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allows to use the bandwidth available by partitioning it in many \channels",each at a di�erent optical wavelength. A key issue in all-optical networks isto maintain the signal in optical form and at the same wavelength during theentire transmission, since the overhead cost of conversion to electric form orbetween di�erent wavelengths would be prohibitive. The signal is then con-verted into optical form when transmitted and converted from optical formwhen received.Such optical networks consist of routing nodes connected by �ber opticlinks, each of which can support several wavelengths and can carry the signalin only one direction. Sometimes, a transmitter or a receiver are connectedto a speci�c routing node. A routing node is able to route the signal comingthrough a certain port at a certain wavelength, to one or more outgoingports. Two signals coming on the same input port on di�erent wavelengthscan be routed to di�erent output ports (\generalized switches"). However, itis impossible to route to a common output port more than one signal usingthe same wavelength. In general, two signals can share a link only if theyare transmitted on di�erent wavelengths.We distinguish between switchless networks and recon�gurable networks.In switchless networks the routing pattern at each routing node is �xed: asignal entering a node at a certain wavelength is directed over all the outgo-ing edges on which this wavelength is available. In recon�gurable networksthe routing pattern at each node can be changed: a signal entering a nodeat a certain wavelength can be directed to any subset of the outgoing edgeson which this wavelength is available. If we consider switchless networks,the network associated with each wavelength is a directed acyclic graph inorder to prevent interference of a transmission with its own signal. For re-con�gurable networks, the network associated with a wavelength need notbe acyclic since the signal can be stopped at any routing node.The on-line call admission problem in optical networks is that of decidingin an on-line manner (i.e., upon the arrival of a request for a connection),if to accept the request or not. In case a request is accepted, the algorithmhas to assign it to a wavelength (and a route in the recon�gurable case), ina way that the new signal does not interfere with any route of any on-goingcall that uses the same wavelength.Previous related work. Optical routing has mainly been studied in theo�-line case. Lower bounds on the number of necessary wavelengths for per-2



mutation routing in general recon�gurable networks have been devised in[BH92, BH93, PS93]. Hypercubes have been considered by Pankay [P92],who also proves an 
(log n) lower bound on the number of wavelengths nec-essary for routing a permutation in a bounded degree network, where n is thenumber of nodes in the network. Aumann and Rabani [AR94] show that inbounded degree networks any permutation can be routed with O(log2 n=�2)wavelengths, where � is the edge expansion of the network. Finally, the ex-istence of a good permutation routing algorithm for general networks withgeneralized switches has been obtained in [RU94].For switchless networks, Barry and Humblet [BH92, BH93] give lowerbounds on the number of necessary wavelengths necessary for a set of con-nections, while an almost matching upper bound is presented in [ABC+94].The connection between packet routing and optical routing is also discussedin [ABC+94].Approximation algorithms for the o�-line problem of minimizing the num-ber of wavelengths necessary to schedule an arbitrary set of connections inrecon�gurable networks, the path coloring problem, have been proposed forspeci�c topologies. Raghavan and Upfal [RU94] give constant approximationalgorithms for trees and trees of rings. Mihalis, Kaklamnis and Rao [MKR95]give similar results in the directed case. Kleinberg and Tardos [KT95] givean O(log n) approximation algorithm for meshes and a special class of pla-nar graphs, where n is the number of nodes in the network. Rabani [R96]improved the result for meshes to O(poly(log log n)).The path coloring problem has also been studied in its on-line version.Algorithms with an O(log n) competitive ratio have been devised by Bar-tal and Leonardi [BL96] for trees, trees of rings and meshes. The authorsalso present an 
( lognlog logn) lower bound for trees and an 
(log n) lower boundfor meshes. For general networks, it has been shown that even randomizedon-line algorithms cannot approximate the optimal solution with a polylog-arithmic competitive ratio [BFL96].Previous related work on on-line call admission regards virtual circuitrouting, the so called call control problem, also motivated by its applicationto ATM networks [AAP93, ABFR94, AGLR94, KT95]. In this case eachcall requires the establishment of a �xed connection on a path between thetransmitter and the receiver at a certain transmission rate. The goal is thatof maximizing the number of accepted calls without exceeding the maximumavailable bandwidth on any connection link.3



