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Abstract

In this paper we initiate the study of competitive on-line
packet routing algorithms. At any time, any network node
may initiate sending a packet to another node. Our goal
is to route these packets through the network, while simul-
taneoudly minimizng link bandwidth, buffer usage, and the
average delay of a packet. We give efficient centralized
on-line packet routing algorithmsin this setting. These al-
gorithms achieve a constant competitive ratio with respect
to the average delay whileincreasing the link bandwidth by
no more than a logarithmic factor.

To obtain our packet routing results, we introduce com-
petitive algorithmsfor a new problem called min-cost load
circuit routing. Here, the goal is to create on-line virtual
circuitsin a graph, whiletrying to simultaneously minimize
link bandwidth and (related) communication costs.

1. Introduction

In this paper we initiate the study of competitive on-line
packet routing algorithms. We consider a network where at
any point in time, any network node may initiate sending
a packet to another network node. Our god is to route
these packets through the network, while simultaneously
minimizing link bandwidth, buffer usage, and the sum (or
average) delay of a packet.

We give efficient centralized on-line packet routing a go-
rithmsin this setting. The major fault with our algorithmis
that we require centralized decision control. Thisisaredis
tic model only if the packet sizes are truly large and control
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messages can be ignored. However, we hope that this note
is but afirst step towards a much greater understanding of
on-line packet routing.

To obtain our packet routing results, we introduce com-
petitive algorithms for a new problem, interesting on its
own right. This problemis of min-cost load circuit routing.
Here, thegoa isto create on-linevirtua circuitsin agraph,
whiletryingto simultaneously minimizelink bandwidthand
(related) communication costs.

1.1. Packet routing models and results

Network. Wearegivenanetwork G = (V, E) with|V| =
nand|E| = m. Every network nodew can hold upto cap(v)
packets in its buffer, every link ¢ has some non-negative
capacity cap(e). At every unit of time, up to cap(e) packets
can traverse an edge e. All packets sent along alink arrive
at the links endpoint in one unit of time,

Input. The input consists of triplets s;, r;, t;, which rep-
resent the source, the receiver, and the time of generation of
thei's packet. Theinputis generated in an on-line fashion,
i.e,inputiisdisclosed at timet;.

Output. The output is scheduling of packets satisfying
the capacity constraintsat the network nodes and edges, and
delivering every packet in some finite time. We consider
on-line scheduling agorithms that have access to globa
information, i.e. agorithm knows at time ¢ the state of all
the network edge and network node buffers, and, of course,
past input (tripletSSi, ri, t; with t; < t).

Remarks In our model above packets that arrive and are
immediately retransmitted are not counted in the buffer uti-
lization at network nodes. However, an alternative model
would be to count them, our agorithms are easily modified
to fit thismodel as well giving the same results.

Complexity measures. Define the sum (average) of the
delay of a sequence as the sum (average) of the delays over
all packetsin the sequence.



An on-line algorithm is called «-load competitive and
(G-delay competitive if it can schedule any off-line feasible
sequence of packets in the network such that the capacity
of each link and buffer isincreased by afactor of « and the
sum of the delays (or average delay) isincreased by afactor
of a most 3.

Our packet routing agorithm follows from a straight-
forward reduction (Section 3) to aspecia caseof theproblem
of on-line minimum cost circuit routing, where the cost of
alink is equdl to its capacity. The solution for the latter
problem, which is interesting in its own right, is given in
Section 2.

The packet routing algorithm as described in Sections 3
and 2isO(log(nT)) capacity-competitive and O(1) delay-
competitive. Here, n isthe number of network nodes, and
T is the maximum packet delay of off-line schedule. (See
Theorems 3.2 and 3.3).

We aso design an agorithm which is competitive with
respect to the maximum delay instead of average delay as-
suming infinitebuffer capacity at al network nodes. It turns
out that the latter is much simpler problem and using sim-
ple methods we design an on-line algorithm which is O(1)
capacity-competitive and O(1) delay-competitive (see Sec-
tion 4).

