
Packet Routing and Information Gathering in Lines,

Rings and Trees ∗

Yossi Azar † Rafi Zachut ‡

Abstract

We study the problem of online packet routing and information gathering in lines, rings and
trees. A network consists of n nodes. At each node there is a buffer of size B. Each buffer can
transmit one packet to the next buffer at each time step. The packets injection is under adversarial
control. Packets arriving at a full buffer must be discarded. In information gathering all packets
have the same destination. If a packet reaches the destination it is absorbed. The goal is to
maximize the number of absorbed packets. Previous studies have shown that even on the line
topology this problem is difficult to handle by online algorithms. A lower bound of Ω(

√
n) on

the competitiveness of the Greedy algorithm was presented by Aiello et al in [2]. All other known
algorithms have a polynomial competitive ratio. In this paper we give the first O(log n) competitive
deterministic algorithm for the information gathering problem in lines, rings and trees. We also
consider multi-destination routing where the destination of a packet may be any node. For lines and
rings we show an O(log2 n) competitive randomized algorithms. Both for information gathering
and for the multi-destination routing our results improve exponentially the previous results.

1 Introduction

Overview: Packet routing networks, have become dominant platform for carrying data. In this paper
we investigate a packet routing and information gathering in lines, rings and trees. In information
gathering all injected packets have the same destination. Information gathering is widely used in
many networks (e.g sensor networks). We also consider the multi destination routing in which the
destination of a packet might be any node in the network.

We model the problem of packet routing on a unidirectional line or ring or tree as follows. A
network has n nodes. At each node a buffer of size B. At each time step, new packets may be injected
to the buffers, each has a destination node. Then a buffer can transmit one packet to its successor.
A packet can only be stored in a buffer if there is enough space. Since the n nodes have bounded
capacity, packet loss may occur. When a packet reaches its destination it is absorbed. All packets
have the same value. The goal is to maximize the number of absorbed packet. The definitions can be
extended to rings, trees and general graphs.

Traditionally, the performance of a packet routing algorithm was measured within the stability
analysis. In such framework either a probabilistic model ([19, 31]) or an adversarial model([4, 22]) for

∗A preliminary version of this paper appears in the proceedings of the 13th Annual European Symposium on Algo-
rithms (ESA), 2005, pp. 484-495.

†
azar@tau.ac.il. School of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel. Research supported in

part by the German-Israeli Foundation and by the Israel Science Foundation.
‡
Zachutra@post.tau.ac.il. School of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel.

1



the packet injection is given, and the goal is to bound the buffer size needed to prevent packet drop.
Since it seems impossible to avoid packet drop in practice, approximation analysis, which avoids any
a priori assumption on the input and compares the performance of algorithms to the optimal solution
in the context of throughput has been adopted recently. In particular competitive analysis in which
one has to deal with dropped packets becomes a common approach ([2, 17]).

To the best of our knowledge, even for a simple topology as the line, all known algorithm either
have a polynomial competitive ratio or they must use buffers which are much larger than those of the
optimal solution, in order to obtain a good competitive ratio. In [2] Aiello et al. showed the poor
performance of the greedy algorithm for information gathering by proving a lower bound of Ω(

√
n) on

its competitive ratio (actually the upper bound is n+1 for FIFO model (see [17]) and n for non-FIFO
model (see [25])). They also showed that for the multi-destination routing, algorithm NTG (Nearest

To Go) is O(n
2

3 )-competitive. There were no algorithms with poly-logarithmic competitive ratio given
the same condition as the optimal solution even for lines, rings and trees.

In this paper we provide the first logarithmic competitive algorithm for information gathering
improving exponentially the previous results for lines, rings and trees. For multi destination routing
we provide the first poly-logarithmic randomized algorithms for lines and rings. Our results hold for
small buffers of constant size as well as for large buffers. The competitiveness of our algorithms is
independent of the buffer size.

Our results:

• Our main contribution is an O(log n) competitive deterministic algorithms for information gath-
ering in lines, rings and trees. For lines and rings we require B ≥ 2 and for trees we require that
B is larger than the maximum degree. We note that for B = 1 there is an easy deterministic
lower bound of n for the line.1

• We provide an O(log2 n) competitive randomized algorithm for the multi-destination routing in
lines and unidirectional and bidirectional rings topology for any B ≥ 2.

We use two tools which are of their own interest:

• We present a generic technique to transform any fractional algorithm for information gathering
into a discrete algorithm. Specifically, we show that given a fractional algorithm for information
gathering with buffers of size B ≥ 2 in a line, we can construct a discrete algorithm whose
competitive ratio is larger by the small factor of B

B−1 .

• We present a generic technique to construct a fractional algorithm for large buffers from an algo-
rithm for smaller buffers. Specifically, we show that given a fractional algorithm for information
gathering for buffers of size n we can construct a fractional algorithm for buffers of size B > n

with competitive ratio larger by a factor of 16.

