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1 IntroductionWe consider the problem of manufacturing costs versus capital investment. A fac-tory uses machines for producing units of some product. The production of each unitrequires some �xed cost for using the machine (electricity, raw material, etc.). Overtime opportunities for investment in new machines, that would replace the old ones,become available. Such opportunities could be the result of technological improve-ment, relocation to a cheaper market, or any other investment that would replacethe facilities of the factory and would lead to lower production costs. We model allthese opportunities as machines that can be bought, and then used to produce theunits of the product. The factory must decide if to invest in buying new machinesto reduce production costs while neither future demand for the product nor futureinvestment opportunities are known.Many �nancial problems require to take decisions without having knowledge, orwhile having only partial knowledge, of future opportunities. Competitive analysisof �nancial problems has received an increasing attention during the last years, forinstance for currency exchange problems [2] or asset allocation [5].The problem considered in this paper is a generalization of one of the basic on-line problems, the ski-rental problem due to L. Rudolph (see [4]), a model for thewell known practical problem \rent or buy?". The ski-rental problem can be statedas follows: you don't know in advance how many times you will go skiing; rentinga pair of skis costs $r; to purchase your own pair costs $p. When do you buy? It isnot hard to see that the best competitive ratio is obtained if you buy when the totalrental cost (thus far) is equal to the cost of buying your own pair. Another problemconsidered in this model in the past is the so-called mortgage problem [3], where a
uctuating mortgage rate and associated re-�nancing charges lead to the question,re-�nance or not?While for the ski-rental problem the only possible capital expenditure is to pur-chase a pair of skis, and then the \production" costs drop to zero, in the capitalinvestment problem there may be many future capital expenditure options and theresulting productivity gains are unknown. Unlike the mortgage problem where thefuture demand is the servicing the entire debt (which is a known �xed value), and acapital investment has a �xed cost, in the capital investment problem future demandis unknown and capital investments may have arbitrary costs.We consider two models for our problem, and call the �rst one the convex case.Here, we assume that to get a lower production cost, one must spend more as cap-ital expenditures. In this case we get a constant competitive ratio. This scenario isusually true in manufacturing: purchasing a better machine costs more. However,sometimes technological breakthroughs are achieved, after which both machine costsand production costs are reduced. This matches our second model, the non-convexcase, which allows both capital and production costs to drop.In contrast to the convex case, for the non-convex case we present a lower bound onthe competitive ratio of any on-line algorithm for the problem which is
(maxflogC; log logP= log log logP; logM= log logMg), where C is the ratio betweenthe highest and the lowest capital costs, P is the ratio between the highest and thelowest production costs, and M is the number of investment opportunities. We com-plement this lower bound with an algorithm for general capital investment scenarioswhich is O(minflogC; log logP; logMg) competitive.



2 The On-line Capital Investment ProblemImagine a factory whose goal is to produce units of some commodity at low cost. Fromtime to time, orders for units of the commodity arrive, and at times new machinesbecome available. Every such machine is characterized by its production cost, and byits capital cost. The production cost is the cost of producing one unit of commodityusing this machine. The capital cost is the capital investment necessary to buy themachine. We assume that once a machine becomes available, then it is availableforever. We also assume that one can produce an unlimited number of units withany machine. An algorithm for this problem has to decide what machines to buy andwhen to do so, as to minimize the total cost (capital costs plus production costs).More formally, an instance of the problem consists of a sequence of machines,and a sequence of orders of demand. Machine mi is de�ned by the triplet (ti; ci; pi),where ti is the time at which the machine becomes available, ci is its capital cost, andpi is its production cost. Every order is de�ned by its arrival time. Without loss ofgenerality we may assume that the j'th order appears at time j. Moreover, since anyreasonable algorithm