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Abstract

We consider the on-line load balancing problem where there are m identical machines
(servers) and a sequence of jobs. The jobs arrive one by one and should be assigned
to one of the machines in an online fashion. The goal is to minimize the sum over all
machines of the squares of the loads, instead of the traditional maximum load.

We show that for the sum of the squares the greedy algorithm performs within 4/3 of
the optimum, and no on-line algorithm achieves a better competitive ratio. Interestingly,
we show that the performance of greedy is not monotone in the number of machines.
More specifically, the competitive ratio is 4/3 for any number of machines divisible by
3 but strictly less than 4/3 in all the other cases (although it approaches 4/3 for large
number of machines). To prove that greedy is optimal, we show a the lower bound of 4/3
for any algorithm for 3 machines. Surprisingly, we provide a new on-line algorithm that
performs within 4/3 — § of the optimum, for some fixed § > 0, for any sufficiently large
number of machines. This implies that the asymptotic competitive ratio of our new
algorithm is strictly better than the competitive ratio of any possible on-line algorithm.
Such phenomena is not known to occur for the classic maximum load problem.

Minimizing the sum of the squares is equivalent to minimizing the load vector with
respect to the L, norm. We extend our techniques and analyze the exact competitive
ratio of greedy with respect to the L, norm. This ratio turns out to be 2 — @(1“77’). We
show that greedy is optimal for two machines but design an algorithm whose asymptotic
competitive ratio is better than the ratio of greedy.
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1 Introduction

Consider a set of jobs that are created in an on-line fashion and should be assigned to disks.
Each job has a weight which is the frequency access to the disk. Define the load on a disk
to be the sum of the weights of jobs assign to it. If we would like to minimize the maximum
delay of an access request of a job to the disk than it is equivalent to minimize the maximum
load on a disk. However, in many cases the more appropriate goal would be to minimize
the average delay of all access requests [6]. That is equivalent to minimizing the sum of the
squares of the loads, since the delay of an access request is proportional to the load on the
disk. That motivates us to define the following machine load balancing problem.

We are given m parallel identical machines and a number of independent jobs (tasks)
arriving one by one at arbitrary times. Each job has an associated weight and should
be assigned immediately to exactly one of the machines based only on the previous jobs
without any knowledge on the future jobs. The load of a machine is the sum of the weights
of the jobs assigned to it. The cost of an assignment for an input sequence of jobs is the
sum of the squares of the machines’ load vector (after all jobs are assigned). The goal of
an assignment algorithm is to assign all the jobs while minimizing the cost.

We measure the performance of an on-line algorithm by its competitive ratio. An
on-line algorithm is c-competitive if for each input the cost of the assignment produced by
the algorithm is at most ¢ time larger than the cost of the optimal assignment.

We show that for minimizing the sum of the squares of loads the greedy algorithm is
%—competitive over any number of machines. We also show that no on-line algorithm can
achieve a better ratio than % for all m which implies that greedy may be considered as
an optimal algorithm. Interestingly, the competitive ratio of the greedy algorithm is not
monotone in the number of machines. It is exactly % for m = 0 (mod 3) but strictly
smaller than % for m Z0 (mod 3). However, the asymptotic competitive ratio, which
is the limit of the competitive ratio for m — oo, is %. More precisely, for any §6 > 0 there is
some M such that for all m > M the competitive ratio of greedy is at least 4/3 — ¢. The
reason that the greedy algorithm is optimal if we allow any number of machines is that we
proof a lower bound of % on any on-line algorithm for 3 machines. The greedy algorithm is
also optimal for 2 and 4 machines, in both cases the competitive ratio is 3+ \/5/4 ~ 1.3090.

Surprisingly, we provide a new on-line algorithm with competitive ratio 4/3 — ¢, for
some fixed 6 > 0, for any sufficiently large number of machines. This implies that the
asymptotic competitive ratio of our new algorithm is strictly better than the competitive
ratio of any possible on-line algorithm and strictly better than the asymptotic competitive
ratio of greedy. Such phenomena is not known to occur for the classic makespan problem.
In fact it is conjectured in [7] that the competitive ratio for the makespan is monotone
increasing with the number of the machines. Also we are not aware of a natural on-line
problem whose competitive ratio is different than the asymptotic competitive ratio (in
particular it should be non-monotone).

We also consider the general L, norm (for any p > 1). Note that minimizing the sum
of the squares is equivalent to minimizing the Lo norm of the load vector. We can also
define the cost to be the L, norm of the machines’ load vector for any p > 1. In particular,
minimizing the L., norm precisely means minimizing the maximum load. By using the
triangle inequality, it is not hard to show that for any L, norm the worst case performance



of the greedy algorithm is at most 2. We determine the exact worst case performance of the
greedy algorithm over an arbitrary number of machines. We show that this performance is
2 —@(IHTP). Then we present a lower bound of 3 —@(%) for any on-line assignment algorithm
for any fixed number of machines. We show that for any p > 1 the greedy algorithm is
optimal for 2 machines. In contrast, we design an algorithm whose asymptotic competitive

ratio is strictly better than the asymptotic competitive ratio of greedy.

The case p = oo (i.e., L) is the classic ancient problem of scheduling jobs on identical
machines minimizing the makespan (or maximum load). Graham [11] showed that the
greedy load balancing algorithm is 2— % competitive in this case. The greedy algorithm is
optimal only for m < 3, for any m > 3 better algorithms exist [9, 7]. Bartal et al. [5] were
the first to show an algorithm whose competitive ratio is below 2 — § for some constant
6 > 0 and arbitrary m. Very recently, Albers [1] designed 1.923 competitive algorithm and
showed a lower bound of 1.852.

Chandra and Wong [6] were the first to consider the problem of minimizing the sum of
the squares of the machines load vector. Cody and Coffman [8], in their study of placing
a set of records on a sectored drum to minimize the average latency, considered essentially
the same minimization problem. In [6] it is shown that if the jobs arrive in non-increasing
weights order then the greedy algorithm is % of the optimal assignment in the worst case.
This result was slightly improved by Leung and Wei [12]. Chandra and Wong [6] also
considered the the general L, norm (for any p > 1) and showed that the greedy algorithm
on the sorted items achieves a constant performance bound. The constant depends on p
and grows to % when p grows to oco.