Observe that if all the links have the same bandwidth and the transmis-sion rate required by any call is the whole available bandwidth, then thecall control problem is equal to the call admission problem in optical recon-�gurable networks of one wavelength. Under this restriction the call controlproblem admits e�cient randomized algorithms for speci�c topologies. Thesetopologies are trees, meshes, hypercubes and a special class of planar graphs[ABFR94, AGLR94, KT95]. Such algorithms for the one-wavelength casewill be used in the present paper as subroutines for algorithms for the gen-eral case of more wavelengths. On the other hand, an 
(n�) lower bound onthe competitive ratio of randomized algorithms for the on-line call controlproblem in general networks, and hence for on-line call admission controlin recon�gurable optical networks of one wavelength, has been proved in[BFL96].Results of the present paper. The results of this paper regard the on-linecall admission problem in optical networks. For each request for a call anon-line algorithm must immediately decide if to accept or reject it withoutknowledge of future requests. The bene�t obtained by the algorithm is thecardinality of the set of accepted requests. We measure the performance of anon-line algorithm by its competitive ratio [ST85]. Let A be an algorithm forthe on-line bene�t problem and let OPT be the optimal (o�-line) algorithmthat knows the whole sequence of requests in advance and deals optimallywith it. An algorithm A is �-competitive if for every sequence of requests �BenefitA(�) � 1�BenefitOPT(�), where BenefitA(�) is the bene�t obtainedby algorithm A on requests sequence �.For randomized algorithms we consider the expectation (over the randomchoices of the algorithm) of the bene�t of the on-line algorithm. We considerthe oblivious adversary for randomized algorithms [BBK+90], meaning thatthe adversary knows the on-line algorithm but cannot observe the results ofthe coin tosses on a particular sequence.In this paper we �rst develop a general on-line technique for wavelengthselection that allows us to reduce the problem of wavelength selection, ad-mission and routing, to the problem of only admission and routing. That is,this technique allows to construct on-line algorithms for multiple wavelengthnetworks, from on-line algorithms for a single-wavelength network, with acompetitive ratio that remains almost the same.Since the call admission problem in recon�gurable optical networks of a4



single wavelength is equivalent to the call control problem, the above reduc-tion gives on-line call admission algorithms for any optical network topology,when there is such an algorithm for the call control problem in the sametopology.As to switchless networks, we develop on-line call admission algorithms fornetworks shaped as rooted forests. We do so by giving an algorithm for onewavelength, and applying the above discussed reduction. We get an on-linealgorithm with a logarithmic competitive ratio. We complement this resultby a lower bound that shows that for networks shaped as rooted forests, andhaving any number of wavelengths, any on-line randomized algorithm has acompetitive ratio of 
(log n), where n is the number of nodes in the network.We also consider the problem of establishing full-duplex communicationsbetween any two points of the network. Due to the nature of switchless opti-cal networks, two di�erent wavelengths must be used for the two directions.The introduction of dependencies between di�erent wavelengths does not al-low in general (see Section 6) to use our general technique in order to reducethe problem to the case of a single wavelength. Therefore we develop a spe-ci�c on-line call admission algorithm for full-duplex connections in switchlessoptical networks. Here again, we do so for networks shaped as rooted forests.We obtain an on-line algorithm with a polylogarithmic competitive ratio.In the following we summarize the results that we present in this paper:� A general technique that enables to obtain a (c + 1)-competitive al-gorithm for call admission and wavelength selection for the multi-wavelength case, from a c-competitive algorithm for the single-wavelengthcase.� Using the above technique, we obtain on-line logarithmically-competitiverandomized algorithms for call admission in recon�gurable optical net-works on network topologies for which on-line algorithms with loga-rithmic competitive ratio for the call control problem are known.� An on-line logarithmically-competitive randomized strategy for call ad-mission in 1-wavelength switchless networks shaped as rooted directedforests. As a result we obtain logarithmic-competitive randomized algo-rithms for call admission and wavelength selection in switchless opticalnetworks shaped as rooted directed forests.5



