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1 IntrodutionWe onsider the on-line problem of sheduling a sequene of jobs with preedeneonstraints on m parallel mahines. A job an be sheduled after all its predeessorsare ompleted. In the simplest model, the idential mahines model, eah job j hasa running time wj, and has to be sheduled on a mahine for this period of time.In the related mahines model eah mahine i has a speed vi. Eah job may beproessed on any mahine. If job j with a running time wj is proessed on mahine ithen the job is ompleted in wj=vi units of time. In the restrited assignment modelall mahines have idential speed, but eah job may be assigned only to a subset ofthe mahines. For a job j, we denote by M(j) � f1; : : : ; mg (M(j) 6= ;) the subsetof mahines on whih it may be sheduled and by wj its running time on a mahinein M(j). The unrelated mahines model is a generalization of all previous models. Inthis model, eah job j has a vetor of m omponents, where eah omponent i givesits running time on mahine i.We may or may not allow preemptions. If no preemptions are allowed, one ajob is sheduled on a mahine, it must be proessed on this mahine ontinuouslyuntil it is ompleted. Otherwise, if we allow preemptions, a job may be stopped, andresumed later on some (maybe di�erent) mahine.The preedene onstraints between jobs an be viewed as a direted ayli graphG. The verties of G are the jobs. An edge (j1; j2) ours when j1 is a predeessor ofj2, i.e. j2 may start its proess only after j1 is ompleted. For restrited assignmentthe preedene onstraints are alled onsistent if for every edge (j1; j2) we haveM(j2) � M(j1). The motivation for onsistent preedene onstraints omes fromthe fat that if a job j1 requires some expertise whih are known only to some mahinesand j1 is a predeessor of another job j2, then j2 should require at least the sameexpertise and hene an be proessed only on subset of mahines that j1 an beproessed on.We disuss an on-line environment in whih a job beomes known as soon as all itspredeessors are ompleted (there are no release times). The goal is to minimize themakespan whih is the time that the last job is ompleted. We onsider two variationsof the on-line model. In the known running times ase (also alled lairvoyant ase),the running time of a job is known upon its arrival, and in the unknown running timesase (also alled non-lairvoyant ase), the running time of a job beomes known onlywhen it is ompleted. Clearly an algorithm for the unknown running times ase is alsoan algorithm for the known running times ase with the same performane. Hene,lowers bounds for known running times are lower bounds also for unknown runningtimes. For a survey on on-line sheduling we refer the reader to [12℄.We measure the algorithms in terms of the ompetitive ratio. We ompare theost (makespan) of the on-line algorithm (denoted by Con) to the ost of the optimal2



o�-line algorithm that knows the sequene in advane (denoted by Copt). The o�-linealgorithm knows all jobs and their properties (running times, preedene onstraintsand assignment restritions) in advane. Note that the on-line algorithm is familiarwith all properties of a job as soon as the job arrives (exept for the running time,in the ase of unknown running times), but a job arrives only after all its predees-sors are ompleted. A deterministi algorithm is r ompetitive if Con � rCopt. Theompetitive ratio of an algorithm is the in�mum r suh that the algorithm is r om-petitive. If the algorithm is randomized, we use the expetation of the on-line ostinstead of the ost, and an algorithm is r ompetitive if E(Con) � rCopt.The model with preedene onstraints generalizes the model without preedeneonstraints, i.e. the model where all jobs are given at time 0. The model withoutpreedene onstraints is also alled bath-style sheduling. The bath-style shedul-ing is important sine the general model of jobs arriving over time with release timesan be redued to the bath-style sheduling with a loss of a fator of 2 in the ap-proximation ratio or in the ompetitive ratio (see [13℄). We note that the bath-stylesheduling is interesting for on-line algorithms only when the running times of thejobs are unknown. If the running times are known then the bath-style sheduling be-omes an o�-line problem. In ontrast, the model with preedene onstraints is alsointeresting for the known running times ase sine not all jobs are given in advane.The idential mahines model is an anient on-line problem. Graham [7, 8℄ showeda greedy (non-preemptive) algorithm that ahieves a ompetitive ratio of 2 � 1=mfor sheduling jobs with preedene onstraints even when the running times areunknown. Epstein [5℄ showed that this is optimal for sheduling jobs with preedeneonstraints even if the running times are known and preemptions are allowed. Thebest ompetitive ratios for the three other lassial mahine models, related mahines,restrited assignment and unrelated mahines, were not ompletely haraterized.Our results. In this paper we onsider the three lassial mahine models: re-lated mahines, restrited assignment and unrelated mahines. For related mahineswe give a deterministi and randomized lower bound of 
(pm) on the ompetitiveratio of any on-line algorithm (preemptive or non-preemptive) for jobs with pree-dene onstraints even when the running times are known. This mathes the upperbound of Ja�e [11℄ who gave an approximation algorithm whih an be implementedin an on-line environment. In fat, Davis and Ja�e [4℄ already gave a lower boundof 
(pm) on the ompetitive ratio for the ase with no preedene onstraints (i.e.bath-style sheduling) whih obviously holds for the ase of preedene onstraints.However, our lower bound does not follow from their lower bound sine their lowerbound is valid only for unknown running times and no preemption.We would like to emphasize that the preedene onstraints are ruial for provingthe lower bounds with known running times, sine, otherwise, it beomes an o�-lineproblem. Spei�ally, if the running times are known for the model without pree-3