Comparison with related work. Packet routing is one
of the classical problems in the areas of networking [18,
11, 19, 17, 10, 21, 24, 8, 6, 3, 5] and parald computing
[12, 23, 9, 16, 14, 25, 15, 7, 20]. Most of thiswork focused
on distributed routing agorithms, where the overhead of
control messages istaken into account, i.e., is applicableto
the case in which the packets transmitted are small.

The analytical efficiency, i.e. polylogarithmic gaps be-
tween upper and lower bounds on packet delay, has been
achieved primarily for the special-purpose parallel architec-
tures such as hypercubes, expanders, etc.; good survey of
thiswork can be found in [13]. The exception is the semi-
nal work of Leighton, Maggs and Rao, [16], which achieve
logarithmic (and, in some cases, constant) competitiveness
for the maximum delay in a static setting.

In contrast, in thiswork, we consider, for the first time,
the more difficult problem of minimizing average delay in
an on-line setting. We, however, ignore the overhead of
control, assuming knowledge of global state.

1.2. Min-cost circuit routing models and results

Input: A graphG = (V, E') withacapacity functioncap :
E — RT and cost function cost : £ — RT. We get a
sequence of requests for connections, each is defined by a
tuple (s;, r;, pi), where s;, r; € V' are the source/sink pair,
and p; € RT corresponds to the required bandwidth.

Output: At thetime of arrival of request for :'th connec-
tion, the required bandwidth has to be reserved a ong some
path P; from the source s; to thesink ;.

Performance. Regardless of whether connection 7, is us-
ing edge e or not, we define relative load on e due to con-
nection ¢ as p; . = p;/cap(e). Let P and P* bethe set of
paths associated with the connections by the on-lineand the
off-line algorithms, respectively. The relative load on edge
e of theon-linealgorithmis defined by:

l, = Z Pie,

P;ePecP;

and the cost of the scheduling of the on-line algorithm is

defined as
Z cost(e)l, .
eeF

The relative load on edge e of the off-line agorithmis de-
fined similarly and denoted by ¢;. The cost of thescheduling
of an off-lineagorithmis defined by the equation above by
replacing . by ¢;.

Definition 1.1 Anon-linecircuit routingalgorithmiscalled
« capacity-competitive and 5 cost-competitive if, for each
input sequence served, it is absolutely impossible to have
served that sequence with both «-smaller relative load and
B-smaller cost.

Equivalently, we call a sequence of requests feasible if
there exists an off-line algorithm that allocated a path for
each request without exceeding the capacity constraints.
This alocation is called a feasible solution. A feasible
solution is equivalent to the property that the relative load
on each edge of a most 1. The optimal off-line cost is the
minimum over of possible feasible solutions of the cost of
the scheduling. An on-line algorithm is with « capacity-
competitive and /5 cost-competitive if it can schedule any
request sequence by increasing the capacity of each link by
afactor « and achieving a cost whichisa most 5 timesthe
optimal.

Theorem 1.2 For arbitrary network with arbitrary capac-
ities and costs our min cost circuit routing on-line algo-
rithm is O (log(}", cost(e))) load-competitive and O(1)
cost-competitive.

2. Min-cost circuit routing algorithm

Wefirst discussthe casewhereall thecostsare 1. For this
caseweshow an agorithmwhich O(logn) load-competitive
and O(1) cost-competitive.

Definea = 1+ + for some positive constant v < 1. Let
h;i . betherelativeload £. onedgee at thetimeof thearrival



of the i'th request. The on-line routing algorithm works as
follows. Reguest ¢ isassigned to an s; — r; path ; which
minimizes

VVz'P — Z(ah,,eﬂn,e _ ah,,e).
eeP

We use the techniques of [1, 2] to show the following
invariant.