Recently, independently of our work Angelov et al. [5] achieved a slightly weaker result of O(log2 n)
competitiveness for information gathering in lines and trees and a randomized O(log3 n) algorithm for
multi-destination routing in lines.

1A lower bound of Ω(n) for B = 1 (see [2]). We describe a repeated process in which Online delivers at most
one packet while the adversary delivers at least n. All packets are destined to node n−1. The adversary injects a packet
to node 0. Online must accept this packet as it might be the only packet. Whenever Online forwards this packet, the
adversary injects packets to the new location until Online forwards it on. Online must reject the new packets. If Online

doesn’t forward before n packets were injected, the process can be easily completed. Otherwise by the time Online

delivers its packet, the adversary buffers n packets which will be delivered during the next n time steps.

2



Our techniques: We start by studying the online fractional call admission and circuit routing prob-
lem. By a small modification to the algorithm of Awerbuch et al. [7] for the discrete version of this
problem with small bandwidth requests, we obtain a fractional O(log D) competitive algorithm, where
D is a bound on the allowed maximum length of paths used. We next construct an online reduction
from fractional packet routing in a line to fractional call admission and circuit routing and obtain an
O(log(nB)) competitive algorithm for fractional information gathering, which immediately supplies
an O(log n) competitiveness for buffers of size polynomial in n. For larger buffers we use a reduction to
buffers of size n in order to obtain the O(log n) competitiveness. Next we use a technique to transform
any fractional algorithm for information gathering into a discrete algorithm, and obtain an O(log n)
discrete algorithm for information gathering in a line network. We construct an O(log2 n) randomized
algorithm for multi-destination routing in a line network using the ”Classify and randomly Select”
technique with the algorithm for information gathering. We extend our techniques to rings and trees.

Related results for throughput packet routing:

• Line and tree topologies: Aiello et al.[2] investigated the unit packet routing on the line
topology and proved a lower bound of Ω(

√
n) on the competitiveness of the greedy algorithm

for information gathering in a line. Algorithm NTG (Nearest To Go) is shown in [2] to be

O(n
2

3 ) competitive for multi-destination routing in a line. Azar and Richter [17] showed that
the greedy algorithm for multi-destination routing is (n + 1) competitive. In [27] Kesselman
et al. investigated the routing problem under the work conserving assumption on directed lines
and directed trees where packets are injected at the leaves and are destined to the root.

• General graphs: In [9] Awerbuch et al. presented a load balance algorithm for anycasting
packet routing in general topologies. For the line problem this algorithm is 1

1−ǫ
competitive

using buffers which are larger by factor of O(n
ǫ
) than those of the optimal solution. In [2] Aiello

et al. proved that algorithm NTG (Nearest To Go) is O(md) competitive for any network, where
m is the number of edges in the network and d is the maximal length of a path traversed by any
packet. They also showed that on DAGs any greedy algorithm is O(md) competitive.

• Packet switching: Switches are fundamental part of most networks and thus studied exten-
sively during recent years in the context of throughput. A multi-queue input switch receives
packets from m input ports and transmits packets from a single output port. The best algo-
rithm for the multi-queue input switch of unit value packets is 1.58-competitive (see [15]) when
the switch input queues are larger than log m. For smaller queues there is a 1.89-competitive
algorithm (see [3]). The best algorithm for a multi-queue input switch of packets with general
value is 3-competitive (see [17]). The best algorithm for maximizing the total weighted through-
put of CIOQ switches is 8-competitive (see [16]). More work on other models of switches can
be found in [26, 28].

Other approaches for packet routing: Works under the assumption that the adversary never
overload the system with packets are as follows: [4, 22, 23, 33] deals with queuing policies alone
(the path of each packet is given). [1, 8, 10, 11, 23] are studies of adversarial models in the context of
routing (i.e the adversary does not reveal the paths). In [30] Kothapalli et al. investigated information
gathering in lines and rings. They proved that in order to avoid packets drop in such networks, an
online algorithm should have buffers larger by at least a logarithmic factor than the buffers of the
optimal solution.

Online call admission and circuit routing: Call admission and circuit routing have been studied
in a variety of contexts. Gary et al. [24] have studied these problems on a line topology where
preemption is allowed. Awerbuch et al. [7] investigated the problem on general graphs in the case

3



that the bandwidth of each request is relatively small compared to the capacity of the edges. Awerbuch
et al. [12] and Awerbuch et al. [13] considered admission control on trees using randomization. Blum
et al. [20] and Kleinberg et al. [29] investigated these problems on some special topologies such as trees
and meshes. Work on the load model, where all requests are accepted can be found in [6, 32, 18, 14].

