On-line Scheduling with Precedence
Constraints *

Yossi Azar' Leah Epstein’
Tel-Aviv Univ. Tel-Aviv Univ.

Abstract

We consider the on-line problem of scheduling jobs with precedence con-
straints on m machines. We concentrate in two models, the model of uniformly
related machines and the model of restricted assignment. For the related ma-
chines model, we show a lower bound of Q(y/m) for the competitive ratio of
deterministic and randomized on-line algorithms, with or without preemptions
even for known running times. This matches the deterministic upper bound of
O(y/m) given by Jaffe. The lower bound should be contrasted with the known
bounds for jobs without precedence constraints. Specifically, without prece-
dence constraints, if we allow preemptions then the competitive ratio becomes
©(logm), and if the running times of the jobs are known then there are O(1)
competitive (preemptive and non-preemptive) algorithms.

We also consider the restricted assignment model. For the model with con-
sistent precedence constraints, we give a (randomized) lower bound of Q(log m)
with or without preemptions. We show that a (deterministic, non-preemptive)
greedy algorithm is optimal up to a constant factor for this model i.e. O(logm)
competitive. However, for general precedence constraints, we show a lower
bound of m which is easily matched by a greedy algorithm.

*A Preliminary version of this paper appears in the proceedings of the 7th Biennial Scandinavian
Workshop on Algorithm Theory, SWAT 2000 pp. 164-174.

tDept. of Computer Science, Tel-Aviv University. E-Mail: azar@tau.ac.il. Research supported in
part by the Israel Science Foundation and by the United States-Israel Binational Science Foundation
(BSF).

'Dept. of Computer Science, Tel-Aviv University. E-Mail: lea@tau.ac.il

1 Introduction

We consider the on-line problem of scheduling a sequence of jobs with precedence
constraints on m parallel machines. A job can be scheduled after all its predecessors
are completed. In the simplest model, the identical machines model, each job j has
a running time w;, and has to be scheduled on a machine for this period of time.

In the related machines model each machine 7 has a speed v;. Each job may be
processed on any machine. If job j with a running time w; is processed on machine ¢
then the job is completed in w;/v; units of time. In the restricted assignment model
all machines have identical speed, but each job may be assigned only to a subset of
the machines. For a job j, we denote by M(j) C {1,...,m} (M(j) # @) the subset
of machines on which it may be scheduled and by w; its running time on a machine
in M(j). The unrelated machines model is a generalization of all previous models. In
this model, each job j has a vector of m components, where each component i gives
its running time on machine 1.

We may or may not allow preemptions. If no preemptions are allowed, once a
job is scheduled on a machine, it must be processed on this machine continuously
until it is completed. Otherwise, if we allow preemptions, a job may be stopped, and
resumed later on some (maybe different) machine.

The precedence constraints between jobs can be viewed as a directed acyclic graph
G. The vertices of G are the jobs. An edge (ji, j2) occurs when j; is a predecessor of
j2, 1.e. Jo may start its process only after j; is completed. For restricted assignment
the precedence constraints are called consistent if for every edge (ji,j2) we have
M(j2) € M(j1). The motivation for consistent precedence constraints comes from
the fact that if a job j; requires some expertise which are known only to some machines
and j; is a predecessor of another job 75, then j5 should require at least the same
expertise and hence can be processed only on subset of machines that j; can be
processed on.

We discuss an on-line environment in which a job becomes known as soon as all its
predecessors are completed (there are no release times). The goal is to minimize the
makespan which is the time that the last job is completed. We consider two variations
of the on-line model. In the known running times case (also called clairvoyant case),
the running time of a job is known upon its arrival, and in the unknown running times
case (also called non-clairvoyant case), the running time of a job becomes known only
when it is completed. Clearly an algorithm for the unknown running times case is also
an algorithm for the known running times case with the same performance. Hence,
lowers bounds for known running times are lower bounds also for unknown running
times. For a survey on on-line scheduling we refer the reader to [12].

We measure the algorithms in terms of the competitive ratio. We compare the
cost (makespan) of the on-line algorithm (denoted by C,,) to the cost of the optimal

off-line algorithm that knows the sequence in advance (denoted by C,p,;). The off-line
algorithm knows all jobs and their properties (running times, precedence constraints
and assignment restrictions) in advance. Note that the on-line algorithm is familiar
with all properties of a job as soon as the job arrives (except for the running time,
in the case of unknown running times), but a job arrives only after all its predeces-
sors are completed. A deterministic algorithm is r competitive if C,,, < rC,p. The
competitive ratio of an algorithm is the infimum r such that the algorithm is r com-
petitive. If the algorithm is randomized, we use the expectation of the on-line cost

instead of the cost, and an algorithm is r competitive if E(C,,) < rCop.