dene onstraints (i.e. bath-style sheduling) then all jobs are known in advane.Hene, one an get 1 ompetitive algorithm for the preemptive ase ([10, 6℄) and 1+ �ompetitive algorithm for the non-preemptive ase ([9℄) (it beomes 1 if we allowexponential time algorithms). The preedene onstraints are also ruial for provingthe lower bounds with preemption even for unknown running times. Spei�ally, ifwe allow preemption then Shmoys, Wein and Williamson [13℄ showed an upper boundof O(logm) for the bath-style sheduling (i.e no preedene onstraints). The up-per bounds above for the model without preedene onstraints should be ontrastedwith our result that implies that with preedene onstraints one annot get a betterbound than �(pm) even if the running times are known. Moreover, our lower boundholds for randomized preemptive online algorithm versus non-preemptive optimal o�-line. It is worthwhile to mention that for the o�-line version of our problem (i.e withpreedene onstraints) an O(logm) approximation algorithm is given in [3℄.For the restrited assignment model we onsider the algorithm Greedy whih isdesribed later. Azar et al [1℄ showed that for the ase of no preedene onstraintsthe Greedy algorithm for sheduling jobs one by one in the restrited assignmentmodel ahieves a ompetitive ratio of O(logm). In fat, the result in [1℄ is provedfor sheduling over lists (i.e., sheduling jobs one by one). Nevertheless, their resultimmediately implies that Greedy is O(logm) ompetitive for sheduling jobs in thebath-style model with unknown running times. We show that if we allow onsistentpreedene onstraints then the ompetitive ratio of the algorithm is still O(logm).We show that the algorithm is optimal up to a onstant fator in this ase by providinga lower bound of 
(logm) on the ompetitive ratio of any deterministi or randomizedalgorithm for sheduling jobs with restrited assignment and onsistent preedeneonstraints. Our lower bound holds even for the known running times ase and theupper bound does not use the running times. Moreover, the lower bound holds evenfor randomized preemptive algorithm versus non-preemptive optimal o�-line whilethe upper bound holds for non-preemptive algorithm versus preemptive optimal o�-line. We note that the preedene onstraints are ruial for proving the lower boundswith known running times, sine, otherwise, it beomes an o�-line problem. In [1℄there is a lower bound of 
(logm) for a model without preedene onstraints but ajob must be assigned immediately upon its arrival.For general preedene onstraints for the restrited assignment model we showa lower bound of m for the ompetitive ratio of any online algorithm (
(m) forrandomized algorithms). This bound is easily mathed by an algorithm whih is mompetitive. It is also easy to design an m ompetitive algorithm for the unrelatedmahines ase. Reall that the unrelated mahines ase is a generalization of therestrited assignment model. Hene, the unrelated mahines ase is not of an interestsine the best ompetitive ratio is m.The Greedy algorithm. We adapt the Greedy algorithm "List", given byGraham [7℄ for idential mahines, to the ase of restrited assignment as follows.4