Paper structure: For simplicity of the presentation we consider in sections 2 up to 6 the line
topology. In section 7 we show how to extend the results to rings and trees. Section 2 includes formal
definitions and notation. In Section 3 we consider the online fractional call admission and circuit
routing problem. In Section 4 we construct an O(log n) competitive algorithm for the fractional
information gathering in a line network. In Section 5 we transform the outcome fractional algorithm
from Section 4 into a discrete algorithm for information gathering with competitiveness of O(log n).
In Section 6 we construct an O(log2 n) competitive randomized algorithm for the multi-destination
routing. In Section 7 we extend our results to trees and rings. In appendix A we give an O(log n)
competitive algorithm for information gathering in trees.

2 Problem Definition and Notations

There are two major routing types in communication networks: packet routing and virtual circuit
routing. In circuit routing paths connections are constructed while in packet routing packets are
traversed in the network. In this paper we consider packet routing defined below. Interestingly, our
results are based also on virtual circuit routing defined in Section 3.

In the online Packet Routing problem on a line we have a network organized in a line topology
of length n, i.e. node i = 0, . . . , n − 2 is connected to node i + 1 via a unidirectional link with unit
capacity. Node i = 0, . . . , n−1 contains a buffer of size B, which is initially empty, to buffer the packets
waiting to be transmitted via its outgoing link. In information gathering we may assume without loss
of generality that node n − 1 is the destination of all packets while in the multi-destination routing
the destination of a packet may be any node. We assume time proceeds in discrete steps, and each
time step t ≥ 0 is divided into two phases: at the first phase new packets may be injected to nodes
i = 0, . . . , n − 1, each packet is associated with a destination node. During the second phase of time
t, node i = 0, . . . , n − 2 may transmit a packet from its buffer to node i + 1. If a packet reaches its
destination it is absorbed. Otherwise, online arriving packets (from both phase 1 and phase 2) can be
buffered without exceeding the buffers capacities. Remaining packets must be discarded. The goal is
to maximize the number of packets that reach their destination.

We use the term load of buffer i to refer to the number of packets residing in that buffer. Given
an online algorithm A we denote by A(σ) the value of A given the sequence σ. We denote the optimal
(offline) algorithm by OPT , and use similar notation for it.

Remark 1 Packet arrives at a full buffer (at the injection phase or the transmission phase) must
be discarded. However our algorithms discard packets only at the injection phase, which make them
suitable also for a non-preemptive model in which accepted packets must reach their destination.

3 Online Fractional Call Admission and Circuit Routing

Our routing algorithm for information gathering is based on an online fractional call admission and
circuit routing algorithm. Thus we start by considering the online version of the call admission and
circuit routing problem, which is defined as follows. A network is represented by a capacitated graph
G(V,E, u) and a bound D on the allowed maximum length of paths used. The capacity u(e) assigned
to each edge e ∈ E represents the bandwidth available on this edge. The online input sequence consists
of call requests for paths: β1, β2, . . . , βk, where the ith call is represented by: βi = {si, ti, ri}. Node

4



si is the origin of the call βi, node ti is its destination, and ri is the bandwidth it requires. Upon
receiving a call request βi an algorithm either routes it by assigning it a path of length at most D

from si to ti with ri bandwidth, or rejects it. If it routes the call then the available bandwidth of each
edge on the path decreases by ri and the throughput of the algorithm increases by ri. The goal of an
algorithm is to maximize its throughput while maintaining the capacity constraints.

The fractional version of the problem is defined as follows: an algorithm can split a call into smaller
bandwidth calls and treat each one of them as a separate call. Thus an algorithm can route different
fractions of a call βi in different paths from si to ti, and reject the remaining fraction. The throughput
of the algorithm is the total bandwidth of routed fractions.

Awerbuch et al. [7] investigated the integral version of the problem. They proved O(log D)
competitive algorithm for the case that the bandwidth of each request is relatively small compared to

the capacity of the edges. Specifically they assumed that for each call βi , ri ≤ mine{u(e)}
log(2D+2) . We call

their algorithm AAP .

The low bandwidth assumption is required to achieve a poly-logarithmic competitive algorithm.
We show how to easily overcome this assumption by modifying the AAP algorithm and allowing it to
route fractional calls. We call this fractional algorithm FAAP (presented in Figure 1).

Algorithm FAAP

Upon arrival of the call βi :

1. Split βi into calls of bandwidth mine{u(e)}
log(2D+2) .(The last fraction of βi might be of smaller band-

width).

2. Run AAP in sequence on βi fractions , until it rejects a fraction or all fractions have been
routed.

Figure 1: Algorithm FAAP .

Theorem 3.1 Algorithm FAAP is O(log D) competitive for maximizing the throughput (even com-
pared to a fractional OPT).

Proof: For low bandwidth calls, algorithm AAP is O(log D) competitive even against a fractional
OPT (see [21],exercise 13.3). By splitting the call, the low bandwidth requirement of AAP applies.

