
Competitive Routing of Virtual Circuits withUnknown Duration�Baruch Awerbuchy Yossi Azarz Serge Plotkinx Orli Waarts{September 21, 1995AbstractIn this paper we present a strategy to route unknown duration virtual circuits in a high-speed communication network. Previous work on virtual circuit routing concentrated onthe case where the call duration is known in advance. We show that by allowing O(logn)reroutes per call, we can achieve O(logn) competitive ratio with respect to the maximumload (congestion) for the unknown duration case, were n is the number of nodes in thenetwork. This is in contrast to the
(4pn) lower bound on the competitive ratio for thiscase if no rerouting is allowed [3].Our routing algorithm can be also applied in the context of machine load balancing oftasks with unknown duration. We present an algorithm that makes O(logn) reassignmentsper task and achieves O(logn) competitive ratio with respect to the load, where n is thenumber of parallel machines. For a special case of unit load tasks we design a constantcompetitive algorithm. The previously known algorithms that achieve up to polylogarith-mic competitive ratio for load balancing of tasks with unknown duration dealt only withspecial cases of related machines case and unit-load tasks with restricted assignment [4, 11].�A preliminary version of this paper was presented at the 5th ACM-SIAM Symposium on Discrete Algorithms,January 1994.yJohns Hopkins University and Lab. for Computer Science, MIT. Supported by Air Force ContractTNDGAFOSR-86-0078, ARO contract DAAL03-86-K-0171, NSF contract 9114440-CCR, DARPA contractN00014-J-92-1799, and a special grant from IBM. E-Mail: baruch@theory.lcs.mit.edu.zDepartment of Computer Science, Tel Aviv University. E-Mail: azar@math.tau.ac.il. Research supported inpart by Allon Fellowship and by the Israel Science Foundation administered by the Israel Academy of Sciences.xDepartment of Computer Science, Stanford University. Research supported by U.S. Army Research Of-�ce Grant DAAL-03-91-G-0102, NSF Grant CCR-9304971, and by Mitsubishi Electric Laboratories. E-Mail:plotkin@cs.stanford.edu.{Department of Computer Science, Berkeley. A portion of this work was done while the author was at IBMAlmaden Research Center. E-Mail: waarts@cs.berkeley.edu.

1 Introduction1.1 RoutingSupport for virtual circuits is one of the basic services provided by both existing and futurehigh-speed communication networks. In order to use the network (say, transmit video signalfrom one point to another) the user requests a (virtual) circuit to be established between thesepoints. Although the rate of information owing through such a circuit might vary in time, thenetwork has to guarantee that the circuit will support at least the bit rate that was agreed uponduring the connection establishment negotiations. This guarantee is imperative for correctoperation of many of the services, including constant bit-rate video and voice transmission.In other words, establishing a connection corresponds to reserving the requested bandwidthalong some path connecting the end points speci�ed by the user.It is thus important to develop online strategies for virtual circuit routing that lead toprovably e�cient bandwidth utilization. As we will show, the problem appears to be especiallyhard when the duration of each virtual circuit is apriori unknown.The routing problem considered in this paper is as follows. We are given a network whereeach edge has an associated capacity (i.e. bandwidth). Requests for establishment of connec-tions arrive on-line; each request speci�es the source and destination nodes, and the requestedbandwidth; duration of the connection is not speci�ed. Immediately upon arrival of a request,the algorithm establishes a connection by allocating the required bandwidth along some pathbetween the source and the destination nodes. When a connection terminates, the bandwidthallocated to it is released. The algorithm can (possibly) reroute some of the existing connec-tions.A natural measure to evaluate the performance of the bandwidth allocation strategy is the\relative load" which is de�ned as the maximum congestion, i.e. maximum (over all linksand over all moments in time) of the percentage of link-capacity utilization by the currentlyrouted circuits. As usual, we use the notion of the competitive ratio [12], which in this caseis the supremum, over all possible input sequences, of the ratio of the maximum relative loadachieved by the online algorithm to the maximum relative load achieved by the optimal o�inealgorithm.Observe that if the number of reroutings per connection is not limited, it is trivial tomaintain optimum relative load, i.e. competitive ratio of 1. The other extreme is to totallydisallow rerouting. For this case it is easy to adapt the lower bound of Azar, Broder, andKarlin [3] to show
(n1=4) lower bound for the competitive ratio, where n is the number ofnodes in the network.1 This should be compared with the case where the duration of eachconnection becomes known upon its arrival. For this case, it was shown in [1, 4] that one canachieve O(lognT)-competitive ratio with no rerouting, where T is the ratio of the longest tothe shortest duration of a connection. This indicates that the routing of virtual circuits with1The result in [3] is an
(pn) lower bound in the context of load-balancing. Adaptation of this lower boundto the routing model results in an O(4pn) lower bound.1

