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Abstract. We deal with the problem of making capital investments in ma-
chines for manufacturing a product. Opportunities for investment occur over
time, every such option consists of a capital cost for a new machine and a re-
sulting productivity gain, i.e., a lower production cost for one unit of product.
The goal is that of minimizing the total production and capital costs when
future demand for the product being produced and investment opportunities
are unknown. This can be viewed as a generalization of the ski-rental problem
and related to the mortgage problem [3].

If all possible capital investments obey the rule that lower production costs
require higher capital investments, then we present an algorithm with constant
competitive ratio.

If new opportunities may be strictly superior to previous ones (in terms of
both capital cost and production cost), then we give an algorithm which is
O(min{log C,loglog P,log M}) competitive, where C is the ratio between the
highest and the lowest capital costs, P is the ratio between the highest and the
lowest production costs, and M is the number of investment opportunities. We
also present a lower bound on the competitive ratio of any on-line algorithm
for this case which is 2(max{log C, log)lgog)lgogp, lolgoig/IM ). This shows that
the competitive ratio of our algorithm 1s tight (up to constant factors) as a
function of €', and not far from the best achievable as a function of P and M.
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1 Introduction

We consider the problem of manufacturing costs versus capital investment. A fac-
tory uses machines for producing units of some product. The production of each unit
requires some fixed cost for using the machine (electricity, raw material, etc.). Over
time opportunities for investment in new machines, that would replace the old ones,
become available. Such opportunities could be the result of technological improve-
ment, relocation to a cheaper market, or any other investment that would replace
the facilities of the factory and would lead to lower production costs. We model all
these opportunities as machines that can be bought, and then used to produce the
units of the product. The factory must decide if to invest in buying new machines
to reduce production costs while neither future demand for the product nor future
investment opportunities are known.

Many financial problems require to take decisions without having knowledge, or
while having only partial knowledge, of future opportunities. Competitive analysis
of financial problems has received an increasing attention during the last years, for
instance for currency exchange problems [2] or asset allocation [5].

The problem considered in this paper is a generalization of one of the basic on-
line problems, the ski-rental problem due to L. Rudolph (see [4]), a model for the
well known practical problem “rent or buy?”. The ski-rental problem can be stated
as follows: you don’t know in advance how many times you will go skiing; renting
a pair of skis costs $r; to purchase your own pair costs $p. When do you buy? It is
not hard to see that the best competitive ratio is obtained if you buy when the total
rental cost (thus far) is equal to the cost of buying your own pair. Another problem
considered in this model in the past is the so-called mortgage problem [3], where a
fluctuating mortgage rate and associated re-financing charges lead to the question,
re-finance or not?

While for the ski-rental problem the only possible capital expenditure is to pur-
chase a pair of skis, and then the “production” costs drop to zero, in the capital
investment problem there may be many future capital expenditure options and the
resulting productivity gains are unknown. Unlike the mortgage problem where the
future demand is the servicing the entire debt (which is a known fixed value), and a
capital investment has a fixed cost, in the capital investment problem future demand
is unknown and capital investments may have arbitrary costs.

We consider two models for our problem, and call the first one the convex case.
Here, we assume that to get a lower production cost, one must spend more as cap-
ital expenditures. In this case we get a constant competitive ratio. This scenario is
usually true in manufacturing: purchasing a better machine costs more. However,
sometimes technological breakthroughs are achieved, after which both machine costs
and production costs are reduced. This matches our second model, the non-convex
case, which allows both capital and production costs to drop.

In contrast to the convex case, for the non-convex case we present a lower bound on
the competitive ratio of any on-line algorithm for the problem which is
(max{log C,loglog P/ logloglog P, log M/ loglog M}), where C'is the ratio between
the highest and the lowest capital costs, P is the ratio between the highest and the
lowest production costs, and M is the number of investment opportunities. We com-
plement this lower bound with an algorithm for general capital investment scenarios
which is O(min{log C,loglog P, log M }) competitive.



2 The On-line Capital Investment Problem

Imagine a factory whose goal is to produce units of some commodity at low cost. From
time to time, orders for units of the commodity arrive, and at times new machines
become available. Every such machine is characterized by its production cost, and by
its capital cost. The production cost is the cost of producing one unit of commodity
using this machine. The capital cost is the capital investment necessary to buy the
machine. We assume that once a machine becomes available, then it is available
forever. We also assume that one can produce an unlimited number of units with
any machine. An algorithm for this problem has to decide what machines to buy and
when to do so, as to minimize the total cost (capital costs plus production costs).

