
Approximation schemes for covering andscheduling on related machinesYossi Azar1,Leah Epstein21 Dept. of Computer Science, Tel-Aviv University. ???2 Dept. of Computer Science, Tel-Aviv University. yAbstract. We consider the problem of assigning a set of jobs to m par-allel related machines so as to maximize the minimum load over themachines. This situation corresponds to a case that a system which con-sists of the m machines is alive (i.e. productive) only when all machinesare alive, and the system should be maintained alive as long as possible.The above problem is called related machines covering problem and is dif-ferent from the related machines scheduling problem in which the goal isto minimize the maximum load. Our main result is a polynomial approx-imation scheme for this covering problem. To the best of our knowledgethe previous best approximation algorithm has a performance ratio of 2.Also, an approximation scheme for the special case of identical machineswas given by [14].Some of our techniques are built on ideas of Hochbaum and Shmoys[12]. They provided an approximation scheme for the well known relatedmachines scheduling. In fact, our algorithm can be adapted to providea simpler approximation scheme for the related machines scheduling aswell.1 IntroductionWe consider the problem of assigning a set of jobs to m parallel related ma-chines so as to maximize the minimum load over the machines. This situation ismotivated by the following scenario. A system which consists of m related ma-chines is alive (i.e. productive) only when all machines are alive. The durationthat a machine is alive is proportional to the total size of the resources (e.g.tanks of fuel) allocated to it. The goal is to keep the system alive as long aspossible using a set of various sizes resources. The above problem has applica-tions also in sequencing of maintenance actions for modular gas turbine aircraftengines [8]. To conform with the standard scheduling terminology we view theresources as jobs. Thus, jobs are assigned to machines so as to maximize theminimum load. In the related machines case each machine has its own speed??? E-Mail: azar@math.tau.ac.il. Research supported in part by the Israel Science Foun-dation and by the United States-Israel Binational Science Foundation (BSF).y E-Mail: lea@math.tau.ac.il.



(of the engine that operates on fuel). The identical machines case is a specialcase where all speeds of machines are identical. We refer to these problems asmachines covering problems. Note that the classical scheduling/load-balancingproblems [10, 11, 12, 13] seem strongly related to the covering problems. How-ever, scheduling/load-balancing are packing problems and hence their goal is tominimize the makespan (i.e. to minimize the maximum load over all machines)where in the covering problems the goal is to maximize the minimum.Our results: Our main result is polynomial approximation scheme for thecovering problem in the related machines case. That is for any " > 0 there is apolynomial time algorithm A" that approximates the optimal solution up to afactor of 1+". In fact, since the problem is strongly NP hard no fully polynomialapproximation scheme exists unless P=NP. Some of our techniques are built onideas of Hochbaum and Shmoys [12]. They provided an approximation schemefor the well known related machines scheduling. In fact, our algorithm can beadapted to provide a simpler approximation scheme for the related machinesscheduling as well.Known results: The problem of maximizing the load of the least loadedmachine, (i.e the machines covering problem) is known to be NP-complete inthe strong sense already for identical machines [9]. For the identical machinescase Deuermeyer, Friesen and Langston [7] studied the LPT-heuristic. The LPT-heuristic orders the jobs by non increasing weights and assigns each job to theleast loaded machine at the current moment. It is shown in [7] that the approxi-mation ratio of this heuristic is at most 43 . The tight ratio 4m�23m�1 is given by Csirik,Kellerer and Woeginger [5]. Finally, Woeginger [14] designed a polynomial timeapproximation scheme for the identical machines covering problem.The history for the related machines covering problem is much shorter. Theonly result which is known for the related machines case is the 2 + " approxi-mation algorithm follows from [4]. The above paper also contains results for theon-line machines covering problems.De�nitions: We give a formal de�nition of the problems discussed above.Consider a set of m identical machines and a set of jobs. Machine i has a speedvi and a job j has a weight wj. The load of a machine i is the sum of the weightsof the jobs assigned to it normalized by the speed. That is, `i = Pj2Ji wjviwhere Ji is the of jobs assigned to machine i. (The identical machines case is thespecial case where all vi are equal.) The goal in the machines covering problemsis to assign the jobs to the machines so as to maximize the minimum load overthe machines. This is in contrast to the scheduling/load-balancing problemswhere the goal there is to minimize the maximum load. Note that these coveringproblems are also di�erent from the bin covering problems [1, 2, 3, 6] where thegoal is to maximize the number of covered bins, i.e. bins of load of at least 1.2 Approximation scheme for machine coveringWe use a standard binary search technique to search for the value of the optimalcover. By this we reduce the approximation algorithm to the following approxi-