unknown duration is signi�cantly harder.The main contribution of this paper is a routing strategy for unknown duration virtualcircuits that is O(logn) competitive with respect to load and that reroutes each circuit atmost O(logn) times. Our online algorithm is competitive even against an o�ine algorithmthat is allowed to make any number of reroutings.Informally, our routing strategy is based on maintaining a new stability condition. On onehand, this condition is strong enough to guarantee that the current load is within O(logn)factor of the optimum maximum load, and on the other hand it is weak enough so that thealgorithm does not make more than logarithmic number of reroutings per call in order tomaintain it. Moreover, this stability condition can be checked by considering only the currentstate of the routing algorithm and thus can be directly used to make rerouting decisions. Incontrast to this, the condition used in [1] for proof of competitiveness, was based on both thestate of the online and the state of the o�ine algorithms and hence can not be used to makererouting decisions.An alternative measure of network performance is the amortized throughput de�ned asthe average over time of the number of bits transmitted by the accepted connections. In thissetting, the network's bandwidth is assumed to be insu�cient to satisfy all the requests sosome of the requests may need to be rejected upon their arrival. An online algorithm in thissetting is a combination of a decision mechanism that determines which requests to satisfytogether with a strategy that speci�es how to route these requests. The goal is to maximizethe amortized throughput.Competitive algorithms to maximize the throughput were provided by Garay and Gopal [8](for the case of a single link); by Garay, Gopal, Kutten, Mansour and Yung [7] (for a linenetwork); and by Awerbuch, Azar and Plotkin [2] (for general network topologies). None ofthese works provided competitive algorithms for connections with unknown durations. In viewof the results presented in this paper it is natural to ask whether there exists a throughput-competitive algorithm for the case where the duration of calls is apriori unknown. However,as observed by Garay and Gopal [8], such an algorithm does not exist. Roughly speaking,the reasoning is as follows. First note that the throughput-maximization setting makes senseonly if we allow the online algorithm to reject some of the calls. Now the fact that the calldurations are apriori unknown means that an online algorithm may reject a call that wouldhave otherwise continued to exist \forever", which shows that the competitive ratio of thisonline algorithm with respect to throughput is unbounded.1.2 Load BalancingIn the second part of the paper we show how to apply our techniques to load balancing of taskswith unknown duration. Here, there are n parallel machines and a number of independenttasks. The tasks arrive one by one, where each task has an associate load vector and has tobe assigned to exactly one of the machines, thereby increasing the load on this machine by anamount speci�ed by the corresponding coordinate of the load vector. The duration of a task2