4 Fractional Packet Routing

In this section we consider a fractional version of the packet routing problem described in Section 2.
I.e., we allow an algorithm to accept fractional packets as well as transmit fractional packets from
one node to its successor. Each packet fraction that reaches its destination increases the algorithm
throughput by its size. The purpose of this section is to construct an O(log n) competitive fractional
algorithm for information gathering. We also assume that input sequence σ consists of integral packets.
However, this restriction is not obligatory for this section. The restriction is relevant for the transfor-
mation of a fractional algorithm for the packet routing problem into a discrete routing algorithm (see
Subsection 5.1).

4.1 Fractional packet routing with bounded delay

In this section we consider a fractional variant of the multi-destination routing in which a packet
fraction must not stay more than T time steps in the network.

5



We begin by introducing a translation of this problem into the problem of fractional call admission
and circuit routing which was described in Section 3. The graph G = (V,E, u) for the fractional call
admission problem is described in Figure 2.

Figure 2: The graph G for the call admission and circuit routing problem

Exploiting the matrix shape in which the white nodes in Figure 2 are positioned, we refer to a
white node according to its coordinates in the matrix. The node at the left top corner is node {0, 0}.

The i’th row in the graph represents the i’th buffer over all times. Each time step is represented by
two consequent columns. The beginning of the injection phase of time step t is represented by column
number 2t. The consequent column represents the beginning of the transmission phase of time step
t. We assign a capacity B to each edge ({2t, i},{2t + 1, i}) for every t ≥ 0 and 0 ≤ i ≤ n − 1. Those
edges represent the buffers resources. We assign a capacity 1 to all diagonal edges between two white
nodes. They represent the links resources. All other edges capacity is ∞.

We set the bound D on the allowed maximum length of a path used in the translated fractional
call admission and circuit routing problem to be 2T + 1 (since each time step corresponds to two
consequent edges and the last edge that reach the destination node has no time meaning).

Based on the graph description, we translate the input sequence σ. Suppose a packet p ∈ σ was
injected to node i at time step t and its destination is node j. We translate p to the following call
request c on G: The origin of c is the white node {2t, i}. The destination of c is the black node j. The
bandwidth c requires is 1.

Next we show the equivalence between the fractional packet routing with bounded delay problem and
the translated fractional call admission and circuit routing problem.

Claim 4.1 Every fractional solution A to the translated fractional call admission and circuit routing
problem can be mapped, in an online fashion, to a fractional solution, with the same throughput, to
the original packet routing with bounded delay problem.

Proof: We construct a solution to the original packet routing with bounded delay problem according
to solution A. Let p be a packet and c its translation to a call. If A splits c, we split p in a way each call

6



fraction has a corresponding packet fraction with size equal to the call fraction bandwidth. If A rejects
a call fraction, we reject its corresponding packet fraction. Otherwise the path A assigns to the call
fraction dictates the routing of its corresponding packet fraction as follows. Let {2t + 1, i} be a white
node on the assigned path. Then the path includes either the horizontal edge ({2t + 1, i},{2t + 2, i})
or the diagonal edge ({2t + 1, i},{2t + 2, i + 1}). In the first case we hold up the packet fraction at
buffer i at time step t. In the second case we transmit the packet fraction from buffer i to buffer i + 1
at the transmission phase of time step t. The capacities of the edges of graph G and the feasibility of
solution A, assure that the constructed solution to the fractional packet routing with bounded delay
problem doesn’t require buffers larger than B, and links capacity greater than 1. Since we set the
bound D on the allowed maximum length of path assigned to a call fraction to be 2T + 1 and since
each time step is represented by two consequent columns of G, no packet fraction in the constructed
solution stays more than T time steps in the network. Clearly, the constructed solution throughput is
equal to the throughput of solution A.

Claim 4.2 Every fractional solution S to the packet routing with bounded delay problem can be mapped
to a solution, with the same throughput, to the translated fractional call admission and circuit routing
problem.

Proof: We construct a solution to the translated fractional call admission and circuit routing problem
according to solution S. Let p be a packet and c its translation to a call. A solution to the packet
routing with bounded delay problem can split p several times during its delay in the network. W.L.O.G
we assume S splits p into its final fractions at its injection phase. We split c in a way each packet
fraction has a corresponding call fraction with bandwidth equal to the fraction size. If S rejects a
packet fraction, we reject its corresponding call fraction. Otherwise, we assign a path to the call
fraction according to the routing of its corresponding packet fraction in solution S. If S hold up a
packet fraction at buffer i at time step t, we assign the edge ({2t + 1, i},{2t + 2, i}) for the path of
its corresponding call fraction. Otherwise, if S transmits the packet fraction from node i to node
i + 1 at time step t, we assign the edge ({2t + 1, i},{2t + 2, i + 1}) for the path of its corresponding
call fraction. After those even edges on the path were assigned, the assignment of the odd edges is
obvious. The feasibility of the constructed solution to the translated call admission and circuit routing
problem is derived from the feasibility of solution S. Since in S no packet fraction stays more than T

time steps in the network, no path length in the constructed solution is greater than 2T + 1. Clearly,
the constructed solution throughput is equal to the throughput of solution S.

