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1 Introdu
tionWe 
onsider the on-line problem of s
heduling a sequen
e of jobs with pre
eden
e
onstraints on m parallel ma
hines. A job 
an be s
heduled after all its prede
essorsare 
ompleted. In the simplest model, the identi
al ma
hines model, ea
h job j hasa running time wj, and has to be s
heduled on a ma
hine for this period of time.In the related ma
hines model ea
h ma
hine i has a speed vi. Ea
h job may bepro
essed on any ma
hine. If job j with a running time wj is pro
essed on ma
hine ithen the job is 
ompleted in wj=vi units of time. In the restri
ted assignment modelall ma
hines have identi
al speed, but ea
h job may be assigned only to a subset ofthe ma
hines. For a job j, we denote by M(j) � f1; : : : ; mg (M(j) 6= ;) the subsetof ma
hines on whi
h it may be s
heduled and by wj its running time on a ma
hinein M(j). The unrelated ma
hines model is a generalization of all previous models. Inthis model, ea
h job j has a ve
tor of m 
omponents, where ea
h 
omponent i givesits running time on ma
hine i.We may or may not allow preemptions. If no preemptions are allowed, on
e ajob is s
heduled on a ma
hine, it must be pro
essed on this ma
hine 
ontinuouslyuntil it is 
ompleted. Otherwise, if we allow preemptions, a job may be stopped, andresumed later on some (maybe di�erent) ma
hine.The pre
eden
e 
onstraints between jobs 
an be viewed as a dire
ted a
y
li
 graphG. The verti
es of G are the jobs. An edge (j1; j2) o

urs when j1 is a prede
essor ofj2, i.e. j2 may start its pro
ess only after j1 is 
ompleted. For restri
ted assignmentthe pre
eden
e 
onstraints are 
alled 
onsistent if for every edge (j1; j2) we haveM(j2) � M(j1). The motivation for 
onsistent pre
eden
e 
onstraints 
omes fromthe fa
t that if a job j1 requires some expertise whi
h are known only to some ma
hinesand j1 is a prede
essor of another job j2, then j2 should require at least the sameexpertise and hen
e 
an be pro
essed only on subset of ma
hines that j1 
an bepro
essed on.We dis
uss an on-line environment in whi
h a job be
omes known as soon as all itsprede
essors are 
ompleted (there are no release times). The goal is to minimize themakespan whi
h is the time that the last job is 
ompleted. We 
onsider two variationsof the on-line model. In the known running times 
ase (also 
alled 
lairvoyant 
ase),the running time of a job is known upon its arrival, and in the unknown running times
ase (also 
alled non-
lairvoyant 
ase), the running time of a job be
omes known onlywhen it is 
ompleted. Clearly an algorithm for the unknown running times 
ase is alsoan algorithm for the known running times 
ase with the same performan
e. Hen
e,lowers bounds for known running times are lower bounds also for unknown runningtimes. For a survey on on-line s
heduling we refer the reader to [12℄.We measure the algorithms in terms of the 
ompetitive ratio. We 
ompare the
ost (makespan) of the on-line algorithm (denoted by Con) to the 
ost of the optimal2