Off-line scheduling/load balancing with respect to the L, norm has been considered
in [2]. The off-line minimization problem is known to be NP-hard in the strong sense [10].
Alon et al. [2] provided a polynomial approximation scheme for scheduling jobs with respect
to the L, norm for any p > 1. An example in which the optimal assignment for the sum of
the squares is different than the optimal assignment in the L., norm is also given in [2].

Results on load balancing for the unrelated machines with respect to the Lo, norm and
Ly (and Ly) norm appear in [3, 4]. The competitive ratio for unrelated machines is much
worse (©(p)) than the trivial bounds for identical machines and the techniques used are

totally different.

2 Definitions and preliminaries

In the load balancing problem we are given m identical machines (servers) and a finite
sequence of jobs (tasks). Each job j has a weight w; > 0. A schedule S is an assignment
which assigns each job j to a single machine i, 1 < ¢ < m. For every schedule S, the
load of machine i, denoted L;(S), is the sum of weights of all jobs assigned to i in S.
The vector of loads is L(S) = (L1(S),...,Ln(S)). An assignment algorithm is an
algorithm which for an input sequence ¢ produces a schedule which assigns every job in o
to one of the m machines. An on-line assignment algorithm must assign a job j at its
arrival to a machine based only on the previous jobs and their assignments; the decision
is made without any knowledge about future job arrivals. Our measure of cost is the L,



norm. Hence the cost of a schedule S is defined as

IL(S)llp = (Z(Li(s))p> "

=1

Note that we can reorder the machines with no change in the cost. The optimal cost,
denoted OPT(S), is the minimal cost of a schedule S’ which assigns the same jobs as S;
this schedule can be computed by an offline algorithm which knows all the jobs in advance.
We measure the performance of our algorithms by the competitive ratio. For a fixed
p > 1, the competitive ratio of a schedule S is defined as C(S) = ||L(S)||,/ OPT(S)
(putting 0/0 = 1 to handle the empty schedule). Let A be an on-line assignment algorithm.
The competitive ratio of A over a fixed number m > 1 of machines is defined as

Cam =sup{C(S) | S is a schedule produced by A on m machines}.
The competitive ratio of A over an arbitrary number of machines is defined as
Cu = sup{Clam | m > 1}

The previous definitions cover also the case when we measure the the sum of the squares
of loads, since then the cost is (|[L(S)]|2)?. Consequently, the competitive ratios w.r.t. the
sum of the squares of loads are equal to C?(S), C’zhm and C% w.r.t. the Ly norm.

Now we define the notion of a shape of a schedule, which is an abstraction of a schedule
where for every machine, all jobs assigned to it except for one are replaced by very small
jobs with the same total load. In general it may be impossible to produce such a schedule
by the same algorithm as the original one. Nevertheless, the concept of a shape, is very
useful for proving upper bounds on the competitive ratio, since the optimal assignment may
improve (by partitioning the jobs) while the cost of the assignment does not change. Hence
a shape is a pessimistic estimate of a schedule. A shape characterizes each machine by two
numbers, a; is the total load of the small jobs, and u; is (a lower bound on) the weight of
one large jobs.

Formally a shape is a pair R = (a,u), where a and u are vectors of m nonnegative
reals. The vector of loads of a shape is defined as L(R) = a + u. The shape R = (a,u)
is a shape of a schedule S if L(R) = L(S) and for every i < m with u; > 0 there
exists a job with weight w; > w; assigned to the machine 7 in S. The optimal cost of a
shape R is the infimum of the optimal costs of all schedules S with the shape R, formally
OPT(R) = inf{ OPT(S) | R is a shape of S}. As we shall see, the infimum can be replaced
by a minimum. The competitive ratio of a shape R is C(R) = ||L(R)||,/ OPT(R).

It is possible to compute the optimal cost of the shape R = (a,u) explicitly. It is the
cost of a schedule in which some big jobs are scheduled each on a separate machine and
the rest of the jobs are balanced evenly on the rest of the machines. Let the machines be
ordered so that u; are nondecreasing. For 1 <1 < mlet hy = (31", a; + >.i_q u;)/l. Let k
be the largest [ such that h; > u; (k is always defined, since hy; > u1). We define the height
of the shape to be h(R) = hy.

It is easy to see that a good candidate for an optimal schedule for the shape R is to put
on each machine one job of size exactly u; and divide a; into a few jobs so that they can be



balanced exactly on the & machines; then the load vector is (hg,. .., hk, Ugs1,--.,Um). See
the Figures 1 and 2 for examples where a; = 1 for all . Next, we show that this really is
the optimal schedule.
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Figure 1: A shape R. Figure 2: Optimal assignment of R

Lemma 2.1 Let h = h(R). Then OPT(R) = ||(h,... ,hytugs1,. . um)|lp-

Proof: We have seen above that there exists a schedule which achieves this value. Tt
remains to prove that for any schedule S with shape R, the cost ||L(S)||, is at least the
bound in the statement of the lemma.

The case of h(R) = 0 is trivial since the equality holds. Otherwise let h = h(R) and let
k be such that h = hy, in the previous definition. From the definition of A(R) it follows that
h < u; for every i > k (otherwise we would have chosen larger k). For i > k, let j; be a job
assigned to ¢ in S with weight at least u; (it exists, since u; > 0).

