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Abstract. We consider the problem of assigning a set of jobs to m par-
allel related machines so as to maximize the minimum load over the
machines. This situation corresponds to a case that a system which con-
sists of the m machines is alive (i.e. productive) only when all machines
are alive, and the system should be maintained alive as long as possible.
The above problem is called related machines covering problem and is dif-
ferent from the related machines scheduling problem in which the goal is
to minimize the maximum load. Our main result is a polynomial approx-
imation scheme for this covering problem. To the best of our knowledge
the previous best approximation algorithm has a performance ratio of 2.
Also, an approximation scheme for the special case of identical machines
was given by [14].

Some of our techniques are built on ideas of Hochbaum and Shmoys
[12]. They provided an approximation scheme for the well known related
machines scheduling. In fact, our algorithm can be adapted to provide
a simpler approximation scheme for the related machines scheduling as
well.

1 Introduction

We consider the problem of assigning a set of jobs to m parallel related ma-
chines so as to maximize the minimum load over the machines. This situation is
motivated by the following scenario. A system which consists of m related ma-
chines is alive (i.e. productive) only when all machines are alive. The duration
that a machine is alive is proportional to the total size of the resources (e.g.
tanks of fuel) allocated to it. The goal is to keep the system alive as long as
possible using a set of various sizes resources. The above problem has applica-
tions also in sequencing of maintenance actions for modular gas turbine aircraft
engines [8]. To conform with the standard scheduling terminology we view the
resources as jobs. Thus, jobs are assigned to machines so as to maximize the
minimum load. In the related machines case each machine has its own speed
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(of the engine that operates on fuel). The identical machines case is a special
case where all speeds of machines are identical. We refer to these problems as
machines covering problems. Note that the classical scheduling/load-balancing
problems [10, 11, 12, 13] seem strongly related to the covering problems. How-
ever, scheduling/load-balancing are packing problems and hence their goal is to
minimize the makespan (i.e. to minimize the maximum load over all machines)
where in the covering problems the goal is to maximize the minimum.

Our results: Our main result is polynomial approximation scheme for the
covering problem in the related machines case. That is for any € > 0 there is a
polynomial time algorithm A, that approximates the optimal solution up to a
factor of 1+4¢. In fact, since the problem is strongly NP hard no fully polynomial
approximation scheme exists unless P=NP. Some of our techniques are built on
ideas of Hochbaum and Shmoys [12]. They provided an approximation scheme
for the well known related machines scheduling. In fact, our algorithm can be
adapted to provide a simpler approximation scheme for the related machines
scheduling as well.

Known results: The problem of maximizing the load of the least loaded
machine, (i.e the machines covering problem) is known to be NP-complete in
the strong sense already for identical machines [9]. For the identical machines
case Deuermeyer, Friesen and Langston [7] studied the LPT-heuristic. The LPT-
heuristic orders the jobs by non increasing weights and assigns each job to the
least loaded machine at the current moment. It is shown in [7] that the approxi-
mation ratio of this heuristic is at most %. The tight ratio gz:i is given by Csirik,
Kellerer and Woeginger [5]. Finally, Woeginger [14] designed a polynomial time
approximation scheme for the identical machines covering problem.

The history for the related machines covering problem is much shorter. The
only result which is known for the related machines case is the 2 + ¢ approxi-
mation algorithm follows from [4]. The above paper also contains results for the
on-line machines covering problems.

Definitions: We give a formal definition of the problems discussed above.
Consider a set of m identical machines and a set of jobs. Machine 7 has a speed
v; and a job j has a weight w;. The load of a machine 4 is the sum of the weights
of the jobs assigned to it normalized by the speed. That is, ¢ = ZjeJi :‘:Z
where J; is the of jobs assigned to machine 4. (The identical machines case is the
special case where all v; are equal.) The goal in the machines covering problems
is to assign the jobs to the machines so as to maximize the minimum load over
the machines. This is in contrast to the scheduling/load-balancing problems
where the goal there is to minimize the maximum load. Note that these covering
problems are also different from the bin covering problems [1, 2, 3, 6] where the
goal is to maximize the number of covered bins, i.e. bins of load of at least 1.

2 Approximation scheme for machine covering

We use a standard binary search technique to search for the value of the optimal
cover. By this we reduce the approximation algorithm to the following approxi-



mate decision problem. Given a value T for the algorithm, the decision procedure
outputs an assignment of value at least (1 — €)T', or answers that there does not
exist an assignment of value at least 7. We start the binary search with an ini-
tial estimation of the value of the optimal cover using the (2 + £)-approximation
algorithm given in [4]. Clearly, the overall complexity of the approximation al-
gorithm is just O(log1/e) times the complexity of the decision procedure (the
initial estimation algorithm is fast).