Eah time that a mahine i beomes idle, assign to it a job j (if exists) suh thati 2 M(j) and j has not been sheduled yet. Eah time that a new job j arrives,assign it to an idle mahine i 2 M(j) if exists. Note that Greedy is deterministi anddoes not use preemptions.Randomized algorithms. To prove lower bounds on the ompetitive ratio ofrandomized algorithms we use an adaptation of Yao's theorem for on-line algorithms.It states that if there exists a probability distribution on the input sequenes for agiven problem suh that E(Con=Copt) �  for all deterministi on-line algorithms,then  is a lower bound on the ompetitive ratio of all randomized algorithms for theproblem (see [2℄). We will use only sequenes for whih Copt is onstant and thus inour ase E(Con=Copt) = E(Con)=Copt.2 Sheduling on related mahinesTheorem 2.1 Any on-line algorithm for sheduling jobs with preedene onstraintson m related mahines has a ompetitive ratio of at least 
(pm). This is true evenfor randomized preemptive algorithms versus non-preemptive optimal o�-line.Proof: We start by onsidering deterministi algorithms. We assume without loss ofgenerality that m� 1 is a square, pm� 1 = r. (Otherwise, we an restrit ourselvesto the largest number whih is at most m and of type r2+1 for integer r and assumethat all other mahines have very small speed.) The set of mahines onsists of onefast mahine of speed r = pm� 1 (mahine 1) and m� 1 slow mahines of speed 1(mahines 2; : : : ; m). There are r phases of r+1 unit jobs eah in the sequene. Thesequene begins with r + 1 independent unit jobs (phase 1). Next we de�ne phase i,2 � i � r, the phase ontains r + 1 units jobs. Let bi�1 be a job in phase i � 1 that�nishes last by the on-line algorithm, then all jobs of phase i depend on bi�1.The on-line algorithm, by the de�nition of bi, an start sheduling phase i + 1only after all jobs of phase i are ompleted. Sine eah phase onsists of r + 1 jobs,it is possible to use at most r + 1 mahines at any time. The r + 1 fastest mahinesan proess at most 2r unit jobs in one unit of time, and sine the total running timeof all jobs in one phase is r + 1, eah phase takes at least (r + 1)=(2r) � 1=2 timeunits. Thus the total time to proess all the sequene is at least r((r + 1)=(2r)) =(r + 1)=2 = 
(pm) (see Figure 1).The optimal o�-line algorithm assigns eah bi to the fast mahine at time (i�1)=r,and thus the jobs of phase i+1 may be assigned at time i=r to mahines ir+2; : : : ; (i+1)r+1 (for 0 � i � r� 1). The jobs of phase r would �nish at time (r� 1)=r+1 � 2on the slow mahines. The fast mahine would �nish at time 1 and thus Copt � 2 (seeFigure 2). The ompetitive ratio is 
(pm).To extend the proof for randomized algorithms, bi is hosen uniformly at random5



among all jobs of phase i. Clearly the optimal shedule remains the same. Nextwe evaluate the expeted on-line shedule. The probability that the period of timestarting from the arrival of phase i, till bi is ompleted is at least T would be (r +1� k)=(r+1) where k is the maximum number of jobs that it is possible to ompletein a period of T units of time. For T = (r + 1)=(4r), it is possible to omplete atmost b(r + 1)=2 jobs and thus the expetation of the period of time that passesfrom the arrival of bi and till it is ompleted is at least (r + 1)=(8r) � 1=8, and thusE(Con) = 
(pm) and again the ompetitive ratio is 
(pm) as well.

Figure 1: A possible on-line assignment in the proof of Theorem 2.1 for m = 10 andr = 3, where Con = 3. In all �gures the horizontal axis represents the mahines, andthe vertial axis represents time. Jobs marked by i belong to phase i, and the jobmarked i0 is job bi. In this �gure the leftmost mahine (mahine 1) has speed 3 andall other mahines have speed 1.