Let S’ be the optimal schedule for the jobs in S. First, S’ has a machine with load at
most h: there are at least & machines on which no job j;, ¢ > k, is scheduled, and their total
load is at most kh. Second, if S” is optimal, then for any ¢ > k, no other job is assigned
to the same machine as the job j;: Assume that the job j; is scheduled on a machine with
the load b > 0 of other jobs. We know that there is a machine with load ¢ < h < u; < wj;.
However, if we replace the two machines with loads ¢ and b+ w;; by two machines with load
b+c and wj;, the total cost decreases due to the convexity of the function 2”. Consequently,
after a renumbering of the machines, the vector of loads L = L(S") satisfies L; > u; for each
i>kand Y% L = hk+ 3%, 1 u;. Using convexity again, the cost of any such schedule
is at least |[(h, ..., ¢, Wpt1, . s Um)|lp- |

3 The greedy algorithm
In this section we determine the competitive ratio of the greedy algorithm defined below.

Algorithm Greedy: Upon arrival of a job j assign it to the machine with the
current minimum load (ties are broken arbitrarily).

To bound the performance of Greedy, we show that each schedule can be replaced
by a very special shape so that the competitive ratio does not decrease. Computing the




competitive ratio is then shown to be equivalent to computing a maximum of a certain
function over the reals. A shape R = (a,u) is called flat if all the components of a are the
same. Abusing notation, we then denote by a both the value of the component and the
vector of m such components. (For an example of a flat shape, see Figure 1.)

Lemma 3.1 Let S be a schedule obtained by Greedy. Then there exists a flat shape R
which is a shape of S.

Proof: Let L = L(S) be the vector of loads of S; w.l.o.g. assume that L; is the smallest
component of L. We claim that the flat shape (a,u), where a = Ly and w; = L; — a, is a
shape of S. Clearly the loads are the same. Consider a machine with u; > 0. Let j be the
last job assigned to the machine ¢. At the time of its assignment, the load of the machine ¢
must have been at most a, as otherwise Greedy would have scheduled j on the machine 1.
Hence w; > L; — a = u;. [ ]

Lemma 3.2 Let R = (a,u) be a flat shape. Then there exists a flat shape R' = (a',u')
such that C(R) < C(R') and for any i, v, =0 or u, > h(R').

Proof: Assume that 0 < u; < h = h(R). We claim that there exists a flat shape R’
such that |[L(R')||, > ||L(R)|l,, OPT(R') = OPT(R), h(R') = h, u} is either 0 or h, and
the other components of the vector «’' remain unchanged. Applying this claim inductively
finishes the proof of the lemma.

To prove the claim, we define two candidate shapes and prove that one of them satisfies
all the conditions. Let R' = (a/,u') and R" = (a”,u"), where ' = (0,ua,...,up), a’ =
a+up/m, u" = (hyug,...,um), and @’ = a — (h —uy)/m. Tt is easy to verify that a” > 0,
OPT(R') = OPT(R") = OPT(R), and h(R') = h(R") = h. Moreover,

h—ulL

L(R) = —

(R) + S L(R"),

i.e., the old vector of loads is a weighted average of the two new vectors of the loads. From
the convexity of the function 2P it follows that

P h—u1
(LB < —

Hence either |L(R)||, < |L(R)|l, or |L(R)|l, < |L(R")|l,, and the claim is proved. |

(IL(RDlp)" + %(HL(R”)IIp)p.

Lemma 3.3 Let k < m and let R = (a,u) be a flat shape such that u; > h(R) for i =
1,...,k. Then there exists x such that for R' = (1,(x,..., %, ugs1,. .-, Um)), it holds that
C(R) < C(R"), OPT(R") = OPT(R), h(R') = h(R), and x > h(R').

Proof: Let x be the pth power mean of u;, i < k, i.e., x = (Ei—;l uf/k)l/p. Clearly x is
at least the minimum of wq, ..., u;, hence the optimal schedule changes only in the load
of the machines with these single jobs and > h(R) = h(R'). The contribution of the
k big jobs to (OPT(R))? is .F_, u, and their contribution to (OPT(R'))? is kaP. These
contributions are the same and hence the optimal cost does not change. It remains to prove



that ||L(R')|l, > ||L(R)|,- Comparing the contribution of the first £ machines, we need to

prove that
k

Z(a +u;)? < k(a+ x)P.
i=1

We apply Minkowski inequality (the triangle inequality for the L, norm) to the vectors
(ay,...,a) and (uq,...,ur) and obtain

k 1/p i 1/p
(Z(a—i—ui)p) < kYPa + (Zuf) = kP (a4 ).

i=1 i=1

Raising the inequality to pth power finishes the proof. [ |

The above lemmas imply that in order to find the competitive ratio of the greedy
algorithm we need to solve a restricted optimization problem. Define the function

(1=A)+2)P+5
(= ) + 7

Theorem 3.4 The competitive ratios of the greedy algorithm are

fo(z, B)

Chreedym = sup{fyp(z, M/m)/? |0 <a, M =0...,m— 1},
Cereedy = sup{fp(x,8)"/P |0 <2,0< <1}

Proof: Let u(x, M, m) be a vector with m — M components with value x and M zeros, and
let R = (1,u(x, M, m)) be the corresponding flat shape. The function f is defined so that
f(:c,M/m)l/p = C(R) if x > h(R). If < h(R), the denominator of f is the pth power of
the cost of a valid but not optimal schedule, hence f(z, M/m)? < C(R) in this case.

By the above lemmas for every schedule S generated by Greedy there exists x and M
such that the flat shape R = (1,u(x, M, m)) satisfies C(S) < C(R) and x > h = h(R):
First apply Lemma 3.1 to obtain a flat shape of S; by Lemma 2..1 the competitive ratio can
only increase. Next apply Lemma 3.2 and Lemma 3.3 to obtain a flat shape (a, u) with u of
the desired form. Last, normalize the shape so that a =1, i.e., put R = (1,u/a) (if a = 0,
the greedy schedule is optimal). From the construction it follows that © > h = m/M and
M < m. Hence C(R) = f(x, M/m)"/?. This proves the upper bounds.