will not buy a new machine when there is no order pending, wecan assume that for any machine i such that j < ti � j + 1, ti = j + 1. At any timet, the algorithm can buy any of the available machines (those with ti � t), and thenproduce one unit of the commodity.We say that machine mi dominates machine mj if both the production cost andthe capital cost of mi are lower than those of mj . We call an instance of the problemconvex if no machine presented dominates another. I.e., an instance is convex if forany two machines i; j such that pi < pj it holds that ci � cj . To help distinguishbetween the two versions of the problem, we call the general case non-convex.We note that if all machines are available at the very beginning, then all machinesthat are dominated by others can be removed. Thus, whenever all machines areavailable in advance, we are left with the convex setting. The non-convex setting onlymakes sense if machines appear over time and it is possible that a better machine (interms of both capital cost and production cost criteria) will appear later.2.1 Performance MeasuresWe measure the performance of an on-line algorithm for this problem by its compet-itive ratio [6]. Let � be a sequence of o�ers of machines and orders of demand forunits of the commodity to be produced.We denote by ON(�) the cost of the on-line algorithm ON for the problem overthe sequence �, and with OPT(�) the cost of an optimal o�-line algorithm thatknows the entire sequence � in advance. We parameterize the sequences by the ratiobetween the cost of the most expensive and cheapest machines (denoted by C), bythe ratio between the highest and the lowest production cost (denoted by P ), and bythe total number of machines presented during the sequence (denoted byM ). Denoteby �(C;P;M ) the set of sequences that obey the above restrictions.The competitive ratio of an algorithmmay be a function of the above parameters.An on-line algorithmON is �(C;P;M )-competitive for a set �(C;P;M ) of sequencesif sup�2�(C;P;M) ON(�)OPT(�) � �(C;P;M ):



3 Upper Bound for the Convex CaseIn this section we study the convex case in which a machine with a lower productioncost cannot be cheaper than a machine with a higher production cost. We presentan on-line algorithm for the convex case with competitive ratio 7.3.1 The AlgorithmThe algorithm is de�ned as follows: before producing the �rst unit the algorithmbuys the machine mi that minimizes pi + ci amongst all machines available at thebeginning of the sequence. It then produces the �rst unit of commodity. The initialcost pi + ci is considered a production cost.Let � and � be positive constants satisfying 2=� � 1 and 1=� + 2� � 1. Inparticular we choose � = 2 and � = 1=4.Before producing any subsequent unit of commodity the algorithm considers buy-ing a new machine. However, it is not always allowed to buy a new machine. Whenan amount of c is spent as capital cost to buy a machine, it is not allowed to buyanother machine until the algorithm spends at least � � c on production.When it is allowed to buy a machine, the algorithm buys the machine mi thatminimizes production cost pi amongst all machines of capital cost at most � timesthe total production cost incurred since the beginning of the sequence. If no suchmachine is available, the algorithm does not buy a new machine.3.2 AnalysisWe prove that the competitive ratio of the above algorithm is 1 + �+ 1=� = 7.We use the following notation. Fix the sequence �. Denote by ON = ONc +ONpthe total cost of the algorithm that is equal to the sum of the total capital cost ONcand the total production cost ONp. Let pt be the production cost incurred by theon-line algorithm to produce unit number t. Let ONpt be the production cost incurredby the algorithm to produce the �rst t units, i.e., ONpt =Pti=1 pi. Let OPTt be theoptimal total (capital and production) cost to produce the �rst t units. We start byproving a bound on the total cost spent on purchasing machines, in terms of the totalproduction cost incurred.Lemma1. The total capital cost ONc incurred by the on-line algorithm is at most(�+ 1=�) its total production cost ONp.Proof. The capital cost of the last machine bought is at most � times the totalproduction cost. For every other machine, the production costs in the interval betweenthe time this machine has been bought, and the time the next machine is bought, isat least � times the capital cost of the machine. These intervals do not overlap, andthus the total capital cost of all the machines except the last one sums to at most1=� times the total production cost.We now relate the production cost of the on-line algorithm to the total cost ofthe o�-line algorithm.Lemma2. At any time t the production cost ONpt of the on-line algorithm is at mostthe total cost OPTt of the o�-line algorithm.