The model with precedence constraints generalizes the model without precedence
constraints, i.e. the model where all jobs are given at time 0. The model without
precedence constraints is also called batch-style scheduling. The batch-style schedul-
ing is important since the general model of jobs arriving over time with release times
can be reduced to the batch-style scheduling with a loss of a factor of 2 in the ap-
proximation ratio or in the competitive ratio (see [13]). We note that the batch-style
scheduling is interesting for on-line algorithms only when the running times of the
jobs are unknown. If the running times are known then the batch-style scheduling be-
comes an off-line problem. In contrast, the model with precedence constraints is also
interesting for the known running times case since not all jobs are given in advance.

The identical machines model is an ancient on-line problem. Graham [7, 8] showed
a greedy (non-preemptive) algorithm that achieves a competitive ratio of 2 — 1/m
for scheduling jobs with precedence constraints even when the running times are
unknown. Epstein [5] showed that this is optimal for scheduling jobs with precedence
constraints even if the running times are known and preemptions are allowed. The
best competitive ratios for the three other classical machine models, related machines,
restricted assignment and unrelated machines, were not completely characterized.

Our results. In this paper we consider the three classical machine models: re-
lated machines, restricted assignment and unrelated machines. For related machines
we give a deterministic and randomized lower bound of Q(y/m) on the competitive
ratio of any on-line algorithm (preemptive or non-preemptive) for jobs with prece-
dence constraints even when the running times are known. This matches the upper
bound of Jaffe [11] who gave an approximation algorithm which can be implemented
in an on-line environment. In fact, Davis and Jaffe [4] already gave a lower bound
of Q(y/m) on the competitive ratio for the case with no precedence constraints (i.e.
batch-style scheduling) which obviously holds for the case of precedence constraints.
However, our lower bound does not follow from their lower bound since their lower
bound is valid only for unknown running times and no preemption.

We would like to emphasize that the precedence constraints are crucial for proving
the lower bounds with known running times, since, otherwise, it becomes an off-line
problem. Specifically, if the running times are known for the model without prece-

dence constraints (i.e. batch-style scheduling) then all jobs are known in advance.
Hence, one can get 1 competitive algorithm for the preemptive case ([10, 6]) and 1+€
competitive algorithm for the non-preemptive case ([9]) (it becomes 1 if we allow
exponential time algorithms). The precedence constraints are also crucial for proving
the lower bounds with preemption even for unknown running times. Specifically, if
we allow preemption then Shmoys, Wein and Williamson [13] showed an upper bound
of O(logm) for the batch-style scheduling (i.e no precedence constraints). The up-
per bounds above for the model without precedence constraints should be contrasted
with our result that implies that with precedence constraints one cannot get a better
bound than ©(y/m) even if the running times are known. Moreover, our lower bound
holds for randomized preemptive online algorithm versus non-preemptive optimal off-
line. It is worthwhile to mention that for the off-line version of our problem (i.e with
precedence constraints) an O(logm) approximation algorithm is given in [3].

For the restricted assignment model we consider the algorithm Greedy which is
described later. Azar et al [1] showed that for the case of no precedence constraints
the Greedy algorithm for scheduling jobs one by one in the restricted assignment
model achieves a competitive ratio of O(logm). In fact, the result in [1] is proved
for scheduling over lists (i.e., scheduling jobs one by one). Nevertheless, their result
immediately implies that Greedy is O(logm) competitive for scheduling jobs in the
batch-style model with unknown running times. We show that if we allow consistent
precedence constraints then the competitive ratio of the algorithm is still O(logm).
We show that the algorithm is optimal up to a constant factor in this case by providing
a lower bound of Q(log m) on the competitive ratio of any deterministic or randomized
algorithm for scheduling jobs with restricted assignment and consistent precedence
constraints. Our lower bound holds even for the known running times case and the
upper bound does not use the running times. Moreover, the lower bound holds even
for randomized preemptive algorithm versus non-preemptive optimal off-line while
the upper bound holds for non-preemptive algorithm versus preemptive optimal off-
line. We note that the precedence constraints are crucial for proving the lower bounds
with known running times, since, otherwise, it becomes an off-line problem. In [1]
there is a lower bound of Q(logm) for a model without precedence constraints but a
job must be assigned immediately upon its arrival.