To prove the lower bound for a fixed m, it is sufficient, given x and M, to find a sequence
o with the same cost ratio as that of the shape R = (1,u(x, M, m)). From the definition
of R it follows that h(R) = m/M. The sequence of mM jobs with weight 1/M followed
by m — M jobs of weight x has the desired ratio. For unrestricted m, given x and 3, fix
a sequence of rational numbers M;/m; converging to 5. The result now follows from the
lower bound for fixed m, since f, is continuous. [ |

In the Theorem A.1 in the appendix we prove that the supremum of f,(z, ), z > 0,
0 < B < 1, is achieved at a unique point, moreover we give a method to compute the
supremum and hence the competitive ratio. Here we state the results for the most interesting
case of sum of squares, i.e., evaluating Céreedy for p = 2.



Theorem 3.5 For p =2 the performance of Greedy is:

C% dy — 3

reedy 37

Cé’reedy,m = % fOT m=0 (mOd 3)7

Cé’reedy,m < § v fOT m $é 0 (mOd 3)7
— 3+

Clircedym = 32 = 1.3090 for m=2,4.

Proof: According to Theorem A.1, the supremum of f; is achieved at © = 3, § = 2/3, and
C’éreedy = fo(x, ) = 4/3. The claim for m divisible by 3 is true, since the supremum of f,
is achieved for M = 2m/3. The claim for m not divisible by 3 is true, since the supremum
of f, is unique, and M/m # 2/3 if m is not divisible by 3.

The last claim is obtained by maximizing the function fo(x,1/2) for m = 2 and addition-
ally fa(x,1/4) and f2(x,3/4) for m = 4. The calculus leads to simple quadratic equations,
which give the optimal solution # = 1 + /5 and M = m/2. Details are omitted. ]

4 Lower Bounds

In this section we prove that for p = 2 Greedy is optimal for fixed m = 2, 3,4, and hence
also for arbitrary m (since the worst performance of Greedy is achieved for m = 3). In
Theorem 4.2 we give weaker lower bounds for m > 4, and in Appendix C we prove some
bounds for general p.

Theorem 4.1 For any on-line assignment algorithm A, C% > Cf‘,?) > 4/3 and 0124’2, 0/21,4 >
(34 5)/4 ~ 1.3090.

Proof: Consider the sequence (1,1,1,3,3,3,12) for 3 machines. First the 3 jobs of weight
1 arrive. If the algorithm A assigns two or more jobs with weight 1 on the same machine,
it does not get any other job. Its cost is at least 5, the optimal cost is 3, and we are done.
Otherwise, A assigns on every machine one job with weight 1. Now the next 3 jobs of weight
3 arrive. If A assigns two or more of these jobs on the same machine, is does not get any
other job. Tts cost is at least (143 +3)2 4 (1 +3)? + 12, whereas the optimum cost is 3 - 42
which again yields a ratio greater than 4/3. Otherwise all machines have load 4 before the
last job of weight 12 arrives. The cost of A on the full sequence is (12 +4)? +2-42, whereas
the optimum cost is 122 + (3 +3)? 4+ (3 4+ 1 + 1 + 1)?, which yields a ratio of 4/3.
Consider the sequences (1,1,14+/5) form =2 and (1,1,1,1,1 4+ /5,1 4+ /5) for m = 4.
If the algorithm assigns two jobs of weight 1 to the same machine, the ratio is at least
3/2 > (34 /5)/4. Otherwise together with the large job(s) we get a ratio of (3 ++/5)/4. m

Theorem 4.2 For any number of machines m > 2 and any on-line assignment algorithm
A, Ch,, > V5 —1~=1.2361.

Proof: Denote a = /5/2 — 1 & 0.118. We assume that m is even. The proof for m which
is odd is similar and omitted in this abstract. Consider the sequence of m jobs of weight 1
followed by m/2 jobs of weight 1 4+ /5. At the beginning m jobs of size 1 arrive. Let [ be
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Figure 3: Best on-line assignment of the Figure 4: Best on-line assignment of all
first m jobs with | empty machines the jobs with [ empty machines

the number of empty machines after the on-line algorithm assigns the m jobs of size 1. An
example of the best such assignment is shown in figure 3.

First we assume am <1 < %m In this case the cost of the on-line algorithm is at least
[-22 + (m — 2l) - 12 whereas the cost of optimum is m - 12. This yields a ratio of at least
1421/m > 14+2a = v/5—1 which completes the proof of this case. Since any assignment for
[ > m/2 results in a cost greater than the assignment for | = m/2 we may assume [ < am.
Now the next m/2 jobs of weight /5 + 1 arrive. An example of the best on-line assignment
for these jobs is shown in figure 4. The competitive ratio of the algorithm is at least

1224+ (m/2=0)-2+V5)2+(m/2-1)-124+1-(v/5+1)
m/2-(V5+1)2+m/2-(1+1)2 '

Since I/m < «, the competitive ratio is at least (1 —a)-2v5+5)/(5+vV5) =vV5—-1. =

5 A better algorithm

Our algorithm uses the same intuition as the algorithms better than greedy for the classical
makespan scheduling problem [5, 1]. Namely, instead of trying to balance all the machines,
we maintain a constant fraction of the machines that are reserved for large jobs. In our case
we schedule the small jobs on the remaining machines greedily.

We define an algorithm A(¢,a) for any ¢ > 0 and 0 < a < 1. The choice of ¢ and «
clearly influences the performance of the algorithm. However, since the exact analysis is
beyond our current techniques, we are not trying to optimize them.

Algorithm A(t,«): Let k& = |am]|. Before an arrival of a job, reorder the
machines so that the loads are non-decreasing; let Ly be the (k+1)th smallest
load. Upon arrival of a job 5 with weight w, if w > tLj1, schedule the job on
machine 1, otherwise schedule it on machine k + 1.

Theorem 5.1 For every p, there exist mg, t, o, and &6 > 0 such that for any m > my,
CA(t,a),m < CGreedy — 0.