Proof. We prove the claim by induction on the number of units produced.For t = 1 the claim holds since the on-line production cost of the �rst unit (de�nedas the sum of the capital and the production costs of the �rst machine bought) isthe minimum possible expense to produce the �rst unit. Therefore ONp1 � OPT1.Consider unit t for t > 1, and assume the claim holds for any unit t0 < t. Let m bethe machine used by the on-line algorithm to produce unit t. Let m0 be the machineused by the optimal o�-line solution to produce unit t, p0 its production cost, and c0its capital cost.If p0 � pt then we have ONpt = ONpt�1 + pt � OPTt�1 + p0 � OPTt.If p0 < pt then the on-line algorithmdid not buy machinem0 just before producingunit t. Let the capital cost of the last machine bought by the on-line algorithm (i.e.m) be �c, and assume it was bought just before unit �t was produced. Since we considerthe convex case we have that p0 < pt = p�t implies c0 � �c.As we assume that the on-line algorithm did not buy m0 just before producingunit t, one of the following holds:1. The capital cost of machine m0 was too high, i.e., less than 1�c0 was spent onproduction since the start of the sequence.2. It was not allowed to buy any machine at this time: less than � � �c was spent onproduction since machinem was bought, and until unit number t�1 is produced.We consider each of these cases.For the �rst case we have that ONpt = ONpt�1 + pt � 2 � ONpt�1 � 2�c0 � OPTt.For the second case we haveONpt = ONp�t�1 + t�1Xi=�t pi + pt � ONp�t�1 + 2 t�1Xi=�t pi < ONp�t�1 + 2� � �c :We now distinguish between two cases, depending on whether machine m0 isavailable before unit �t is produced. The �rst case is that machinem0 becomes availableonly after unit �t is produced. In this case we haveONpt < ONp�t�1 + 2� � �c � OPT�t�1 + 2� � �c � OPT�t�1 + �c � OPT�t�1 + c0 � OPTt :The second case is when machinem0 is available before unit number �t is produced.We have that its capital cost, c0, is higher than � � ONp�t�1, otherwise the on-linealgorithm would have bought this (or a better) machine at time �t, which contradictsp�t > p0. Therefore we haveONpt < ONp�t�1 +2� � �c � ONp�t�1+ 2� � c0 � (1=�)c0+ 2� � c0 = (1=�+ 2�)c0 � OPTt :Combining Lemma 1 and Lemma 2 we get the following theorem.Theorem3. The algorithm presented above for the convex case of the on-line capitalinvestment problem is (1 + �+ 1=�)-competitive.



4 Lower Bound for the Non-Convex CaseIn contrast to the constant upper bound proved in the previous section, in this sectionwe prove a lower bound of 
(maxflogC; log logP= log log logP; logM= log logMg)on the competitive ratio of any on-line algorithm, where C is the ratio between thehighest and the lowest capital costs, P is the ratio between the highest and the lowestproduction costs, and M is the number of presented machines.We now describe the instance of the problem on which the lower bound is achieved.We let C be some large power of 2. The capital costs of all the machines in theinstance are powers of 2 between 1 and C, and their production costs will be of theform 1=logk C, for some integer k.We assign a level between 0 and logC to each machine; machines of level i havecapital cost ci = 2i.We say that a phase of level i starts when a machine of level i is presented. Aphase of level i ends when one of the following occurs:1. The on-line algorithm buys a machine of level i.2. The on-line algorithm has reached a global cost (production and capital) in thephase greater or equal to{ 1 for i = 0;{ 2 for i = 1;{ i2ci for i � 2.3. A phase of level higher than i ends.Immediately after the end of the phase a new machine of the same level is pre-sented and a new phase of the same level starts.Let nk(i) = i!k! for i = 1; : : : ; logC, k = 1; : : : ; logC�1, and let n0(i) = 2i!. Whena phase of level i with an associated machine of production cost p ends in Case 1or Case 2, a set of i + 1 machines are presented, one for each level j = 0; : : : ; i. Theproduction cost of the appropriate machine of level j is de�ned to bepj = p(logC)1+Pj�1k=0 nk(j) :At the beginning we assume that a phase of level i = logC and p = 1 ends, so that a�rst set of machines is presented, with capital and production costs as de�ned above.The sequence will be over with the end of the phase of level logC associated withthe machine of capital cost C presented at the beginning. The sequence is built sothat there is only one machine of capital cost C presented in the whole sequence, andthat machine's production cost is at most 1= logC the production cost of any othermachine presented in the sequence.We de�ne a relation of inclusion between phases. A phase of level i contains allthe phases of level j < i that start simultaneously or during the level i phase. Notethat no phase of level j > i starts during a phase of level i.We call a phase active if it is not yet ended. At every point in time one phase isactive at every level.We call a phase that ends in Case 1 or Case 2 a complete phase and a phase thatends in Case 3 an incomplete phase. If a phase of level i is complete then the i phasesat lower levels that have ended as a consequence of the end of this level i phase areincomplete.Lemma4. At most i machines of level i� 1 are presented during a phase of level ifor i � 2, and at most 2 machines of level 0 are presented during a phase of level 1.