Figure 2: An optimal o�-line assignment in the proof of Theorem 2.1 for m = 10 andr = 3. Mahines have the same speeds as in Figure 1 (respetively) and Copt = 5=3.
6



3 Restrited assignment with onsistent preedeneonstraintsIn this setion we onsider onsistent preedene onstraints for the restrited assign-ment model. Reall that preedene onstraints are alled onsistent if for every j1whih is a predeessor of j2 we have M(j2) � M(j1).Theorem 3.1 Any on-line sheduling algorithm for the restrited assignment modelwith onsistent preedene onstraints has a ompetitive ratio of at least 
(logm).This is true even for randomized preemptive algorithms versus non-preemptive optimalo�-line.Proof: We assume without loss of generality that m is a power of 2, m = 2k. (Oth-erwise we restrit ourselves to the largest number whih is at most m and of type 2kfor an integer k and assume that no job an be assigned to the remaining mahines.)The sequene onsists of mN jobs where N � 2 log2m = 2k, the jobs belong to k+1phases, where for 1 � i � k phase i ontains m(N + 2 � i)=2i unit jobs, and phasek + 1 ontains N � log2m unit jobs. The jobs of phase i are restrited to mahinesf1; : : : ; 2k�i+1g. We de�ne the dependenies aording to the behavior of the on-linealgorithm. For i = 1; : : : ; k, let bi be a job that �nishes last of phase i, then all jobsof phase i+ 1 depend on bi.Sine bi is a job that �nishes last at phase i, and all jobs of phase i + 1 dependon it, then no jobs of phase i+1 are sheduled until all jobs of phase i are done. For1 � i � k, the jobs of phase i are restrited to 2k�i+1 = m=2i�1 mahines, thus theperiod of time to �nish all jobs of phase i is at least (N +2� i)=2 = 
(N) (even withpreemptions). Sine there are 
(logm) phases, Con = 
(N logm) (see Figure 3).The optimal o�-line algorithm shedules all bi on the �rst mahine, eah bi issheduled at time i� 1. The jobs of phase i are sheduled as follows: m=2i�1 jobs aresheduled on mahines 1; : : : ; m=2i�1 at time i � 1, all the other jobs are sheduledfrom time i till time N on mahines m=2i + 1; : : : ; m=2i�1. The jobs of phase k + 1are sheduled on mahine 1 starting at time log2m (see Figure 4). We onlude thatsine Copt = N , the ompetitive ratio is 
(logm).To extend the proof for randomized algorithms we use the same sequene, but biis hosen uniformly at random among all jobs of phase i. Let Pi be the number ofjobs that �nish before bi in phase i (jobs that �nish at the same time are orderedarbitrarily). The period of time after the jobs of phase i beome available and beforethe next phase an start is at least (Pi+1)=2k�i+1. Sine Pi gets the values 0; : : : ; (N+2� i)2k�i � 1 with equal probability,E(Pi) = ((N + 2� i)2k�i � 1)=2 :7



Hene,Con � kXi=1E(Pi + 1)2�k+i�1 +N � log2m� kXi=1(N + 2� i)=4 = 
(N logm) :Sine Copt = N we onlude that the ompetitive ratio is 
(logm).

Figure 3: A possible on-line assignment in the proof of Theorem 3.1 for m = 8, k = 3,N = 6, where Con = 13. All mahines are idential.