We note that the decision procedure is equivalent to decide if one can fill the
m bins such that bin 7 is filled by at least (1 — £)T'v;. We scale the sizes of bins
and the weights of jobs, so that the size of the smallest bin is 1. Now we have a set
of n jobs, and a set of m bins of sizes s1, 52, ..., 5m where 1 = 51 < 53 < ... < 5.

Bin ranges: We partition the bins according to their sizes into sets B,,
where the bin range set B, is the set of all bins of size 2" < s; < 2T+1 Let R =
{r|B:, 7é ¢}, clearly |R| < m. We choose g¢ to be a value such that 75 <eo < g
and a is an integer. We denote &, = 27¢¢, §o = €2 and 4, = 27J,. For each b1n
range B, the jobs are partitioned into three sets.

— Big jobs: jobs of weight more than 27+1,
— Medium jobs: jobs of weight w;: &, < w; < 27+1.
— Small jobs: jobs of weight at most &,.

Jobs vectors: For each B, we can approximate a set of jobs by a jobs
vector (y, ny,n2,...,n, W) where y is the number of big jobs, ng is the number
of (medium) jobs whose size is between t;_1 and t; where ¢, = &, + k4, and
W is the total weight of small jobs in the set. Clearly I, the number of types of

medium jobs, is at most 7~ — = S 2. We refer to the values of ¢ as rounded
weights. Note that the _]obs vector for a given set of jobs depends on the bin
range.

Cover vectors: Let B, be the bin range of bin j. A cover vector for bin
j has the same form as the jobs vector except the last coordinate which is an
integer that corresponds to the weight of small jobs normalized by ¢,. A vector
(y,n1,m2,...,n1,4) is a cover vector for bin j if

!
2ty + antk +qe, > sj — & =s;(1 —e0) ,
k=1

i.e., the sum of the rounded weights of the jobs in the vector is at least 1 — &g
fraction of s;.

Let T]’ be the set of cover vectors for a bin j. Let T; be the set of minimal
cover vectors with respect to inclusion i.e. a cover vector u is in Tj if for any
other cover vector for bin j, u' the vector u — u' has at least one negative
coordinate. Since the minimum weight of a job is £92" and the size of the bin
is at most 271! then any minimal cover vector consists of at most % jobs (sum
of coordinates). Clearly, we may use only minimal vector covers since any cover
can be transformed to a minimal one by omitting some jobs.

The layer graph: We use a layer graph where each node of the graph is
state vector which is in a form of a cover vector. We order the bins in non



decreasing size order. The layers of the graph are partitioned into phases. There
are |R| phases, a phase for each 7 € R. Let b, = |B;| for » € R and b, = 0
otherwise. Phase r consists of b, 4+ 1 layers L, ,..., Ly5,. The nodes of L, ; are
all admissible state vectors of B,. We put an edge between a node @' in L, ;_1,
and a node & in L, ; if the difference ' = ' — 2 is a minimal cover vector of bin
j.

Layer L,; corresponds to jobs that remained after the first j = :;3 by +1
bins were covered. More specifically, if there is a path from Lo o to a state vector
in L,; then there is a cover of the first j bins, where bin k < j is covered with
sk(1 —€o), such that the remaining jobs has jobs vector which is identical to the
state vector except of the last coordinate. The last coordinate of the jobs vector,
W, satisfies ge, < (W + 2¢,)(1 + €¢) where g is the last coordinate of the state
vector. Moreover, if there is a cover of the first j bins, bin & < j with s; such
that the remaining jobs set defines some jobs vector then there a path from the
first layer to the node in layer L,; whose state vector is identical to the jobs
vector except of the last coordinate. The last coordinate of the state vector, g,
satisfles W < ge, where W is the last coordinate of the jobs vector.

The translating edges between phases: The edges between phases ”trans-
late” each state vector into a state vector of the next phase. These edges are not
used to cover bins, but to move from one phase to another. There is only one
outgoing edge from each node in a last layer of any phase (except the last one
which has no outgoing edges). More specifically, for each phase r, any node in
L, s, translates by an edge into a node in L,/ o where ' > r is the index of the
next phase.

We consider a state vector in Ly, (an input vector). We construct a cor-
responding state vector in layer L, o (an output vector) which results in an
edge between them. We start with an empty output state vector. We scan the
input state vector. To build the output vector we need to know how jobs change
their status. Since the bins become larger, the small jobs remain small. Medium
Jjobs may either become small, or stay medium. Big jobs can stay big, or become
medium or small.

