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Abstract

In the present work we study the on-line call admission problem
in optical networks. We present a general technique to deal with
the problem of call admission and wavelength selection by reducing
this problem to the problem of only call admission. We then give
randomized algorithms with logarithmic competitive ratios for specific
topologies in two models of optical networks, and consider the case of
full-duplex communication as well.

1 Introduction

A new generation of networks, known as all-optical networks, allows data
transmission rates of the order of gigabits per second, several order of magni-
tude higher than current networks. Wavelength division multiplexing (WDM)
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allows to use the bandwidth available by partitioning it in many “channels”,
each at a different optical wavelength. A key issue in all-optical networks is
to maintain the signal in optical form and at the same wavelength during the
entire transmission, since the overhead cost of conversion to electric form or
between different wavelengths would be prohibitive. The signal is then con-
verted into optical form when transmitted and converted from optical form
when received.

Such optical networks consist of routing nodes connected by fiber optic
links, each of which can support several wavelengths and can carry the signal
in only one direction. Sometimes, a transmitter or a receiver are connected
to a specific routing node. A routing node is able to route the signal coming
through a certain port at a certain wavelength, to one or more outgoing
ports. Two signals coming on the same input port on different wavelengths
can be routed to different output ports (“generalized switches”). However, it
is impossible to route to a common output port more than one signal using
the same wavelength. In general, two signals can share a link only if they
are transmitted on different wavelengths.

We distinguish between switchless networks and reconfigurable networks.
In switchless networks the routing pattern at each routing node is fixed: a
signal entering a node at a certain wavelength is directed over all the outgo-
ing edges on which this wavelength is available. In reconfigurable networks
the routing pattern at each node can be changed: a signal entering a node
at a certain wavelength can be directed to any subset of the outgoing edges
on which this wavelength is available. If we consider switchless networks,
the network associated with each wavelength is a directed acyclic graph in
order to prevent interference of a transmission with its own signal. For re-
configurable networks, the network associated with a wavelength need not
be acyclic since the signal can be stopped at any routing node.

The on-line call admission problem in optical networks is that of deciding
in an on-line manner (i.e., upon the arrival of a request for a connection),
if to accept the request or not. In case a request is accepted, the algorithm
has to assign it to a wavelength (and a route in the reconfigurable case), in
a way that the new signal does not interfere with any route of any on-going
call that uses the same wavelength.

Previous related work. Optical routing has mainly been studied in the
off-line case. Lower bounds on the number of necessary wavelengths for per-



mutation routing in general reconfigurable networks have been devised in
[BH92, BH93, PS93]. Hypercubes have been considered by Pankay [P92],
who also proves an }(log n) lower bound on the number of wavelengths nec-
essary for routing a permutation in a bounded degree network, where n is the
number of nodes in the network. Aumann and Rabani [AR94] show that in
bounded degree networks any permutation can be routed with O(log®n/3?)
wavelengths, where 3 is the edge expansion of the network. Finally, the ex-
istence of a good permutation routing algorithm for general networks with
generalized switches has been obtained in [RU94].

For switchless networks, Barry and Humblet [BH92, BH93| give lower
bounds on the number of necessary wavelengths necessary for a set of con-
nections, while an almost matching upper bound is presented in [ABC*94].
The connection between packet routing and optical routing is also discussed
in [ABC*94].

Approximation algorithms for the off-line problem of minimizing the num-
ber of wavelengths necessary to schedule an arbitrary set of connections in
reconfigurable networks, the path coloring problem, have been proposed for
specific topologies. Raghavan and Upfal [RU94] give constant approximation
algorithms for trees and trees of rings. Mihalis, Kaklamnis and Rao [MKR95]
give similar results in the directed case. Kleinberg and Tardos [KT95] give
an O(logn) approximation algorithm for meshes and a special class of pla-
nar graphs, where n is the number of nodes in the network. Rabani [R96]
improved the result for meshes to O(poly (loglogn)).