Figure 4: An optimal o�-line assignment in the proof of Theorem 3.1 for m = 8,k = 3, N = 6 and Copt = 6.Theorem 3.2 The ompetitive ratio of Greedy is O(logm) for the restrited assign-ment model with onsistent preedene onstraints.8



Proof: For mahine i, let A(i) be the set of jobs j that i 2M(j). Denote the optimalo�-line value by �. We �rst prove the following Lemma:Lemma 3.1 The total idle time of Greedy on a mahine i, from the beginning tillthe last job in A(i) �nishes its proess (on any mahine) is bounded by �.Proof: For eah mahine i, we build a hain of jobs in whih eah job is dependenton the previous job, and eah time i is idle, one of the jobs in the hain is running.Sine the total running time of jobs in the hain is at most � (the optimal o�-linealgorithm an not run more than one job of the hain simultaneously), the total idletime of mahine i would be also bounded by �. We build the hain from the top,starting from the last job in the hain. If there is no idle time on mahine i, thehain is empty and the lemma follows. Otherwise, we start the hain with the jobin A(i) that �nishes last, denote it by J1. Assume that J1; : : : ; Jq�1 are de�ned. IfJq�1 has no predeessors, we �nish the hain. Otherwise, let Jq be the predeessor ofJq�1 that �nishes last. Note that sine all the hain onsists of predeessors of J1 andthe preedene onstraints are onsistent, all the jobs in the hain are also in A(i).Assume that i is idle at time t, and no job in the hain is running at time t. Thereis at least one job that �nishes after time t (J1 for example). Sine there is no job ofthe hain running at time t, all these jobs start running after time t. Let Jr be the�rst job of the hain that starts running after time t. All the predeessors of Jr �nishbefore time t thus sine i is idle at t, Jr ould be sheduled at time t or before. Thisis a ontradition to the de�nition of Greedy.Note that the idle time on eah mahine in Lemma 3.1 an be partitioned intotwo parts. The �rst is the idle time on a mahine up to the ompletion of the lastjob that runs on this mahine. The seond is from that time on.Lemma 3.2 Let l � 3� be some time during the proess of the algorithm. If thetotal running time of jobs (or parts of jobs) that run after time l is Tl then the totalrunning time of jobs that run after time l � 3� is at least 2Tl.Proof: Let k1 = dTl� e. The optimal o�-line uses at least k1 mahines to run the jobsthat the on-line runs after time l. Sine the maximum running time is bounded by�, these jobs start after time l � �. For eah mahine i among the k1 mahines,there is a job that is allowed to be sheduled on it and is sheduled after time l � �,thus mahine i has at most � idle time from time l � 3� till time l � �. The totalrunning time on i in this time period is at least �. Summing for all mahines thetotal running time is at least k1�, and adding the running times after time l we geta total of k1�+ Tl � Tl + Tl = 2TlNow, we an omplete the proof of the theorem. Let T be the total running timeof all jobs, note that T � m�. Let k = bCon=(3�). We an assume without loss ofgenerality that Con � 3�. Hene k � 1. Note that the ompetitive ratio r satis�esr = O(k). Let Tj be the total running time of jobs after time Con � 3j�. Aording9



to Lemma 3.2, Tk satis�es Tk � 2k�1T1 and aording to Lemma 3.1, T1 satis�esT1 � 2�, this is orret sine there is at least one mahine that �nishes at time Con,and sine the idle time on this mahine is bounded by �, this mahine worked at leastfor a period of time 2� after time Con � 3�. Combining all observations together weget m� � T � Tk � 2k�1T1 � 2 � 2k�1�. Thus k = O(logm), and also r = O(logm).
4 Restrited assignment with general preedeneonstraintsIn this setion we onsider the restrited assignment model with general preedeneonstraints between jobs.Theorem 4.1 Any on-line sheduling algorithm for restrited assignment model withgeneral preedene onstraints has the ompetitive ratio of at least m. This is true evenfor preemptive algorithms versus non-preemptive optimal o�-line. Any randomizedalgorithm for the same problem has a ompetitive ratio of 
(m). This is true evenfor randomized preemptive algorithms versus non-preemptive optimal o�-line.Proof: We �rst prove a lower bound for the ompetitive ratio of deterministi algo-rithms, and later extend it to randomized ones. We build the sequene aording tothe behavior of the on-line algorithm. Let N be an integer N � m, The optimal ostfor the sequene would be N . The sequene ontains m phases, in eah phase, all jobsare restrited to a single mahine. Phase 1 ontains N unit jobs whih are restritedto mahine 1. Let b1 be the job from phase 1 that �nishes last. We de�ne the otherphases reursively: In phase i (i � 2), there are N � i+ 1 unit jobs whih depend onthe job bi�1, and are restrited to mahine i. We denote the job from phase i that�nishes last by bi.The on-line does not shedule any job from phase i + 1 until all jobs of phasei are ompleted, beause all jobs of phase i + 1 depend on bi, thus the on-line hasat most one working mahine at a time (eah job is restrited to a single mahine)and the minimum possible on-line makespan is simply the sum of all running times:Con � Pmi=1(N � i+ 1) = m(N �m=2 + 1=2) (see Figure 5).The optimal o�-line algorithm assigns eah bi at time i � 1, and all other jobsof phase i are sheduled starting from time i, hene Copt = N (see Figure 6). Theompetitive ratio is at least m�m2=(2N)+m=(2N) = m�m(m�1)=(2N), for largevalues of N , this number approahes m.To extend the proof to randomized algorithms we use a similar sequene, whihalso has m phases, where phase i ontains N�i+1 jobs that are restrited to mahinei, but here the job bi for i = 1; : : : ; m � 1 is hosen uniformly at random among all10



