : ; vjg), j > i, then the next demand is either(frg; fvi; : : : ; v i+j2 g) or (frg; fv i+j2 +1; : : : ; vjg) 
hoosing the set with the less expe
ted 
ow. It is not hard to seethat the expe
ted 
ost of Algorithm A in the fra
tional 
ase is at least,lognXi=1 12 = 
(log n) = 
(logm):The optimal integral solution 
an assign a weight of 1 only to the edge adja
ent to the last vertex asked, 
ompletingthe proof of the lower bound.Lemma 3.4. Any deterministi
 or randomized algorithm for the online fra
tional 
uts problem has a 
ompetitiveratio of at least 
 (logm) with respe
t to both an integral optimal solution and a fra
tional optimal solution. Thisis true even when the graph is a line and the 
uts demands groups are of size 1.Proof. Let A be any deterministi
 or randomized online algorithm. Let G be a line with verti
es v1; v2; : : : ; vn(n = 2k + 1). We des
ribe the strategy of the adversary. The adversary starts with the demand (fv1g; fvng).This is de�ned to be iteration zero. Algorithm A must in
rease the distan
e from v1 to vn to be 1. This meansthat the expe
ted distan
e from either v1 to v(n+1)=2 or from v(n+1)=2 to vn is at least half. Thus, in the nextiteration the adversary 
ontinues with either (fv1g; fv(n+1)=2g) or (fv(n+1)=2g; fvng), 
hoosing the path whi
h hasthe shorter expe
ted distan
e. The adversary 
an 
ontinue doing so until it asks two 
onse
utive verti
es. It isnot hard to see that the expe
ted 
ost of Algorithm A in the fra
tional 
ase is at least,log(n�1)Xi=1 12 = 
(logn) = 
(logm)The optimal integral solution 
an assign a length of 1 to the edge separating the last two verti
es, 
ompleting theproof of the lower bound.We remark that the proofs of the lower bounds in this se
tion 
annot be applied to the fra
tional onlineSteiner tree problem, as well as for the fra
tional online generalized Steiner tree. However, a lower boundon the 
ompetitive ratio for any deterministi
 or randomized online algorithm for these problems follows in astraightforward manner from the lower bound shown for the integral Steiner tree problem in [14℄.4 Appli
ations - Integral Conne
tivity and Cuts ProblemsWe 
an use the algorithms des
ribed in the previous se
tion as a basis for an eÆ
ient randomized online algorithmfor spe
ial 
ases of the integral 
onne
tivity and 
uts problems as well. This 
an be done by rounding online thefra
tional solution generated by the algorithm in the previous se
tion. This is the heart of our general approa
hto online network optimization problems. The rounding algorithms use the online algorithms for generating afra
tional solution as a \bla
k box". We present here four problems in whi
h su
h a rounding is appli
able.In se
tion 4.1 we 
onsider the multi
ast problem and the non-metri
 fa
ility lo
ation problem. In se
tion 4.2we 
onsider the group Steiner problem on a tree. Then, in se
tion 4.3 we 
onsider the group Steiner tree problemin general graphs. We 
on
lude with the online multi-
ut problem in Se
tion 4.4.4.1 Multi
ast and Non-metri
 Fa
ility Lo
ation Problems. We des
ribe a randomized algorithm for themulti
ast problem. Following ea
h request, we �rst 
ompute an O(logm)-
ompetitive fra