� A logarithmic lower bound on the competitive ratio of randomized al-gorithms for on-line call admission in switchless optical networks ofarbitrary number of wavelengths, and shaped as rooted directed forests.� An O(log2 n)-competitive algorithm for full-duplex communication inswitchless optical networks shaped as rooted directed forests and arbi-trary number of wavelengths.2 The Model2.1 Switchless networksWe model a switchless all-optical network as follows. There is a set of wave-lengths, sometime called colors. For each color �, we are given a directedacyclic graph G� = (V;E), jV j = n. The graphs of the di�erent wavelengthsneed not be identical. All the graphs share the same set of vertices V . Thesame pair of vertices may be connected by edges of di�erent graphs but theseedges are considered di�erent since they have di�erent colors. All the ver-tices of the graph consist of routing nodes. In addition to those there aretransmitters and receivers. Each transmitter or receiver is connected to onespeci�c routing node and may tune to some color.A request for a call consists of a pair: a transmitter and a receiver, (s; t).A node s can establish a connection to receiver t using a certain color if inthe graph associated with this color, there is a directed path from s to t. Inthis case all the nodes reachable from s through a directed path receive thesignal and cannot get any additional information on this color. Calls (s1; t1)and (s2; t2) are called con
icting at color � if for this color either there is adirected path from s1 to t2 or there is a directed path from s2 to t1. If twocalls con
ict at certain color � they cannot concurrently use that color.We are given a sequence of requests for establishing connections. Foreach such request our call admission and color selection algorithm shouldeither reject the call or accept it. In the latter case it has to assign the callto one of the colors in a consistent way with any previous call assigned tothe same color, i.e, the call can be assigned to color � only if there is noother con
icting call already assigned to color �. The bene�t accrued by thealgorithm is the number of calls that it accepts.6



We speci�cally consider networks with the additional property that thegraph associated with each color is such that the in-degree of each node isat most one. In other words, the graphs G� are directed forests, with adesignated root for each tree, and all edges directed away from the root.These networks have the nice property that two calls (s1; t1); (s2; t2) con
icton some color if and only if s1 is a descendant or an ancestor of s2 in theforest of this color. In the following we will present results for on-line calladmission in switchless optical networks with this kind of topology.2.2 Recon�gurable networksWe model a recon�gurable all-optical network as follows. Each color � isassociated with an undirected graph G� = (V;E), jV j = n. The di�erentgraphs need not be identical. All the graphs share the same set of verticesV . A request for a call is a pair of vertices (s; t) such that a receiver isassociated to s and a transmitter to t. A node s can establish a connectionto receiver t using a certain color if s is connected to t in the graph associatedwith this color. To establish the call a route from s to t should be reserved;two calls scheduled on the same color cannot share any edge.3 Reduction from many wavelengths to oneThe method that we present here applies not only to routing in optical net-works, but to any bene�t problem, where the bene�t is gained by accommo-dating \entities" in any of several (not necessarily identical) \bins". That is,given a set of entities, an algorithm has to maximize the bene�t gained byaccepting entities. To accept an entity the algorithm has to accommodatethe entity in one of several \bins". Within each bin there may be restric-tions as to the set of entities that can be accommodated in it concurrently.However, we assume total independence between the di�erent bins: If a setS of entities can be accepted in a given bin B when all other bins are empty,then the same set S can be accepted in B, together with any sets acceptedin any of the other bins.Given an on-line (deterministic or randomized) algorithm A for one bin,we proceed as follows to build an on-line algorithm A0 for many bins. Let7



Bi, 1 � i � k, be the set of bins. We run a set of k copies of A, one for eachbin. We use a \�rst �t" type algorithm. When a request arrives, we �rstgive it as input to A1. If it is accepted by A1, the handling of the request isterminated. Otherwise we present the request to A2 and so on, until eitherthe request is accepted or the set of k copies of A is exhausted.Theorem 1 If A is � competitive then A0 is � + 1 competitive.Proof. We use the following notations:� R - the sequence of entities presented to A0.� O - the set of entities accepted by the optimal algorithm.� Oi - the set of entities accepted by the optimal algorithm into binnumber i.� Ti - the set of entities accepted by A0 into bin number i.� B(S) - the sum of bene�ts associated with the entities in the set S.For clarity of presentation, we �rst prove the theorem for the case that Ais deterministic.By the de�nition of A0 the sequence of entities presented to Ai is thesubsequence of R obtained from R by eliminating [j<iTj. Denote this sub-sequence by Ri. Clearly, Oi n [j<iTj � Ri :Therefore, the optimal gain that can be obtained from Ri is at leastB(Oi n ([j<iTj)):Since Ai is � competitive it will gain a bene�tB(Ti) � 1� �B(Oi n ([j<iTj)) = 1�B(Oi)� 1�B(([j<iTj) \ Oi) :8