o�-line algorithm that knows the sequen
e in advan
e (denoted by Copt). The o�-linealgorithm knows all jobs and their properties (running times, pre
eden
e 
onstraintsand assignment restri
tions) in advan
e. Note that the on-line algorithm is familiarwith all properties of a job as soon as the job arrives (ex
ept for the running time,in the 
ase of unknown running times), but a job arrives only after all its prede
es-sors are 
ompleted. A deterministi
 algorithm is r 
ompetitive if Con � rCopt. The
ompetitive ratio of an algorithm is the in�mum r su
h that the algorithm is r 
om-petitive. If the algorithm is randomized, we use the expe
tation of the on-line 
ostinstead of the 
ost, and an algorithm is r 
ompetitive if E(Con) � rCopt.The model with pre
eden
e 
onstraints generalizes the model without pre
eden
e
onstraints, i.e. the model where all jobs are given at time 0. The model withoutpre
eden
e 
onstraints is also 
alled bat
h-style s
heduling. The bat
h-style s
hedul-ing is important sin
e the general model of jobs arriving over time with release times
an be redu
ed to the bat
h-style s
heduling with a loss of a fa
tor of 2 in the ap-proximation ratio or in the 
ompetitive ratio (see [13℄). We note that the bat
h-styles
heduling is interesting for on-line algorithms only when the running times of thejobs are unknown. If the running times are known then the bat
h-style s
heduling be-
omes an o�-line problem. In 
ontrast, the model with pre
eden
e 
onstraints is alsointeresting for the known running times 
ase sin
e not all jobs are given in advan
e.The identi
al ma
hines model is an an
ient on-line problem. Graham [7, 8℄ showeda greedy (non-preemptive) algorithm that a
hieves a 
ompetitive ratio of 2 � 1=mfor s
heduling jobs with pre
eden
e 
onstraints even when the running times areunknown. Epstein [5℄ showed that this is optimal for s
heduling jobs with pre
eden
e
onstraints even if the running times are known and preemptions are allowed. Thebest 
ompetitive ratios for the three other 
lassi
al ma
hine models, related ma
hines,restri
ted assignment and unrelated ma
hines, were not 
ompletely 
hara
terized.Our results. In this paper we 
onsider the three 
lassi
al ma
hine models: re-lated ma
hines, restri
ted assignment and unrelated ma
hines. For related ma
hineswe give a deterministi
 and randomized lower bound of 
(pm) on the 
ompetitiveratio of any on-line algorithm (preemptive or non-preemptive) for jobs with pre
e-den
e 
onstraints even when the running times are known. This mat
hes the upperbound of Ja�e [11℄ who gave an approximation algorithm whi
h 
an be implementedin an on-line environment. In fa
t, Davis and Ja�e [4℄ already gave a lower boundof 
(pm) on the 
ompetitive ratio for the 
ase with no pre
eden
e 
onstraints (i.e.bat
h-style s
heduling) whi
h obviously holds for the 
ase of pre
eden
e 
onstraints.However, our lower bound does not follow from their lower bound sin
e their lowerbound is valid only for unknown running times and no preemption.We would like to emphasize that the pre
eden
e 
onstraints are 
ru
ial for provingthe lower bounds with known running times, sin
e, otherwise, it be
omes an o�-lineproblem. Spe
i�
ally, if the running times are known for the model without pre
e-3



den
e 
onstraints (i.e. bat
h-style s
heduling) then all jobs are known in advan
e.Hen
e, one 
an get 1 
ompetitive algorithm for the preemptive 
ase ([10, 6℄) and 1+ �
ompetitive algorithm for the non-preemptive 
ase ([9℄) (it be
omes 1 if we allowexponential time algorithms). The pre
eden
e 
onstraints are also 
ru
ial for provingthe lower bounds with preemption even for unknown running times. Spe
i�
ally, ifwe allow preemption then Shmoys, Wein and Williamson [13℄ showed an upper boundof O(logm) for the bat
h-style s
heduling (i.e no pre
eden
e 
onstraints). The up-per bounds above for the model without pre
eden
e 
onstraints should be 
ontrastedwith our result that implies that with pre
eden
e 
onstraints one 
annot get a betterbound than �(pm) even if the running times are known. Moreover, our lower boundholds for randomized preemptive online algorithm versus non-preemptive optimal o�-line. It is worthwhile to mention that for the o�-line version of our problem (i.e withpre
eden
e 
onstraints) an O(logm) approximation algorithm is given in [3℄.For the restri
ted assignment model we 
onsider the algorithm Greedy whi
h isdes
ribed later. Azar et al [1℄ showed that for the 
ase of no pre
eden
e 
onstraintsthe Greedy algorithm for s
heduling jobs one by one in the restri
ted assignmentmodel a
hieves a 
ompetitive ratio of O(logm). In fa
t, the result in [1℄ is provedfor s
heduling over lists (i.e., s
heduling jobs one by one). Nevertheless, their resultimmediately implies that Greedy is O(logm) 
ompetitive for s
heduling jobs in thebat
h-style model with unknown running times. We show that if we allow 
onsistentpre
eden
e 
onstraints then the 
ompetitive ratio of the algorithm is still O(logm).We show that the algorithm is optimal up to a 
onstant fa
tor in this 
ase by providinga lower bound of 
(logm) on the 
ompetitive ratio of any deterministi
 or randomizedalgorithm for s
heduling jobs with restri
ted assignment and 
onsistent pre
eden
e
onstraints. Our lower bound holds even for the known running times 
ase and theupper bound does not use the running times. Moreover, the lower bound holds evenfor randomized preemptive algorithm versus non-preemptive optimal o�-line whilethe upper bound holds for non-preemptive algorithm versus preemptive optimal o�-line. We note that the pre
eden
e 
onstraints are 
ru
ial for proving the lower boundswith known running times, sin
e, otherwise, it be
omes an o�-line problem. In [1℄there is a lower bound of 
(logm) for a model without pre
eden
e 
onstraints but ajob must be assigned immediately upon its arrival.For general pre
eden
e 
onstraints for the restri
ted assignment model we showa lower bound of m for the 
ompetitive ratio of any online algorithm (
(m) forrandomized algorithms). This bound is easily mat
hed by an algorithm whi
h is m
ompetitive. It is also easy to design an m 
ompetitive algorithm for the unrelatedma
hines 
ase. Re
all that the unrelated ma
hines 
ase is a generalization of therestri
ted assignment model. Hen
e, the unrelated ma
hines 
ase is not of an interestsin
e the best 
ompetitive ratio is m.The Greedy algorithm. We adapt the Greedy algorithm "List", given byGraham [7℄ for identi
al ma
hines, to the 
ase of restri
ted assignment as follows.4