tional solution. Wenow explain how the rounding of the fra
tional solution is performed.Initially, the algorithm starts with an empty 
over C = ;. The algorithm keeps for every tree Ti 2 T ,2dlog(n0 + 1)e random independent variables, X(Ti; j), 1 � j � 2dlog(n0 + 1)e, distributed uniformly in the



interval [0; 1℄. The value of n0 is the number of terminals asked so far by the adversary. As n0 
hanges wegradually in
rease the number of random variables. De�ne the threshold of tree Ti to be:�(Ti) = 2dlog(n0+1)eminj=1 X(Ti; j):The rounding method is very simple. Take to the solution C all edges e for whi
h we > �(Te), where Te is the tree
ontaining edge e. That is, the weight of edge e has ex
eeded the threshold of the tree 
ontaining it. We notethat in
reasing n0 adds more random variables whi
h 
an only de
rease the thresholds of the trees, and hen
ein
rease the probability of taking edges to the solution. Thus, when in
reasing n0, it is ne
essary to re
onsiderpreviously 
onsidered edges.Let � be the value of an optimal fra
tional solution to the instan
e given so far. We now analyze theperforman
e of the algorithm.Lemma 4.1. The following holds throughout the algorithm:1. The expe
ted 
ost of the solution produ
ed by the algorithm is O(� logn0 logm).2. For any terminal t, the probability that t is requested, yet it is not 
overed, is at most 1=n02.Proof. We begin by proving (1). For ea
h edge e and j, 1 � j � 2 logn, let Y (e; j) be the indi
ator randomvariable of the event that we > X(Te; j). Thus,Exp"Xe2C 
e# � Xe2E 2dlog(n0+1)eXj=1 
e � Exp[(Y (e; j)℄= Xe2E 2dlog(n0+1)eXj=1 
ewe� 2dlog(n0 + 1)e(2� logm+ �+ 1)= O(� logn0 logm):We now prove (2). Consider a terminal t. The fra
tional solution guarantees that the total amount of 
owthat 
an be sent from the roots of the trees in T to the verti
es that are asso
iated with t is at least 1. Let fTt bethe 
ow to terminal t in tree T . Thus, the probability that terminal t is not 
overed is bounded from above bythe probability that the threshold of ea
h tree T 
ontaining t is larger than fTt . Re
all that the weight of ea
hedge on a path to t is at least the 
ow going to the terminal on the path.For any tree T and j, 1 � j � 2dlog(n0 + 1)e, the probability that the 
ow to t in T is at most X(T; j) is1� fTt . Thus, the probability that none of the 
ow paths to t ex
eeds X(T; j) isYT2T (1� fTt ) � e�PT2T fTt < 1e ;where the last inequality follows from the fa
t that PT fTt = ft � 1. Thus, the probability that the terminal isnot 
overed by any 1 � j � 2dlog(n0 + 1)e is less than 1=n02.Lemma 4.1 suggests the following 
hange to the algorithm to guarantee that a feasible solution is always
omputed. We run the algorithm. If at any time a terminal t is requested, but is not 
overed, then we 
hoose the
heapest path from a root of a tree in T to t to the 
over. The 
ost of this path is 
ertainly a lower bound onthe optimal solution. Sin
e this event happens with probability at most 1=n02 for ea
h terminal, its e�e
t on theexpe
ted 
ost of the algorithm is negligible. Thus, we obtain the following theorems.Theorem 4.1. There exists a randomized algorithm for the online multi-
ast problem in trees that isO(log n0 logm) 
ompetitive.