It follows thatkXi=1B(Ti) � kXi=1 1�B(Oi)� kXi=1 1�B(([j<iTj) \ Oi)]� ( kXi=1 1�B(Oi))� 1�B([i�kTi)� kXi=1 1�B(Oi)� 1� kXi=1B(Ti) ;where the second inequality follows since the sets Oi are pairwise disjoint.We get that (1 + �) kXi=1B(Ti) � kXi=1B(Oi):and then A0 is (� + 1)-competitive.This completes the proof for the case that A is deterministic.If the algorithm A is randomized the same analysis goes through as well,with some additional technicalities.Let ri be the sequence of random choices taken by algorithm Ai. For anyl, the set Al is determined by the sequences rj, j � l.Since Ai is � competitive we know (by the same arguments as in thedeterministic case) that8frjgi�1j=1; Eri[B(Ti) j T1 : : : Ti�1] � 1�B(Oi)� 1�B(([j<iTj) \ Oi):Therefore,Erj ;1�j�k[B(Ti)] = Erj;1�j<i[Eri[B(Ti) j T1 : : : Ti�1]]� Erj;1�j<i[1�B(Oi)� 1�B(([j<iTj) \Oi)]= 1�B(Oi)� 1�Erj;1�j<i[B(([j<iTj) \Oi)] :Since for any j the random choices of Al; l > j, have no e�ect on Tj, wecan also writeErj;1�j�k[B(Ti)] � 1�B(Oi)� 1�Erj;1�j�k[B(([j<iTj) \Oi)] :9



To evaluate Erj ;1�j�k[Pki=1B(Ti)], we sum the above expression for 1 �i � k:Erj;1�j�k[ kXi=1B(Ti)] = kXi=1Erj ;1�j�k[B(Ti)]� kXi=1 1�B(Oi)� kXi=1 1�Erj;1�j�k[B(([j<iTj) \Oi)]= kXi=1 1�B(Oi)� 1�Erj ;1�j�k[ kXi=1B(([j<iTj) \Oi)]� kXi=1 1�B(Oi)� 1�Erj ;1�j�k[ kXi=1B(Ti)];where the last inequality follows from the same arguments as in the deter-ministic case.It follows that the (randomized) algorithm A0 is (�+ 1)-competitive. 23.1 Applications to optical networksThe general technique of the previous section can be applied to optical net-works both for the switchless and the recon�gurable case. Every wavelength� with the corresponding network G� corresponds to a bin, and we can thenuse for every wavelength a base algorithm that deals with the problem of calladmission (without wavelength selection). Observe that for di�erent wave-lengths the corresponding networks are not necessarily identical. However,we have to use for every network G� a base algorithm that is suited for itstopology T�.G�, � 2 �, has topology T�. �, if every network Assume that Then,Corollary 2a (� + 1)-competitive (deterministic or randomized) algorithm A0 for a �-competitive (deterministic or randomized) call admission algorithm for topol-ogy T�. call admission in optical networks with the set of wavelengths forevery wavelength � 2 �, A� is is suited for topology T�. there existsFrom the above corollary and from the results of [ABFR94, AGLR94,KT95] we obtain the following for recon�gurable optical networks.10



Corollary 3 There exists an O(log n)-competitive randomized algorithm forthe on-line call admission problem in recon�gurable optical networks if forevery wavelength � the corresponding network G� has topology isomorphic toa tree, a mesh or a nearly Eulerian planar graph.In the next section we give competitive algorithms for call admission inswitchless optical networks of one wavelength, thus obtaining competitivealgorithms for switchless optical networks as well.4 The base algorithm for one-wavelength switch-less networksIn this section we give an optimal call admission scheme for one-wavelengthswitchless optical networks with topology of rooted directed forests.The network is a directed forest D = (V;E). We consider every tree T ofthe forest separately. Consider a call from s to t. This call can possibly bescheduled in the network D if there exists a subtree rooted at s containing tand hence a directed path from s to t.We apply the \classify and randomly select" paradigm [ABFR94, LT94]:� Preprocess the graph and produce a partition of the vertices of thegraph into several classes.� Select a class, uniformly at random among the above classes, and con-sider only calls with source vertex in the selected class.The classi�cation algorithm that we use de�nes inductively tree Ti, withT0 = T , as follows. Let Si be the set of vertices of Ti that either are leavesor have a unique path to a leaf. Assign the vertices of Si to class i. The treeTi+1 is obtained from Ti by removing the vertices in Si. The procedure iscontinued until all the vertices are assigned to some class.Lemma 4 Every node of the graph D is assigned to some class i, such that0 � i � dlog ne.Proof. Vertices in distinct trees of the forest are classi�ed independently.Thus we restrict our attention to a single rooted directed tree.11