is not known upon its arrival. The objective is to minimize the maximum machine load.The case where the duration of a task becomes known upon its arrival was extensivelystudied. In particular, the case where the duration is in�nite was studied in [9, 10, 5, 6]; thecase of �nite but known durations was studied in [1, 2, 4]. In this paper we focus on the moregeneral case where the durations of tasks are apriori unknown. For the related machine case,i.e the case that the load vectors are spanned by one vector, an algorithm that achieves aconstant competitive ratio is shown in [4]. However, for the general case, Azar, Broder, andKarlin [3] showed that if reassignment of tasks is not allowed (i.e. once a task is assignedto a machine, it cannot be reassigned to another machine), then there is an
(pn) lowerbound on the competitive ratio. This lower bound holds even if we restrict the model tothe case (introduced by [5]) where all coordinates of the load vector are either 1 or 1. TheO(pn)-competitive algorithm presented in [4] matches this lower bound.In order to overcome the above non-polylogarithmic lower bound, Phillips and Westbrooksuggested to allow task reassignments [11]. In particular, for the case where all coordinatesof the load vector are either 1 or 1, they have presented an algorithm that achieves O(logn)competitive ratio with respect to load while making at most a constant amortized number ofreassignments per task.We show that our online routing techniques presented in the �rst part of this paper canbe applied to the general load balancing case, i.e. load balancing of unknown duration taskswith no restrictions on the load vectors. This yields an algorithm that makes at most O(logn)reassignments per task and achieves O(logn) competitive ratio with respect to the load. It isnot obvious how to extend the approach in [11] to achieve similar performance.We also consider the special case where all coordinates of the load vector of task i areeither 1 or 1, and where the optimum load achieved by the o�ine algorithm is at least logn.For this case we give an algorithm that achieves a constant competitive ratio while makingonly O(logn) amortized reassignments per task. As opposed to the algorithm in [11] and theother algorithms presented here that reassign tasks only as a result of task departures, thisalgorithm reassigns tasks as a result of a task arrival as well. In fact, it is easy to show that thisis necessary in order to achieve sublogarithmic competitive ratio [5]. (Speci�cally, [5] shows an
(logn) lower bound on the competitive ratio for the load balancing case where tasks neverdepart and no reroutings are allowed.)2 Online Route AllocationIn this section we describe online strategy for routing (and rerouting) virtual circuits whoselifetime (duration) is apriori unknown. We are given a graph G = (V;E) with jV j = n andjEj = m, and a capacity function u : E ! R+. The fact that each connection has an associatedlifetime that is apriori unknown is modeled by assuming that the algorithm receives two typesof requests online: \initiate connection" and \terminate connection". We say that connectioni is active at time t if the \initiate connection i" request arrives before t and the \terminateconnection i" request arrives after t. The \initiate connection" request is de�ned by a tuple3

(si; ti; pi), where si; ti 2 V are the source/sink pair, and pi 2 R+ corresponds to the requiredbandwidth. As long as the connection is active, the required bandwidth has to be reservedalong some path Pi from the source si to the sink ti. The routing algorithm is allowed tochange Pi at any time; such change is referred to as rerouting.If we were to use edge e to route connection i, the load on this edge would have increasedby pi. Thus, we de�ne the relative load on e due to connection i as pi;e = pi=u(e). Notethat pi;e is de�ned for every edge e, and not only for the edges that actually participate inthe path Pi currently assigned to connection i by the algorithm. Let Pt and P�t be the set ofpaths associated with the connections that are active at time t by the online and the o�inealgorithms, respectively. The relative load on edge e at instance t of the online algorithm isde�ned by: `e(t) = XPi2Pt:e2Pi pi;eLet �(t) = maxe2E `e(t) and � = maxt �(t). Similarly, de�ne `�e(t), ��(t) and �� to be thecorresponding quantities for the routes P�t produced by the o�ine algorithm. The goal of theonline algorithm is to produce and maintain a set of routes that minimizes �=��. Minimizing�=�� corresponds to asking how much larger we should make the capacities of the edges inorder for the online algorithm to be able to satisfy all the requests on the new graph that theo�ine algorithm could have satis�ed on the graph with the original capacities.2.1 Routing AlgorithmWe �rst assume that the algorithm has a knowledge of � � ��. This assumption can be easilydealt with by a simple doubling technique, which we discuss later. To simplify the formulas,we will use tilde to denote normalization by �, for example ~̀e(t) = `e(t)=�.De�ne a = 1+ =2 for some constant < 1. At every instance, each active connection i isassociated with some path Pi. Since the algorithm is allowed to reroute connections, we de�neT (Pi) as the last time when the connection was rerouted to use path Pi. For a route P thatexists at time t and that uses edge e, let QPe (t) be the set of routes in the network at time twhich use edge e and that have smaller values of T (�), i.e. paths that were using e before P .De�ne the height of a route P with respect to an edge e at time t ashPe (t) = XPj2QPe (t) pj;eand the weight of a route P which satis�es request i asWPi (t) =Xe2P(a~hPe (t)+~pi;e � a~hPe (t))Note that the weight of the �rst path connection i is assigned to immediately after its arrival4