mate decision problem. Given a value T for the algorithm, the decision procedureoutputs an assignment of value at least (1� ")T , or answers that there does notexist an assignment of value at least T . We start the binary search with an ini-tial estimation of the value of the optimal cover using the (2+ ")-approximationalgorithm given in [4]. Clearly, the overall complexity of the approximation al-gorithm is just O(log1=") times the complexity of the decision procedure (theinitial estimation algorithm is fast).We note that the decision procedure is equivalent to decide if one can �ll them bins such that bin i is �lled by at least (1� ")Tvi. We scale the sizes of binsand the weights of jobs, so that the size of the smallest bin is 1. Now we have a setof n jobs, and a set of m bins of sizes s1; s2; :::; sm where 1 = s1 � s2 � ::: � sm.Bin ranges: We partition the bins according to their sizes into sets Br ,where the bin range set Br is the set of all bins of size 2r � sj < 2r+1. Let R =frjBr 6= �g, clearly jRj � m. We choose "0 to be a value such that "16 � "0 � "8and 1"0 is an integer. We denote "r = 2r"0, �0 = "20 and �r = 2r�0. For each binrange Br the jobs are partitioned into three sets.{ Big jobs: jobs of weight more than 2r+1.{ Medium jobs: jobs of weight wj : "r < wj � 2r+1.{ Small jobs: jobs of weight at most "r.Jobs vectors: For each Br we can approximate a set of jobs by a jobsvector (y; n1; n2; : : : ; nl;W ) where y is the number of big jobs, nk is the numberof (medium) jobs whose size is between tk�1 and tk where tk = "r + k�r andW is the total weight of small jobs in the set. Clearly l, the number of types ofmedium jobs, is at most 2�0 � 1"0 � 2�0 . We refer to the values of tk as roundedweights. Note that the jobs vector for a given set of jobs depends on the binrange.Cover vectors: Let Br be the bin range of bin j. A cover vector for binj has the same form as the jobs vector except the last coordinate which is aninteger that corresponds to the weight of small jobs normalized by "r. A vector(y; n1; n2; : : : ; nl; q) is a cover vector for bin j if2r+1y + lXk=1nktk + q"r � sj � "r = sj(1� "0) ;i.e., the sum of the rounded weights of the jobs in the vector is at least 1 � "0fraction of sj .Let T 0j be the set of cover vectors for a bin j. Let Tj be the set of minimalcover vectors with respect to inclusion i.e. a cover vector u is in Tj if for anyother cover vector for bin j, u0 the vector u � u0 has at least one negativecoordinate. Since the minimum weight of a job is "02r and the size of the binis at most 2r+1 then any minimal cover vector consists of at most 2"0 jobs (sumof coordinates). Clearly, we may use only minimal vector covers since any covercan be transformed to a minimal one by omitting some jobs.The layer graph: We use a layer graph where each node of the graph isstate vector which is in a form of a cover vector. We order the bins in non



decreasing size order. The layers of the graph are partitioned into phases. Thereare jRj phases, a phase for each r 2 R. Let br = jBrj for r 2 R and br = 0otherwise. Phase r consists of br + 1 layers Lr;0; :::; Lr;br. The nodes of Lr;i areall admissible state vectors of Br . We put an edge between a node x0 in Lr;i�1,and a node x in Lr;i if the di�erence u0 = x0�x is a minimal cover vector of binj. Layer Lr;i corresponds to jobs that remained after the �rst j =Pr�1t=0 bt + ibins were covered. More speci�cally, if there is a path from L0;0 to a state vectorin Lr;i then there is a cover of the �rst j bins, where bin k � j is covered withsk(1� "0), such that the remaining jobs has jobs vector which is identical to thestate vector except of the last coordinate. The last coordinate of the jobs vector,W , satis�es q"r � (W + 2"r)(1 + "0) where q is the last coordinate of the statevector. Moreover, if there is a cover of the �rst j bins, bin k � j with sk suchthat the remaining jobs set de�nes some jobs vector then there a path from the�rst layer to the node in layer Lr;i whose state vector is identical to the jobsvector except of the last coordinate. The last coordinate of the state vector, q,satis�es W � q"r where W is the last coordinate of the jobs vector.The translating edges between phases:The edges between phases "trans-late" each state vector into a state vector of the next phase. These edges are notused to cover bins, but to move from one phase to another. There is only oneoutgoing edge from each node in a last layer of any phase (except the last onewhich has no outgoing edges). More speci�cally, for each phase r, any node inLr;br translates by an edge into a node in Lr0;0 where r0 > r is the index of thenext