Proof. For i = 1, the cost incurred by the on-line algorithm in every complete phaseof level 0 is at least 1, thus after at most 2 level 0 phases the on-line cost will reach2, and the level 1 phase will end in Case 2. For i � 2, a new machine of level i � 1is presented when the on-line algorithm buys the previous one of that level or whenits cost reaches i�12 ci�1. In any case, the on-line algorithm's cost for the phase oflevel i � 1 is at least ci�1. Hence, the maximum number x of phases of level i � 1 isrestricted to be xci�1 � i2ci, which implies x � i.The production costs de�ned above were chosen so as to obey the property statedin the following lemma.Lemma5. A machine of level i has production cost less or equal to 1=logC timesthe production cost of any machine of level k � i presented before the starting of thephase, and of any machine of level k < i presented during the phase.Proof. A new machine of level i is presented when a phase of level j � i ends. Let pbe the production cost of the machine associated with the phase of level j that hasjust ended. The production cost of the machine associated with the new phase oflevel i is pi = p(logC)1+Pi�1k=0 nk(i) . We prove the claim by induction. If a new phase oflevel i starts then a previous phase of level i has just ended. Say ~pi is the productioncost of the associated machine. We know that ~pi � p � pi logC. Since, by induction,the claim is true for the previous phase of level i, with production cost ~pi, then theproduction cost pi of the machine presented in the new phase of level i is less orequal than 1=logC times the production cost of any machine of level k � i presentedbefore the start of the phase.Let us prove the second part of the claim, i.e. that every machine presented inthe phase has production cost at least pi logC. First we prove it for a phase of leveli = 1. It contains at most 2 machines of level 0, with production cost plogC and plog2 C .Since pi = plog3 C , the claim is proved.Finally, we prove the claim for i > 1. We prove it for the machine associated to thelast phase of level i�1 contained in the phase of level i, by induction the machine withlowest production cost presented in the phase. In a phase of level i at most i machineof level i� 1 are presented . A new machine is presented when the previous phase oflevel i�1 is stopped because of Case 1 or Case 2. (Recall that no phase of level higherthan i ends during a phase of level i.) Hence, the production cost p0i�1 of the lastmachine of level i� 1 is p0i�1 = p(logC)i(1+Pi�2k=0 nk(i�1)) � p(logC)Pi�1k=0 nk(i) � pi logC :Consider a phase of level i. Let Oi and zi be respectively the global cost andthe production cost of the on-line algorithm during that phase. The global on-linecost in a phase is given by the production cost during the phase plus the capitalcost charged to the on-line algorithm for buying machines of level not higher than i(possibly including the machine of level i if the phase ends in Case 1).We will denote by Ai the global cost of the adversary in the case in which it iscommitted to buy either machines presented at the beginning of the phase of levelnot higher than i or machines presented during the phase that, by de�nition of thesequence, have level lower than i. In fact this is not a restriction since the cost paidby the adversary during the unique phase of level logC is equal to the global cost ofthe adversary over all the sequence.First, we state two upper bounds on the global cost Ai of the adversary duringa phase. The �rst upper bound considers the case in which the adversary only buys



the machine of level i. Observe that the machines of lower level presented at thebeginning or during the phase have production cost higher than the machine of leveli, and hence, in this case, can be ignored by the adversary.Lemma6. If the adversary buys the machine of level i, then Ai � 32ci:Proof. Since the on-line algorithm has not bought the machine of level i, then theadversary produces with a production cost that is at most 1logC times the on-lineproduction cost during the phase. Therefore the adversary's production cost duringthe phase is at most zilogC . We can assume logC � 2. For i = 0, we have thatA0 � c0+ z0logC � c0+ 1logC � 32c0. For i = 1, A1 � c1+ z1logC � c1+ 2logC � 3 = 32c1.Finally, for i � 2, the phase ends as soon as the global cost of the algorithm duringthe phases reaches the value i2ci. Then we have that zi � i2ci � logC2 ci. ThereforeAi � ci + zilogC � ci + ci2 = 32ci.The second upper bound on Ai considers the case in which the adversary does notbuy the machine of level i, and its global cost is composed by the sum of the costs ofthe phases of level i�1 contained in the phase of level i. A phase of level i (completeor incomplete) is partitioned into a sequence of phases of level i� 1, whose numberwe indicate with si. The last one of those phases is possibly incomplete, while the�rst si � 1 are complete. Thus, we get the following lemma.Lemma7. Let Aji�1, j = 1; : : : ; si be the global cost of the adversary during the j-thphase of level i � 1. Then Ai �Psij=1Aji�1:Theorem8. If an algorithm for the non-convex on-line capital investment problemis �-competitive then � = 
