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Abstract

In this paper we initiate the study of competitive on-line
packet routing algorithms. At any time, any network node
may initiate sending a packet to another node. Our goal
is to route these packets through the network, while simul-
taneously minimizing link bandwidth, buffer usage, and the
average delay of a packet. We give efficient centralized
on-line packet routing algorithms in this setting. These al-
gorithms achieve a constant competitive ratio with respect
to the average delay while increasing the link bandwidth by
no more than a logarithmic factor.

To obtain our packet routing results, we introduce com-
petitive algorithms for a new problem called min-cost load
circuit routing. Here, the goal is to create on-line virtual
circuits in a graph, while trying to simultaneously minimize
link bandwidth and (related) communication costs.

1. Introduction

In this paper we initiate the study of competitive on-line
packet routing algorithms. We consider a network where at
any point in time, any network node may initiate sending
a packet to another network node. Our goal is to route
these packets through the network, while simultaneously
minimizing link bandwidth, buffer usage, and the sum (or
average) delay of a packet.

We give efficient centralized on-line packet routing algo-
rithms in this setting. The major fault with our algorithm is
that we require centralized decision control. This is a realis-
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messages can be ignored. However, we hope that this note
is but a first step towards a much greater understanding of
on-line packet routing.

To obtain our packet routing results, we introduce com-
petitive algorithms for a new problem, interesting on its
own right. This problem is of min-cost load circuit routing.
Here, the goal is to create on-line virtual circuits in a graph,
while trying to simultaneously minimize link bandwidthand
(related) communication costs.

1.1. Packet routing models and results

Network. We are given a networkG = (V;E) with jV j =n and jEj = m. Every networknode v can hold up to cap(v)
packets in its buffer, every link e has some non-negative
capacity cap(e). At every unit of time, up to cap(e) packets
can traverse an edge e. All packets sent along a link arrive
at the links endpoint in one unit of time.

Input. The input consists of triplets si; ri; ti, which rep-
resent the source, the receiver, and the time of generation of
the i’s packet. The input is generated in an on-line fashion,
i.e., input i is disclosed at time ti.
Output. The output is scheduling of packets satisfying
the capacity constraints at the network nodes and edges, and
delivering every packet in some finite time. We consider
on-line scheduling algorithms that have access to global
information, i.e. algorithm knows at time t the state of all
the network edge and network node buffers, and, of course,
past input (triplets si; ri; ti with ti � t).
Remarks In our model above packets that arrive and are
immediately retransmitted are not counted in the buffer uti-
lization at network nodes. However, an alternative model
would be to count them, our algorithms are easily modified
to fit this model as well giving the same results.

Complexity measures. Define the sum (average) of the
delay of a sequence as the sum (average) of the delays over
all packets in the sequence.



An on-line algorithm is called �-load competitive and�-delay competitive if it can schedule any off-line feasible
sequence of packets in the network such that the capacity
of each link and buffer is increased by a factor of � and the
sum of the delays (or average delay) is increased by a factor
of at most �.

Our packet routing algorithm follows from a straight-
forward reduction (Section 3) to a special case of the problem
of on-line minimum cost circuit routing, where the cost of
a link is equal to its capacity. The solution for the latter
problem, which is interesting in its own right, is given in
Section 2.

The packet routing algorithm as described in Sections 3
and 2 is O(log(nT )) capacity-competitive and O(1) delay-
competitive. Here, n is the number of network nodes, andT is the maximum packet delay of off-line schedule. (See
Theorems 3.2 and 3.3).

We also design an algorithm which is competitive with
respect to the maximum delay instead of average delay as-
suming infinite buffer capacity at all network nodes. It turns
out that the latter is much simpler problem and using sim-
ple methods we design an on-line algorithm which is O(1)
capacity-competitive and O(1) delay-competitive (see Sec-
tion 4).