The path coloring problem has also been studied in its on-line version.
Algorithms with an O(logn) competitive ratio have been devised by Bar-
tal and Leonardi [BL96] for trees, trees of rings and meshes. The authors
also present an Q(lolg"l%) lower bound for trees and an Q(log n) lower bound
for meshes. For general networks, it has been shown that even randomized
on-line algorithms cannot approximate the optimal solution with a polylog-
arithmic competitive ratio [BFL96].

Previous related work on on-line call admission regards virtual circuit
routing, the so called call control problem, also motivated by its application
to ATM networks [AAP93, ABFR94, AGLR94, KT95]. In this case each
call requires the establishment of a fixed connection on a path between the
transmitter and the receiver at a certain transmission rate. The goal is that
of maximizing the number of accepted calls without exceeding the maximum
available bandwidth on any connection link.
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Observe that if all the links have the same bandwidth and the transmis-
sion rate required by any call is the whole available bandwidth, then the
call control problem is equal to the call admission problem in optical recon-
figurable networks of one wavelength. Under this restriction the call control
problem admits efficient randomized algorithms for specific topologies. These
topologies are trees, meshes, hypercubes and a special class of planar graphs
[ABFR94, AGLR94, KT95]. Such algorithms for the one-wavelength case
will be used in the present paper as subroutines for algorithms for the gen-
eral case of more wavelengths. On the other hand, an Q(n¢) lower bound on
the competitive ratio of randomized algorithms for the on-line call control
problem in general networks, and hence for on-line call admission control
in reconfigurable optical networks of one wavelength, has been proved in

[BFLY6].

Results of the present paper. The results of this paper regard the on-line
call admission problem in optical networks. For each request for a call an
on-line algorithm must immediately decide if to accept or reject it without
knowledge of future requests. The benefit obtained by the algorithm is the
cardinality of the set of accepted requests. We measure the performance of an
on-line algorithm by its competitive ratio [ST85]. Let A be an algorithm for
the on-line benefit problem and let OPT be the optimal (off-line) algorithm
that knows the whole sequence of requests in advance and deals optimally
with it. An algorithm A is p-competitive if for every sequence of requests o
Benefita(o) > %BenefitopT(O'), where Benefita(o) is the benefit obtained
by algorithm A on requests sequence o.

For randomized algorithms we consider the expectation (over the random
choices of the algorithm) of the benefit of the on-line algorithm. We consider
the oblivious adversary for randomized algorithms [BBK*90], meaning that
the adversary knows the on-line algorithm but cannot observe the results of
the coin tosses on a particular sequence.

In this paper we first develop a general on-line technique for wavelength
selection that allows us to reduce the problem of wavelength selection, ad-
mission and routing, to the problem of only admission and routing. That is,
this technique allows to construct on-line algorithms for multiple wavelength
networks, from on-line algorithms for a single-wavelength network, with a
competitive ratio that remains almost the same.

Since the call admission problem in reconfigurable optical networks of a



single wavelength is equivalent to the call control problem, the above reduc-
tion gives on-line call admission algorithms for any optical network topology,
when there is such an algorithm for the call control problem in the same
topology.

As to switchless networks, we develop on-line call admission algorithms for
networks shaped as rooted forests. We do so by giving an algorithm for one
wavelength, and applying the above discussed reduction. We get an on-line
algorithm with a logarithmic competitive ratio. We complement this result
by a lower bound that shows that for networks shaped as rooted forests, and
having any number of wavelengths, any on-line randomized algorithm has a
competitive ratio of Q(log n), where n is the number of nodes in the network.

We also consider the problem of establishing full-duplex communications
between any two points of the network. Due to the nature of switchless opti-
cal networks, two different wavelengths must be used for the two directions.
The introduction of dependencies between different wavelengths does not al-
low in general (see Section 6) to use our general technique in order to reduce
the problem to the case of a single wavelength. Therefore we develop a spe-
cific on-line call admission algorithm for full-duplex connections in switchless
optical networks. Here again, we do so for networks shaped as rooted forests.
We obtain an on-line algorithm with a polylogarithmic competitive ratio.