The proof of Theorem 5.1 occupies the rest of this section and has the following structure.
First, in Lemma 5.2 we prove that if the competitive ratio of a flat shape is very close to
CGreedy, then the shape must look very similar to the unique worst case example for Greedy
found in Theorem 3.4. This is intuitively clear, but the precise proof is technical. We give
the proof of Lemma 5.2 in Appendix D. Using this lemma we prove that for sufficiently



small «, in any schedule S produced by the algorithm such that C(S) is close to Cgreedy,
there must be many machines with load at least 1 +¢. Lemma 5.3 shows that in such a case
there are k jobs with large load that are scheduled on machines with the load of remaining
jobs at most y < 1; here we use the crucial properties of the algorithm. Last, we show that
the existence of such k jobs, together with previously established conditions, implies that
the competitive ratio is bounded away from Cg eedy-

Let 3, and x, be the unique maximum of the function f,(x,3) from the analysis of
the greedy algorithm, Theorem A.1. Fix constants ¢ and A such that 1/, < h<t< Tp;
such constants exist, since we have proved that x,3, > 1. Fix a constant y < 1, such that
H=y(l+t)—1>h>1/p, Suchy clearly exists. Note that it follows that yt > 1.

Lemma 5.2 There exist constants v, B,61 > 0 and my such that for every m > mi, if
Q = (1,v) is a flat shape satisfying C(Q) > Coreeay—b1. then h(Q) < b, (OPT(Q))? < Brm,
and there are at least ym machines with L;(Q) > 1 +t.

Fix the constants 7, B, and my so that the previous lemma holds. Now consider
a schedule S generated by the algorithm A(¢,«). W.lo.g. we assume that the (k + 1)st
smallest load is 1. (If it is 0, then the S is the optimal schedule. Otherwise multiply all the
weights by an appropriate constant; this does not change the behavior of the algorithm).

Define a shape Q = (b,v) by b; = min{1, L;(S)} and v; = L;(S) — b;. For each i, when
the last job was scheduled on the machine 4, the load was at most 1, therefore Q is a shape
of S and C(S) < C(Q). Now let Q@ = (1,v) be a flat shape corresponding to Q. We want to
show that C'(Q) is close to C(Q) for a sufficiently small a. The load vector of Q is the same
as L(Q) except that the load of k machines increased to 1. Clearly ||[L(Q)|l, > [|[L(Q)]l,-
Adding the extra load of at most k increases in the optimal schedule load of some machines
to h(Q). This contributes to (OPT(Q))? at most kp(h(Q))P~!, since the derivative of 2P is

increasing. Using also the facts that m(h(Q))? < (OPT(Q))P and h(Q) > 1, we obtain

kp(OPT(Q))”

(0PTQ)Y ~ (OPT(Q)Y < kp(h(Q)y < o

< ap(OPT(Q))

or OPT(Q) < OPT(Q)/(1—ap)V/P. Fix some 6, < &; and put ag = 1—1) (1 — (%)p) :
Assume that C'(S) > Careedy — 02 and o < aq. It follows that

C(Q) > C(Q)(l - Oélp)l/p > C(S)(l - Oélp)l/p > (CGreedy - 62)(1 - Oélp)l/p = CGreedy - 61-

Hence @ satisfies the assumptions of Lemma 5.2, and, in particular, there must be [ = ym
machines with load L;(S) = L;(Q) > 1+ ¢.

Lemma 5.3 For any [ > 0 and any schedule S generated by the algorithm A(t,«) (nor-
malized as above), if there are | + k machines with L;(S) > 1 +t, then there exists z < 1
and a shape R = (a,u) of S such that the machines are partitioned into

o k “small” machines with z < a; <1 and u; =0,

e [ “bad” machines with a; = z and u; > t+1— z,

e k “good” machines with a; =y and u; > yt, and

e m — [ — 2k “ordinary” machines with a; =1 and u; arbitrary.



Proof: Let ¢; be the load of the machine ¢ before the last job scheduled on it. We will
construct R so that always a; > ¢; and u; = L; — a;. This implies that R is a shape of S.

Let z be the smallest load in S. For the & machines with smallest load we put a; = L;.
These are the small machines. By the properties of the algorithm, no job was so far assigned
to a machine with load more than 1, hence every remaining machine can be assigned a; = 1
and be an ordinary one. If L; > 1 + ¢, then the last job assigned to ¢ has weight at least ¢,
therefore according to the algorithm it was assigned to a machine with the smallest load at
some previous time. Hence ¢; < z and we may assign a; = z making this machine bad. It
remains to find the k£ good machines.

If ¢; < y for all machines with L; > 1 4+ ¢, we choose k£ of them and make them good
by putting a; = y. Otherwise at some time 7 a big job was assigned on a machine with
load at least y. Hence at time 7 the load of all machines was at least y. Let 7/ be the first
time when the (k + 1)st smallest load was at least y. At that time all the k& smallest loads
were strictly less than y. Hence between time 7/ and 7, the algorithm scheduled & jobs on
the k£ small machines. These jobs have size at least ty, by the condition in the algorithm.
Furthermore, no other jobs were scheduled on these machines later, as ty > 1. Hence these
k machines have ¢; < y and can be made good. Some of them may be the machines with
L; > 1+ t, however, we still have at least [ machines that can be made bad. [ |

Let the shape R and the value z be as in Lemma 5.3 and let the shape ) be the same as
before Lemma 5.3. To finish the proof of Theorem 5.1, we show that for suitable parameters
OPT(R) is significantly larger than OPT(Q). The optimal schedule for R is obtained from
the optimal schedule for @ so that we (i) move weight at least [(1 — z) from the machines
with load h = h(Q) to the big jobs from the bad machines, which have weight at least ¢,
(ii) move weight at least k(1 + y) from the machines with load h to the big jobs from the
good machines, which have weight at least H = y(1 4+ ¢) — 1, and (iii) remove a weight of
at most k(1 — z) (corresponding to the small machines) from machines with load h. Since
H < t, we are always moving the weight from machines with load at most h to machines
with load H and using the fact that the derivative of xP is nondecreasing, we bound the
resulting difference as follows:

(OPT(R))? — (OPT(Q))" > (I(1 = 2) + k(1 —y)) - (pH? ' — ph?~ ") — k(1 — z) - ph?~*

> (1= 2)pm(y(HP ™ = 1Y) = ah?™) + [am]p(1 — y)(HP "~ 7).