Lemma?2.1l The algorithm maintains the following in-
equality:
doa(l—qt) <m.

ecE

Proof: Consider a connection ¢ that is assigned by the on-
line agorithm to some path P = F;. Let P* = P’ be
the path that is assigned to this connection by the off-line
algorithm. Note that since ¢« = 1+ v we have that Vz €
0,1 : (a” —1) < yx. Moreover, the fact that the off-
linea gorithm routesthe ith request through P* impliesthat
for each ¢ € P* we have 0 < p; . < 1, and hence the
inequality above appliesfor 2 = p; .. Thisand the fact that
thea gorithm chooses the minimumwei ght path impliesthat

VVZ»P — Z(ahz,e‘l'pz,e_ahz,e)

eeP

< Z (aﬁe+pl,e _ aZe)

ec P*

= Z ate(afe — 1)

ec P*

i Z azepi,&

ec P*

IN

Summing over al connections, we get:

3TN (@t —atiey <y 3003 alepy.
PeP ecP P*eP* ecP*
Exchanging the order of summation yields

Z Z (ah,,eﬂu,e

e€E PEP|eeP

ah,,e)

Y Z aZe Z Die

ecE P*eP*|leeP*

= v Z aZeﬁz.

ecE

IN

Clearly, theleft hand-sideis atelescopic sum for each edge
e. Thus we conclude that

at — 1)<y atelr.
hX )<y Y atL;

1= 1=

Hence,

S at (1= 6) < m,

ecE

Theorem 2.2 Theroutealgorithmmaintainsa relativeload
of at most O(logn).

Proof: Observe that v < 1 by definition £; < 1 since the
normalized load of the off-line agorithm never exceeds 1.
Thus, Lemma 2.1 then implies that

> ate <m/(1-7).

ecE

This, in turnimplies that
max £, < log,(m/(1~ 7)) = O(logn).
|

Theorem 2.3 Theroute algorithm maintainsthe following

dte=00>" ).

1= 1=
Proof: Lemma 2.1 states that
D at(1—qt7) <m,

ecE

wherea = 14+ vy and 0 < v < 1. Using the inequdity
1420 < (1+7)forany0<y < landl. > Oweget

D1+ SL)(1=56) < m.
ecE

By opening the parenthesis we have

m—y Y L5 Y L(l=yE) < m,

ecE ecF

or,
D L) <2y 0
1= 1=

Recdll that v < 1 and £; < 1for each e. Thus

2 *
>t < EZ@.

1= 1=

We extend the above result to the case where not all the
costs are 1. Clearly we can replace an edge with capacity
cap(e) and cost cost(e) with a line of cost(e) edges of
capacity cap(e) and cost 1. That increases the number of
edgesinthegraphto ", cost(e). We conclude that



Theorem 2.4 For arbitrary network with arbitrary capac-
ities and costs the on-line algorithm is competitive with
O (log(3_, cost(e)))-load and O(1) cost-competitive.

We note that for the above agorithmis equivalent to the
the following algorithm on the original graph. Request : is
assigned to an s; — r; path P; which minimizes

wf = Z cost(e)(aietrie —

; ah,,e).
eeP

3. Reducing packet routing to on-line min-cost
circuit routing

In this section we show how to reduce the packet routing
problem in graph G = (V, E) to the min-cost virtual paths
routing in a directed graph L on size O(nT") where T is
thetotal duration of the packet routing sequence. Then we
will show how to replace 7" with 7" themaximum delay of a
packet by the off-linea gorithm. We construct thefollowing
layered graph L. The graph has 77 + 1 layers indexed by
time 0 < ¢+ < T’ and one additional layer, which we call
the destination layer. Each layer has n vertices onefor each
nodein G. We define the set of edges, their capacities and
costs as follows. For an edge e = (u,v) € GG we make
directed edges of capacity cap(e) between vertex « inlayer
t—1tovertex vinlayertforal 1 <t < T". Alsowehavea
directed edges of capacity cap(u) between vertex u inlayer
t —1ltovetex uinlayer ¢t foral 1 < ¢ < T’. Finaly,
there are directed edges between all copies of vertex « to
the destination vertex «. These edges are ignored for the
purpose of load or cost.