In the following we summarize the results that we present in this paper:

e A general technique that enables to obtain a (¢ + 1)-competitive al-
gorithm for call admission and wavelength selection for the multi-
wavelength case, from a c-competitive algorithm for the single-wavelength
case.

o Using the above technique, we obtain on-line logarithmically-competitive
randomized algorithms for call admission in reconfigurable optical net-
works on network topologies for which on-line algorithms with loga-
rithmic competitive ratio for the call control problem are known.

o An on-line logarithmically-competitive randomized strategy for call ad-
mission in 1-wavelength switchless networks shaped as rooted directed
forests. As aresult we obtain logarithmic-competitive randomized algo-
rithms for call admission and wavelength selection in switchless optical
networks shaped as rooted directed forests.



o A logarithmic lower bound on the competitive ratio of randomized al-
gorithms for on-line call admission in switchless optical networks of
arbitrary number of wavelengths, and shaped as rooted directed forests.

e An O(log®n)-competitive algorithm for full-duplex communication in
switchless optical networks shaped as rooted directed forests and arbi-
trary number of wavelengths.

2 The Model

2.1 Switchless networks

We model a switchless all-optical network as follows. There is a set of wave-
lengths, sometime called colors. For each color A, we are given a directed
acyclic graph Gy = (V, E), |V| = n. The graphs of the different wavelengths
need not be identical. All the graphs share the same set of vertices V. The
same pair of vertices may be connected by edges of different graphs but these
edges are considered different since they have different colors. All the ver-
tices of the graph consist of routing nodes. In addition to those there are
transmitters and receivers. Each transmitter or receiver is connected to one
specific routing node and may tune to some color.

A request for a call consists of a pair: a transmitter and a receiver, (s,t).
A node s can establish a connection to receiver ¢ using a certain color if in
the graph associated with this color, there is a directed path from s to ¢. In
this case all the nodes reachable from s through a directed path receive the
signal and cannot get any additional information on this color. Calls (s1,¢;)
and (s2,ts) are called conflicting at color A if for this color either there is a
directed path from s; to t; or there is a directed path from s, to ¢;. If two
calls conflict at certain color A they cannot concurrently use that color.

We are given a sequence of requests for establishing connections. For
each such request our call admission and color selection algorithm should
either reject the call or accept it. In the latter case it has to assign the call
to one of the colors in a consistent way with any previous call assigned to
the same color, i.e, the call can be assigned to color A only if there is no
other conflicting call already assigned to color A. The benefit accrued by the
algorithm is the number of calls that it accepts.



We specifically consider networks with the additional property that the
graph associated with each color i1s such that the in-degree of each node is
at most one. In other words, the graphs G, are directed forests, with a
designated root for each tree, and all edges directed away from the root.
These networks have the nice property that two calls (s1,%1), (s2,%2) conflict
on some color if and only if s; is a descendant or an ancestor of s, in the
forest of this color. In the following we will present results for on-line call
admission in switchless optical networks with this kind of topology.

2.2 Reconfigurable networks

We model a reconfigurable all-optical network as follows. Each color A is
associated with an undirected graph G\ = (V, E), |V| = n. The different
graphs need not be identical. All the graphs share the same set of vertices
V.

A request for a call is a pair of vertices (s,t) such that a receiver is
associated to s and a transmitter to ¢t. A node s can establish a connection
to receiver ¢ using a certain color if s is connected to ¢ in the graph associated
with this color. To establish the call a route from s to ¢ should be reserved;
two calls scheduled on the same color cannot share any edge.

3 Reduction from many wavelengths to one

The method that we present here applies not only to routing in optical net-
works, but to any benefit problem, where the benefit is gained by accommo-
dating “entities” in any of several (not necessarily identical) “bins”. That is,
given a set of entities, an algorithm has to maximize the benefit gained by
accepting entities. To accept an entity the algorithm has to accommodate
the entity in one of several “bins”. Within each bin there may be restric-
tions as to the set of entities that can be accommodated in it concurrently.
However, we assume total independence between the different bins: If a set
S of entities can be accepted in a given bin B when all other bins are empty,
then the same set S can be accepted in B, together with any sets accepted
in any of the other bins.