Ea
h time that a ma
hine i be
omes idle, assign to it a job j (if exists) su
h thati 2 M(j) and j has not been s
heduled yet. Ea
h time that a new job j arrives,assign it to an idle ma
hine i 2 M(j) if exists. Note that Greedy is deterministi
 anddoes not use preemptions.Randomized algorithms. To prove lower bounds on the 
ompetitive ratio ofrandomized algorithms we use an adaptation of Yao's theorem for on-line algorithms.It states that if there exists a probability distribution on the input sequen
es for agiven problem su
h that E(Con=Copt) � 
 for all deterministi
 on-line algorithms,then 
 is a lower bound on the 
ompetitive ratio of all randomized algorithms for theproblem (see [2℄). We will use only sequen
es for whi
h Copt is 
onstant and thus inour 
ase E(Con=Copt) = E(Con)=Copt.2 S
heduling on related ma
hinesTheorem 2.1 Any on-line algorithm for s
heduling jobs with pre
eden
e 
onstraintson m related ma
hines has a 
ompetitive ratio of at least 
(pm). This is true evenfor randomized preemptive algorithms versus non-preemptive optimal o�-line.Proof: We start by 
onsidering deterministi
 algorithms. We assume without loss ofgenerality that m� 1 is a square, pm� 1 = r. (Otherwise, we 
an restri
t ourselvesto the largest number whi
h is at most m and of type r2+1 for integer r and assumethat all other ma
hines have very small speed.) The set of ma
hines 
onsists of onefast ma
hine of speed r = pm� 1 (ma
hine 1) and m� 1 slow ma
hines of speed 1(ma
hines 2; : : : ; m). There are r phases of r+1 unit jobs ea
h in the sequen
e. Thesequen
e begins with r + 1 independent unit jobs (phase 1). Next we de�ne phase i,2 � i � r, the phase 
ontains r + 1 units jobs. Let bi�1 be a job in phase i � 1 that�nishes last by the on-line algorithm, then all jobs of phase i depend on bi�1.The on-line algorithm, by the de�nition of bi, 
an start s
heduling phase i + 1only after all jobs of phase i are 
ompleted. Sin
e ea
h phase 
onsists of r + 1 jobs,it is possible to use at most r + 1 ma
hines at any time. The r + 1 fastest ma
hines
an pro
ess at most 2r unit jobs in one unit of time, and sin
e the total running timeof all jobs in one phase is r + 1, ea
h phase takes at least (r + 1)=(2r) � 1=2 timeunits. Thus the total time to pro
ess all the sequen
e is at least r((r + 1)=(2r)) =(r + 1)=2 = 
(pm) (see Figure 1).The optimal o�-line algorithm assigns ea
h bi to the fast ma
hine at time (i�1)=r,and thus the jobs of phase i+1 may be assigned at time i=r to ma
hines ir+2; : : : ; (i+1)r+1 (for 0 � i � r� 1). The jobs of phase r would �nish at time (r� 1)=r+1 � 2on the slow ma
hines. The fast ma
hine would �nish at time 1 and thus Copt � 2 (seeFigure 2). The 
ompetitive ratio is 
(pm).To extend the proof for randomized algorithms, bi is 
hosen uniformly at random5



among all jobs of phase i. Clearly the optimal s
hedule remains the same. Nextwe evaluate the expe
ted on-line s
hedule. The probability that the period of timestarting from the arrival of phase i, till bi is 
ompleted is at least T would be (r +1� k)=(r+1) where k is the maximum number of jobs that it is possible to 
ompletein a period of T units of time. For T = (r + 1)=(4r), it is possible to 
omplete atmost b(r + 1)=2
 jobs and thus the expe
tation of the period of time that passesfrom the arrival of bi and till it is 
ompleted is at least (r + 1)=(8r) � 1=8, and thusE(Con) = 
(pm) and again the 
ompetitive ratio is 
(pm) as well.