phase.We consider a state vector in Lr;br (an input vector). We construct a cor-responding state vector in layer Lr0 ;0 (an output vector) which results in anedge between them. We start with an empty output state vector. We scan theinput state vector. To build the output vector we need to know how jobs changetheir status. Since the bins become larger, the small jobs remain small. Mediumjobs may either become small, or stay medium. Big jobs can stay big, or becomemedium or small.First we consider the number of big items y in the input vector. Note thatall big jobs could be used to cover previous bins. Thus we may assume that thesmallest big jobs were used, and the y big jobs that remained are the largest yjobs in the original set. Let y1 be the number of big jobs in the input vector thatare also big in Br0 , y2 the number of jobs that are medium in Br0 and y3 thenumber of jobs that are small in Br0 .A medium job in phase Br becomes small in Br0 if its rounded weight tj is atmost "r0 . In phase Br the rounded weight of a job of weight "r0 is exactly "r0 since(2r0�r � 1)="0 is integer, and "r0 = 2r0"0 = 2r"0 + ((2r0�r � 1)="0 � 2r"20). Thusall medium jobs with k � (2r0�r � 1)="0 become small, and all other mediumjobs remain medium.The coordinates of the output vector: The big job coordinate in theoutput vector would be y1, since no medium or small jobs could become big.Now we deal with all the jobs which became small in the output, i.e. the y3



big jobs together with the medium input jobs that became small output jobsand all the small jobs which must remain small in the output. To build thecomponent of small jobs we re-estimate the total weight of small jobs. Sincesmall jobs remain small, we initialize W 0 = q"r where q is the integer value ofthe small jobs in the input node. We add to W 0 the total sum of the roundedjobs that were medium in Br and become small in Br0 (their rounded weight inBr), and also the original weight of the big jobs in Br that become small in Br0 .The new component q0 of small jobs is dW 0="r0e.Next we consider all jobs that are medium in Br0 . There were y2 big jobs inBr that become medium in Br0 . For every such job we round its weight accordingto Br0 and add one to the coordinate of its corresponding type in Br0 . Whatremains to consider is the coordinates of jobs that are medium for both Br andBr0 . We claim that all jobs that are rounded to one type k in Br cannot berounded to di�erent types Br0 . Thus we add the type k coordinate of the inputvector to the corresponding coordinate of the output vector. To prove the claimwe note that a job of type k satis�es 2r"0 + (k � 1)2r"20 < wj � 2r"0 + k2r"20.Let l = r0 � r, in terms of "r0 and �r0 we get that"r0 + �r0 � 12l (1� 2l"0 + k � 1)� < wj � "r0 + �r0 � 12l (1� 2l"0 + k)� :Since 1�2l"0 + k � 1 and 1�2l"0 + k are integers, then the interval ( 12l (1�2l"0 + k �1); 12l (1�2l"0 + k)) does not contain an integer and thus all these jobs are roundedto the type "r0 + �r0d 12l (1�2l"0 + k)e.After we built the graph, we look for a path between a node of the �rst layerin the �rst phase which corresponds to the whole set of jobs, and any node in thelast layer of the last phase (which means that we managed to cover all bins withthe set of jobs, maybe some jobs were not used but it is possible to add them toany bin). If such path exists, the procedure answers "yes", and otherwise "no".3 Analysis of the algorithmIn this section we prove the correctness of our algorithm and compute its com-plexity.Theorem1. If a feasible cover of value T exists, then the procedure outputs apath that corresponds to a cover of at least (1 � ")T . Otherwise, the procedureanswers "no".Proof. We need to show that any cover of value at least T can be transformedinto a path in the graph, and that a path in the graph can be transformed intoa cover of at least (1� ")T .Assume a cover of value T . We �rst transform it to a cover of a type thatour algorithm is searching for. We assume that the cover of any bin is minimal,otherwise we just remove jobs. Next we scan the bins by their order in the layered



graph (small to large). If the j'th bin was covered by a single job, we changethe cover to get another feasible cover in the following way. We consider thesmallest job that is at least as large as the j'th bin, and is not used to cover abin with a smaller index. We change the places of the two big jobs and continuethe scanning. The modi�ed cover after each change is still feasible since bin j isstill covered and weight of the jobs on the larger bin may only increase. We usethe �nal cover to build a path in the graph. We show how to add a single edgeto a path in each step. Since there is only one outgoing edge from each node ofthe last layer in each phase, we only need to show how to add edges betweenconsecutive layers inside the phases, each such edge corresponds to some bin.We also assume inductively the following invariant. The weight of the small jobsin any state vector is at least the weight of the small jobs that has not been yetused in the cover (the cover for bins we already considered).Consider the j'th bin. If the bin is covered with a big job then we choose anedge that corresponds to one big job. Otherwise the bin is covered by mediumjobs and small jobs. We compute the following state vector. Each medium jobadds one to the appropriate coordinate of the vector. Note that rounded weightof a medium job (as interpreted in the state vector) is at least as large as itsweight. We also need to provide one coordinate for the small jobs used in coveringbin j. For that we divide the total weight of the small jobs in the cover of thatbin by "r where r is the index of the phase and take the 