Given an on-line (deterministic or randomized) algorithm A for one bin,
we proceed as follows to build an on-line algorithm A’ for many bins. Let



B;, 1 <1 <k, be the set of bins. We run a set of k copies of A, one for each
bin. We use a “first fit” type algorithm. When a request arrives, we first
give it as input to A;. If it is accepted by A;, the handling of the request is
terminated. Otherwise we present the request to A, and so on, until either
the request is accepted or the set of k£ copies of A is exhausted.

Theorem 1 If A is p competitive then A’ is p + 1 competitive.

Proof. We use the following notations:
e R - the sequence of entities presented to A'.

o O - the set of entities accepted by the optimal algorithm.

o O; - the set of entities accepted by the optimal algorithm into bin
number 3.
o T; - the set of entities accepted by A’ into bin number 3.

e B(S) - the sum of benefits associated with the entities in the set S.

For clarity of presentation, we first prove the theorem for the case that A
is deterministic.

By the definition of A’ the sequence of entities presented to A; is the
subsequence of R obtained from R by eliminating U;;T;. Denote this sub-
sequence by R;. Clearly,

0; \ Uj<iTj CR;.

Therefore, the optimal gain that can be obtained from R; is at least
B(0; \ (Uj«iTy)).-

Since A; is p competitive it will gain a benefit

B(T) > - B(O;\ (Us«iT})) = %B(Oi) - %B((Uj«'Tj) o).

-



It follows that
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where the second inequality follows since the sets O; are pairwise disjoint.
We get that
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and then A’ is (p + 1)-competitive.
This completes the proof for the case that A is deterministic.
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If the algorithm A is randomized the same analysis goes through as well,
with some additional technicalities.

Let r; be the sequence of random choices taken by algorithm A;. For any
[, the set A; is determined by the sequences r;, 7 < [.

Since A; is p competitive we know (by the same arguments as in the
deterministic case) that

VKD, BulB(T) | Ti- Tiot] 2 ZB(0) = - B{(UsT)) 1 0)

)

Therefore,

Er;1<i<k[B(T5)]

By i<i<il B[ B(Ti) | Ty ... Tia]]

1 1
Erj71§j<i[;B(Oi) - ;B((Uj«'Tj) N O;)]
1 1

;B(Oi) — ;Erj,1§j<i[B((Uj<’iTj) noy) .

v

Since for any j the random choices of A;,! > j, have no effect on T}, we
can also write
1 1

Er1<i<k[B(T3)] > ;B(Oi) - ;E'rj,lstk[B((Uj<iTj) no;)l .



To evaluate Er,-,lstk[Efﬂ B(T;)], we sum the above expression for 1 <
1< k:
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=1 p p =1
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where the last inequality follows from the same arguments as in the deter-
ministic case.
It follows that the (randomized) algorithm A'is (p + 1)-competitive. O

3.1 Applications to optical networks

The general technique of the previous section can be applied to optical net-
works both for the switchless and the reconfigurable case. Every wavelength
A with the corresponding network G corresponds to a bin, and we can then
use for every wavelength a base algorithm that deals with the problem of call
admission (without wavelength selection). Observe that for different wave-
lengths the corresponding networks are not necessarily identical. However,
we have to use for every network GG a base algorithm that is suited for its
topology Ty.
G, A € A, has topology T. A, if every network Assume that Then,

Corollary 2

a (p + 1)-competitive (deterministic or randomized) algorithm A’ for a p-
competitive (deterministic or randomized) call admission algorithm for topol-
ogy Ty. call admission in optical networks with the set of wavelengths for
every wavelength A € A, A, is is suited for topology 7. there exists

From the above corollary and from the results of [ABFR94, AGLR94,

KT95] we obtain the following for reconfigurable optical networks.
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Corollary 3 There ezists an O(log n)-competitive randomized algorithm for
the on-line call admission problem in reconfigurable optical networks if for
every wavelength A the corresponding network Gy has topology tsomorphic to
a tree, a mesh or a nearly Fulerian planar graph.

In the next section we give competitive algorithms for call admission in
switchless optical networks of one wavelength, thus obtaining competitive
algorithms for switchless optical networks as well.

4 The base algorithm for one-wavelength switch-
less networks

In this section we give an optimal call admission scheme for one-wavelength
switchless optical networks with topology of rooted directed forests.