A directed tree can be partitioned into a set of disjoint directed pathsin the following way: every path of the partition starts with either the rootor a vertex such that its parent has out-degree bigger than 1. Every pathends with a vertex being a leaf or having out-degree bigger than 1. Thesepaths can also degenerate into a single vertex. We call this partition the pathpartition of the tree. If we contract every path of the path partition of a treeTi to a single vertex, then the resulting tree, that we call the contracted treeT ci , has internal vertices with out-degree at least 2.Let P (Ti) be the number of vertices in T ci . We prove that for any i � 0,either Ti+1 is empty or P (Ti+1) � P (Ti)=2. Since P (T0) � n we have thatthe number of classes is at most 1 + dlog ne.Consider the tree Ti and its contracted tree T ci . All the vertices of Ti beingleaves or having a unique path to a leaf are assigned to class i and removedto create Ti+1. These are vertices of paths that are represented by leavesin T ci . Since in T ci all internal vertices have out-degree at least 2, removingthe leaves of T ci halves the number of vertices of T ci . Observe now that thenumber of vertices in T ci+1 is at most the number of non-leaf vertices of T ci .This is because every path in the path partition of Ti+1 is either a whole pathof the path partition of Ti, or is obtained by the concatenation of a numberof paths of the path partition of Ti. Therefore, P (Ti+1) � P (Ti)=2, and theclaim is proved. 2In the following we denote by i = 0; : : : ; L, for L � dlog ne, the numberof classes of the partition of D.Recall that two calls (s1; t1) and (s2; t2) are consistent if there is no di-rected path from s1 to t2 and there is no directed path from s2 to t1. Ona rooted forest, if each of the calls (s1; t1) and (s2; t2) is feasible by its own,(that is, t1 is a descendent of s1 and t2 is a descendent of s2), then the abovecondition is that s1 is neither an ancestor nor a descendant of s2. Note thatvertices of class i form a set of vertex-disjoint paths where any vertex in apath is neither an ancestor nor a descendant of any vertex in another path.Therefore, two calls originating at vertices of class i that belong to di�erentpaths are consistent.When a call (s; t) arrives, if there is no path from s to t we ignore thecall. Note that no algorithm can accept such call. If there is a path froms to t the call is assigned to the class of node s. The randomized on-linealgorithm selects uniformly at random one of the classes and considers onlycalls that belong to this class. To these calls it applies the greedy algorithm12



that accepts a new call (s; t) if and only if it is consistent with all previouslyaccepted calls in the same class. I.e., if there is no call (s0; t0), previouslyaccepted, such that either s is a descendent of s0 or s0 is a descendent of s.In the following we analyze this algorithm. Let OPT i be the bene�t ofthe optimal o�-line solution, if the sequence of requests is restricted to thecalls of class i, and let ALGi be the bene�t of the greedy algorithm appliedto the calls of class i.Lemma 5 For any sequence of calls and any class i, ALGi = OPT i.Proof. Consider the vertices of a class i. These vertices can be partitionedinto a number of mutually vertex-disjoint directed paths of the tree, suchthat there is no directed path connecting two vertices on di�erent paths.Therefore, at most one call with source vertex on any given such path canbe accepted (by any algorithm), and calls accepted on di�erent paths aremutually consistent. The lemma follows by observing that both the optimalsolution and the greedy solution use the same number of such distinct paths.2Theorem 6 The algorithm for one color is O(log n)-competitive.Proof. Let OPT be the number of calls accepted by the optimal o�-linealgorithm. We obtain OPT � PLi=0OPT i. The on-line algorithm selectsuniformly at random one class amongst the L + 1 classes and obtains theoptimal bene�t for that class. Hence, the expected bene�t of the on-linealgorithm is: E(ALG) = LXi=0 1L+ 1OPT i � 1L + 1OPT :Since L � dlog ne, the algorithm is O(log n)-competitive. 2Using the above algorithm and the reduction of Section 3 we obtain thefollowing result for switchless optical networks with any number of wave-lengths.Corollary 7 There exists an O(log n)-competitive randomized algorithm forthe on-line call admission problem in switchless optical networks if for everywavelength �, the graph corresponding to this wavelength, D�, is a directedforest. 13