(logC).Proof. We �rst show that for any algorithm, the (unique) phase of level logC arrivesto an end. For this it is enough to show that the global cost incurred by the on-linealgorithm will eventually reach the value logC2 C. This follows immediately from thefact that the production costs of all the machines that are presented in this instanceare lower-bounded by the production cost of the machine of level logC, that is strictlypositive.We will now show that any on-line algorithmpays a global cost (over the sequence)of at least 16 logC times the cost of the adversary.We focus our attention on a phase of level i. The phase starts when a machine oflevel i is presented. By de�nition, one machine for each lower level is simultaneouslypresented. Observe that during this phase the on-line algorithm does not buy anymachine of level higher that i. Otherwise the phase immediately ends, a new machineof level i is presented and a new phase of level i starts.We prove the following inductive claim:{ Oi � i6Ai for a complete phase;{ Oi � i6Ai � ci2 for an incomplete phase.We prove the claim for each of the three cases in which a phase ends. Recall thatin Case 1 and Case 2 the phase is complete and the �rst part of the claim must beproved, while in Case 3 the phase is incomplete and the second part of the claimmust be proved. For Case 1 and Case 3 the proof is by induction on i. We assumethat the claim holds for phases of level i� 1. The claim is obviously true for i = 0.



1. In Case 1, the on-line algorithm buys the machine of level i before the globalproduction cost has reached the value i2ci. Then, the global cost of the on-linealgorithm in the phase is given by the sum of the costs for each of the si phasesof level i� 1 contained in the phase of level i, plus the capital cost ci for buyingthe machine of level i that ends the phase. Let Oji�1 be the global cost of theon-line algorithm during the j-th phase of level i � 1. Without loss of generalitywe consider that the last phase of level i�1 is an incomplete phase (the inductivehypothesis is otherwise stronger). ThenOi = siXj=1Oji�1 + ci � siXj=1 i � 16 Aji�1 � ci�12 + ci� i� 16 Ai + 34ci � i6Ai :The �rst inequality stems by applying the inductive hypothesis. The second in-equality is obtained from Lemma 7 and the relation ci = 2ci�1. Finally, the lastinequality follows from Lemma 6.2. In Case 2 the global cost of the on-line algorithm has reached the value i2ci. Then,applying Lemma 6, it follows thatOi = i2ci � i6Ai:3. In Case 3 the phase ends because a new machine of the same level is presented,i.e., a phase of a higher level ends in Case 1 or Case 2. The global cost of theon-line algorithm for an incomplete phase is obtained by summing up the globalcost for every phase of level i � 1 contained in the incomplete phase of leveli. Clearly, the capital cost of the machine of level i is not paid by the on-linealgorithm. Note that in this case the last phase of level i � 1 is also incomplete.The claim is proved as follows:Oi = siXj=1Oji�1 � siXj=1 i � 16 Aji�1 � ci�12� i � 16 Ai � ci2 + ci4 � i6Ai � ci2The �rst equality indicates the on-line global cost in the phase, while the �rstinequality is derived by applying the inductive hypothesis. The second inequalityis obtained from Lemma 7 and the relation between the capital costs of machinesof level i and i� 1, while the �nal inequality is derived from the upper bound onthe adversary's global cost of Lemma 6.Since the unique phase of level logC is a complete phase and its completion endsthe sequence, then the theorem follows from the claim on complete phases.The following corollary states the lower bound as a function of the ratio P betweenthe highest and the lowest production costs, and of the maximumnumber of presentedmachines M .Theorem9. If an algorithm for the non-convex on-line capital investment problemis �-competitive then � = 
( log logPlog log logP ) and � = 
( logMlog logM ).