Theorem 4.2. There exists an O(log n logm) 
ompetitive randomized algorithm for the non-metri
 fa
ilitylo
ation, where m is the number of fa
ilities and n is the number of 
lients.We remark that both the online multi-
ast problem in trees and the online non-metri
 fa
ility lo
ation aregeneralizations of the online set-
over problem introdu
ed in [1℄. Thus, the lower bound of 
( logn logmlog logm+log logn )proved in [1℄ for any deterministi
 algorithm for the online set-
over problem applies to these problems as well.4.2 The Group Steiner Problem on Trees We des
ribe a randomized algorithm for the group Steiner treeproblem on trees. Following ea
h request, we �rst 
ompute an O(logm)-
ompetitive fra
tional solution. We nowexplain how the rounding of the fra
tional solution is performed. To this end, we use an online variation on themethod of [9℄.Initially, the algorithm starts with an empty 
over C = ;. Applying the te
hnique of [9℄ requires that thefra
tional weights on a path from the root to a terminal are monotoni
ally de
reasing. However, the fra
tionalsolution that we 
ompute may not ne
essarily satisfy this property. Therefore, we de�ne the weight of ea
h edgeto be the maximum 
ow through the edge going to a terminal in the edge's subtree. Thus, we abuse notation andlet we denote the 
ow on edge e instead of the a
tual weight of e. Note that by doing so we 
an only de
reasethe value of the fra
tional solution that serves as our baseline for performing the 
ompetitive analysis, sin
e the
ow value on an edge 
an only be less than the a
tual weight of the edge.Consider a weight augmentation iteration in the fra
tional algorithm. For ea
h edge e, let we and w0e = we+Æedenote the weight of e before and after the weight augmentation iteration, respe
tively. For an edge e, let f bethe edge adja
ent to e and 
loser to the root r. The rounding algorithm pro
esses the edges in topologi
al order(from top to bottom). For ea
h edge e, the following is performed:� If w0e > 1, then add e to C.� If e is in
ident on r, or w0f > 1, then add e to C with probability Æe=(1� we).� If f 2 C, then add e to C with probability Æe=(w0f � we).Note that for ea
h edge e, the probability Æe=(w0f � we) � Æe=(w0e � we) = 1, sin
e w0e < w0f . The edges are
onsidered in topologi
al order so that C indu
es a (
onne
ted) subtree of T , sin
e an edge is added to C only ifthe path 
onne
ting it to the root r already belongs to C. We prove the following lemma:Lemma 4.2. At any point of time t in the algorithm, the probability that an edge e belongs to C is we(t), wherewe(t) is the weight of e at time t. If we > 1, then e 2 C.Proof. The rounding algorithm adds ea
h edge e to C for whi
h we > 1.Consider an edge e and let the path from the root r to e be e0; e1; : : : ep = e. The proof is by indu
tion onthe time t.Indu
tion Basis: At t = 0, the probability that e is added to C is equal to we0 �Qpi=1 wei=wei�1 = wep .Indu
tive Step: Consider a time t > 0 where we is raised to we + Æe. By the indu
tive hypothesis, ea
h edgeei, 0 � i � p� 1, belongs to C with probability minfw0ei ; 1g, and e 2 C with probability we.We need another (internal) indu
tion on p, the length of the path from r to e. The base 
ase is when e isin
ident on r. Then, the probability that e belongs to C iswe + Æe � (1� we)(1� we) = we + Æe = w0e:If w0e > 1 then edge e belongs to C with probability 1.Let e be an edge of depth p. By the (internal) indu
tive hypothesis, the probability that ep�1 is added to Cis w0p�1. The probability that e is added to C is equal towe + Æe � (w0p�1 � we)(w0p�1 � we) = we + Æe = w0e:The above LHS is the probability that e was previously added to C plus the probability that e was not previouslyadded to C, but ep�1 was previously added to C and e is added to C in the 
urrent step.



If w0p�1 > 1, then the probability that e is added to C in the 
urrent step iswe + Æe � (1� we)(1� we) = we + Æe = w0e:If w0e > 1, then edge e belongs to C. Thus, the 
laim holds.Lemma 4.3. At any point of time t in the algorithm, the expe
ted 
ost of the edges added to C is at mostPe2T 
ewe(t).Proof. From Lemma 4.2 it follows that the probability at any time t that edge e belongs to C is at most we. Bylinearity of the expe
tation the 
laim follows.We now analyze the probability that a group g is 