For general precedence constraints for the restricted assignment model we show
a lower bound of m for the competitive ratio of any online algorithm (Q(m) for
randomized algorithms). This bound is easily matched by an algorithm which is m
competitive. It is also easy to design an m competitive algorithm for the unrelated
machines case. Recall that the unrelated machines case is a generalization of the
restricted assignment model. Hence, the unrelated machines case is not of an interest
since the best competitive ratio is m.

The Greedy algorithm. We adapt the Greedy algorithm ”List”, given by
Graham [7] for identical machines, to the case of restricted assignment as follows.

Each time that a machine i becomes idle, assign to it a job j (if exists) such that
i € M(j) and j has not been scheduled yet. Each time that a new job j arrives,
assign it to an idle machine i € M (j) if exists. Note that Greedy is deterministic and
does not use preemptions.

Randomized algorithms. To prove lower bounds on the competitive ratio of
randomized algorithms we use an adaptation of Yao’s theorem for on-line algorithms.
It states that if there exists a probability distribution on the input sequences for a
given problem such that E(C,,/Cop) > ¢ for all deterministic on-line algorithms,
then c is a lower bound on the competitive ratio of all randomized algorithms for the
problem (see [2]). We will use only sequences for which C,,; is constant and thus in
our case E(Con/Copt) = E(Con)/Copt-

2 Scheduling on related machines

Theorem 2.1 Any on-line algorithm for scheduling jobs with precedence constraints
on m related machines has a competitive ratio of at least Q(y/m). This is true even
for randomized preemptive algorithms versus non-preemptive optimal off-line.

Proof: We start by considering deterministic algorithms. We assume without loss of
generality that m — 1 is a square, /m — 1 = r. (Otherwise, we can restrict ourselves
to the largest number which is at most m and of type r2 + 1 for integer r and assume
that all other machines have very small speed.) The set of machines consists of one
fast machine of speed r = v/m — 1 (machine 1) and m — 1 slow machines of speed 1
(machines 2, ...,m). There are r phases of 7 + 1 unit jobs each in the sequence. The
sequence begins with r + 1 independent unit jobs (phase 1). Next we define phase i,
2 <1 < r, the phase contains r + 1 units jobs. Let b; ; be a job in phase + — 1 that
finishes last by the on-line algorithm, then all jobs of phase 7 depend on b; ;.

The on-line algorithm, by the definition of b;, can start scheduling phase ¢ + 1
only after all jobs of phase i are completed. Since each phase consists of r + 1 jobs,
it is possible to use at most r + 1 machines at any time. The r + 1 fastest machines
can process at most 2r unit jobs in one unit of time, and since the total running time
of all jobs in one phase is r 4+ 1, each phase takes at least (r + 1)/(2r) > 1/2 time
units. Thus the total time to process all the sequence is at least r((r + 1)/(2r)) =

(r+1)/2 =Q(y/m) (see Figure 1).

The optimal off-line algorithm assigns each b; to the fast machine at time (i—1)/r,
and thus the jobs of phase i+1 may be assigned at time i/r to machines ir+2, ..., (i+
1)r+1 (for 0 <i <r—1). The jobs of phase r would finish at time (r—1)/r+1 <2
on the slow machines. The fast machine would finish at time 1 and thus C,,; < 2 (see
Figure 2). The competitive ratio is Q(y/m).

To extend the proof for randomized algorithms, b; is chosen uniformly at random

among all jobs of phase . Clearly the optimal schedule remains the same. Next
we evaluate the expected on-line schedule. The probability that the period of time
starting from the arrival of phase i, till b; is completed is at least T" would be (r +
1 —k)/(r+1) where k is the maximum number of jobs that it is possible to complete
in a period of T units of time. For T = (r 4+ 1)/(4r), it is possible to complete at
most | (r 4+ 1)/2] jobs and thus the expectation of the period of time that passes
from the arrival of b; and till it is completed is at least (r +1)/(8r) > 1/8, and thus
E(Cy,) = Q(y/m) and again the competitive ratio is Q(y/m) as well.

-

M

111

Figure 1: A possible on-line assignment in the proof of Theorem 2.1 for m = 10 and
r = 3, where C,, = 3. In all figures the horizontal axis represents the machines, and
the vertical axis represents time. Jobs marked by 7 belong to phase ¢, and the job
marked i’ is job b;. In this figure the leftmost machine (machine 1) has speed 3 and
all other machines have speed 1.