Since v, p, H, h are constants and h satisfies h < h < H, we can choose « sufficiently small
so that the first term is always positive. Then, for sufficiently large m, the second term is
at least em for some ¢ > 0. Hence, using (OPT(Q))? < Bm, we obtain

(OPT(R))” = (OPT(Q))" + em > (OPT(Q))" (1 +¢/B)

and

_ IE®y IL(Q) I < _ Careedy

C(R) = OPT(R) ~ OPT(Q)(14¢/B)'/? = (1+¢/B)l/r

< CGreedy -0

for a sufficiently small 6 > 0.
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Appendix

A Competitive Ratio of Greedy

Theorem A.1 Define:
G = {(z,8)eR*|0<x, 0<B<1}

p

51) = (p—l)p_”Tl

and the system of equations S,

S: { PO = e

W = per

Then, the supremum of fy(x, ) over x >0, 0 < § <1 is achieved as a unique mazimum
i G. The maximum is achieved at the unique point which is the solution to the system S
in the region G. Furthermore, the value of the competitive ratio is

R
CGreedy = <]— + E) )
where x is the unique solution of the system S in G.

Proof: It is easy to verify that

fp(0,8) =p1<1 (p>1, 0<B<1)
lim sup fy(z,5) =1 (p>1)
T 0<p<1
ﬁlirg+ Sup fol2, B) =0
fp(z, 1) =1

and therefore, the supremum of the function f,(x, 3) is achieved as a local maximum in G.
Since the function f,(x, 3) has derivatives in G, the point that achieves the maximum
is a solution of the system of equations

U _o a o

= a = 0.
o T
In lemma A.2, we prove this system of equations implies the system S, i.e.,
1
1-6 = — 1
o= 1)
1
W = pr (2)

Next we prove that the solution to the system S in GG is unique. Denote:

LHS(x) = 1-é,x
1

RHS(z) = v

Clearly,
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e LHS(0) = RHS(0)
e In (—1,00), the function LHS(z) is linear, whereas RH S(x) is convex
e 0> LHS'(0) > RHS'(0)

and therefore equation (1) has a unique solution for x in (0,00), which implies the system
S has a unique solution in G. Thus, f,(z, ) has a unique maximum in G. By lemma A.2

-1
its value is (1 + %)p , which completes the proof. [ |

Lemma A.2 Forp>1 and (x,3) € G the system of equations

ofp  _ Ofp _
or 0 B 0
implies
1
1-— 6p.’E = W
and
1!
Proof: Denote:
M = (1-B)(1+2)+4 (3)
N = (1-p)aP+p'? (4)
Clearly f, = %, and therefore
oM
o _g oy o M5 o 5)
ox ap N %—];7 %—g
oM
== = (1-=58)-»(1 p-1 6
= (1-8) a1 +a) (6)
oM
— = —(1 P+1=—((1 P—1
o5 = (e Hl= (e -1
ON
= = (1=08)-pxP? 7
= (-8 (7
ON -
E —’+(1=p)B"=—(a"+(p-1)37")
Substituting the above derivatives in equation (#x*) gives
(1+ax)t (1+z)P -1
e N

13



Solving for § we get

(1+z)pP 1t -1
(p—1)-(1+ax)p!

P = Pl

or,

pgr (1+2)P~ !t -1
w7 (p-1) (L

Substituting equations (3), (4), (6), (7) in equation () gives

(1+2)7 + 25 (1+az)Pt

O

which yields,

1-5  p7° 1
3 Pl (T4t

Substituting equation (9) gives

1-3 14zt -1 1

p (p—1)-(1+z)p=t  (14z)p!
1 1 1

p—1 (p—1)-(1+ap-1 (A+a)p-!
1 1 »

p—1 (I4ap !t p-1

or,

- Lo (l - +;)p1) . (10)

Substituting equation (10) in equation (8) gives
) (- ) =
p—1 (14 )Pt (p—1)- A+t

N (¢ et Gt Vi
RV N (e e T

|

or,

= 1

Raising to the power of _z% we get

(14 )Pt -1

bp=(p-1p rT = — .
- (1+a)p!
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which is equivalent to
1

(1+ )P~
Substituting the last equation in equation (10) yields

1—-6,-2=

p
= o (==b2))
R I

= 1 (p—1)p x

| =

or,
- f=pr.
Furthermore, by (5)
oM
B = B
(1-75)-p(1+ap!
(1=73) - part

1\7 1
= <1+—>
X

which completes the proof.

B Approximating Cg eeay
Lemma B.1 21,%1 +6, <1 forp>1.

Proof: Denote:

s(p) = 2,,%1—!-5]3 for p>1
t(p) = % for p>1.
Ifp > 2,
p < 27!
and therefore
1 __r_
s(p) = St —p
1 p—1
< op—1 pl
1 1
= it
< 1

15



Otherwise, 1 <p < 2. Forall z€ R, = < L and therefore

e

ds _ o 1 n lnp‘ 1
dp 2r—1 " p—1 pﬁ
1 t 1
- _1n2'2p—1 % »
L 11
20-1 e p
< 0.

The last inequality holds since 27! < p-eln2, for 1 < p < 2. Therefore s(p) in monotone
decreasing in (1,2). Since, lim,,_.;+ s(p) = 1 the proof of the lemma is completed. [

For p > 1 denote:

gp(x) = % (1 - W) for (0, 00).