5 Lower bound for switchless networksIn this section we prove that the O(log n)-competitive randomized algorithmfor on-line call admission in switchless optical networks shaped as rooteddirected forests is optimal up to a constant factor. Note that this lowerbound applies to any number of wavelengths present in the network.Theorem 8 Any randomized algorithm for on-line call admission in switch-less optical networks shaped as rooted directed forests has competitive ratio
(log n).Proof. Let � be the set of wavelengths. Let n = 2d � 1 for some integervalue d > 1. The network D� associated with every color � 2 � is a completebinary rooted directed tree of n vertices and d levels. The levels are indexedfrom 0 (the root) to d � 1 (the leaves). In this proof every call is denotedonly by its source vertex, while the destination vertex is an arbitrary vertexin the subtree rooted at the source vertex.We show that for any randomized on-line algorithm, there is a sequenceof requests in the network de�ned above, such that the ratio between thebene�t of the optimal o�-line solution and the expected on-line bene�t haslower bound 
(log n).For this purpose we consider a sequence of d � 1 sets of calls. Set j,j = 0; : : : ; d � 2, has j�j2j calls: for each vertex of level j, the set includesj�j calls originating at this node.Now �x the randomized on-line algorithm. Let xj be a random variablerepresenting the number of calls of set j accepted by the on-line algorithm,if presents with sets 0 to j. Observe that for any j, the random variable xjhas the same distribution regardless of whether any set l, l > j is presented.Let us consider the number of vertices of level d�2 in every subtree rootedat an accepted call. Every accepted call of level j covers 2d�2�j vertices oflevel d� 2. For any outcome of the coin tosses the overall number of coveredvertices cannot exceed the total number of such vertices which is j�j2d�2. Wetherefore get that for any outcome of the coin tossesPd�2j=0 xj2d�2�j � j�j2d�2.Since the above holds for any outcome of the coin tosses we have also thatE[Pd�2j=0 xj2d�2�j ] � j�j2d�2. It follows from the linearity of expectation thatPd�2j=0 E[xj]2d�2�j � j�j2d�2, and therefore Pd�2j=0 E[xj]2�j � j�j.14



Let 1�j be the ratio between the expected bene�t of the on-line algorithmand the bene�t of the o�-line algorithm after set number j is presented. Atthis point the optimal algorithm has bene�t 2jj�j. Hence, we have that1�j = 2�jj�j jXl=0E[xl] :Summing over all j we getd�2Xj=0 1�j = d�2Xj=0 2�jj�j jXl=0 E[xl] = d�2Xl=0 E[xl]j�j d�2Xj=l 2�j � 2j�j d�2Xl=0 E[xl]2�l � 2:Therefore, there exists at least one index k such that 1=�k � 2d�1 . If thealgorithm is presented with the sequence composed of the sets 0 � j � k,then the ratio between the expected bene�t of the on-line algorithm and thebene�t of the o�-line algorithm is at most 2d�1 . Since d = log(n + 1) thelemma follows. 26 Full-duplex communicationIn full-duplex communication every call requires to set up a bidirectionalcommunication between a node u and a node v. Due to the nature of switch-less networks, the two directions of the communication have to be scheduledon di�erent wavelengths. Thus, in general, it is not possible to use ourtechnique of Section 3 in this case, since the sets of accepted calls in eachwavelength are not independent 1. Therefore, we give a speci�c algorithm tohandle this case, for networks of topology of a rooted directed forest.In what follows we de�ne our algorithm. For a graph D� the algorithmassigns each vertex to one of the classes de�ned by the classi�cation proce-dure of Section 4 for one-way communication. Let L be the maximum index1Note that in special cases we can use the algorithm of Section 4 also for full duplexcommunication. Assume we have a set of wavelengths f�igni=1 such that the topology ofeach corresponding network is a rooted forest, and another set f�0igki=1, where the topologyof the network associated with �0i is the topology of the network associated with �i, withedge directions inverted. Then we can use the algorithm of Section 4 on the network off�igki=1, requesting one-directional communications, and schedule the opposite directionon the set f�0igki=1 respectively. 15