The network is a directed forest D = (V, E). We consider every tree T of
the forest separately. Consider a call from s to . This call can possibly be
scheduled in the network D if there exists a subtree rooted at s containing ¢

and hence a directed path from s to t.
We apply the “classify and randomly select” paradigm [ABFR94, LT94]:

o Preprocess the graph and produce a partition of the vertices of the
graph into several classes.

o Select a class, uniformly at random among the above classes, and con-
sider only calls with source vertex in the selected class.

The classification algorithm that we use defines inductively tree T;, with
To = T, as follows. Let S; be the set of vertices of T; that either are leaves
or have a unique path to a leaf. Assign the vertices of S; to class z. The tree
Ti11 1s obtained from 7; by removing the vertices in S;. The procedure is
continued until all the vertices are assigned to some class.

Lemma 4 Fvery node of the graph D 1is assigned to some class 1, such that
0 << [logn].

Proof. Vertices in distinct trees of the forest are classified independently.
Thus we restrict our attention to a single rooted directed tree.
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A directed tree can be partitioned into a set of disjoint directed paths
in the following way: every path of the partition starts with either the root
or a vertex such that its parent has out-degree bigger than 1. Every path
ends with a vertex being a leaf or having out-degree bigger than 1. These
paths can also degenerate into a single vertex. We call this partition the path
partition of the tree. If we contract every path of the path partition of a tree
T; to a single vertex, then the resulting tree, that we call the contracted tree
T¢, has internal vertices with out-degree at least 2.

Let P(T;) be the number of vertices in TF. We prove that for any ¢ > 0,
either Tjy; is empty or P(Ti11) < P(T;)/2. Since P(T;) < n we have that
the number of classes is at most 1 + [logn].

Consider the tree T; and its contracted tree 77. All the vertices of T; being
leaves or having a unique path to a leaf are assigned to class ¢ and removed
to create T;,;. These are vertices of paths that are represented by leaves
in Tf. Since in T7 all internal vertices have out-degree at least 2, removing
the leaves of TY halves the number of vertices of TY. Observe now that the
number of vertices in T ; is at most the number of non-leaf vertices of T7.
This is because every path in the path partition of T}, is either a whole path
of the path partition of T3, or is obtained by the concatenation of a number
of paths of the path partition of T;. Therefore, P(T;41) < P(T};)/2, and the
claim is proved. a

In the following we denote by 2 = 0,..., L, for L < [logn], the number
of classes of the partition of D.

Recall that two calls (s1,t;) and (sa,t2) are consistent if there is no di-
rected path from s; to ¢, and there is no directed path from s, to t;. On
a rooted forest, if each of the calls (s1,¢;) and (s2,t2) is feasible by its own,
(that is, ¢; is a descendent of s; and ¢, is a descendent of s5), then the above
condition is that s; i1s neither an ancestor nor a descendant of s5. Note that
vertices of class 7 form a set of vertex-disjoint paths where any vertex in a
path is neither an ancestor nor a descendant of any vertex in another path.
Therefore, two calls originating at vertices of class 7 that belong to different
paths are consistent.

When a call (s,t) arrives, if there is no path from s to ¢t we ignore the
call. Note that no algorithm can accept such call. If there is a path from
s to t the call is assigned to the class of node s. The randomized on-line
algorithm selects uniformly at random one of the classes and considers only
calls that belong to this class. To these calls it applies the greedy algorithm

12



that accepts a new call (s,?) if and only if it is consistent with all previously
accepted calls in the same class. I.e., if there is no call (s',t'), previously
accepted, such that either s is a descendent of s’ or s’ is a descendent of s.

In the following we analyze this algorithm. Let OPT; be the benefit of
the optimal off-line solution, if the sequence of requests is restricted to the
calls of class 7, and let ALG; be the benefit of the greedy algorithm applied
to the calls of class s.

Lemma 5 For any sequence of calls and any class 1, ALG; = OPT;.