is: Xe2P(a~̀e(t) � a~̀e(t)�~pi;e);where t is the time immediately after the assignment.From now on we will omit the parameter t where it can be deduced from the context. Aswe will show, it is su�cient to maintain the following stability condition:De�nition 2.1 Let P be some existing s � t route satisfying active connection i, and let P 0 beany s � t path in G. We say that the algorithm is in a stable state if for any P and P 0, we have:WPi =Xe2P (a~hPe +~pi;e � a~hPe) � 2Xe2P 0(a~̀e+~pi;e � a~̀e):Intuitively, the main idea of the algorithm is to make sure that the above stability conditionis satis�ed. More precisely the algorithm is described as follows:Route/Reroute Alg:� Upon receiving the \initiate connection" request (si; ti; pi), the algorithm assigns it toan si � ti path Pi which minimizes WPi .� If at any moment the stability condition is not satis�ed by some connection i that is cur-rently assigned to some path P , the algorithm reroutes i to use a path P 0i that minimizesWP 0i .� When a connection terminates, it is removed from the path it is assigned to, reducingthe relative load on the edges of the path.Observe that the algorithm will never reroute as a result of an arrival of a new connection.The proof of performance of the algorithm is divided into two parts. First, we prove thatif the stability condition is maintained then the current relative load can be bounded by afunction of the optimum load. Next we use this fact to show that after any departure, thealgorithm can move to the stable state by making only a small number of reroutings.Lemma 2.2 If the algorithm is in a stable state, than Pe2E a ~̀e � m=(1�).Proof: Consider a connection i that is currently assigned by the online algorithm to some pathP . Let P � be the path that is currently assigned to this connection by the o�ine algorithm.Note that since a = 1 + =2 we have that 8x 2 [0; 1] : 2(ax � 1) � x. Moreover, the factthat the o�ine algorithm routes the ith request through P � implies that for each e 2 P � wehave 0 � ~pi;e � 1, and hence the inequality above applies for x = ~pi;e. This and the stabilitycondition imply 5

WPi = Xe2P(a~hPe +~pi;e � a~hPe) � 2 Xe2P �(a~̀e+~pi;e � a~̀e)= 2 Xe2P � a~̀e(a~pi;e � 1) � Xe2P � a~̀e ~pi;eSumming over all currently active connections, we get:XP2PXe2P(a~hPe (t)+~pi;e � a~hPe (t)) � XP �2P� Xe2P � a~̀e ~pi;eExchanging the order of summation yieldsXe2E XP2Pje2P(a~hPe (t)+~pi;e � a~hPe (t)) � Xe2E a~̀e XP �2P�je2P � ~pi;eClearly, the left hand-side is a telescopic sum for each edge e. Observe that the fact that thenormalized load of the o�ine algorithm never exceeds 1 implies that PP �2P�je2P � ~pi;e � 1.Thus we conclude that Xe2E(a ~̀e � 1) � Xe2E a ~̀eUsing the fact that < 1, we get Xe2E a ~̀e � m=(1�):Lemma 2.3 A connection that arrived when the algorithm was in a stable state will not bererouted more than O(logn) times.Proof: Consider a request for connection i with source si and sink ti that arrived when thealgorithm was in a stable state. Let Qi be a path that minimizes ZPi =Pe2P (a~pi;e � 1). Notethat ZQii is a lower bound on the weight of a path associated with this connection at any time.By assumption, connection i arrived when the algorithm was in a stable state. Hence, ifwe would have assigned this connection to Qi upon its arrival, then by Lemma 2.2, its weightwould have beenXe2Qi(a~̀e+~pi;e � a~̀e) � m=(1�)Xe2Qi(a~pi;e � 1) = m=(1�)ZQii :6