2711 1

TI_

Figure 2: An optimal off-line assignment in the proof of Theorem 2.1 for m = 10 and
r = 3. Machines have the same speeds as in Figure 1 (respectively) and C,,; = 5/3.

3 Restricted assignment with consistent precedence
constraints

In this section we consider consistent precedence constraints for the restricted assign-
ment model. Recall that precedence constraints are called consistent if for every j;
which is a predecessor of j, we have M(j2) C M (jy)-

Theorem 3.1 Any on-line scheduling algorithm for the restricted assignment model
with consistent precedence constraints has a competitive ratio of at least Q(logm).
This is true even for randomized preemptive algorithms versus non-preemptive optimal

off-line.

Proof: We assume without loss of generality that m is a power of 2, m = 2*. (Oth-
erwise we restrict ourselves to the largest number which is at most m and of type 2*
for an integer £ and assume that no job can be assigned to the remaining machines.)
The sequence consists of m/N jobs where N > 2log, m = 2k, the jobs belong to k£ + 1
phases, where for 1 < ¢ < k phase i contains m(N + 2 — 4)/2° unit jobs, and phase
k + 1 contains N — log, m unit jobs. The jobs of phase i are restricted to machines
{1,...,28"11 We define the dependencies according to the behavior of the on-line
algorithm. Forz =1,...,k, let b; be a job that finishes last of phase 7, then all jobs
of phase i + 1 depend on b;.

Since b; is a job that finishes last at phase i, and all jobs of phase i + 1 depend
on it, then no jobs of phase ¢ 4+ 1 are scheduled until all jobs of phase ¢ are done. For
1 < i <k, the jobs of phase i are restricted to 28 1 = m /2"! machines, thus the
period of time to finish all jobs of phase i is at least (N +2—14)/2 = Q(N) (even with
preemptions). Since there are {2(logm) phases, C,, = Q(N logm) (see Figure 3).

The optimal off-line algorithm schedules all b; on the first machine, each b; is
scheduled at time i — 1. The jobs of phase i are scheduled as follows: m/2~! jobs are
scheduled on machines 1,...,m/2"" 1 at time i — 1, all the other jobs are scheduled
from time i till time N on machines m /2! + 1,...,m/2""!. The jobs of phase k + 1
are scheduled on machine 1 starting at time log, m (see Figure 4). We conclude that
since Cype = N, the competitive ratio is Q(logm).

To extend the proof for randomized algorithms we use the same sequence, but b;
is chosen uniformly at random among all jobs of phase . Let P; be the number of
jobs that finish before b; in phase i (jobs that finish at the same time are ordered
arbitrarily). The period of time after the jobs of phase i become available and before
the next phase can start is at least (P;+1)/2¥=1. Since P, gets the values 0, ..., (N+
2 — i)2¥=% — 1 with equal probability,

E(P)=((N+2—i)2"~1)/2.

k
Con > Y E(P+1)27%""+ N —log,m
=1
k
> Y (N+2—14)/4=Q(Nlogm) .
i—=1

Since Cope = N we conclude that the competitive ratio is (logm).

4

4

4

3’

3|3

3 | 3

2 22| 2

22|22

22|22

1" 1 /1|1

1 |1 (111111
1111 1

1 1 (1111111

Figure 3: A possible on-line assignment in the proof of Theorem 3.1 for m = 8, k = 3,
N = 6, where C,,, = 13. All machines are identical.

-

NITTIFNTNTS

LS

- | || (s
=g I
== (IS b (| B
| ol | | o | ol |
| |l | o | ol |l
| o | | o | o | -
| o | | o | e |-

—
-

Figure 4: An optimal off-line assignment in the proof of Theorem 3.1 for m = 8,
k=3, N=6and C,, = 6.
]

Theorem 3.2 The competitive ratio of Greedy is O(logm) for the restricted assign-
ment model with consistent precedence constraints.

Proof: For machine i, let A(i) be the set of jobs j that i € M (j). Denote the optimal
off-line value by A. We first prove the following Lemma:

Lemma 3.1 The total idle time of Greedy on a machine i, from the beginning till
the last job in A(i) finishes its process (on any machine) is bounded by M.