Proof. Consider the vertices of a class . These vertices can be partitioned
into a number of mutually vertex-disjoint directed paths of the tree, such
that there is no directed path connecting two vertices on different paths.
Therefore, at most one call with source vertex on any given such path can
be accepted (by any algorithm), and calls accepted on different paths are
mutually consistent. The lemma follows by observing that both the optimal
solution and the greedy solution use the same number of such distinct paths.
O

Theorem 6 The algorithm for one color is O(logn)-competitive.

Proof. Let OPT be the number of calls accepted by the optimal off-line
algorithm. We obtain OPT < Y-, OPT;. The on-line algorithm selects
uniformly at random one class amongst the L + 1 classes and obtains the
optimal benefit for that class. Hence, the expected benefit of the on-line
algorithm 1is:

Lol 1
E(ALG) =) ——OPT;,>——=0PT.
( ) ;L—I—l 7DT_L—I—I PT
Since L < [logn|, the algorithm is O(log n)-competitive. O
Using the above algorithm and the reduction of Section 3 we obtain the
following result for switchless optical networks with any number of wave-

lengths.

Corollary 7 There ezists an O(log n)-competitive randomized algorithm for
the on-line call admaission problem in switchless optical networks if for every
wavelength A, the graph corresponding to this wavelength, Dy, 1s a directed
forest.
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5 Lower bound for switchless networks

In this section we prove that the O(log n)-competitive randomized algorithm
for on-line call admission in switchless optical networks shaped as rooted
directed forests is optimal up to a constant factor. Note that this lower
bound applies to any number of wavelengths present in the network.

Theorem 8 Any randomized algorithm for on-line call admission in switch-
less optical networks shaped as rooted directed forests has competitive ratio

Qlog n).

Proof. Let A be the set of wavelengths. Let n = 2¢ — 1 for some integer
value d > 1. The network D, associated with every color A € A is a complete
binary rooted directed tree of n vertices and d levels. The levels are indexed
from 0 (the root) to d — 1 (the leaves). In this proof every call is denoted
only by its source vertex, while the destination vertex is an arbitrary vertex
in the subtree rooted at the source vertex.

We show that for any randomized on-line algorithm, there is a sequence
of requests in the network defined above, such that the ratio between the
benefit of the optimal off-line solution and the expected on-line benefit has
lower bound Q(logn).

For this purpose we consider a sequence of d — 1 sets of calls. Set j,
7 =0,...,d— 2, has |A|27 calls: for each vertex of level j, the set includes
|A| calls originating at this node.

Now fix the randomized on-line algorithm. Let z; be a random variable
representing the number of calls of set j accepted by the on-line algorithm,
if presents with sets 0 to 7. Observe that for any j, the random variable z;
has the same distribution regardless of whether any set [, [ > j is presented.

Let us consider the number of vertices of level d—2 in every subtree rooted
at an accepted call. Every accepted call of level j covers 297277 vertices of
level d — 2. For any outcome of the coin tosses the overall number of covered
vertices cannot exceed the total number of such vertices which is |A|2¢72. We
therefore get that for any outcome of the coin tosses Z‘th 2297277 < |A[2472
Since the above holds for any outcome of the coin tosses we have also that
E[Y425 2;277277) < |A|2472. Tt follows from the linearity of expectation that
Y325 Elz;]247277 < |A|2%72, and therefore Y373 E[z;]277 < |A|.

14



Let % be the ratio between the expected benefit of the on-line algorithm
)l
and the benefit of the off-line algorithm after set number j is presented. At
this point the optimal algorithm has benefit 2/|A|. Hence, we have that

1 273
— == Elz]
pJ |A| =0
Summing over all j we get
d—2 1 d—2 2—] J d—2 E[ml] d—2 B 9 d—2
7=0 F2 7=0 =0 =0 7=l =0

Therefore, there exists at least one index k such that 1/p, < 2. If the
algorithm is presented with the sequence composed of the sets 0 < 5 < k,
then the ratio between the expected benefit of the on-line algorithm and the
benefit of the off-line algorithm is at most 2. Since d = log(n + 1) the
lemma follows. O

6 Full-duplex communication

In full-duplex communication every call requires to set up a bidirectional
communication between a node u and a node v. Due to the nature of switch-
less networks, the two directions of the communication have to be scheduled
on different wavelengths. Thus, in general, it is not possible to use our
technique of Section 3 in this case, since the sets of accepted calls in each
wavelength are not independent !. Therefore, we give a specific algorithm to
handle this case, for networks of topology of a rooted directed forest.