More formally, an instance of the problem consists of a sequence of machines,
and a sequence of orders of demand. Machine m; is defined by the triplet (¢;, ¢, p;),
where £; 1s the time at which the machine becomes available, ¢; 1s its capital cost, and
p; 18 its production cost. Every order is defined by its arrival time. Without loss of
generality we may assume that the j’th order appears at time j. Moreover, since any
reasonable algorithm will not buy a new machine when there i1s no order pending, we
can assume that for any machine ¢ such that j <¢; <j+1,¢ =5+ 1. At any time
t, the algorithm can buy any of the available machines (those with ¢; < t), and then
produce one unit of the commodity.

We say that machine m; dominates machine m; if both the production cost and
the capital cost of m; are lower than those of m;. We call an instance of the problem
conver if no machine presented dominates another. I.e., an instance is convex if for
any two machines 7, j such that p; < p; it holds that ¢; > ¢;. To help distinguish
between the two versions of the problem, we call the general case non-convez.

We note that if all machines are available at the very beginning, then all machines
that are dominated by others can be removed. Thus, whenever all machines are
available in advance, we are left with the convex setting. The non-convex setting only
makes sense if machines appear over time and it is possible that a better machine (in
terms of both capital cost and production cost criteria) will appear later.

2.1 Performance Measures

We measure the performance of an on-line algorithm for this problem by its compet-
itive ratio [6]. Let o be a sequence of offers of machines and orders of demand for
units of the commodity to be produced.

We denote by ON(o) the cost of the on-line algorithm ON for the problem over
the sequence o, and with OPT(o) the cost of an optimal off-line algorithm that
knows the entire sequence o in advance. We parameterize the sequences by the ratio
between the cost of the most expensive and cheapest machines (denoted by '), by
the ratio between the highest and the lowest production cost (denoted by P), and by
the total number of machines presented during the sequence (denoted by M). Denote
by Z(C, P, M) the set of sequences that obey the above restrictions.

The competitive ratio of an algorithm may be a function of the above parameters.
An on-line algorithm ON is p(C, P, M )-competitive for a set X(C, P, M) of sequences
if

sup Ol\Iivt)gp(C',P,]\i).
sex(c,pu) OPT(0)



3 Upper Bound for the Convex Case

In this section we study the convex case in which a machine with a lower production
cost cannot be cheaper than a machine with a higher production cost. We present
an on-line algorithm for the convex case with competitive ratio 7.

3.1 The Algorithm

The algorithm is defined as follows: before producing the first unit the algorithm
buys the machine m; that minimizes p; 4+ ¢; amongst all machines available at the
beginning of the sequence. It then produces the first unit of commodity. The initial
cost p; + ¢; 1s considered a production cost.

Let « and § be positive constants satisfying 2/a < 1 and 1/a + 28 < 1. In
particular we choose @ = 2 and g = 1/4.

Before producing any subsequent unit of commodity the algorithm considers buy-
ing a new machine. However, it is not always allowed to buy a new machine. When
an amount of ¢ is spent as capital cost to buy a machine, it is not allowed to buy
another machine until the algorithm spends at least 3 - ¢ on production.

When it 1s allowed to buy a machine, the algorithm buys the machine m; that
minimizes production cost p; amongst all machines of capital cost at most « times
the total production cost incurred since the beginning of the sequence. If no such
machine is available, the algorithm does not buy a new machine.

3.2 Analysis

We prove that the competitive ratio of the above algorithm is 1 + «+ 1/3 =7.

We use the following notation. Fix the sequence o. Denote by ON = ON° + ON?
the total cost of the algorithm that is equal to the sum of the total capital cost ON*
and the total production cost ONP. Let p' be the production cost incurred by the
on-line algorithm to produce unit number ¢. Let ON? be the production cost incurred
by the algorithm to produce the first ¢ units, i.e., ON¥ = 22:1 p'. Let OPT; be the
optimal total (capital and production) cost to produce the first ¢ units. We start by
proving a bound on the total cost spent on purchasing machines; in terms of the total
production cost incurred.

Lemmal. The total capital cost ON® incurred by the on-line algorithm is at most
(o + 1/3) its total production cost ONF.