Corollary 4.3 For any sequence σ, the throughput of the optimal solution in the translated call ad-
mission and circuit routing problem is equal to the optimal solution in the fractional packet routing
with bounded delay problem.

In Figure 3 we present the online algorithm BPR for the fractional packet routing with bounded
delay problem.

Algorithm BPR (Bounded delay Packet Routing)

• Maintain a running simulation of FAAP on G with D = 2T + 1 on the translated input
sequence σ.

• Construct a solution to the fractional packet routing with bounded delay problem from the
solution of the simulated FAAP as described in claim 4.1.

Figure 3: Algorithm BPR.

Theorem 4.4 Algorithm BPR is feasible and O(log T ) competitive for fractional packet routing with
bounded delay.

7



Proof: The theorem follows immediately from Claim 4.1, Corollary 4.3 and Theorem 3.1.

Remark 2 The technique presented in Subsection 4.1 can be generalized to reduce fractional packet
routing in general graphs to circuit routing.

4.2 An O(log(nB)) algorithm for fractional information gathering

In this subsection we consider the fractional version of information gathering with no bound on the
delay. We show that given a solution with unbounded delay, we can construct a solution with bounded
delay T = 2nB with halved throughput. This implies O(log(nB)) competitive fractional algorithm
PR for information gathering (presented in Figure 4) based on the BPR algorithm.

Algorithm PR (Packet Routing)

Apply algorithm BPR with bounded delay T = 2nB.

Figure 4: The PR algorithm

Definition 4.1 A buffer is applying a greedy transmission if it transmits the minimum between the
link bandwidth and the sum of the fractions it holds.

Definition 4.2 A packet is new until the first divisible by nB time step that follows its injection, and
old afterwards.

Claim 4.5 For every unbounded routing solution S for a sequence σ, there is a solution with a bounded
delay T = 2nB and a throughput of 1

2 · S(σ).

Proof: We denote by S
frac
2nB the fractional solution derived from S, which doesn’t keep any packet

fraction more than 2nB time steps in the network, but yields a throughput of 1
2 · S(σ). In S

frac
2nB we

virtually partition the network resources (i.e. buffers and links bandwidth) into two equal parts. In
the first part we run a simulation of S on σ, while halving each accepted/transmitted packet fraction.
Every nB time steps we transfer the remaining fractions in the first part of each buffer to its second
part. Thus, the first part of the network contains only new packet fractions, while the second part
contains only old packet fractions. We apply a greedy transmission in the second part of the network.
Clearly the transfer process is harmless to the simulation upon new fractions in the first part of the
network as it only frees the space taken by fractions that became old. Since the sum of the transfered
old fractions never exceeds 1

2 ·nB and due to the greedy transmission, no old fraction stays more than
nB time steps in the second part of the network.

Corollary 4.6 For every input sequence σ, OPT frac(σ) ≤ 2 · OPT
frac
2nB (σ)

Theorem 4.7 Algorithm PR is feasible and O(log(nB)) competitive for fractional information gath-
ering with no bounded delay assumptions.

Proof: Since algorithm PR actually uses algorithm BPR in the model described in Subsection 4.1
where the delay bound T is equal to 2nB, we get:

OPT frac(σ) ≤ 2 · OPT
frac
2nB (σ)

≤ 2 · O(log(2nB)) · BPR2nB(σ) = O(log(nB)) · PR(σ)

where the first inequality is obtained from Corollary 4.6 and the second from Theorem 4.4.

8



4.3 Reduction from buffers of size B > n to buffers of size n

In this subsection we give a generic technique to construct a fractional algorithm for information
gathering with large buffers from an algorithm for small buffers. Specifically, given a c-competitive
algorithm for buffers of size n, we can construct a 16c-competitive fractional algorithm for buffers of
size B > n. We call this technique GR (Generic Reduction). We assume throughout this subsection
that n|B. We get rid of this assumption at the end of this subsection.

Note that given a c-competitive algorithm for buffers of size n immediately implies a 2c-competitive
fractional algorithm for buffers of size n

2 . This is done by running the first algorithm while halving each
accepted/transmitted packet fraction. Furthermore, given a 2c-competitive algorithm Alg for buffers
of size n

2 immediately implies a 2c-competitive algorithm for buffers of size B
2 and links of bandwidth

B
n
. This is done by running algorithm Alg on the input sequence scaled down by factor B

n
, and adopt

its decisions while scaling them up by the same factor. Thus for simplicity we assume throughout
this subsection we are given the 2c-competitive algorithm A for fractional information gathering with
buffers of size B

2 and bandwidth of B
n
. We will show that applying the GR technique on algorithm A

generates a 16c-competitive algorithm for information gathering with buffers of size B > n.