Proof: For each machine i, we build a chain of jobs in which each job is dependent
on the previous job, and each time 7 is idle, one of the jobs in the chain is running.
Since the total running time of jobs in the chain is at most A (the optimal off-line
algorithm can not run more than one job of the chain simultaneously), the total idle
time of machine ¢ would be also bounded by A. We build the chain from the top,
starting from the last job in the chain. If there is no idle time on machine i, the
chain is empty and the lemma follows. Otherwise, we start the chain with the job
in A(7) that finishes last, denote it by .J;. Assume that Jy,..., J,_; are defined. If
Jy—1 has no predecessors, we finish the chain. Otherwise, let .J, be the predecessor of
J,—1 that finishes last. Note that since all the chain consists of predecessors of .J; and
the precedence constraints are consistent, all the jobs in the chain are also in A(7).
Assume that 7 is idle at time ¢, and no job in the chain is running at time ¢. There
is at least one job that finishes after time ¢ (J; for example). Since there is no job of
the chain running at time ¢, all these jobs start running after time ¢. Let J. be the
first job of the chain that starts running after time ¢. All the predecessors of J,. finish
before time ¢ thus since ¢ is idle at ¢, .J, could be scheduled at time t or before. This
is a contradiction to the definition of Greedy. []

Note that the idle time on each machine in Lemma 3.1 can be partitioned into
two parts. The first is the idle time on a machine up to the completion of the last
job that runs on this machine. The second is from that time on.

Lemma 3.2 Let [> 3\ be some time during the process of the algorithm. If the
total running time of jobs (or parts of jobs) that run after time | is T; then the total
running time of jobs that run after time | — 3\ is at least 27T,.

Proof: Let k; = [%1 The optimal off-line uses at least k; machines to run the jobs
that the on-line runs after time [. Since the maximum running time is bounded by
A, these jobs start after time [— A\. For each machine ¢ among the k; machines,
there is a job that is allowed to be scheduled on it and is scheduled after time [— A,
thus machine 7 has at most A idle time from time [— 3\ till time [— A. The total
running time on ¢ in this time period is at least A. Summing for all machines the
total running time is at least k;\, and adding the running times after time [we get
a total of b\ A+T) > T+ 1T, = 21, []

Now, we can complete the proof of the theorem. Let 7" be the total running time
of all jobs, note that T' < mA. Let k = |C,,/(3)\)]. We can assume without loss of
generality that C,, > 3\. Hence £ > 1. Note that the competitive ratio r satisfies
r = O(k). Let T; be the total running time of jobs after time C,, — 3jA. According

9

to Lemma 3.2, T}, satisfies T, > 2¥~'T} and according to Lemma 3.1, T} satisfies
Ty > 2\, this is correct since there is at least one machine that finishes at time C,,,
and since the idle time on this machine is bounded by A, this machine worked at least
for a period of time 2\ after time C,, — 3A. Combining all observations together we
get mA > T > T, > 21T, > 2. 25=1\. Thus k£ = O(logm), and also r = O(logm).

4 Restricted assignment with general precedence
constraints

In this section we consider the restricted assignment model with general precedence
constraints between jobs.

Theorem 4.1 Any on-line scheduling algorithm for restricted assignment model with
general precedence constraints has the competitive ratio of at least m. This is true even
for preemptive algorithms versus non-preemptive optimal off-line. Any randomized
algorithm for the same problem has a competitive ratio of Q(m). This is true even
for randomized preemptive algorithms versus non-preemptive optimal off-line.

Proof: We first prove a lower bound for the competitive ratio of deterministic algo-
rithms, and later extend it to randomized ones. We build the sequence according to
the behavior of the on-line algorithm. Let N be an integer N > m, The optimal cost
for the sequence would be N. The sequence contains m phases, in each phase, all jobs
are restricted to a single machine. Phase 1 contains N unit jobs which are restricted
to machine 1. Let b; be the job from phase 1 that finishes last. We define the other
phases recursively: In phase i (i > 2), there are N — i + 1 unit jobs which depend on
the job b;_1, and are restricted to machine ;. We denote the job from phase 7 that
finishes last by b;.

The on-line does not schedule any job from phase i + 1 until all jobs of phase
¢ are completed, because all jobs of phase i + 1 depend on b;, thus the on-line has
at most one working machine at a time (each job is restricted to a single machine)
and the minimum possible on-line makespan is simply the sum of all running times:

Con > X (N =i+ 1) =m(N —m/2+1/2) (see Figure 5).

The optimal off-line algorithm assigns each b; at time ¢ — 1, and all other jobs
of phase i are scheduled starting from time 4, hence C,,; = N (see Figure 6). The
competitive ratio is at least m —m?/(2N)+m/(2N) = m —m(m —1)/(2N), for large
values of NV, this number approaches m.