Proof. The capital cost of the last machine bought is at most a times the total
production cost. For every other machine, the production costs in the interval between
the time this machine has been bought, and the time the next machine is bought, is
at least § times the capital cost of the machine. These intervals do not overlap, and
thus the total capital cost of all the machines except the last one sums to at most
1// times the total production cost. W

We now relate the production cost of the on-line algorithm to the total cost of
the off-line algorithm.

Lemma2. At any timet the production cost ONY of the on-line algorithm is at most
the total cost OPTy of the off-line algorithm.



Proof. We prove the claim by induction on the number of units produced.

Fort = 1 the claim holds since the on-line production cost of the first unit (defined
as the sum of the capital and the production costs of the first machine bought) is
the minimum possible expense to produce the first unit. Therefore ON7 < OPT;.

Consider unit ¢ for ¢ > 1, and assume the claim holds for any unit ¢ < ¢. Let m be
the machine used by the on-line algorithm to produce unit ¢. Let m’ be the machine
used by the optimal off-line solution to produce unit ¢, p’ its production cost, and ¢’
its capital cost.

If p’ > p' then we have ONY = ONY_, + p' < OPT,_; +p' < OPT,.

If p’ < p' then the on-line algorithm did not buy machine m’ just before producing
unit ¢. Let the capital cost of the last machine bought by the on-line algorithm (i.e.
m) be ¢, and assume it was bought just before unit ¢ was produced. Since we consider
the convex case we have that p’ < p' = p* implies ¢/ > ¢.

As we assume that the on-line algorithm did not buy m’ just before producing
unit ¢, one of the following holds:

1. The capital cost of machine m’ was too high, i.e., less than %c’ was spent on
production since the start of the sequence.

2. It was not allowed to buy any machine at this time: less than 3 - ¢ was spent on
production since machine m was bought, and until unit number £ —1 is produced.

We consider each of these cases.
For the first case we have that ONY = ONY_, +p* < 2.ONY_, < %c’ < OPT;,.
For the second case we have

t—1 t—1
ON? = ONP_, +Zpi +p' <ON?_, —I-QZpi <ONEZ  +283-¢.

=1 1=t

We now distinguish between two cases, depending on whether machine m’ is
available before unit ¢ is produced. The first case is that machine m’ becomes available
only after unit  is produced. In this case we have

ONP < ONP_| 4+28-¢ < OPTy_; +283-¢ < OPTr_, +¢ < OPTi, 4 ¢ < OPT, .

The second case is when machine m/' is available before unit number ¢ is produced.

We have that its capital cost, ¢/, is higher than « - ON?_l, otherwise the on-line

algorithm would have bought this (or a better) machine at time ¢, which contradicts
pt > p'. Therefore we have

ON? <ONP_ +28.-¢<ON!_ +20.¢ <(1/a)d' +26-¢ = (1/a+26)¢ < OPT; .

Combining Lemma 1 and Lemma 2 we get the following theorem.

Theorem 3. The algorithm presented above for the convexr case of the on-line capital
investment problem is (1 + o + 1/53)-competitive.



4 Lower Bound for the Non-Convex Case

In contrast to the constant upper bound proved in the previous section, in this section
we prove a lower bound of £2(max{logC,loglog P/logloglog P,log M/ loglog M})
on the competitive ratio of any on-line algorithm, where C' is the ratio between the
highest and the lowest capital costs, P is the ratio between the highest and the lowest
production costs, and M is the number of presented machines.

We now describe the instance of the problem on which the lower bound is achieved.
We let C' be some large power of 2. The capital costs of all the machines in the
instance are powers of 2 between 1 and C', and their production costs will be of the
form 1/logk C, for some integer k.

We assign a level between 0 and logC' to each machine; machines of level ¢ have
capital cost ¢; = 2°.

We say that a phase of level ¢ starts when a machine of level i is presented. A
phase of level i ends when one of the following occurs:

1. The on-line algorithm buys a machine of level i.
2. The on-line algorithm has reached a global cost (production and capital) in the
phase greater or equal to
— 1for ¢ =0;
— 2for i =1;
— %ci for ¢ > 2.
3. A phase of level higher than ¢ ends.

Immediately after the end of the phase a new machine of the same level is pre-
sented and a new phase of the same level starts.