By the following definition we combine every B
n

consecutive time steps.

Definition 4.3 We define the l’th time interval (l ≥ 0) as time steps l · B
n

upto (l + 1) · B
n
− 1.

Definition 4.4 We define the l’th border time as the time between the end of the l’th time interval
and the beginning of time interval l + 1.

We denote by σ̂ the input sequence σ in which for each buffer we concatenate packets injected during
the same time interval. Informally, the idea of the technique is to simulate algorithm A which runs
in time intervals on the sequence σ̂, by transmitting in the original sequence σ during the time steps
contained in the time interval. We denote by Ri,l the quantity of the packet fractions which was
injected to buffer i at time interval l and accepted by the simulation of algorithm A on σ̂. We denote
by Ti,l the quantity of packet fractions which was transmitted from buffer i at time interval l by the
simulation of algorithm A on σ̂. In Figure 5 we give the exact definition of GR with algorithm A as
a parameter.

Algorithm GRA

• Virtually partition each buffer of GRA to upper buffer and lower buffer. Each of size B
2 .

• Run a simulation of algorithm A in time intervals on the sequence σ̂.

• For each node i = 0, . . . , n − 1 at every time step t:
Let l = ⌊ t

(B
n

)
⌋.

1. Injection phase: Accept packet fractions into the upper buffer unless it’s full.

2. Transmission phase: Transmit
Ti,l−1

(B
n

)
fractions of packets from the lower buffer to the

lower buffer of the next node.

• At border time l move Ri,l fractions of packets from the upper buffer to the lower buffer.

Figure 5: Algorithm GRA

We will show that GRA is 16c-competitive. We start with the following theorem.

9



Theorem 4.8 Algorithm GRA on σ is feasible and yields the same throughput as algorithm A on σ̂,
i.e., GRA(σ) = A(σ̂).

Proof: We begin with the feasibility. Clearly at the l’th border time, the load of the upper part of
buffer i of GRA is at least Ri,l, since at least Ri,l packets were injected at that phase and Ri,l ≤ B

2 .
Hence there are Ri,l fractions of packets to move from the upper buffer to the lower buffer. Since
Ti,l−1

(B
n

)
≤ 1 the bandwidth constraint is maintained in the transmission phase. By a simple induction

which uses the feasibility of algorithm A on σ̂, at the l’th border time the load of the lower part of
buffer i of GRA on σ is equal to the load of buffer i of A on σ̂ before the injection phase of time interval
l, i.e the lower part of buffer i can accept Ri,l fractions of packets from the upper part of buffer i, and
transmit fractions of packets in a total quantity of Ti,l during time interval l + 1. This also implies
that the throughput of algorithm GRA on σ is equal to the throughput of algorithm A on σ̂.

Next we will show that the fractional optimal solution with bandwidth B
n

and buffers of size B
2

on σ̂ yields at least a quarter of the throughput of the fractional optimal solution which uses buffers
of size B and links of bandwidth 1 on σ. Before we proceed we introduce some notation. We denote

by OPT
frac
B,1 the fractional optimal (offline) algorithm which runs in original time steps on σ and uses

buffers of size B and links of bandwidth 1. We denote by Ri,l the total quantity of packet fractions

that was injected to buffer i during the l’th time interval and was accepted by OPT
frac
B,1 . We further

denote by Ti,l the total quantity of packet fractions OPT
frac
B,1 has transmitted from buffer i during the

l’th time interval. Next we describe the fractional strategy S on σ̂ with bandwidth B
n

and buffers of

size 2B, which imitate OPT
frac
B,1 on σ. (see Figure 6).

Strategy S

For each node i = 0, . . . , n − 1 at every time interval l:

1. Injection phase: accepts packet fractions in a quantity equal to Ri,l.

2. Transmission phase: transmit packet fractions in a quantity equal to Ti,l−i (if l < i

transmit nothing).

Figure 6: Strategy S

Theorem 4.9 For any finite sequence σ Strategy S on σ̂ is feasible with buffers of size 2B and

bandwidth of B
n

and S(σ̂) = OPT
frac
B,1 (σ).

Proof: We begin with the feasibility of the transmission phase.

Claim 4.10 Assume the buffers of strategy S are unbounded, then the transmission phase of strategy
S is feasible.