To extend the proof to randomized algorithms we use a similar sequence, which
also has m phases, where phase ¢ contains N —i+1 jobs that are restricted to machine
i, but here the job b; for i = 1,...,m — 1 is chosen uniformly at random among all

10

5
2
2
2

F ===

Figure 5: A possible on-line assignment in the proof of Theorem 4.1 for m = 4, N =5,
where C,, = 14.

1 o 3 q

1 2 3 4
I I

1 o

=

Figure 6: An optimal off-line assignment in the proof of Theorem 4.1 for m = 4,
N =5 and C,p = 5.

jobs of phase i. Let P; be the position of b;, which is the number of jobs from phase
© that were completed before b; was completed. P; can get the values 0,..., N — 1,
all with equal probabilities. For ¢ > 2, the jobs of phase ¢ are scheduled after at least
P; 1 +1 jobs were completed at phase i —1 and thus C,,, = "7 (P +1)+ N—m+1.
Thus

m—1

E(Con) 2 Y (B(P)+1) + N —m+1,

since F(P;) = (N —i)/2 we get
E(C,) > (m—l)(N/2+1)—nili/2+N—m+1
= mN/2—N/2+m—zl_—m(m—1)/4+N—m+1
= mN/2+ N/2 - 0(m?) .

11

Since Cypp = N, the competitive ratio is at least (m + 1)/2 — O(m?/N), for large
values of N, the lower bound approaches (m + 1)/2 = ©(m).

Both lower bounds are valid even with preemptions since we only consider finishing
times of jobs, and not starting times.

Theorem 4.2 Greedy is m competitive for the restricted assignment model with prece-
dence constraints.

Proof: If all machines become idle, then there are no new jobs and the sequence is
completed. Thus if C,, = T, then at any time between 0 and T there is at least
one working machine. Hence, the sum of all processing times is at least 7', and
Copt > T/m. Hence Greedy is m competitive. [

We can easily provide m competitive algorithm also for unrelated machines. The
algorithm Min assigns a job 7 to a machine 7 such that the running time of j on i is
minimum over all 7.

Theorem 4.3 Min is m competitive for the unrelated machines model with prece-
dence constraints.

Proof: Since the running time that the optimal off-line uses to run each job is at least
that of Min, we can imitate the proof of Theorem 4.2]

References

[1] Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assignments. Jour-
nal of Algorithms, 18(2):221-237, 1995. Also in Proc. 3rd ACM-SIAM SODA,
1992, pp. 203-210.

[2] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

(3] F.A. Chudak and D.B. Shmoys. Approximation algorithms for precedence con-
strained scheduling problems on parallel machines that run at different speeds.
Journal of Algorithms, 30:323-343, 1999.

[4] E. Davis and J.M. Jaffe. Algorithms for scheduling tasks on unrelated processors.
J. Assoc. Comput. Mach., 28:712-736, 1981.

[5] L. Epstein. Lower bounds for on-line scheduling with precedence constraints on
identical machines. In 1st Workshop on Approzimation Algorithms for Combina-

12

9]

[10]

[11]

[12]

[13]

torial Optimization Problems (APPROX98), volume 1444 of LNCS, pages 89-98,
1998.

T. F. Gonzales and S. Sahni. Preemptive scheduling of uniform processor sys-
tems. J. Assoc. Comput. Mach., 25:92-101, 1978.

R.L. Graham. Bounds for certain multiprocessor anomalies. Bell System Tech-
nical Journal, 45:1563-1581, 1966.

R.L. Graham. Bounds on multiprocessing timing anomalies. STAM J. Appl.
Math, 17:416-429, 1969.

D. Hochbaum and D. Shmoys. A polynomial approximation scheme for schedul-
ing on uniform processors: Using the dual approximation approach. STAM Jour-
nal on Computing, 17(3):539-551, 1988.

E. Horwath, E. C. Lam, and R. Sethi. A level algorithm for preemptive schedul-
ing. J. Assoc. Comput. Mach., 24:32-43, 1977.

J.M. Jaffe. Efficient scheduling of tasks without full use of processor resources.
Theoretical Computer Science, 12:1-17, 1980.

J. Sgall. On-line scheduling. In A. Fiat and G. J. Woeginger, editors, On-
line Algorithms: The State of the Art, volume 1442 of LNCS, pages 196-231.
Springer-Verlag, 1998.

D. B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel machines on
line. SIAM J. on Computing, 24:1313-1331, 1995.

13