Proof. The claim follows by observing that in the sequence for the 
(logC) lowerbound, the ratio between the maximum and the minimum production cost is P =(logC)(1+PlogC�1k=0 nk(logC)) = ((logC)O(logC)!) and the number of machines pre-sented is M � 1 +PlogC�1k=0 nk(logC) = O((logC)!).5 Upper Bound for the Non-Convex CaseIn this section we present an algorithm for the general (non-convex) case of the prob-lem. This algorithm achieves a competitive ratio of O(minflogC; log logP; logMg).5.1 The AlgorithmGiven any new machine with production cost pi, and capital cost ci, our algorithm�rst rounds these costs up to the nearest power of two, i.e., if 2j�1 < ci � 2j thenset ci = 2j, and if 2k�1 < pi � 2k then set pi = 2k.The algorithm is de�ned as follows. Before producing the �rst unit buy the ma-chine mi that minimizes pi + ci amongst all machines available at the beginning ofthe interval. It then produces the �rst unit of commodity. The initial cost pi + ci isconsidered a production cost.Before producing any subsequent unit, order all available machines by increasingproduction cost and (internally) increasing capital cost. Number the machines byindex i, and let pi, ci be the production costs and capital costs, respectively. For alli, pi � pi+1, and if pi = pi+1, then ci � ci+1. Buy the machine with least i thatsatis�es the two following conditions:{ Its production cost pi is smaller than the production cost of the current machine.{ A production cost of at least ci has been spent since the last time a machinewith capital cost ci has been bought (or since the beginning of the run, if no suchmachine has been previously bought).5.2 AnalysisWe prove that the above algorithm has competitive ratio ofO(minflogC; log logP; logMg). In the following analysis we assume that all capi-tal and production costs are indeed powers of 2, as rounded by the on-line algorithm.Clearly, an adversary that uses this modi�ed sequence incurs a cost of at most twicethe cost incurred by the real adversary that uses the real sequence.Denote by ON = ONc+ONp the total cost of the algorithm which is equal to thesum of the total capital cost ONc and of the total production cost ONp.Lemma10. The total capital cost ONc is at most O(logC) times the total productioncost ONp.Proof. For a given j, consider all the machines of cost 2j that are bought. A machineof cost 2j can be bought only after an amount of 2j has been spent on productionsince the last time a machine of the same cost has been bought (or since the beginningof the sequence, if not such machine was previously bought). It follows that for any j,the total cost of the algorithm for buying machines of cost 2j is at most ONp. Sincethere are at most dlogCe di�erent costs for the machines, ONc = O(ONp � logC).Lemma11. The total capital cost ONc is at most O(logM 0) times the total produc-tion cost ONp, where M 0 is the total number of machines bought.



Proof. Let 2l be the cost of the cheapest machine, and let 2k be the cost of the mostexpensive machine such that 2k � ONp. All machines bought by the algorithm havecosts between 2l and 2k. For any j, l � j � k, let bj be the number of machinesof cost 2j bought by the algorithm. An upper bound on the capital cost spent bythe algorithm is the maximum of Z = Pkj=l bj2j as a function of the variablesbj ; j = l; : : : ; k subject to constraints bj2j � ONp, andPkj=l bj =M 0.We relax the problem by allowing the variables bj to assume non-integer values.Clearly the solution to this relaxed problem is also an upper bound on ONc. Denoteby brj ; j = l; : : : ; k, the variables of the relaxed problem. For the optimal solution ofthe relaxed problem, there are no h and h0 such that l � h < h0 � k, bh > 0 andbh0 < ONp2h0 . Otherwise, there would have been a solution with higher value of theobjective function Z of the relaxed problem, achieved by reducing bh and increasingbh0 by the same amount, until either bh = 0, or bh0 = ONp2h0 .From the above observation we derive an upper bound on the maximum of theobjective function (and thus an upper bound on ONc). If ONp2k � M 0 then the max-imum is achieved by setting brk = M 0 and brj = 0 for l � j � k � 1. In this casePkj=l bj2j � ONp, and the lemma clearly holds.If ONp2k < M 0, let h� be the maximum integer such that Pkj=h� ONp2j � M 0. Anupper bound on the maximum of the objective function is obtained by assigningbrj = ONp2j , j = h� + 1; : : : ; k, brh� = M 0 �Pkj=h�+1 brj � ONp2h� , and brj = 0, forj = l; : : : ; h� � 1. The upper bound on the value of the objective function iskXj=l brj2j � kXj=h� brk2k�j2j = kXj=h� brk2k � ONp � (k � h� + 1) :It remains to show that k � h� + 1 = O(logM 0). By the de�nition of h�,Pkj=h�+1 2k�jbrk = Pkj=h�+1 brj = Pkj=h�+1 ONp2j < M 0. Therefore, we getPkj=h� 2k�jbrk � 3M 0 and thus (2k�h�+1 � 1) � 3M 0brk . Since ONp � 2k, it fol-lows that brk � 1, and we obtain 2k�h�+1 � 1 � 3M 0. Since M 0 � 1, we obtaink � h� + 1 = O(logM 0).Corollary 12. The total capital cost ONc is at most O(logM ) times the total pro-duction cost ONp.Corollary 13. The total capital cost ONc is at most O(log logP ) times the totalproduction cost ONp.Proof. The algorithm buys a machine only if the production cost decreases. Since allproduction costs are powers of 2, the algorithm buys at most O(logP ) machines.Lemma14. At any time the total production cost ONp of the on-line algorithm isat most twice the total cost of the o�-line algorithm.Proof. Let pt be the production cost incurred by the on-line algorithm to produceunit number t. Let ONpt be the production cost incurred by the algorithm to producethe �rst t units, i.e., ONpt = Pti=1 pi. Let OPTt be the lowest (optimal) cost toproduce the �rst t units.We prove by induction on t that ONpt � 2 �OPTt.