Figure 1: A possible on-line assignment in the proof of Theorem 2.1 for m = 10 andr = 3, where Con = 3. In all �gures the horizontal axis represents the ma
hines, andthe verti
al axis represents time. Jobs marked by i belong to phase i, and the jobmarked i0 is job bi. In this �gure the leftmost ma
hine (ma
hine 1) has speed 3 andall other ma
hines have speed 1.

Figure 2: An optimal o�-line assignment in the proof of Theorem 2.1 for m = 10 andr = 3. Ma
hines have the same speeds as in Figure 1 (respe
tively) and Copt = 5=3.
6



3 Restri
ted assignment with 
onsistent pre
eden
e
onstraintsIn this se
tion we 
onsider 
onsistent pre
eden
e 
onstraints for the restri
ted assign-ment model. Re
all that pre
eden
e 
onstraints are 
alled 
onsistent if for every j1whi
h is a prede
essor of j2 we have M(j2) � M(j1).Theorem 3.1 Any on-line s
heduling algorithm for the restri
ted assignment modelwith 
onsistent pre
eden
e 
onstraints has a 
ompetitive ratio of at least 
(logm).This is true even for randomized preemptive algorithms versus non-preemptive optimalo�-line.Proof: We assume without loss of generality that m is a power of 2, m = 2k. (Oth-erwise we restri
t ourselves to the largest number whi
h is at most m and of type 2kfor an integer k and assume that no job 
an be assigned to the remaining ma
hines.)The sequen
e 
onsists of mN jobs where N � 2 log2m = 2k, the jobs belong to k+1phases, where for 1 � i � k phase i 
ontains m(N + 2 � i)=2i unit jobs, and phasek + 1 
ontains N � log2m unit jobs. The jobs of phase i are restri
ted to ma
hinesf1; : : : ; 2k�i+1g. We de�ne the dependen
ies a

ording to the behavior of the on-linealgorithm. For i = 1; : : : ; k, let bi be a job that �nishes last of phase i, then all jobsof phase i+ 1 depend on bi.Sin
e bi is a job that �nishes last at phase i, and all jobs of phase i + 1 dependon it, then no jobs of phase i+1 are s
heduled until all jobs of phase i are done. For1 � i � k, the jobs of phase i are restri
ted to 2k�i+1 = m=2i�1 ma
hines, thus theperiod of time to �nish all jobs of phase i is at least (N +2� i)=2 = 
(N) (even withpreemptions). Sin
e there are 
(logm) phases, Con = 
(N logm) (see Figure 3).The optimal o�-line algorithm s
hedules all bi on the �rst ma
hine, ea
h bi iss
heduled at time i� 1. The jobs of phase i are s
heduled as follows: m=2i�1 jobs ares
heduled on ma
hines 1; : : : ; m=2i�1 at time i � 1, all the other jobs are s
heduledfrom time i till time N on ma
hines m=2i + 1; : : : ; m=2i�1. The jobs of phase k + 1are s
heduled on ma
hine 1 starting at time log2m (see Figure 4). We 
on
lude thatsin
e Copt = N , the 
ompetitive ratio is 
(logm).To extend the proof for randomized algorithms we use the same sequen
e, but biis 
hosen uniformly at random among all jobs of phase i. Let Pi be the number ofjobs that �nish before bi in phase i (jobs that �nish at the same time are orderedarbitrarily). The period of time after the jobs of phase i be
ome available and beforethe next phase 
an start is at least (Pi+1)=2k�i+1. Sin
e Pi gets the values 0; : : : ; (N+2� i)2k�i � 1 with equal probability,E(Pi) = ((N + 2� i)2k�i � 1)=2 :7



Hen
e,Con � kXi=1E(Pi + 1)2�k+i�1 +N � log2m� kXi=1(N + 2� i)=4 = 
(N logm) :Sin
e Copt = N we 
on
lude that the 
ompetitive ratio is 
(logm).