overed when wg > 1.Lemma 4.4. For any group g, 
onsider the �rst time t su
h that wg > 1. Then, the probability that a vertexbelonging to g is in at time t is 
(1= logN), where N is the maximum size of a group.Proof. Our proof uses [9, Thm. 3.4, p. 72℄. This requires proving that the probability of the \good" eventsremains the same and that the dependen
y between them remains the same. The �rst 
laim follows from lemma4.2. In order to prove the se
ond 
laim we need to show that the probability of two \good" events is the same asin Theorem 3:4 of [9℄. This follows from the fa
t that the probability that e is 
hosen to the solution given thath, an edge 
loser to the root, is 
hosen is exa
tly we=wh. The events for e and f are independent, given that h,their least 
ommon an
estor, is 
hosen. Thus, the probability for e and f is wewf=wh, and we are done.A
tually, in order to use the original proof of [9℄, we are required to prove a stronger assertion about theindependen
e of the 
orresponding events. However, this is not needed, sin
e the proof of [9℄ 
an be modi�ed sothat only the se
ond moment of the variable whi
h is the number of paths from the root to a vertex in g needsto be 
omputed. This follows from the assertion of [2, Se
. 4.8, Ex. 1℄. Therefore, the above independen
e resultsuÆ
es.Lemma 4.4 suggests the following randomized online algorithm. Run O(log k logN) independent trials inparallel using the randomized rounding des
ribed, where k is the number of groups asked by the adversary. Thisresults in a randomized algorithm with 
ompetitive ratio O(log k logN) that 
overs all the groups with probabilityat least 1 � 1=k. In order to guarantee that the algorithm always produ
es a feasible solution, we 
an use theshortest path to a group in 
ase the algorithm fails to 
over it. The 
ost of this path is a lower bound on theoptimal solution, and sin
e this event happens with probability at most 1=k, it 
hanges the expe
ted 
ompetitiveratio of the algorithm by a negligible fa
tor. Sin
e we do not know in advan
e the value of k we may in
rease thenumber of trials gradually as more groups are asked, similar to Se
tion 4.1.4.3 The Group Steiner Problem on General Graphs. We now 
onsider the Group Steiner tree algorithmon general graphs. To this end, we use hierar
hi
ally well-separated trees (HST-s) [4, 8℄. A set of metri
 spa
es Sover V is said to �-probabilisti
ally approximate a metri
 spa
eM over V , if: (1) for every x; y 2 V and S 2 S,dS(x; y) � dM(x; y) and (2) there exists a probability distribution D over the metri
 spa
es in S su
h that for allx; y 2 V , E [dD(x; y)℄ � �dM(x; y). Re
ently, the following theorem was proved in [8℄, improving upon the basi
approa
h of [4℄.Theorem 4.3. Every weighted 
onne
ted graph G on n verti
es 
an be �-probabilisti
ally approximated by a setof weighted trees, where � = O(log n). The probability distribution 
an be 
omputed in polynomial time.We use this theorem to obtain the following bounds.Theorem 4.4. There is a randomized online algorithm for the group Steiner problem in general graphs with a
ompetitive ratio of O(log3 n log k).Proof. We �rst use Theorem 4.3 to randomly 
hoose a tree T from the distribution D. Then, we run the onlinealgorithm from Se
tion 4.2 on the tree T . When a new vertex v is being 
onne
ted to the root r, we just 
onne
tit in the graph via its 
losest neighbor in the tree that is already 
onne
ted to the root. Sin
e the tree is an HST,the 
ost of this path in the tree is only twi
e the 
onne
tion 
ost of v to the least 
ommon an
estor of v and its
losest previously 
onne
ted neighbor. Thus, on the average, we are paying at most twi
e the stret
h fa
tor of thepaths, and the theorem follows dire
tly from Theorem 4.3 and the guarantee on the performan
e of the algorithmin Se
tion 4.2



4.4 The multi-
ut problem In this se
tion we 
onsider the online multi-
ut problem in undire
ted graphs.The online algorithm we present here does not �t the general framework developed in the paper, where a fra
tionalsolution is 
omputed online and then rounded online into an integral solution.In [16℄, R�a
ke des
ribes a pro
edure for �nding a hierar
hi
al de
omposition of any undire
ted graphG = (V;E) with 
apa
ities on the edges. An eÆ
ient pro