Comparison with related work. Packet routing is one
of the classical problems in the areas of networking [18,
11, 19, 17, 10, 21, 24, 8, 6, 3, 5] and parallel computing
[12, 23, 9, 16, 14, 25, 15, 7, 20]. Most of this work focused
on distributed routing algorithms, where the overhead of
control messages is taken into account, i.e., is applicable to
the case in which the packets transmitted are small.

The analytical efficiency, i.e. polylogarithmic gaps be-
tween upper and lower bounds on packet delay, has been
achieved primarily for the special-purpose parallel architec-
tures such as hypercubes, expanders, etc.; good survey of
this work can be found in [13]. The exception is the semi-
nal work of Leighton, Maggs and Rao, [16], which achieve
logarithmic (and, in some cases, constant) competitiveness
for the maximum delay in a static setting.

In contrast, in this work, we consider, for the first time,
the more difficult problem of minimizing average delay in
an on-line setting. We, however, ignore the overhead of
control, assuming knowledge of global state.

1.2. Min-cost circuit routing models and results

Input: A graphG = (V;E) with a capacity function cap :E ! R+ and cost function cost : E ! R+. We get a
sequence of requests for connections, each is defined by a
tuple (si; ri; pi), where si; ri 2 V are the source/sink pair,
and pi 2 R+ corresponds to the required bandwidth.

Output: At the time of arrival of request for i’th connec-
tion, the required bandwidth has to be reserved along some
path Pi from the source si to the sink ri.
Performance: Regardless of whether connection i, is us-
ing edge e or not, we define relative load on e due to con-
nection i as pi;e = pi=cap(e). Let P and P� be the set of
paths associated with the connections by the on-line and the
off-line algorithms, respectively. The relative load on edgee of the on-line algorithm is defined by:`e = XPi2P:e2Pi pi;e;
and the cost of the scheduling of the on-line algorithm is
defined as Xe2E cost(e)`e :
The relative load on edge e of the off-line algorithm is de-
fined similarly and denoted by `�e. The cost of the scheduling
of an off-line algorithm is defined by the equation above by
replacing `e by `�e .

Definition 1.1 An on-line circuit routingalgorithmis called� capacity-competitive and � cost-competitive if, for each
input sequence served, it is absolutely impossible to have
served that sequence with both �-smaller relative load and�-smaller cost.

Equivalently, we call a sequence of requests feasible if
there exists an off-line algorithm that allocated a path for
each request without exceeding the capacity constraints.
This allocation is called a feasible solution. A feasible
solution is equivalent to the property that the relative load
on each edge of at most 1. The optimal off-line cost is the
minimum over of possible feasible solutions of the cost of
the scheduling. An on-line algorithm is with � capacity-
competitive and � cost-competitive if it can schedule any
request sequence by increasing the capacity of each link by
a factor � and achieving a cost which is at most � times the
optimal.

Theorem 1.2 For arbitrary network with arbitrary capac-
ities and costs our min cost circuit routing on-line algo-
rithm is O �log(Pe cost(e))� load-competitive and O(1)
cost-competitive.

2. Min-cost circuit routing algorithm

We first discuss the case where all the costs are 1. For this
case we show an algorithm whichO(logn) load-competitive
and O(1) cost-competitive.

Define a = 1 + 
 for some positive constant 
 < 1. Lethi;e be the relative load `e on edge e at the time of the arrival
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of the i’th request. The on-line routing algorithm works as
follows. Request i is assigned to an si � ri path Pi which
minimizes WPi = Xe2P (ahi;e+pi;e � ahi;e):

We use the techniques of [1, 2] to show the following
invariant.