Since connection i was assigned to a path with minimum weight, the original weight of theconnection is no greater than the weight it would have had if it had been assigned to Qi, andhence it is at most m=(1 �)ZQii . Arrival, termination, and reroutings of other connectionscan not increase the weight associated with this connection, and each rerouting of i decreasesthe weight of the route assigned to i by at least a factor of 2. Thus, since the �nal weight ofthe connection is at least ZQii we conclude that the number of reroutings per connection isbounded by log(m=(1�)) = O(logn).Theorem 2.4 The route/reroute algorithm maintains load of at most O(� logn) while reroutingeach connection at most O(logn) times.Proof: Clearly this algorithm starts in a stable state. Note that arrival of new connections cannot a�ect the stability condition. Departure of a connection might cause several reroutings.Since, inductively, the connections that are rerouted arrived when the algorithm was in a stablestate, Lemma 2.3 implies that the rerouting will terminate and a stable state will be reachedagain. Lemma 2.2 then implies that at this point we haveXe2E a ~̀e � m=(1�):This, in turn implies that� = maxt maxe2E `e(t) � � loga(m=(1�)) = O(� logn):Since every connection arrives when the algorithm is in a stable state, Lemma 2.3 impliesthat the total number of reroutings per connection is bounded by O(logn).We can eliminate the need to know the optimal load in advance by the standard doublingtechnique. Initiate � to be the minimum p1;e and if at some time the current load exceedsthe competitive ratio times �, then double � and ignore all of the connections that currentlyexist in the system. This increases the competitive ratio by at most a factor of 4 and thus itremains at most O(logn).3 Online Machine Load BalancingIn this section we consider the online load balancing problem de�ned as follows. Tasks arriveand depart online. At any instance, each active task, i.e. task which has arrived but has notterminated yet, has to be assigned to one of the n machines. The �nishing times of the tasksare apriori unknown. The algorithm is allowed to reassign tasks from one machine to another.Each task j is de�ned by a vector pj = (p1j; p2j; : : : ; pnj); for the period that task j isassigned to machine i it increases the load on i by pij . The goal is to minimize the ratio7

between the maximal load of the online algorithm to that of the o�ine one while executingonly a small number of reassignments.As usual, one can categorize load balancing problems for tasks with unknown duration intoclasses according to the properties of the vectors pj . The most general case is the unrelatedmachines case, where we place no restrictions on these vectors. In the next section we discussthis case and show that the routing strategy presented above can be modi�ed to provide acompetitive load balancing algorithm for this case.Another interesting case is when all pij are either 1 or 1 and where the optimum loadachieved by the o�ine algorithm is at least logn. In other words, each task is associatedwith a subset of machines that can execute it; assigning the task to one of these machinescauses a unit increase in the load. In Section 3.2 we present an algorithm that achievesa constant competitive ratio with respect to load for this case, while performing O(logn)amortized number of reassignments per task.3.1 The Unrelated Machines CaseThe routing problem discussed in the previous section can be considered as a generalization ofthe unrelated machines scheduling problem. Roughly speaking, in the load balancing problem,each task can be assigned to one of the machines in a given set, increasing the load on thismachine. In the routing context, assigning a connection to a route increases the load on asubset of edges, where the subsets correspond to possible s� t routes.It is easy to see that the routing algorithm presented in the previous section works evenfor the case where the graph is directed and where the values of relative load pi;e are arbitraryand are not necessarily related to pi=u(e). This allows us to reduce an instance of the loadbalancing problem on unrelated machines to online \generalized routing" in the following way.Construct a directed graph with 2 vertices, s and t, and n parallel edges between them. Edgei corresponds to machine i. Given a sequence of tasks arrivals and departures, we generate acorresponding sequence of requests to initiate connections and to terminate connections. Anarrival of task j with a corresponding load vector pj is translated into an \initiate connectionj" request between s and t with precisely the same load vector. Observe that assignment oftask j to machine i corresponds to using the unique s� t path through the ith edge to satisfythe corresponding request \initiate connection j". This immediately implies:Theorem 3.1 For the unrelated machines problem where the duration of tasks is apriori un-known, there is an assignment algorithm which makes O(logn) reassignments per task and achievesO(logn) competitive ratio with respect to the load.In [5], an
(logn) lower bound was proved on the competitive ratio for the load balancingcase where tasks never depart. Observe that our algorithm reassigns tasks only as a result oftask departures, and hence can not achieve better than O(logn) competitive ratio with respectto load. 8