First we consider the number of big items y in the input vector. Note that
all big jobs could be used to cover previous bins. Thus we may assume that the
smallest big jobs were used, and the y big jobs that remained are the largest y
jobs in the original set. Let y; be the number of big jobs in the input vector that
are also big in B,s, y2 the number of jobs that are medium in B,/ and y3 the
number of jobs that are small in B,.

A medium job in phase B, becomes small in B, if its rounded weight ¢; is at
most &,/. In phase B, the rounded weight of a job of weight &, is exactly &, since
(27'~" —1)/eo is integer, and g, = 2" g0 = 27€o + (2" ~" — 1)/€0 - 27€3). Thus
all medium jobs with k < (2" ~" — 1)/&o become small, and all other medium
jobs remain medium.

The coordinates of the output vector: The big job coordinate in the
output vector would be y;, since no medium or small jobs could become big.

Now we deal with all the jobs which became small in the output, i.e. the y3



big jobs together with the medium input jobs that became small output jobs
and all the small jobs which must remain small in the output. To build the
component of small jobs we re-estimate the total weight of small jobs. Since
small jobs remain small, we initialize W' = ge, where ¢ is the integer value of
the small jobs in the input node. We add to W’ the total sum of the rounded
jobs that were medium in B, and become small in B, (their rounded weight in
B,), and also the original weight of the big jobs in B, that become small in B,.
The new component ¢’ of small jobs is [W'/e,].

Next we consider all jobs that are medium in B,:. There were ys big jobs in
B, that become medium in B,. For every such job we round its weight according
to By and add one to the coordinate of its corresponding type in B, . What
remains to consider is the coordinates of jobs that are medium for both B, and
B,:. We claim that all jobs that are rounded to one type k in B, cannot be
rounded to different types B,,. Thus we add the type k coordinate of the input
vector to the corresponding coordinate of the output vector. To prove the claim
we note that a job of type k satisfies 27eg + (k — 1)27e3 < w; < 27gg + k27€3.
Let [ = 7' — r, in terms of &,» and 4, we get that

1,1-2¢
Ept +51" (?(
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Since + k—1 and 15_—021 + k are integers, then the interval (%(15—021 + k-

1), %(1_—21 +k)) does not contain an integer and thus all these jobs are rounded
2 €g

to the type &1 + &, [%(15—_021 + k)].

After we built the graph, we look for a path between a node of the first layer
in the first phase which corresponds to the whole set of jobs, and any node in the
last layer of the last phase (which means that we managed to cover all bins with
the set of jobs, maybe some jobs were not used but it is possible to add them to
any bin). If such path exists, the procedure answers "yes”, and otherwise ”no”.

3 Analysis of the algorithm

In this section we prove the correctness of our algorithm and compute its com-
plexity.

Theorem 1. If a feasible cover of value T exists, then the procedure outputs a
path that corresponds to a cover of at least (1 — €)T. Otherwise, the procedure
answers "no”.

Proof. We need to show that any cover of value at least T' can be transformed
into a path in the graph, and that a path in the graph can be transformed into
a cover of at least (1 —¢&)7T.

Assume a cover of value 7. We first transform it to a cover of a type that
our algorithm is searching for. We assume that the cover of any bin is minimal,
otherwise we just remove jobs. Next we scan the bins by their order in the layered



graph (small to large). If the j’th bin was covered by a single job, we change
the cover to get another feasible cover in the following way. We consider the
smallest job that is at least as large as the j’th bin, and is not used to cover a
bin with a smaller index. We change the places of the two big jobs and continue
the scanning. The modified cover after each change is still feasible since bin j is
still covered and weight of the jobs on the larger bin may only increase. We use
the final cover to build a path in the graph. We show how to add a single edge
to a path in each step. Since there is only one outgoing edge from each node of
the last layer in each phase, we only need to show how to add edges between
consecutive layers inside the phases, each such edge corresponds to some bin.
We also assume inductively the following invariant. The weight of the small jobs
in any state vector is at least the weight of the small jobs that has not been yet
used in the cover (the cover for bins we already considered).

Consider the j’th bin. If the bin is covered with a big job then we choose an
edge that corresponds to one big job. Otherwise the bin is covered by medium
jobs and small jobs. We compute the following state vector. Each medium job
adds one to the appropriate coordinate of the vector. Note that rounded weight
of a medium job (as interpreted in the state vector) is at least as large as its
weight. We also need to provide one coordinate for the small jobs used in covering
bin j. For that we divide the total weight of the small jobs in the cover of that
bin by &, where r is the index of the phase and take the floor. The sum of the
rounded weights of the jobs of the vector we built is at least s; — ¢,, and thus it
is a cover vector, i.e., an edge in the j’th layer of the graph. the invariant on the
small jobs remains true since the weight of the small jobs of the cover vector is
less than that in the cover.