Figure 5: A possible on-line assignment in the proof of Theorem 4.1 form = 4, N = 5,where Con = 14.
Figure 6: An optimal o�-line assignment in the proof of Theorem 4.1 for m = 4,N = 5 and Copt = 5.jobs of phase i. Let Pi be the position of bi, whih is the number of jobs from phasei that were ompleted before bi was ompleted. Pi an get the values 0; : : : ; N � i,all with equal probabilities. For i � 2, the jobs of phase i are sheduled after at leastPi�1+1 jobs were ompleted at phase i�1 and thus Con = Pm�1i=1 (Pi+1)+N�m+1.Thus E(Con) � m�1Xi=1 (E(Pi) + 1) +N �m + 1 ;sine E(Pi) = (N � i)=2 we getE(Con) � (m� 1)(N=2 + 1)� m�1Xi=1 i=2 +N �m+ 1= mN=2�N=2 +m� 1�m(m� 1)=4 +N �m+ 1= mN=2 +N=2�O(m2) :11



Sine Copt = N , the ompetitive ratio is at least (m + 1)=2 � O(m2=N), for largevalues of N , the lower bound approahes (m+ 1)=2 = �(m).Both lower bounds are valid even with preemptions sine we only onsider �nishingtimes of jobs, and not starting times.Theorem 4.2 Greedy ism ompetitive for the restrited assignment model with pree-dene onstraints.Proof: If all mahines beome idle, then there are no new jobs and the sequene isompleted. Thus if Con = T , then at any time between 0 and T there is at leastone working mahine. Hene, the sum of all proessing times is at least T , andCopt � T=m. Hene Greedy is m ompetitive.We an easily provide m ompetitive algorithm also for unrelated mahines. Thealgorithm Min assigns a job j to a mahine i suh that the running time of j on i isminimum over all i.Theorem 4.3 Min is m ompetitive for the unrelated mahines model with pree-dene onstraints.Proof: Sine the running time that the optimal o�-line uses to run eah job is at leastthat of Min, we an imitate the proof of Theorem 4.2Referenes[1℄ Y. Azar, J. Naor, and R. Rom. The ompetitiveness of on-line assignments. Jour-nal of Algorithms, 18(2):221{237, 1995. Also in Pro. 3rd ACM-SIAM SODA,1992, pp. 203-210.[2℄ A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis.Cambridge University Press, 1998.[3℄ F.A. Chudak and D.B. Shmoys. Approximation algorithms for preedene on-strained sheduling problems on parallel mahines that run at di�erent speeds.Journal of Algorithms, 30:323{343, 1999.[4℄ E. Davis and J.M. Ja�e. Algorithms for sheduling tasks on unrelated proessors.J. Asso. Comput. Mah., 28:712{736, 1981.[5℄ L. Epstein. Lower bounds for on-line sheduling with preedene onstraints onidential mahines. In 1st Workshop on Approximation Algorithms for Combina-12
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