3.2 The Case of Unit-load TasksIn this section we consider the special case where all pij are either 1 or 1, and where theoptimum load achieved by the o�ine algorithm is at least logn (i.e. the size of a job is atmost 1= logn times the optimal maximal load). In other words, each task has unit weight andcan be assigned to one of the machines that belong to a subset associated with this task. Wedescribe an algorithm which maintains a constant competitive ratio while performing O(logn)amortized number of reassignments per task.As before we assume that the algorithm has a knowledge of � � ��, where �� is theoptimum load achieved by the o�ine algorithm. This assumption can easily be dealt with bya simple doubling technique. The algorithm will maintain the following stability condition:De�nition 3.2 Let j be some task which is currently assigned to machine i. Consider a machinei0 which is an eligible assignment for task j (i.e. machine i with pi0j = 1). We say that thealgorithm is in a stable state if for any i and i0, we have:`i � `i0 � 2�= lognSimilarly to the routing algorithm of Section 2.1, the main idea of the algorithm is to makesure that the above stability condition is satis�ed. More precisely the algorithm is describedas follows:Load Balancing/Rebalancing Alg:� Each new task j is assigned to an eligible machine that currently has minimum load.� If at any moment the stability condition is not satis�ed by some task j that is currentlyassigned to machine i, the algorithm reassigns j to a least loaded machine among themachines that are eligible with respect to j.� When a task �nishes, it is removed from the machine it is assigned to, reducing the loadon this machine.Observe that, as opposed to the algorithms described previously, this algorithm reassignstasks both as a result of task arrival and departure. As mentioned in Section 3.1, this isnecessary to achieve constant competitive ratio, since the lower bound of [5] implies that analgorithm that does not reassign tasks as a result of task arrivals can not achieve better than
(logn) competitive ratio.Again, the proof of performance of the algorithm is divided into two parts. First, we provethat if a stable condition is attained, then the current load is within a constant factor ofoptimum load. Then we show that after any arrival or departure, a stable condition can bereached by making only a small number of reassignments.Lemma 3.3 If the algorithm is in a stable state, than � � 4�.9

Proof: Assume that at some instance there is a machine i such that `i > 4�. We claim thatat that time, for any 0 � k � blognc there is a set Sk of at least 2k machines such that8i 2 Sk; `i > �(4� 2k= logn)Thus for k = blognc it follows that there are more than n=2 machines with load largerthan 2�. This yields a contradiction since at every instance in time, the cumulative load onall the machines has to be below n�� � n�.We prove the claim by induction on k. By assumption, the induction holds for k = 0.Assume the claim is correct for k. Consider the tasks currently assigned to machines in theset Sk. The fact that k � log n implies �(4� 2k= logn) � 2�. Thus,Xi2Sk `i � 2k�:Since the optimal load on each machine is bounded by �, the o�ine algorithm must assignthe tasks which are currently assigned to machines in Sk to a set of machines Sk+1 of size atleast 2k. Consider any machine i in Sk+1 � Sk. By construction of Sk+1, machine i is eligiblewith respect to some task j that is currently assigned to one of the machines i0 2 Sk. Thestability condition implies that the load on i is not much lower than the load on i0. Moreprecisely, `i � `i0 � 2�= logn. Since i0 2 Sk we can use the induction hypothesis to get:8i 2 Sk+1; `i > �(4� 2(k + 1)= logn):This completes the inductive proof and therefore the proof of the Lemma.Lemma 3.4 If every task arrives when the algorithm is in a stable state then the total number ofreassignments is at most O(logn) times the number of tasks.Proof: De�ne the following non-negative potential function� =Xi (`i=�)2We will bound the changes in the value of this function that are caused by arrivals, departuresand reassignments of tasks. Clearly task departures can only cause � to decrease. Next weconsider tasks arrivals. If a task arrived when the algorithm was in a stable state, and wasassigned to some machine i whose load before the assignment was `i, then by Lemma 3.3 weget that the increase in � is bounded by:�� = ((`i + 1)=�)2� (`i=�)2 = (2`i=�+ 1=�)=� � 9=�:10