Figure 3: A possible on-line assignment in the proof of Theorem 3.1 for m = 8, k = 3,N = 6, where Con = 13. All ma
hines are identi
al.

Figure 4: An optimal o�-line assignment in the proof of Theorem 3.1 for m = 8,k = 3, N = 6 and Copt = 6.Theorem 3.2 The 
ompetitive ratio of Greedy is O(logm) for the restri
ted assign-ment model with 
onsistent pre
eden
e 
onstraints.8



Proof: For ma
hine i, let A(i) be the set of jobs j that i 2M(j). Denote the optimalo�-line value by �. We �rst prove the following Lemma:Lemma 3.1 The total idle time of Greedy on a ma
hine i, from the beginning tillthe last job in A(i) �nishes its pro
ess (on any ma
hine) is bounded by �.Proof: For ea
h ma
hine i, we build a 
hain of jobs in whi
h ea
h job is dependenton the previous job, and ea
h time i is idle, one of the jobs in the 
hain is running.Sin
e the total running time of jobs in the 
hain is at most � (the optimal o�-linealgorithm 
an not run more than one job of the 
hain simultaneously), the total idletime of ma
hine i would be also bounded by �. We build the 
hain from the top,starting from the last job in the 
hain. If there is no idle time on ma
hine i, the
hain is empty and the lemma follows. Otherwise, we start the 
hain with the jobin A(i) that �nishes last, denote it by J1. Assume that J1; : : : ; Jq�1 are de�ned. IfJq�1 has no prede
essors, we �nish the 
hain. Otherwise, let Jq be the prede
essor ofJq�1 that �nishes last. Note that sin
e all the 
hain 
onsists of prede
essors of J1 andthe pre
eden
e 
onstraints are 
onsistent, all the jobs in the 
hain are also in A(i).Assume that i is idle at time t, and no job in the 
hain is running at time t. Thereis at least one job that �nishes after time t (J1 for example). Sin
e there is no job ofthe 
hain running at time t, all these jobs start running after time t. Let Jr be the�rst job of the 
hain that starts running after time t. All the prede
essors of Jr �nishbefore time t thus sin
e i is idle at t, Jr 
ould be s
heduled at time t or before. Thisis a 
ontradi
tion to the de�nition of Greedy.Note that the idle time on ea
h ma
hine in Lemma 3.1 
an be partitioned intotwo parts. The �rst is the idle time on a ma
hine up to the 
ompletion of the lastjob that runs on this ma
hine. The se
ond is from that time on.Lemma 3.2 Let l � 3� be some time during the pro
ess of the algorithm. If thetotal running time of jobs (or parts of jobs) that run after time l is Tl then the totalrunning time of jobs that run after time l � 3� is at least 2Tl.Proof: Let k1 = dTl� e. The optimal o�-line uses at least k1 ma
hines to run the jobsthat the on-line runs after time l. Sin
e the maximum running time is bounded by�, these jobs start after time l � �. For ea
h ma
hine i among the k1 ma
hines,there is a job that is allowed to be s
heduled on it and is s
heduled after time l � �,thus ma
hine i has at most � idle time from time l � 3� till time l � �. The totalrunning time on i in this time period is at least �. Summing for all ma
hines thetotal running time is at least k1�, and adding the running times after time l we geta total of k1�+ Tl � Tl + Tl = 2TlNow, we 
an 
omplete the proof of the theorem. Let T be the total running timeof all jobs, note that T � m�. Let k = bCon=(3�)
. We 
an assume without loss ofgenerality that Con � 3�. Hen
e k � 1. Note that the 
ompetitive ratio r satis�esr = O(k). Let Tj be the total running time of jobs after time Con � 3j�. A

ording9



to Lemma 3.2, Tk satis�es Tk � 2k�1T1 and a

ording to Lemma 3.1, T1 satis�esT1 � 2�, this is 
orre
t sin
e there is at least one ma
hine that �nishes at time Con,and sin
e the idle time on this ma
hine is bounded by �, this ma
hine worked at leastfor a period of time 2� after time Con � 3�. Combining all observations together weget m� � T � Tk � 2k�1T1 � 2 � 2k�1�. Thus k = O(logm), and also r = O(logm).
4 Restri
ted assignment with general pre
eden
e
onstraintsIn this se
tion we 
onsider the restri
ted assignment model with general pre
eden
e
onstraints between jobs.Theorem 4.1 Any on-line s
heduling algorithm for restri
ted assignment model withgeneral pre
eden
e 
onstraints has the 
ompetitive ratio of at least m. This is true evenfor preemptive algorithms versus non-preemptive optimal o�-line. Any randomizedalgorithm for the same problem has a 
ompetitive ratio of 
(m). This is true evenfor randomized preemptive algorithms versus non-preemptive optimal o�-line.Proof: We �rst prove a lower bound for the 
ompetitive ratio of deterministi
 algo-rithms, and later extend it to randomized ones. We build the sequen
e a