Let ng (i) = % fori=1,...,logC, k=1,...,logC—1, and let ng(7) = 2¢!. When

a phase of level ¢ with an associated machine of production cost p ends in Case 1
or Case 2, a set of i + 1 machines are presented, one for each level j = 0,... 7. The
production cost of the appropriate machine of level j is defined to be
_ P
P =

(log Oy + 221 ™0

At the beginning we assume that a phase of level ¢ = logC' and p = 1 ends, so that a
first set of machines is presented, with capital and production costs as defined above.

The sequence will be over with the end of the phase of level log (' associated with
the machine of capital cost C' presented at the beginning. The sequence is built so
that there is only one machine of capital cost C' presented in the whole sequence, and
that machine’s production cost is at most 1/logC' the production cost of any other
machine presented in the sequence.

We define a relation of inclusion between phases. A phase of level i contains all
the phases of level j < i that start simultaneously or during the level i phase. Note
that no phase of level j > ¢ starts during a phase of level i.

We call a phase active if it is not yet ended. At every point in time one phase is
active at every level.

We call a phase that ends in Case 1 or Case 2 a complete phase and a phase that
ends in Case 3 an incomplete phase. If a phase of level ¢ is complete then the ¢ phases
at lower levels that have ended as a consequence of the end of this level ¢ phase are
incomplete.

Lemma4. At most i machines of level i — 1 are presented during a phase of level i
for > 2, and at most 2 machines of level 0 are presented during a phase of level 1.



Proof. For i = 1, the cost incurred by the on-line algorithm in every complete phase
of level 0 is at least 1, thus after at most 2 level 0 phases the on-line cost will reach
2, and the level 1 phase will end in Case 2. For ¢ > 2, a new machine of level ¢ — 1
is presented when the on-line algorithm buys the previous one of that level or when
its cost reaches i_Tlci_l. In any case, the on-line algorithm’s cost for the phase of
level ¢ — 1 is at least ¢;_1. Hence, the maximum number x of phases of level i — 1 is
restricted to be we;_1 < %ci, which implies z <i. ®

The production costs defined above were chosen so as to obey the property stated
in the following lemma.

Lemmab. A machine of level i has production cost less or equal to 1/logC times
the production cost of any machine of level k < 1 presented before the starting of the
phase, and of any machine of level k < @ presented during the phase.

Proof. A new machine of level 7 1s presented when a phase of level 5 > ¢ ends. Let p
be the production cost of the machine associated with the phase of level j that has
just ended. The production cost of the machine associated with the new phase of
level ¢ 18 p; =

L . We prove the claim by induction. If a new phase of
(log C)1+Zk20 mk ()
level ¢ starts then a previous phase of level ¢ has just ended. Say p; is the production
cost of the associated machine. We know that p; > p > p; log C'. Since, by induction,
the claim is true for the previous phase of level ¢, with production cost p;, then the
production cost p; of the machine presented in the new phase of level 7 is less or
equal than 1/log C' times the production cost of any machine of level k < i presented
before the start of the phase.
Let us prove the second part of the claim, i.e. that every machine presented in
the phase has production cost at least p; logC. First we prove it for a phase of level

¢t = 1. It contains at most 2 machines of level 0, with production cost @ and IOgLQC.
Since p; = logLaC’ the claim is proved.

Finally, we prove the claim for 7 > 1. We prove it for the machine associated to the
last phase of level i—1 contained in the phase of level 4, by induction the machine with
lowest production cost presented in the phase. In a phase of level ¢ at most ¢ machine
of level ¢ — 1 are presented . A new machine is presented when the previous phase of
level i—1 is stopped because of Case 1 or Case 2. (Recall that no phase of level higher
than ¢ ends during a phase of level i.) Hence, the production cost p;_; of the last

machine of level i — 1is pi_, = L > E— >p; logC .
(1ogc)’“+zk:u =) T, C)Zk:D ng ()

Consider a phase of level ¢. Let O; and z; be respectively the global cost and
the production cost of the on-line algorithm during that phase. The global on-line
cost in a phase is given by the production cost during the phase plus the capital
cost charged to the on-line algorithm for buying machines of level not higher than ¢
(possibly including the machine of level ¢ if the phase ends in Case 1).

We will denote by A; the global cost of the adversary in the case in which it is
committed to buy either machines presented at the beginning of the phase of level
not higher than ¢ or machines presented during the phase that, by definition of the
sequence, have level lower than 7. In fact this is not a restriction since the cost paid
by the adversary during the unique phase of level log C' is equal to the global cost of
the adversary over all the sequence.