For tasks reassignments, if a task is reassigned from machine i to machine i0 then � isreduced by at least:��� = (`2i � (`i � 1)2 + `2i0 � (`i0 + 1)2)=�2= 2(`i � `i0 � 1)=�2 � 2(2= logn� 1=�)=�The last inequality follows from the fact that the job was reassigned from i to i0 becauseit did not satisfy the stability condition. Now we use the fact that � � logn to conclude that��� � 2=(� logn) The claim of the lemma follows from the fact that at any instance in timewe have � � 0.Theorem 3.5 The assignment algorithm maintains load of at most 4� with amortized O(logn)reassignments per task.Proof: Clearly the algorithm starts in a stable state. Since, inductively, new tasks arrive whenthe algorithm is in a stable state, Lemma 3.4 implies that the reassignment process terminates,a stable state is reached, and the amortized number of reassignments per task is limited byO(logn). Lemma 3.3 implies that the algorithm maintains load of at most 4�.As before we eliminate the need to know the optimal load in advance by the doublingtechnique. This increases the competitive ratio by at most a factor of 4 to be 16.References[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line load balancing withapplications to machine scheduling and virtual circuit routing. In Proceedings of the 25thAnnual ACM Symposium on Theory of Computing, pages 623{631, May 1993.[2] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive on-line routing. InProceedings of 34th IEEE Annual Symposium on Foundations of Computer Science, pages32{40, November1993.[3] Y. Azar, A. Broder, and A. Karlin. On-line load balancing. In Proceedings of the 33rdIEEE Annual Symposium on Foundations of Computer Science, pages 218{225, 1992.[4] Y. Azar, B. Kalyanasundaram, S. Plotkin, K. Pruhs, and O. Waarts. On-line load bal-ancing of temporary tasks. In Proceedings of the Workshop on Algorithms and DataStructures, pages 119{130, August 1993.[5] Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assignment. In Proceedingsof the 3rd ACM-SIAM Symposium on Discrete Algorithms, pages 203{210, 1992.11

[6] Y. Bartal, A. Fiat, H. Karlo�, and R. Vohra. New algorithms for an ancient schedulingproblem. In Proceedings of the 24th Annual ACM Symposium on Theory of Computing,pages 51{58, May 1992.[7] J. Garay, I. Gopal, S. Kutten, Y. Mansour, and M. Yung. E�cient on-line call controlalgorithms. In Proceedings of the of 2nd Annual Israel Conference on Theory of Computingand Systems, 1993.[8] J.A. Garay and I.S. Gopal. Call preemption in communication networks. In Proceedingsof IEEE INFOCOM '92, volume 44, pages 1043{1050, Florence, Italy, May 1992.[9] R.L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Jour-nal, 45:1563{1581, 1966.[10] R. Karp, U. Vazirani, and V. Vazirani. An optimal algorithm for on-line bipartite match-ing. In Proceedings f the 22nd Annual ACM Symposium on Theory of Computing, pages352{358, 1990.[11] S. Phillips and J. Westbrook. Online load balancing and network ow. In Proceedings ofthe 25th Annual ACM Symposium on Theory of Computing, pages 402{411, 1993.[12] D.D. Sleator and R.E. Tarjan. Amortized e�ciency of list update and paging rules. Comm.ACM, 28(2):202{208, 1985.

12