To produce the �rst unit the on-line algorithm buys the machine that minimizesthe sum of production and capital costs. This is the minimumpossible cost to producethe �rst unit. Thus, ONp1 � OPT1.Consider unit t for t > 1, and assume that the claim holds for every unit numbert0, t0 < t. Let m be the machine used by ON to produce unit t. Let m0 be the machineused by OPT to produce unit t, p0 its production cost and c0 its capital cost.If pt � p0 then we haveONpt = ONpt�1 + pt � 2 �OPTt�1 + pt � 2 �OPTt�1 + p0 � 2 �OPTt :We now consider the case in which p0 < pt. It follows that the on-line algorithmdid not buy machine m0 although it was available before unit t is produced. If thishappens one of the following holds:{ The production cost incurred by the on-line algorithm by time t� 1 is less thanc0. On the other hand, the optimal o�-line algorithm buys machine m0, incurringa cost of c0. It follows thatONpt = ONpt�1 + pt � 2 �ONpt�1 � 2c0 � 2 �OPTt :{ Some machine of cost c0 was previously bought by the on-line algorithm, but theproduction cost incurred by the algorithm since then is less than c0. Assume thatsuch machine was bought just before unit �t was produced. As unit t is producedwith production cost higher than p0, we can conclude that m0 was not availablebefore unit �t was produced. Thus, m0 was bought by the o�-line algorithm afterunit �t is produced. On the other hand, the on-line production cost since theproduction of unit �t is less than c0. Therefore, we haveONpt = ONp�t�1 + t�1Xi=�t pi + pt � ONp�t�1 + 2 t�1Xi=�t pi � 2 �OPT�t�1 + 2c0 � 2 �OPTt :We conclude with the following theorem, whose proof is straightforward from theprevious lemmata.Theorem15. The competitive ratio of the on-line capital investment algorithm de-scribed above is O(minflogC; log logP; logMg).References1. A. Chou, J. Cooperstock, R. El-Yaniv, M. Klugerman and F. Leighton. The StatisticalAdversary Allows Optimal Money-making Trading Strategies. In Proceedings of the 6thAnnual ACM/SIAM Symposium on Discrete algorithms, 1995.2. R. El-Yaniv, A. Fiat, R. Karp and G. Turpin. Competitive Analysis of Financial Games.In Proc. of the 33rd IEEE Annual Symposium on Foundations of Computer Science,1992.3. R. El-Yaniv and R.M. Karp. The Mortgage Problem. In Proceedings of the 2nd IsraeliSymposium on Theory of Computing and Systems, pp. 304{312, June 1993.4. R.M. Karp, On-line Algorithms Versus O�-line Algorithms: How Much is it Worth toKnow the Future?. In Proc. World Computer Congress, 1992.5. P. Raghavan. A Statistical Adversary for On-line Algorithms. DIMACS Series in DiscreteMathematics and Theoretical Computer Science, Vol 7:79-83, 1992.6. D.D. Sleator and R.E. Tarjan. Amortized E�ciency of List Update and Paging Rules.Communications of the ACM. 28:202{208, February 1985.This article was processed using the LaTEX macro package with LLNCS style