First, we state two upper bounds on the global cost A; of the adversary during
a phase. The first upper bound considers the case in which the adversary only buys



the machine of level . Observe that the machines of lower level presented at the
beginning or during the phase have production cost higher than the machine of level
¢, and hence, in this case, can be ignored by the adversary.

Lemma 6. [f the adversary buys the machine of level ¢, then A; < %ci.
Proof. Since the on-line algorithm has not bought the machine of level 7, then the
adversary produces with a production cost that is at most @ times the on-line
production cost during the phase. Therefore the adversary’s production cost during

the phase is at most loZglC' We can assume log(C' > 2. For ¢ = 0, we have that

A()SCO—F]OZﬁSCQ—F@S%CQ.FOIizl,Al§61+1:‘?§61+ﬁ§32%Cl.

Finally, for ¢ > 2, the phase ends as soon as the global cost of the algorithm during

the phases reaches the value %cl Then we have that z; < %ci < lﬂgﬁci. Therefore
Ai < i+ g <ci+%=3¢ m

The second upper bound on A; considers the case in which the adversary does not

buy the machine of level ¢, and its global cost 1s composed by the sum of the costs of
the phases of level i — 1 contained in the phase of level ¢. A phase of level ¢ (complete
or incomplete) is partitioned into a sequence of phases of level i — 1, whose number
we indicate with s;. The last one of those phases is possibly incomplete, while the
first s; — 1 are complete. Thus, we get the following lemma.

Lemma7. Let Ag_l, j=1,...,8; be the global cost of the adversary during the j-th

phase of level i — 1. Then A; < Z]s’zl Al

Theorem 8. If an algorithm for the non-conver on-line capital investment problem
is p-competitive then p = 2(log C).

Proof. We first show that for any algorithm, the (unique) phase of level log C' arrives
to an end. For this it 1s enough to show that the global cost incurred by the on-line
algorithm will eventually reach the value lﬂgﬁC’. This follows immediately from the
fact that the production costs of all the machines that are presented in this instance
are lower-bounded by the production cost of the machine of level log C'| that is strictly
positive.

We will now show that any on-line algorithm pays a global cost (over the sequence)
of at least %logC’ times the cost of the adversary.

We focus our attention on a phase of level ¢. The phase starts when a machine of
level 7 is presented. By definition, one machine for each lower level is simultaneously
presented. Observe that during this phase the on-line algorithm does not buy any
machine of level higher that ¢. Otherwise the phase immediately ends, a new machine
of level i is presented and a new phase of level ¢ starts.

We prove the following inductive claim:

- 0; > %Ai for a complete phase;
- 0; > %Ai — 4 for an incomplete phase.

We prove the claim for each of the three cases in which a phase ends. Recall that
in Case 1 and Case 2 the phase is complete and the first part of the claim must be
proved, while in Case 3 the phase is incomplete and the second part of the claim
must be proved. For Case 1 and Case 3 the proof is by induction on . We assume
that the claim holds for phases of level ¢ — 1. The claim is obviously true for ¢ = 0.



1. In Case 1, the on-line algorithm buys the machine of level i before the global
production cost has reached the value %cl Then, the global cost of the on-line
algorithm in the phase 1s given by the sum of the costs for each of the s; phases
of level ¢ — 1 contained in the phase of level 7, plus the capital cost ¢; for buying
the machine of level ¢ that ends the phase. Let O]_, be the global cost of the
on-line algorithm during the j-th phase of level ¢+ — 1. Without loss of generality
we consider that the last phase of level i—1 is an incomplete phase (the inductive
hypothesis is otherwise stronger). Then

S; ) S; ._1 ) .
0= 0l +az Y T al, - St
j=1 ji=1

i—1 3
—A; —c; > = A; .
6 T35

v

The first inequality stems by applying the inductive hypothesis. The second in-

equality is obtained from Lemma 7 and the relation ¢; = 2¢;_;1. Finally, the last
inequality follows from Lemma 6.