For arequest for routing a packet from s; to r; whichis
cregted at time ¢ we associated a request for a virtua path
from vertex s; in layer ¢ to the destination vertex r;. Itis
easy to see that there is one to one correspondence between
the packet routein GG to the path in L. Specifically, an edge
in L from vertex « of layer ¢t — 1 to vertex v of layer ¢
corresponds to routing the packet on thelink from « to v at
the#'th unittime. Alsoanedgefromu inlayert — 1towin
t corresponds to keeping the packet in the buffer of node w.

Note that the length of the path from the source to desti-
nation (except the edge to the destination layer) corresponds
to the delay of the packet. Thus the sum of the actua loads
(not the relative load) corresponds to the sum of the delays.
Recall that for this purpose we ignore the edges to the des-
tination layer. For each edge e we associate a cost cap,
which is the ratio between the actua load to the relative
load. Thus, the min-cost problem corresponds to the packet
routing problems which minimizes the sum (or average)
delay.

Using the result from the previous section we conclude

Coroallary 3.1 Thereisanon-linealgorithmfor packet rout-
ing for a network with equal capacitieswhich iscompetitive
with O(log(nT"))-load and O(1) delay.

By standard methods (see [4]) one can replace the
O(log(n1")) by O(log(n1")) where " is the maximum de-
lay of apacket. Thisis done by constructing a new layered
graphof 27"+ 1 layersindexed by T'i < ¢ < T'(i+ 2) for all
i > 0 to accommodate requests that were created between
Tito T(i + 1). We apply the algorithm for each graph
separately. Clearly, at any unit of time there are at most 2
such active layers. Thisresultsin increasing the bandwidth
of each edge by afactor of 2. Also, it is not difficult to
deal withthe case that 7" isunknownin advance. Againone
can use the methods of [4] and double 7" until it reaches its
approximate value. Thuswe conclude

Theorem 3.2 Thereisanon-linealgorithmfor packet rout-
ing for a network with equal capacitieswhich iscompetitive
with O(log(nT"))-load and O(1) delay.

If the capacities are not the same using the results from
the previous section to conclude

Theorem 3.3 Thereisanon-linealgorithmfor packet rout-
ing for a network with arbitrary capacitieswhich is compet-
itivewith O (log(7" S~ cap(e)))-load and O(1)-delay.

4. Maximum delay packet routing

In this section we describe an on-line agorithm which
is competitive with respect to the maximum delay instead
of the average delay. We design an agorithm which is
competitive with 2-load and 3-maximum delay given the
value of the maximum delay and assuming infinite buffer
capacity at network nodes. Then, using standard methods
we can eliminate the need for knowing the maximum delay
by increasing the on-line maximum delay by a constant
factor.

Let 7" be the maximum delay. All the requests appeared
between time T'(i — 1) and T'% are collected and scheduled
between 77 and T'(: + 2). Clearly this can be done since
all the requests could be schedule with maximum delay 7'
and hence requeststhat were created in arange of 7" units of
time can be scheduled optimally in 27" unitsof time. Hence
themaximum delay isincreased by afactor of at most 3 (the
delayscanbeaslargeas?'(i + 2) — T'(i — 1)). Thecapacity
required to achieve this schedulingincreases by afactor of 2
since at any timethere are at most 2 scheduling graphs. We
note that the scheduling the requests at each 1" stepsis NP-
hard. Thus, if we are ready to use super-polynomial time
algorithmsiit is possible to schedule the packets. If on the
other hand we restrict ourselves to polynomia agorithms
then we should use off-line approximation a gorithms, such



as [22], and increase the bandwidth by the approximation
factor.

If T is unknown in advance then again we can use the
doubling technique described in [4]. That increases the
maximum delay by a constant factor. Thus we conclude

Theorem 4.1 Thereisanon-linealgorithmfor packet rout-
ing for a network with arbitrary edge capacities and infinite
node capacities which is O(1) competitive with respect to
load and simultanously O(1) competitive with respect tothe
maxi mum del ay.

5. Conclusion and open problems

In this paper, we have presented competitive on-line cen-
tralized algorithmsfor for packet routing, by reducing them
to the problem of min-cost circuit routing.

The obvious open question is whether it is possible to
design distributed algorithms with poly-logarithmic com-
petitive ratios.
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