of a class used in any graph D�. The classes are indexed from 0 to L withL � dlog ne. For duplex communication on switchless optical networks itis clearly necessary to use di�erent wavelengths for the two communicationdirections. We therefore de�ne arbitrarily one direction as forward and theother direction as backward. Every color is reserved with probability 12 toforward communications (a forward color in the following), and with proba-bility 12 to backward communications (a backward color in the following). Letj�j be the number of available colors. Let H be a j�j-bit vector de�ning foreach color a direction, forward or backward, according to the choice made asdescribed above. We de�ne the class CHi;j as the set of calls (u; v) such that� There exists a forward color �f such that u has class i in D�f and thereis a path from u to v in D�f .� There exists a backward color �b such that v has class j in D�b andthere is a path from v to u in D�b.The algorithm chooses uniformly at random in f0; : : : ; Lg an integer ifor the forward direction, and an integer j for the backward direction, andconsiders only calls that belong to class CHi;j.If a call is considered according to the above rule, then the algorithmapplies a greedy strategy for this call: Call (u; v) is accepted with a forwardcolor �f and a backward color �b if the assignment does not con
ict withany call of the same class accepted previously with �f or �b in one of the twodirections.Let OPT H be the optimal bene�t if any call (u; v) can only be acceptedaccording to the directions speci�ed by H, i.e., from u to v with a forwardcolor, and from v to u with a backward color. Let OPT Hi;j and ALGHi;j bethe bene�t of the optimal solution and the bene�t of the greedy algorithm,respectively, if any call (u; v) can only be accepted according to the directionsspeci�ed by H, and with class i from u to v and with class j from v to u.Let EH(�) be the expected value over all the possible choices of H.Lemma 9 If OPT is the size of the optimal solution on a sequence of calls,then EH(OPT H) � 14OPT .Proof. Let us denote with C(OPT ) the set of calls accepted in the optimalsolution. We associate a 0 � 1 random variable Xc(H) with any call c 216



C(OPT ). Let us assume that call c is accepted by the optimal solution withsome color �1 in its forward direction, and with some color �2 in its backwarddirection. Xc(H) = 1 if �1 is a forward color in H and �2 is a backward colorin H, Xc(H) = 0 otherwise. Clearly, OPT H � Pc2C(OPT )Xc(H). If j�j isthe number of colors, then the set of di�erent assignments for H is equal to2�. We now observe that �1 and �2 appear as forward and backward colorrespectively in 2��2 assignments of H. Therefore, Xc(H) = 1 for 2�4 valuesof H. Hence, we derive the claim of the lemma:EH(OPTH) � 12j�j PHPc2C(OPT )Xc(H)= 12j�j Pc2C(OPT )PH Xc(H)= 14OPT : 2Lemma 10 For any choice of H and any class CHi;j, ALGHi;j � 13OPT Hi;j.Proof. Assume that the on-line greedy algorithm accepts the full-duplexcommunication (u; v) with forward color �1 and backward color �2. The op-timal o�-line solution in class CHi;j can accept the call (u; v) with two di�erentcolors, and in the worst case at most 2 others full-duplex communications ofthe same class that are con
icting with (u; v) and cannot be accepted by theon-line algorithm elsewhere. This is the case where one of these two commu-nications is con
icting with the communication from u to v in �1, and thesecond one is con
icting with the communication from v to u in �2. 2Theorem 11 The algorithm for full-duplex communication is O(log2 n)-competitive.Proof. For any H, class CHi;j is selected with probability at least 1(L+1)2 .Since any possibility to accept a call according to H is considered in at leastone class CHi;j, we derive the following upper bound on the optimal solutionfor a given choice of H: OPT H � PLi=0PLj=0OPT Hi;j. Therefore, by Lemma9 and Lemma 10 the expected bene�t of the on-line algorithm is:E(ALG) � EH( 1(L+1)2 PLi=0PLj=0ALGHi;j)� 13(L+1)2EH(OPT H)� 112(L+1)2OPT :Since L � dlog ne, the claim is proved. 217
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