2. In Case 2 the global cost of the on-line algorithm has reached the value %cl Then,
applying Lemma 6, it follows that

Oi = 5ei >+

A
2

3. In Case 3 the phase ends because a new machine of the same level is presented,
i.e., a phase of a higher level ends in Case 1 or Case 2. The global cost of the
on-line algorithm for an incomplete phase i1s obtained by summing up the global
cost for every phase of level i — 1 contained in the incomplete phase of level
t. Clearly, the capital cost of the machine of level i is not paid by the on-line
algorithm. Note that in this case the last phase of level 7 — 1 is also incomplete.
The claim is proved as follows:

. i—1 e
Oi:ZO‘ZZ—l ZZ 6 A‘Zz—l_ 9
j=1 j=1

> — A — = By A
- 6A 2 476 2

The first equality indicates the on-line global cost in the phase, while the first
inequality is derived by applying the inductive hypothesis. The second inequality
is obtained from Lemma 7 and the relation between the capital costs of machines
of level ¢ and ¢ — 1, while the final inequality is derived from the upper bound on
the adversary’s global cost of Lemma 6.

Since the unique phase of level log C' 1s a complete phase and its completion ends
the sequence, then the theorem follows from the claim on complete phases. H

The following corollary states the lower bound as a function of the ratio P between
the highest and the lowest production costs, and of the maximum number of presented
machines M.

Theorem 9. If an algorithm for the non-convexr on-line capital investment problem

4 L log log P log M
is p-competitive then p = Q(Tgoﬁﬁ%—lj) and p = Q(Tgolgog—M)‘



Proof. The claim follows by observing that in the sequence for the £2(logC') lower
bound, the ratio between the maximum and the minimum production cost is P =

logC—1
(logC’)(HZk:go nk(lOgC)) = ((log )18y and the number of machines pre-
sented is M <1+ 220500—1 nip(log C) = O((logC)Y). m

5 Upper Bound for the Non-Convex Case

In this section we present an algorithm for the general (non-convex) case of the prob-
lem. This algorithm achieves a competitive ratio of O(min{log C,loglog P, log M }).

5.1 The Algorithm

Given any new machine with production cost p;, and capital cost ¢;, our algorithm
first rounds these costs up to the nearest power of two, ie., if 227! < ¢; < 2/ then
set ¢; = 2/, and if 287! < p; < 2% then set p; = 2F.

The algorithm is defined as follows. Before producing the first unit buy the ma-
chine m; that minimizes p; + ¢; amongst all machines available at the beginning of
the interval. It then produces the first unit of commodity. The initial cost p; + ¢; 1s
considered a production cost.

Before producing any subsequent unit, order all available machines by increasing
production cost and (internally) increasing capital cost. Number the machines by
index ¢, and let p;, ¢; be the production costs and capital costs, respectively. For all
1, pi < pit1, and if p; = piy1, then ¢; < ¢;41. Buy the machine with least ¢ that
satisfies the two following conditions:

— Its production cost p; is smaller than the production cost of the current machine.

— A production cost of at least ¢; has been spent since the last time a machine
with capital cost ¢; has been bought (or since the beginning of the run, if no such
machine has been previously bought).

5.2 Analysis

We  prove that the above algorithm has competitive ratio of
O(min{log C,loglog P,log M }). In the following analysis we assume that all capi-
tal and production costs are indeed powers of 2, as rounded by the on-line algorithm.
Clearly, an adversary that uses this modified sequence incurs a cost of at most twice
the cost incurred by the real adversary that uses the real sequence.

Denote by ON = ON“+ ON? the total cost of the algorithm which is equal to the
sum of the total capital cost ON® and of the total production cost ON?.

Lemma 10. The total capital cost ON° is at most O(log C') times the total production
cost ONF,

Proof. For a given j, consider all the machines of cost 2/ that are bought. A machine
of cost 27 can be bought only after an amount of 2/ has been spent on production
since the last time a machine of the same cost has been bought (or since the beginning
of the sequence, if not such machine was previously bought). It follows that for any j,
the total cost of the algorithm for buying machines of cost 2/ is at most ON”. Since
there are at most [log C'] different costs for the machines, ON° = O(ON? -logC'). ®

Lemma11. The total capital cost ON® is at most O(log M") times the total produc-
tion cost ONF | where M’ is the total number of machines bought.



Proof. Let 2! be the cost of the cheapest machine, and let 2% be the cost of the most
expensive machine such that 28 < ONP. All machines bought by the algorithm have
costs between 2" and 2%. For any j, | < j < k, let b; be the number of machines
of cost 2/ bought by the algorithm. An upper bound on the capital cost spent by
the algorithm is the maximum of 7 = Zle b;27 as a function of the variables
bj,j=1,... k subject to constraints b;2/ < ON?, and Zle by = M'.