ording tothe behavior of the on-line algorithm. Let N be an integer N � m, The optimal 
ostfor the sequen
e would be N . The sequen
e 
ontains m phases, in ea
h phase, all jobsare restri
ted to a single ma
hine. Phase 1 
ontains N unit jobs whi
h are restri
tedto ma
hine 1. Let b1 be the job from phase 1 that �nishes last. We de�ne the otherphases re
ursively: In phase i (i � 2), there are N � i+ 1 unit jobs whi
h depend onthe job bi�1, and are restri
ted to ma
hine i. We denote the job from phase i that�nishes last by bi.The on-line does not s
hedule any job from phase i + 1 until all jobs of phasei are 
ompleted, be
ause all jobs of phase i + 1 depend on bi, thus the on-line hasat most one working ma
hine at a time (ea
h job is restri
ted to a single ma
hine)and the minimum possible on-line makespan is simply the sum of all running times:Con � Pmi=1(N � i+ 1) = m(N �m=2 + 1=2) (see Figure 5).The optimal o�-line algorithm assigns ea
h bi at time i � 1, and all other jobsof phase i are s
heduled starting from time i, hen
e Copt = N (see Figure 6). The
ompetitive ratio is at least m�m2=(2N)+m=(2N) = m�m(m�1)=(2N), for largevalues of N , this number approa
hes m.To extend the proof to randomized algorithms we use a similar sequen
e, whi
halso has m phases, where phase i 
ontains N�i+1 jobs that are restri
ted to ma
hinei, but here the job bi for i = 1; : : : ; m � 1 is 
hosen uniformly at random among all10



Figure 5: A possible on-line assignment in the proof of Theorem 4.1 form = 4, N = 5,where Con = 14.
Figure 6: An optimal o�-line assignment in the proof of Theorem 4.1 for m = 4,N = 5 and Copt = 5.jobs of phase i. Let Pi be the position of bi, whi
h is the number of jobs from phasei that were 
ompleted before bi was 
ompleted. Pi 
an get the values 0; : : : ; N � i,all with equal probabilities. For i � 2, the jobs of phase i are s
heduled after at leastPi�1+1 jobs were 
ompleted at phase i�1 and thus Con = Pm�1i=1 (Pi+1)+N�m+1.Thus E(Con) � m�1Xi=1 (E(Pi) + 1) +N �m + 1 ;sin
e E(Pi) = (N � i)=2 we getE(Con) � (m� 1)(N=2 + 1)� m�1Xi=1 i=2 +N �m+ 1= mN=2�N=2 +m� 1�m(m� 1)=4 +N �m+ 1= mN=2 +N=2�O(m2) :11



Sin
e Copt = N , the 
ompetitive ratio is at least (m + 1)=2 � O(m2=N), for largevalues of N , the lower bound approa
hes (m+ 1)=2 = �(m).Both lower bounds are valid even with preemptions sin
e we only 
onsider �nishingtimes of jobs, and not starting times.Theorem 4.2 Greedy ism 
ompetitive for the restri
ted assignment model with pre
e-den
e 
onstraints.Proof: If all ma
hines be
ome idle, then there are no new jobs and the sequen
e is
ompleted. Thus if Con = T , then at any time between 0 and T there is at leastone working ma
hine. Hen
e, the sum of all pro
essing times is at least T , andCopt � T=m. Hen
e Greedy is m 
ompetitive.We 
an easily provide m 
ompetitive algorithm also for unrelated ma
hines. Thealgorithm Min assigns a job j to a ma
hine i su
h that the running time of j on i isminimum over all i.Theorem 4.3 Min is m 
ompetitive for the unrelated ma
hines model with pre
e-den
e 
onstraints.Proof: Sin
e the running time that the optimal o�-line uses to run ea
h job is at leastthat of Min, we 
an imitate the proof of Theorem 4.2Referen
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