edure for �nding su
h a de
omposition tree TG appearsin [6℄ and [12℄. This remarkable de
omposition enables us to transform the problem from a general graph to atree. We later on present an online algorithm for the multi-
ut problem on trees with 
ompetitive ratio �, where� may depend on the height of the tree.The nodes of the de
omposition tree TG 
orrespond to a laminar family of subsets of V . There is a 1-1
orresponden
e between V and the leaves of the tree. The edges of TG 
orrespond to 
uts in G and ea
h treeedge is asso
iated with a 
apa
ity (or 
ost) whi
h is equal to the 
apa
ity (or 
ost) of the 
orresponding 
ut inG. The tree TG has the property that for any 
hoi
e of sour
e-sink pairs, any feasible multi-
ommodity 
owfun
tion in TG 
an be routed in G 
ausing a 
ongestion of at most �. The best value of � is O(log2 n log logn) forgeneral graphs and O(log n log logn)) for planar graphs, and it is given by [12℄ together with a polynomial-time
onstru
tion of TG.Thus, the multi-
ut problem in G translates into a multi-
ut problem in the de
omposition tree TG, where thegoal is to separate between the leaves 
ontaining the sour
e-sink pairs. We run an �-
ompetitive online algorithmfor the (online) multi-
ut problem in TG. A multi-
ut in TG is a set of edges whi
h translate ba
k in G into a setof 
uts having at most the 
apa
ity of the multi-
ut in TG. Clearly, this translation 
an be done online.Theorem 4.5. There is a deterministi
 polynomial-time algorithm for the online multi-
ut problem that a
hievesa 
ompetitive ratio of:� O(log3 n log logn) for general graphs.� O(log2 n log logn) for planar graphs.� O(log2 n) for trees.Proof. (Sket
h) Let Conl(G) and Conl(TG) denote the multi-
uts found by the online algorithm in G and in TG,respe
tively. Let Copt(TG) denote the optimal multi-
ut in TG, and let MCFopt(TG) be the maximum multi-
ommodity 
ow in TG between the sour
e-sink pairs. By [11℄, in a tree, Copt(TG) � 2 �MCFopt(TG). Hen
e,Conl(G) � Conl(TG) � � � Copt(TG)� 2� �MCFopt(TG):Let f� be a maximum multi-
ommodity 
ow between the sour
e-sink pairs in TG. Let MCFopt(G) denote amaximum multi-
ommodity 
ow in G between the sour
e-sink pairs. Sin
e f� 
an be routed in G with a 
ongestionof at most �, we get that, MCFopt(G) � 1�MCFopt(TG);yielding that Conl(G) � 2�� �MCFopt(G):Sin
e MCFopt(G) lower bounds the optimal multi-
ut in G, we get that our algorithm is (2��)-
ompetitive.Substituting the appropriate values for �, and setting � = O(log n), the 
laimed bounds follow.We now pro
eed and show an online algorithm for the multi-
ut problem in trees. First, note that there is asimple redu
tion from the online multi-
ut problem in trees to the online set 
over problem. Ea
h pair of verti
esin the tree 
orresponds to an element; ea
h edge of the tree 
orresponds to a set. A set 
ontains an elementif the 
orresponding edge separates the two verti
es 
orresponding to the element. Hen
e, by the main resultof [1℄, (whi
h follows the basi
 general approa
h developed here), there is a deterministi
 O(log2 n)-
ompetitivealgorithm for the online minimum multi-
ut tree problem.The above redu
tion applies to any tree. However, when 
onsidering the de
omposition trees produ
ed by[12℄, we observe that their height is only O(log n). We use this to improve on the 
ompetitive ratio by providing



an O(h)-
ompetitive online algorithm for any tree, where h denotes the height. The online algorithm essentiallyfollows the primal-dual 2-approximation algorithm of [11℄. However, in an online setting, we 
annot 
hoose theorder of the sour
e-sink pairs and we 
annot apply the \
leaning" stage at the end. Thus, applying the standardprimal-dual s
heme on the multi-
ut problem on a tree yields an O(h)-approximation fa
tor that translates toan O(h)-
ompetitive online algorithm. The O(h)-approximation fa
tor follows sin
e the primal 
omplementarysla
kness 
ondition is preserved, and a relaxed dual 
ondition with a 2h fa
tor is trivially preserved. An alternativedes
ription of the algorithm is via the lo
al ratio te
hnique: redu
e from the 
ost of all the edges on the uniquepath between the new sour
e-sink pair the minimum 
ost of an edge on the path, and then take into the 
ut allzero-
ost edges.Referen
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