Proof: Since Ti,l−i ≤ B
n
, and since strategy S uses bandwidth of B

n
, buffer i of S can transmit this

quantity if it is available. We prove that this quantity of packet fractions is available for buffer i of
strategy S by induction on the time intervals. For time intervals 0 . . . i−1, buffer i of strategy S is not
required to transmit. We assume correctness until time interval l ≥ i − 1 and prove for time interval
l + 1. Note that the load of a buffer i is always equal to the subtraction of the accumulated sum of
transmitted fractions of packets from the accumulated sum of accepted fractions of packets from both
buffer i − 1 and the injection to buffer i. By the induction hypothesis on buffer i − 1 and buffer i,

10



together with the definition of strategy S at the injection phase, the load of buffer i of strategy S

before the transmission phase of time interval l + 1 is equal to:

l−i+1
∑

k=0

Ti−1,k +
l+1
∑

k=0

Ri,k −
l−i
∑

k=0

Ti,k ≥

l−i+1
∑

k=0

Ti−1,k +

l−i+1
∑

k=0

Ri,k −
l−i
∑

k=0

Ti,k ≥ Ti,l−i+1

where the first inequality follows from a decreased summation range (on non negative numbers), and

the second inequality follows from the fact that algorithm OPT
frac
B,1 on σ has transmitted Ti,l−i+1

fractions of packets from a quantity which is equal to the middle expression.

Corollary 4.11 If the buffers of strategy S are unbounded, then for every finite sequence σ, S(σ̂) =

OPT
frac
B,1 (σ).

Now we bound the load of the buffers of strategy S.

Claim 4.12 The load of buffer i of strategy S never exceeds B + (i + 1) · B
n
.

Proof: The load of buffer i of strategy S after the injection phase of the l’th time interval is equal to:
∑l−i

k=0 Ti−1,k+
∑l

k=0 Ri,k−
∑l−i−1

k=0 Ti,k. Note that OPT
frac
B,1 can transmit at most B

n
fractions of packets

during each time interval. Hence
∑l

k=0 Ti,k ≤ ∑l−i−1
k=0 Ti,k + (i + 1) · B

n
. By this and by increasing a

summation range of non negative numbers, the load of buffer i of strategy S after the injection phase
of the l’th time interval is at most:

l
∑

k=0

Ti−1,k +
l

∑

k=0

Ri,k −
[

l
∑

k=0

Ti,k − (i + 1) · B

n

]

=

[

l
∑

k=0

Ti−1,k +
l

∑

k=0

Ri,k −
l

∑

k=0

Ti,k

]

+ (i + 1) · B

n

which is the load of buffer i of OPT
frac
B,1 after the l’th time interval plus (i + 1) · B

n
. Similarly the load

of buffer i of strategy S after the transmission phase of the l’th time interval is at most the load of

buffer i of OPT
frac
B,1 after time interval l + 1 plus (i + 1) · B

n
.

Corollary 4.13 The load of the buffers of strategy S never exceeds B + n · B
n

= 2B.

The proof of Theorem 4.9 follows immediately from Corollary 4.13, Claim 4.10 and Corollary 4.11.

Denote by OPT
frac
B
2

, B
n

the fractional optimal (offline) algorithm which uses buffers of size B
2 and links

of bandwidth B
n
.

Theorem 4.14 For every B > n and every finite sequence σ, OPT
frac
B,1 (σ) ≤ 4 · OPT

frac
B
2

, B
n

(σ̂).

Proof: By Theorem 4.9, running a simulation of strategy S on σ̂, while shrinking each accepted and
transmitted packet fraction by 1

4 gives a solution, not necessary optimal, which uses buffers of size B
2

and links of bandwidth B
n

(actually this solution requires link bandwidth of only B
4n

) and yields a

throughput of 1
4 · OPT

frac
B,1 (σ).

11



Now we are ready to prove that GRA is 16c competitive. In proving so we also get rid of the assumption
that n|B.

Theorem 4.15 Let B′ ≤ B the largest number such that n|B′ and let A be a 2c-competitive algorithm

for fractional information gathering with bandwidth B′

n
and buffers of size B′

2 , then algorithm GRA is
16c-competitive for fractional information gathering with buffers of size B (and links of bandwidth 1).

Proof: For every sequence σ:

OPT
frac
B,1 (σ) ≤ 2 · OPT

frac
B′,1 (σ)

≤ 2 · 4 · OPT
frac
B′

2
, B′

n

(σ̂)

≤ 8 · 2c · Afrac
B′

2
, B′

n

(σ̂)

≤ 8 · 2c · GRA(σ) = 16c · GRA(σ)

Where the first inequality is obtained from the fact B′ > B
2 , the second inequality is obtained from

Theorem 4.14 and the last inequality is obtained from Theorem 4.8. Note that GRA uses only B′ ≤ B

buffer space and links of bandwidth 1.

Corollary 4.16 Theorem 4.15 implies that given a c-competitive algorithm for buffers of size n, we
can construct a 16c-competitive algorithm for fractional information gathering with buffers of size
B > n by applying GRA as above.