In what follows we define our algorithm. For a graph D, the algorithm
assigns each vertex to one of the classes defined by the classification proce-
dure of Section 4 for one-way communication. Let L be the maximum index

!Note that in special cases we can use the algorithm of Section 4 also for full duplex
communication. Assume we have a set of wavelengths {A;}"™ ; such that the topology of
each corresponding network is a rooted forest, and another set {A}}¥_, | where the topology
of the network associated with A} is the topology of the network associated with A;, with
edge directions inverted. Then we can use the algorithm of Section 4 on the network of
{A;}E_ |, requesting one-directional communications, and schedule the opposite direction
on the set {A/}* | respectively.

15



of a class used in any graph D). The classes are indexed from 0 to L with
L < [logn]. For duplex communication on switchless optical networks it
is clearly necessary to use different wavelengths for the two communication
directions. We therefore define arbitrarily one direction as forward and the
other direction as backward. Every color is reserved with probability % to
forward communications (a forward color in the following), and with proba-
bility % to backward communications (a backward color in the following). Let
|A| be the number of available colors. Let H be a |A|-bit vector defining for
each color a direction, forward or backward, according to the choice made as
described above. We define the class CE as the set of calls (u,v) such that

o There exists a forward color As such that « has class 7 in Dy, and there
is a path from u to v in Dj,.

o There exists a backward color Ay such that v has class j in D), and
there is a path from v to u in D,.

The algorithm chooses uniformly at random in {0,...,L} an integer i
for the forward direction, and an integer j for the backward direction, and
considers only calls that belong to class CE

If a call is considered according to the above rule, then the algorithm
applies a greedy strategy for this call: Call (u,v) is accepted with a forward
color Ay and a backward color Ay if the assignment does not conflict with
any call of the same class accepted previously with As or Ay in one of the two
directions.

Let OPTH be the optimal benefit if any call (u,v) can only be accepted
according to the directions specified by H, i.e., from u to v with a forward
color, and from v to w with a backward color. Let OPng and ALij be
the benefit of the optimal solution and the benefit of the greedy algorithm,
respectively, if any call (u,v) can only be accepted according to the directions
specified by H, and with class ¢z from u to v and with class j from v to u.
Let Eg(*) be the expected value over all the possible choices of H.

Lemma 9 If OPT is the size of the optimal solution on a sequence of calls,

then E'H((’)PTH) > iOPT.

Proof. Let us denote with C(OPT) the set of calls accepted in the optimal
solution. We associate a 0 — 1 random variable X.(H) with any call ¢ €
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C(OPT). Let us assume that call ¢ is accepted by the optimal solution with
some color A; in its forward direction, and with some color A, in its backward
direction. X (H) = 1if A; is a forward color in H and A, is a backward color
in H, X,(H) = 0 otherwise. Clearly, OPT® > ¥ cc(OPT) X(H). If |A] is
the number of colors, then the set of different a551gnments for H is equal to

. We now observe that A; and A, appear as forward and backward color
respectively in 242 assignments of H. Therefore, X.(H) = 1 for % values
of H. Hence, we derive the claim of the lemma:

Eq(OPT") > 31 Xn Yeee@PT) Xe(H)
T Lo OPT) 2 Xe(H) 0
LoPT .

v

Lemma 10 For any choice of H and any class CE, ALGH > %OPTﬁIj.

Proof. Assume that the on-line greedy algorithm accepts the full-duplex
communication (u,v) with forward color A; and backward color A;. The op-
timal off-line solution in class C; H can accept the call (u,v) with two different
colors, and in the worst case at most 2 others full-duplex communications of
the same class that are conflicting with (u,v) and cannot be accepted by the
on-line algorithm elsewhere. This is the case where one of these two commu-
nications is conflicting with the communication from u to v in Ay, and the
second one is conflicting with the communication from v to w in As. O

Theorem 11 The algorithm for full-duplex communication is O(log® n)-competitive.