For a fixed p > 1, define (a,)5% o, (bn)5%o by ap = 1, apnt1 = g(ay) and by = 00, byy1 = g(bn).
Lemma B.2
ag < ap < ...... <lp < Apgp1 < Tp <bpgr <bp <.onn < by < by

and

lim a, = lim b, = x,.
n—oo n—oo

Proof: Lemma B.1 claims that 273%1 + 6, < 1 for p > 1. Therefore,

ay < bg
1 1
ap=1 < g ]_—F = aq

1
by = — bo.
1 5, < 0o

By the proof of Theorem A.1 the equation x = g,(z) has a unique solution in (0, 00). In
addition, g,(x) is continuous and monotone increasing in (0,00). As a consequence, we may
derive the desired result. [

The following theorem may be derived by using lemma B.2.

Theorem B.3

1
CGreedy =2-0 (%) .

16



Proof: Lemma B.2 implies that
a; < Tp <h

and therefore we get the following approximation to ),
1 (1 1 ) < < 1
—[1—-=— x —.
bp 2r-1 P,
Lemma B.1 easily implies that

o
P <Gy
-

op—1°

By theorem 3.4 and the approximation to x, we get

1-1 6p " 1 1_%
(148) 77 < Careeny < (14— ) " <(146+57)
~ 9p—1T

Since a® =1+ xlna + O(z%lna),

1 _In
op = (1——)6 poT
p

(o)

and

1\\'"»
CG’reedy = <1 + 6p + 0 <2_p>>

2 1-3
_ 2_lnep 0 ln2
p p
2
_ (2_1nep O<1n2p>>_
p

__Inep In®p n __lnep @
(1_111(2 <2 1 o2, ))+O(1 (2-22 40 ))))

p2

Hence,
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It can be easily shown that when p decreases to 1, x, increases to the x+ - the unique
solution in (0, 00) to the equation In(1 +x) = Z, and the competitive ratio decreases to 1.
In addition, when p decreases to oo, x, decreases to 1 and the competitive ratio increases
to 2. Figure 5 shows the competitive ratio, x,, 3, xp3, for various p up to four decimal
digits precision. Calculations are based on the sequences (a, )52, (bn)22y. The last column
shows the number of iteration required to satisfy the desired precision for all entrances in

the table.

‘ P ‘ Ctreedy ‘ Zp ‘ Bp ‘ Zp - By ‘ No. of Iterations
Nl Nl S T+ \‘ﬁl—i_:%% e
1.001 | 1.0002 | 4.7557 0.5713 2.7169 21
1.01 1.0019 | 4.7256 0.5724 2.7048 20
1.1 1.0186 | 4.4498 0.5829 2.5937 18
1.25 1.0449 | 4.0734 0.5994 2.4414 16
1.5 1.0850 | 3.6042 0.6243 2.2500 14
1.75 1.1214 | 3.2617 0.6465 2.1089 12
2 1.1547 | 3.0000 0.6667 2.0000 10
2.5 1.2137 | 2.6253 0.7017 1.8420 8
3 1.2646 | 2.3692 0.7311 1.7321 7
4 1.3485 | 2.0413 0.7776 1.5874 5)
5 1.4150 | 1.8405 0.8125 1.4953 4
7 1.5135 | 1.6085 0.8599 1.3831 3
10 1.6096 | 1.4346 0.9003 1.2915 2
15 1.7032 | 1.3001 0.9333 1.2134 2
25 1.7952 | 1.1912 0.9600 1.1435 1
50 1.8804 | 1.1052 0.9800 1.0831 1
100 1.9321 | 1.0582 0.9900 1.0476 1
1000 | 1.9907 | 1.0079 0.9990 1.0069 1
10000 | 1.9988 | 1.0010 0.9999 1.0009 1
Pales 2 1 1 N\ 1

Figure 5: Approximation of the competitive ratio for various p

Experimental results shows that Cgreedy is monotone in p. In fact that can be easily
(but technically) proved for p > pg.

Similarly to the approximation of Cgyeecdy, an approximation for Cgreedy,2, i-e., the com-
petitive ratio of Greedy for 2 machines, can be evaluated. Figure 6 shows the competitive
ratio and the solution to equation (11) for various p up to four decimal digits precision.
Again, the last column shows the number of iteration required to satisfy the desired preci-
sion for all entrances in the table.
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‘ 4 ‘ CGreedy ‘ X ‘ No. of Iterations

NN | 2014 VR)

1.001 | 1.0002 4.8252 24
1.01 1.0019 4.7967 21
1.1 1.0183 4.5373 16
1.25 1.0438 4.1879 13
1.5 1.0817 3.7621 10
1.75 1.1149 3.4601 8
2 1.1441 3.2361 7
2.5 1.1927 2.9291 5
3 1.2311 2.7320 4
4 1.2870 2.5006 3
5 1.3248 2.3738 3
7 1.3714 2.2446 2
10 1.4083 2.1601 1
15 1.4380 2.1015 1
25 1.4624 2.0586 1
50 1.4811 2.0285 1
100 1.4905 2.0141 1

oo | /3 \ 2

Figure 6: Approximation of the competitive ratio over two machines for various p

C General p
C.1 Two Machines
Theorem C.1 The competitive ratio of Greedy for two machines is

<1+(1+x)1’>%’

C =su
Greedy,2 p oW 4+ 1P

x>0

where x € (0,00) is the unique solution of the equation

PN 14+ (14 2)7P) = 2P, (11)
Proof: For x > 0 define:
1+ (1+x)P
up(7) T ap
vplw) = 2 TA4+(1+2)7).
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By theorem 3.4,

CGreedy,Z = sup
x>0

1+ (1+x)P v 1
————— | =supuy(z)r.
2P 4 xP >0
Since u(0) = 57 and lim, .o up(2) = 1, up(x) achieves its maximum in (0,00). Hence,
p, - the maximum of u,(x) in (0, 00), satisfies uj,(x,) = 0. The last equation is equivalent to
the equation v,(x) = 2P. Since v, (x) > 0 for > 0, the equation v,(x) = 0 (or uy(x) = 0)
has a unique solution in (0, c0). ]

Theorem C.2 For any p > 1 the competitive ratio of any on-line algorithm over two
machines is at least Cgreedy,2-

Proof: Consider the sequence (1,1,x). If the on-line algorithm assigns the first two jobs
on the same machine, it does not get another job and it produces a cost of 2=1/p_ Tt is
easy to show by convexity arguments of the function y? that for all x > 0

L+ (142 _ (240 2 +a?
20 + xP T 2P - 2

and therefore

2P + xP

Hence, by theorem C.1 we are done. Otherwise, the last job is given to the on-line algorithm.
The resulted assignment of the sequence is the same as the worst case example of Greedy,
and we are done again. [

1
P\ 3 _
<1+(1+x) >p <2PTI,

C.2 Lower Bound for general p > 1

Similarly to theorem 4.2 a lower bound for general p > 1 and arbitrary number m > 2 of
machines can be proved. The lower bound depends on p and grows to % as p grows to oo.