oor. The sum of therounded weights of the jobs of the vector we built is at least sj � "r , and thus itis a cover vector, i.e., an edge in the j'th layer of the graph. the invariant on thesmall jobs remains true since the weight of the small jobs of the cover vector isless than that in the cover.Now we show that a full path in the graph is changed into a cover of value(1 � ")T . We build the cover starting from the smallest bin (the �rst edge ofthe path). We show how to build a cover for one bin using a cover vector. Inthe case that the cover vector of the edge corresponds to one big job, we addthe smallest big job available to the cover. We replace a medium job of roundedweight "r + k�r by a job of weight in the interval ("r + (k� 1)�r; "r + k�r ]. Sucha job must exist according to the way that the graph was built. We replace thesmall jobs coordinate in the following way: Let j1; :::; jz where wj1 � ::: � wjzbe the subset of the small jobs that were not used to cover any of the bins thatwere already covered. Let z1 be the index 1 � z1 � z such that(q0 � 3)"r < X1�i�z1wji � (q0 � 2)"r(where q0 is the small jobs coordinate of the cover vector). We add the jobsj1; :::; jz1 to the cover. We prove the following Lemma in order to show that suchan index exists.Lemma2. Consider the node in phase r on the path up to which we built thecover. Denote by W1 the total rounded weight of small jobs that were not usedto cover any of the bins that are already covered. (The rounded weight of a smalljob is its rounded weight when it was last medium, and its real weight if it never



was medium). The small jobs coordinate q of the state vector of the node satis�esthe equation q"r � W1 + 2"rProof. First we show the correctness of the lemma only for the �rst layer ofeach phase. We show the lemma by induction on the number of phase r. In thebeginning of each phase there is a rounding process in which the total roundedweight of small jobs is divided by "r , and the result is rounded up. Thus inphase 0 since we round up the number W 0="0, we added at most "0 to the totalrounded weight of the jobs. In phase r we might add by rounding extra "r . SincePr0<r "r0 < "r we conclude that the weights of the small jobs of a state vectorin the �rst layer of a phase exceeds the total rounded weight of the small jobsavailable by at most 2"r and thus q"r � W1 + 2"r. The lemma holds for nodesinside phases too, since each time we reduce q, by some number q1,W1 is reducedby at most (q1 � 2)". This completes the proof of the lemma.In a cover vector the small jobs coordinate q0 is bounded above by the smalljobs coordinate of the node for which this edge is outgoing. Thus q0"r � q"r �W1 + 2"r and thus W1 � (q0 � 2)"r . Since the weight of each job is at most "r ,z1 exists.Now we show that this gives a cover of bin j. Let us calculate the ratiobetween the rounded weight and the real weight of jobs we assigned to this bin.Since we rounded only medium jobs, the loss in the weight of the job is at most�r, while its weight is at least "r . Thus the ratio is at most (wk + �r)=wk �1+ �r="r � 1+ "0. Thus the total weight of the jobs assigned to bin j is at least(sj � 4 � "r)=(1 + "0) � (sj � 4 � 2r"0)(1� "0)� sj(1� 4"0)(1� "0) � sj(1� 5"0) � sj(1� ")where the second inequality follows from the fact that sj � 2r.Complexity: The decision procedure consists of two parts.1. Building the graph.The number of nodes in each layer of the graph is at most N = 2(n +2)n2="20+1 since each of the coordinates of the �rst and the second parts ofstate vector does not exceed n, and the third one does not exceed (n+2)(1+"0) < 2(n + 2). Consider the a translation edges between layers of di�erentphases. Recall that there is only one edge from each node. Now, consider theedges between layers that correspond to a bin. The number of edges fromeach node is at mostM = (2="20 + 3)2="0 (Since each of the 2="0 jobs can beone of 2="20+2 jobs types, or not to exist at all in the cover). Thus there areat mostmNM+mN edges in the graph. To build the edges inside phases weneed to check at most M possibilities for each node inside a phase. It takesO(1" ) to check one such possibility, i.e. that it corresponds to a minimal cover.Building one edge between phases takes O(n) but there is only one outgoingedge from each node between phases. The total complexity of building thegraph is O(mNM=" +mNn).
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