Proof. For any H, class CH- is selected with probability at least (L-|-1)
Since any possibility to accept a call according to H is considered in at least
one class CF , we derive the following upper bound on the optimal solution
for a given choice of H: OPTH < L ZJI":O OPTﬁIj. Therefore, by Lemma
9 and Lemma 10 the expected benefit of the on-line algorithm is:

E(ALG) > EH((L+12 Yo Yio ALGE)

> (L+1 EH((’)PTH)
Z 1 L-|—1 nEaeOPT
Since L < [logn]|, the claim is proved. O

17



References

[ABC+94]

[AAP93]

[ABFR4]

[AGLR94|

[AR94]

[BBK*90]

[BFL96]

[BH92]

A. Aggarwal, A. Bar-Noy, D. Coppersmith, R. Ramaswani,
B. Schieber, and M. Sudan. Efficient routing and scheduling al-
gorithms for optical networks. In Proceedings of the 5th Annual
ACM-SIAM Symposuim on Discrete Algorithms, pages 412-423,
1994.

B. Awerbuch, Y. Azar, and S. Plotkin. Throughput competitive
on-line routing. In Proceedings of the 34th Annual Symposium
on Foundations of Computer Science, November 1993.

B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén. Competitive
non-preemptive call control. In Proceedings of 5th ACM-SIAM
Symposium on Discrete Algorithms, 1994.

B. Awerbuch, R. Gawlick, F.T. Leighton, and Y. Rabani. On-
line admission control and circuit routing for high performance
computing and communication. In Proceedings of the 35th IEEE
Annual Symposium on Foundations of Computer Science, 1994

Y. Aumann, Y. Rabani. Improved bounds for all-optical routing.
In Proceedings of the 6th ACM-SIAM Symposium on Discrete
Algorithms, 1995.

S. Ben-David, A. Borodin, R.M. Karp, G. Tardos, A. Widger-
son. On the power of randomization in on-line algorithms. In
Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing, 1990.

Y. Bartal, A. Fiat, S. Leonardi. Lower bounds for on-line graph
problems with application to on-line circuit and optical rout-
ing. In Proceedings of the 28th ACM Symposium on Theory of
Computing, 1996.

R.A. Barry and P.A. Humblet. Bounds on the number of wave-
lengths needed in wdm networks. In LEOS’92 Summer Topical
Mtg. Digest, pages 114-127, 1992.

18



[BH93]

[BL96]

[KT95]

[LT94]

[MKRO5]

[P92]

[PS93]

[R96]

[RU94|

[ST85]

R.A. Barry and P.A. Humblet. On the number of wavelengths
and switches in all optical networks. IEEE Trans. Comm., 1993.

Y. Bartal and S. Leonardi. On-line routing in all-optical net-
works. Manuscript, 1996.

J. Kleinberg, E. Tardos. Disjoint paths in densely embedded
graphs. In Proceedings of the 36th IEEE Annual Symposium on
Foundations of Computer Science, 1995.

R.J. Lipton, A. Tomkins. On-line interval scheduling. In Pro-
ceedings of the 5th ACM-Siam Symposium on Discrete Algo-
rithms, 1994.

M. Mihail, C. Kaklamanis, and S. Rao. Efficient Access to Op-
tical Bandwidth. In Proceedings of the 36th IEEE Annual Sym-

postum on Foundations of Computer Science, pages 548-557,
1995.

R.K. Pankay. Architectures for linear light-wave networks. PhD
thesis, MIT, 1992.

G.R. Pieris and G.H. Sasaki. A linear lightwave benes network.
IEEE/ACM Trans. on Networking, 1993.

Y. Rabani. Path coloring on the mesh. In Proceedings of the 37th
IEEE Annual Symposium on Foundations of Computer Science,
1996. To appear.

P. Raghavan and U. Upfal. Efficient routing in all optical net-
works. In Proceedings of the 26th Annual Symposium on Theory
of Computing, pages 133-143, 1994.

D. Sleator, R.E. Tarjan. Amortized efficiency of list update and
paging rules. Communications of ACM 28, 1985.

19