Theorem C.3 For any p > 1 the competitive ratio of any on-line algorithm A over m > 2
of machines satisfies

3 1— 5t 3 1
CA,mZC=§<2‘1 §ppl_L =§—@<—>
( +(4)+4p 21772) p

Proof: Similarly to the proof of theorem 4.2. Denote

P -1
20 —2°

a =

It can be easily seen that o < % for p > 1. W.lo.g m is even. Consider the following
sequence of jobs
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Let [ be the number of idle machines after the on-line algorithm assigns the first m jobs.
Assume am <[ < %m (see figure 3 for a similar example). In this case the ratio is at least

<1-2P+(m—21)-1p>%:<1+(2p_2).i>%

1?7 . m m

which is at least c.

Since any assignment for [ > %m results in a cost greater than the assignment for [ = %m
we may assume [ < am < %m In this case the cost of the optimum is 2m'/?, whereas the
best assignment for the on-line algorithm (see figure 4 for a similar example) yields a cost

of )
1 1 P
<l-2p+<§-m—l>+<§-m—l>-3p+l-2p> .

This cost is at least 2m!/P¢, and therefore the proof is completed. [ |

D The proof of Lemma 5.2

Lemma 5.2 says that if the competitive ratio of a flat shape is very close to Cgreedy, then the
shape must look very similar to the worst case example for Greedy found in Theorem 3.4.
This is intuitively clear, since the worst case example is unique by Theorem A.1, however,
the precise formulation and proof are a bit tedious; in particular we have to reexamine the
transformations from Lemma 3.2 and Lemma 3.3.

Lemma D.1 (5.2) There exist constants v, B, 6 > 0 and my such that fo_r every m > mq,
if @ = (1,v) is a flat shape satisfying C(Q) > Cgreedy — 01, then h(Q) < h, (OPT(Q))? <
Bm, and there are at least ym machines with L;(Q) > 1+ t.

Proof: Fix A, > 0 such that ¢t < x, — A, and Ag such that 1/E < Bp — Ap. Now choose
61 such that (fp(ac,ﬁ))l/p > Careedy — 01 implies | — 2| < A, and |3 — 3, < Ag. Such a
61 exists since f, is continuous and has a unique maximum (and f, — 1 for z — o0).

Let @ be a shape from the assumption of the lemma, let h = h(Q). Now we transform Q
as follows. First, if there are machines 4,7 with 0 < v; < vy < h, we decrease v; and increase
vy by the same amount max{v;, h—v;}. This does not change the load vector of the optimal
schedule, and the value of the modified shape can only increase due to convexity of xzP. We
continue this process until there is at most one machine with 0 < v; < h. Next we apply
Lemma 3.2 and then Lemma 3.3. As a result we obtain a flat shape Q' = (a,v’) such that
all nonzero components of v are the same, h(Q') = h, OPT(Q") = OPT(Q), C(Q") > C(Q),
and 1—h/m < a <14 h/m. The bound on a follows since a can change only in Lemma 3.2,
and this is applied only to one machine with 0 < v; < h. (In fact, this is the reason why
we need to apply a different transformation if there are two or more such machines.) The
competitive ratio of Q" is bounded by Cgrecay — 61 < C(Q) < C(Q') < fp(x/a,a/h) for
x equal to the non-zero components of v'. By the choice of 6, |z/a — xz,| < A, and
la/h = By| < Ag. )

Choose mqg > 2 such that 1/h <  — Az —1/mg. Now it follows that

<pB-Ag—1/m< <

1 1
m ~ h’

>
> 2
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hence h < h.
Put B =2P(1 + 2, + A;)P. By the choice of my it also follows that a < 2. Hence

(OPT(Q))? = (OPT(Q"))? < m(a+ x)’ < m(a+ a(z, + A;))P < mB.

Let [ be the number of machines with L;(Q) > 1+ ¢. It remains to prove that [ > ym
for suitable constant ~. First we prove that we can assume that all the loads are bounded
by some constant. Given a number s > h, let Q" = (1,v") be defined by v/ = min{s,v;}.
Note that v > t for exactly I machines. Let A(a,b) = ((a + b)? — a?)'/P. Let v; = s + 6.
If we change only this v;, (||L(Q)]|,)? decreases by A(s+1,6) and (OPT(Q))? decreases by
A(s,6). A standard calculation shows that

A 1,6
lim sup Als+1,6)

=1.
570 550 A(Své)

Hence for sufficiently large s and arbitrary 6 > 0

A(s+1,0)

< C, ree — 01.
A(s,8) — Creedy =7

Fix such s. Now it follows that C'(Q") > Cgreedy — 61, since C(Q) > Cgreedy — 01, and the
ratio of the differences in each step is at most Cgreedqy — 01.

Now construct Q" = (a”,;v") from Q" by the same transformations as Q' from Q.
Let = be the resulting common value of all non-zero components of v". Since C(Q"") >
CGreedy — 01, it must be the case that z/a"”" >z, — A,. Since o > 1 — h/m, we have x >t
for some constant ¢ > t and sufficiently large m; fix m; > mg appropriately. Examining
the transformations, x is the pth power mean of [ numbers upper-bounded by s and m — [
numbers upper-bounded by ¢. Since x >t > t, [ > ym for some constant 7. [ |
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