Lemma 2.1 The algorithm maintains the following in-
equality: Xe2E a`e(1� 
`�e) � m:
Proof: Consider a connection i that is assigned by the on-
line algorithm to some path P = Pi. Let P � = P �i be
the path that is assigned to this connection by the off-line
algorithm. Note that since a = 1 + 
 we have that 8x 2[0; 1] : (ax � 1) � 
x. Moreover, the fact that the off-
line algorithm routes the ith request throughP � implies that
for each e 2 P � we have 0 � pi;e � 1, and hence the
inequality above applies for x = pi;e. This and the fact that
the algorithm chooses the minimum weight path implies thatWPi = Xe2P(ahi;e+pi;e � ahi;e)� Xe2P�(a`e+pi;e � a`e)= Xe2P� a`e(api;e � 1)� 
 Xe2P� a`epi;e:
Summing over all connections, we get:XP2PXe2P (ahi;e+pi;e � ahi;e) � 
 XP�2P� Xe2P� a`epi;e:
Exchanging the order of summation yieldsXe2E XP2Pje2P (ahi;e+pi;e � ahi;e)� 
Xe2E a`e XP�2P�je2P� pi;e= 
Xe2E a`e`�e:
Clearly, the left hand-side is a telescopic sum for each edgee. Thus we conclude thatXe2E(a`e � 1) � 
Xe2E a`e`�e:

Hence, Xe2E a`e(1� 
`�e) � m:
Theorem 2.2 The route algorithmmaintainsa relative load
of at most O(logn).
Proof: Observe that 
 < 1 by definition `�e � 1 since the
normalized load of the off-line algorithm never exceeds 1.
Thus, Lemma 2.1 then implies thatXe2E a`e � m=(1� 
):

This, in turn implies that

maxe2E `e � loga(m=(1 � 
)) = O(logn):
Theorem 2.3 The route algorithm maintains the followingXe2E `e = O(Xe2E `�e):
Proof: Lemma 2.1 states thatXe2E a`e(1� 
`�e) � m;
where a = 1 + 
 and 0 < 
 < 1. Using the inequality
1 + 


2 `e � (1 + 
)`e for any 0 < 
 < 1 and `e � 0 we getXe2E(1 + 

2
`e)(1� 
`�e ) � m:

By opening the parenthesis we havem � 
Xe2E `�e + 

2

Xe2E `e(1� 
`�e) � m;
or, Xe2E `e(1� 
`�e) � 2

Xe2E `�e :
Recall that 
 < 1 and `�e � 1 for each e. ThusXe2E `e � 2

1� 
 Xe2E `�e :
We extend the above result to the case where not all the

costs are 1. Clearly we can replace an edge with capacitycap(e) and cost cost(e) with a line of cost(e) edges of
capacity cap(e) and cost 1. That increases the number of
edges in the graph to

Pe cost(e). We conclude that
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Theorem 2.4 For arbitrary network with arbitrary capac-
ities and costs the on-line algorithm is competitive withO �log(Pe cost(e))�-load and O(1) cost-competitive.

We note that for the above algorithm is equivalent to the
the following algorithm on the original graph. Request i is
assigned to an si � ri path Pi which minimizesWPi =Xe2P cost(e)(ahi;e+pi;e � ahi;e):
3. Reducing packet routing to on-line min-cost

circuit routing

In this section we show how to reduce the packet routing
problem in graph G = (V;E) to the min-cost virtual paths
routing in a directed graph L on size O(nT 0) where T 0 is
the total duration of the packet routing sequence. Then we
will show how to replace T 0 withT the maximum delay of a
packet by the off-line algorithm. We construct the following
layered graph L. The graph has T 0 + 1 layers indexed by
time 0 � t � T 0 and one additional layer, which we call
the destination layer. Each layer has n vertices one for each
node in G. We define the set of edges, their capacities and
costs as follows. For an edge e = (u; v) 2 G we make
directed edges of capacity cap(e) between vertex u in layert�1 to vertex v in layer t for all 1 � t � T 0. Also we have a
directed edges of capacity cap(u) between vertex u in layert � 1 to vertex u in layer t for all 1 � t � T 0. Finally,
there are directed edges between all copies of vertex u to
the destination vertex u. These edges are ignored for the
purpose of load or cost.