Now we show that a full path in the graph is changed into a cover of value
(1 — €)T. We build the cover starting from the smallest bin (the first edge of
the path). We show how to build a cover for one bin using a cover vector. In
the case that the cover vector of the edge corresponds to one big job, we add
the smallest big job available to the cover. We replace a medium job of rounded
weight &, + ké, by a job of weight in the interval (e, + (k — 1)é,, &r + k6, ]. Such
a job must exist according to the way that the graph was built. We replace the
small jobs coordinate in the following way: Let ji,..., 7, where w;, < ... < wj,
be the subset of the small jobs that were not used to cover any of the bins that
were already covered. Let z; be the index 1 < z; < z such that

(@' —3)er < Y wj,<(q —2)er
1<i<z;

(where ¢’ is the small jobs coordinate of the cover vector). We add the jobs
J1y -y Jz, to the cover. We prove the following Lemma in order to show that such
an index exists.

Lemma 2. Consider the node in phase r on the path up to which we built the
cover. Denote by W1 the total rounded weight of small jobs that were not used
to cover any of the bins that are already covered. (The rounded weight of a small
job is its rounded weight when it was last medium, and its real weight if it never



was medium). The small jobs coordinate q of the state vector of the node satisfies

the equation
qger S Wl + 251‘

Proof. First we show the correctness of the lemma only for the first layer of
each phase. We show the lemma by induction on the number of phase r. In the
beginning of each phase there is a rounding process in which the total rounded
weight of small jobs is divided by ¢,, and the result is rounded up. Thus in
phase 0 since we round up the number W'/eqg, we added at most ¢ to the total
rounded weight of the jobs. In phase » we might add by rounding extra e,. Since
ZT,<T gr < & we conclude that the weights of the small jobs of a state vector
in the first layer of a phase exceeds the total rounded weight of the small jobs
available by at most 2e, and thus ge, < Wi + 2¢,. The lemma holds for nodes
inside phases too, since each time we reduce g, by some number g3, W7 is reduced
by at most (g1 — 2)e. This completes the proof of the lemma.

In a cover vector the small jobs coordinate ¢’ is bounded above by the small
jobs coordinate of the node for which this edge is outgoing. Thus ¢'e, < g&, <
Wi + 2¢, and thus Wi > (¢’ — 2)e,. Since the weight of each job is at most &,
21 exists.

Now we show that this gives a cover of bin j. Let us calculate the ratio
between the rounded weight and the real weight of jobs we assigned to this bin.
Since we rounded only medium jobs, the loss in the weight of the job is at most
dr, while its weight is at least .. Thus the ratio is at most (wg + &,)/wr <
146, /e, <1+ ¢&o. Thus the total weight of the jobs assigned to bin j is at least

(3= 4-&,)/(1+e0) > (55 —4- 2"e0)(1 — o)
> (1 — deo)(1 - £0) > 8;(1 — 5e0) > 3j(1 —¢)

where the second inequality follows from the fact that s; > 2".

Complexity: The decision procedure consists of two parts.

1. Building the graph.

The number of nodes in each layer of the graph is at most N = 2(n +
2)71,2/53"'1 since each of the coordinates of the first and the second parts of
state vector does not exceed n, and the third one does not exceed (n+2)(1+
€0) < 2(n + 2). Consider the a translation edges between layers of different
phases. Recall that there is only one edge from each node. Now, consider the
edges between layers that correspond to a bin. The number of edges from
each node is at most M = (2/e3 + 3)?/¢° (Since each of the 2/¢¢ jobs can be
one of 2/e2+ 2 jobs types, or not to exist at all in the cover). Thus there are
at most mN M +mN edges in the graph. To build the edges inside phases we
need to check at most M possibilities for each node inside a phase. It takes
O(el) to check one such possibility, i.e. that it corresponds to a minimal cover.
Building one edge between phases takes O(n) but there is only one outgoing
edge from each node between phases. The total complexity of building the
graph is O(mNM/e + mNn).



2. Running an algorithm to find a path, and translating it into a cover if it
succeeds.
The algorithm of finding a path is linear in the number of edges. The com-
plexity of building the cover is negligible.

The total complexity of the decision procedure is O(ceno(i)) where ¢, is a con-
stant which depends only on &. The complexity of the algorithm is clearly the
complexity of the decision procedure times O(log1/e).

4 Approximation scheme for scheduling

It is easy to adapt the algorithm for machines covering and get a simpler al-
gorithm for related machines scheduling. Here the big jobs cannot not be used
for packing in bins and thus the algorithm becomes simpler. Of course, there
are several straight forward changes such as rounding down the jobs instead
of rounding them up and considering maximum packings instead of minimum
covers. We omit the details.
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