We relax the problem by allowing the variables b; to assume non-integer values.
Clearly the solution to this relaxed problem is also an upper bound on ON°. Denote
by b7,7 =1, ..., k, the variables of the relaxed problem. For the optimal solution of
the relaxed problem, there are no h and A’ such that [ < h < A’ <k, by > 0 and
b < 021}\1111‘. Otherwise, there would have been a solution with higher value of the
objective function Z of the relaxed problem, achieved by reducing by and increasing
by by the same amount, until either by = 0, or by = Ozl,f,p.

From the above observation we derive an upper bound on the maximum of the
objective function (and thus an upper bound on ON°). If Ozlip > M’ then the max-
imum is achieved by setting ¥, = M’ and b; = 0for Il < j <k —1 In this case

Zle b;27 < ON? | and the lemma clearly holds.

If 021211‘ M, let h* be the maximum integer such that Z] e ONP > M'. An
upper bound on the maximum of the objective function is obtamed by assigning
» . k P
by = O j=h 41,k b = M =5 pe b < 2%, and b;f.: 0, for
j=1...,h" — 1. The upper bound on the value of the objective function is

k
Zm] < Z bp2F 20 = 3" b2k <ONP . (k— A" +1) .
j=h* Jj=h*
It remains to show that £ — h* + 1 = O(log M’). By the definition of A*,
r r k »

Z] P 2k=ipr = Z] chep1 U = 2 O < M'. Therefore, we get
Z] e 2P0 < 3M’ and thus (Qk_h 1) < 3% Since ONP > 2% it fol-
lows that 6} > 1, and we obtain 2k=h"+1 _ 1 < 3M'. Since M’ > 1, we obtain
k—h"+1=0(ogM’'). ®

Corollary 12. The total capital cost ON® is at most O(log M) times the total pro-
duction cost ONF,

Corollary 13. The total capital cost ON° is at most O(loglog P) times the total
production cost ONF,

Proof. The algorithm buys a machine only if the production cost decreases. Since all
production costs are powers of 2, the algorithm buys at most O(log P) machines. W

Lemma 14. At any time the total production cost ON¥ of the on-line algorithm is
at most twice the total cost of the off-line algorithm.

Proof. Let p' be the production cost incurred by the on-line algorithm to produce
unit number ¢. Let ONY be the production cost incurred by the algorithm to produce
the first ¢ units, i.e., ON¥ = 22:1 p'. Let OPT; be the lowest (optimal) cost to
produce the first ¢ units.

We prove by induction on ¢ that ON¥ < 2. OPT,.



To produce the first unit the on-line algorithm buys the machine that minimizes
the sum of production and capital costs. This is the minimum possible cost to produce
the first unit. Thus, ON} < OPT;.

Consider unit ¢ for ¢ > 1, and assume that the claim holds for every unit number
t' ¢ < 1. Let m be the machine used by ON to produce unit t. Let m’ be the machine
used by OPT to produce unit ¢, p’ its production cost and ¢’ its capital cost.

If pt < p’ then we have

ON? = ON?_, 4+p' <2.-OPT;_; +p' <2 -OPT,_; +p' <2-OPT,.

We now consider the case in which p’ < p’. It follows that the on-line algorithm
did not buy machine m’ although it was available before unit ¢ is produced. If this
happens one of the following holds:

— The production cost incurred by the on-line algorithm by time ¢ — 1 is less than
¢’. On the other hand, the optimal off-line algorithm buys machine m’, incurring
a cost of ¢/. It follows that

ON} = ONJ_, +p' <2-ON{_, <2¢ <2-OPT; .

Some machine of cost ¢’ was previously bought by the on-line algorithm, but the
production cost incurred by the algorithm since then is less than ¢’. Assume that
such machine was bought just before unit ¢ was produced. As unit ¢ is produced
with production cost higher than p’, we can conclude that m’ was not available
before unit ¢ was produced. Thus, m’ was bought by the off-line algorithm after
unit ¢ is produced. On the other hand, the on-line production cost since the
production of unit ¢ is less than ¢’. Therefore, we have
t—1 t—1
ON/ = ON?_ | +3 " pi+p' <ONZ_ +2) " p! <2.OPTi_; +2¢' <2 OPT, .
i=t i=t
|

We conclude with the following theorem, whose proof is straightforward from the
previous lemmata.

Theorem 15. The competitive ratio of the on-line capital investment algorithm de-

seribed above is O(min{log C| loglog P,log M }).
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