For a request for routing a packet from si to ri which is
created at time t we associated a request for a virtual path
from vertex si in layer t to the destination vertex ri. It is
easy to see that there is one to one correspondence between
the packet route in G to the path in L. Specifically, an edge
in L from vertex u of layer t � 1 to vertex v of layer t
corresponds to routing the packet on the link from u to v at
the t’th unit time. Also an edge from u in layer t� 1 to u int corresponds to keeping the packet in the buffer of node u.

Note that the length of the path from the source to desti-
nation (except the edge to the destination layer) corresponds
to the delay of the packet. Thus the sum of the actual loads
(not the relative load) corresponds to the sum of the delays.
Recall that for this purpose we ignore the edges to the des-
tination layer. For each edge e we associate a cost cape
which is the ratio between the actual load to the relative
load. Thus, the min-cost problem corresponds to the packet
routing problems which minimizes the sum (or average)
delay.

Using the result from the previous section we conclude

Corollary 3.1 There is an on-line algorithm for packet rout-
ing for a network with equal capacities which is competitive
with O(log(nT 0))-load and O(1) delay.

By standard methods (see [4]) one can replace theO(log(nT 0)) by O(log(nT )) where T is the maximum de-
lay of a packet. This is done by constructing a new layered
graph of 2T +1 layers indexed by T i � t � T (i+2) for alli � 0 to accommodate requests that were created betweenT i to T (i + 1). We apply the algorithm for each graph
separately. Clearly, at any unit of time there are at most 2
such active layers. This results in increasing the bandwidth
of each edge by a factor of 2. Also, it is not difficult to
deal with the case that T is unknown in advance. Again one
can use the methods of [4] and double T until it reaches its
approximate value. Thus we conclude

Theorem 3.2 There is an on-line algorithm for packet rout-
ing for a network with equal capacities which is competitive
with O(log(nT ))-load and O(1) delay.

If the capacities are not the same using the results from
the previous section to conclude

Theorem 3.3 There is an on-line algorithm for packet rout-
ing for a network with arbitrary capacities which is compet-
itive with O �log(T Pe cap(e))�-load and O(1)-delay.

4. Maximum delay packet routing

In this section we describe an on-line algorithm which
is competitive with respect to the maximum delay instead
of the average delay. We design an algorithm which is
competitive with 2-load and 3-maximum delay given the
value of the maximum delay and assuming infinite buffer
capacity at network nodes. Then, using standard methods
we can eliminate the need for knowing the maximum delay
by increasing the on-line maximum delay by a constant
factor.

Let T be the maximum delay. All the requests appeared
between time T (i � 1) and T i are collected and scheduled
between T i and T (i + 2). Clearly this can be done since
all the requests could be schedule with maximum delay T
and hence requests that were created in a range of T units of
time can be scheduled optimally in 2T units of time. Hence
the maximum delay is increased by a factor of at most 3 (the
delays can be as large as T (i+2)�T (i�1)). The capacity
required to achieve this scheduling increases by a factor of 2
since at any time there are at most 2 scheduling graphs. We
note that the scheduling the requests at each T steps is NP-
hard. Thus, if we are ready to use super-polynomial time
algorithms it is possible to schedule the packets. If on the
other hand we restrict ourselves to polynomial algorithms
then we should use off-line approximation algorithms, such
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as [22], and increase the bandwidth by the approximation
factor.

If T is unknown in advance then again we can use the
doubling technique described in [4]. That increases the
maximum delay by a constant factor. Thus we conclude

Theorem 4.1 There is an on-line algorithm for packet rout-
ing for a network with arbitrary edge capacities and infinite
node capacities which is O(1) competitive with respect to
load and simultanouslyO(1) competitive with respect to the
maximum delay.

5. Conclusion and open problems

In this paper, we have presented competitive on-line cen-
tralized algorithms for for packet routing, by reducing them
to the problem of min-cost circuit routing.

The obvious open question is whether it is possible to
design distributed algorithms with poly-logarithmic com-
petitive ratios.
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