4.4 Fractional information gathering - an O(log n) competitive algorithm

In this section we present an O(log n) competitive algorithm for fractional information gathering. For
that purpose we use algorithm PR for information gathering, presented in Subsection 4.2, and the
reduction to information gathering with size of buffers n presented in Subsection 4.3. Algorithm FIG

for fractional information gathering is presented in Figure 7.

Algorithm FIG (Fractional Information Gathering)

• if B ≤ n:
Use algorithm PR.

• else

1. Let A be algorithm PR for buffers of size n
2 scaled up by ⌊B

n
⌋.

2. Use algorithm GRA.

Figure 7: Algorithm FIG.

Theorem 4.17 Algorithm FIG is feasible and O(log n) competitive for fractional information gath-
ering.

Proof: By Theorem 4.7 the fractional algorithm PR for information gathering is feasible and O(log(nB))
competitive. This immediately implies an O(log n) competitiveness for buffers of size B ≤ n. Next we
consider B > n. Clearly A has buffers of size n

2 ·⌊B
n
⌋ ≤ B

2 . Hence GRA is feasible and by corollary 4.16

GRA is 16 · O(log n) = O(log n) competitive.

12



5 Discrete Information Gathering

In this section we consider discrete information gathering. Given a sequence σ which consists of integral
packets, we present a generic local technique for buffers of size B ≥ 2 to transform any online fractional
algorithm for information gathering into a discrete algorithm with competitiveness multiplied by B

B−1 .
In particular, we use the fractional algorithm FIG which was presented in Subsection 4.4, to construct
a discrete algorithm with O(log n) competitiveness.

5.1 Discretization of a fractional packet routing algorithm

Given a sequence σ which consists of integral packets, we present a generic local technique to transform
any fractional algorithm A for information gathering, that uses buffers of size B, into a discrete
algorithm with the same throughput, but uses buffers of size B + 1. Alternatively we will show that
for B ≥ 2 this technique can be used to transform any c-competitive fractional algorithm for the
problem into a discrete algorithm with a competitive ratio of c · B

B−1 which doesn’t require additional
buffer space. Before we proceed we introduce some notations. Given a sequence σ which consists of

integral packets and a fractional (or discrete) algorithm Alg, we denote by T
Alg
i (t) the accumulated

sum of packet fractions Alg has transmitted from node i until time step t inclusive. We denote

by R
Alg
i (t) the accumulated sum of packet fractions that were injected to node i until time step t

inclusive and were accepted by Alg. In Figure 8 we present the definition of RU with algorithm A as
a parameter. This technique rounds up quantities from algorithm A. Let A′ = RUA.

Algorithm A′ = RUA

Run a simulation of algorithm A (in the fractional model) with the input sequence σ.
For each node i = 0, . . . , n − 1 at every time step t:

1. Injection phase: Accept packets until RA′

i (t) = ⌈RA
i (t)⌉.

2. Transmission phase: Transmit a packet only if it is necessary to hold the equality :
TA′

i (t) = ⌈TA
i (t)⌉.

Figure 8: Algorithm A′ = RUA.

Theorem 5.1 Suppose the buffers of algorithm A′ are larger than those of algorithm A by one slot
each. Then for every input sequence σ, algorithm A′ is feasible and A′(σ) ≥ A(σ).

Proof: We begin with the feasibility of algorithm A′. Our first goal is to show it can maintain the
equality RA′

i (t) = ⌈RA
i (t)⌉ at the injection phase of time step t, and the equality TA′

i (t) = ⌈TA
i (t)⌉ at

the transmission phase of time step t.

Lemma 5.2 Assume the buffers of algorithm A′ are unbounded, then algorithm A′ can keep the two
equalities at each time step.

Proof: We prove the lemma by induction on the time steps. Before the first time step the equalities
clearly hold. We assume correctness for time step t − 1, and prove that algorithm A′ can keep the
equalities at time step t. We first consider the injection phase at buffer i. According to the induction
hypothesis RA′

i (t − 1) = ⌈RA
i (t − 1)⌉. Thus the number of integral packets algorithm A′ needs to

accept, in order to keep the equality at time step t, doesn’t exceed the number of packets algorithm
A accepted fractions from at time step t. Next, consider the transmission phase at buffer i. The
sum of transmitted packet fractions by algorithm A at time step t is at most 1. By the induction

13



hypothesis TA′

i (t−1) = ⌈TA
i (t−1)⌉. Then either the equality still holds or algorithm A′ must transmit

a single integral packet in order to keep the equality at time step t. So it remains to show that if
TA′

i (t − 1) < ⌈TA
i (t)⌉ then algorithm A′ has a packet to transmit. The total sum of packet fractions

algorithm A has received at buffer i so far is TA
i−1(t − 1) + RA

i (t). The total sum of packet fractions

algorithm A has transmitted from buffer i so far is TA
i (t). Thus TA

i−1(t − 1) + RA
i (t) − TA

i (t) ≥ 0.

By the induction hypothesis on the previous transmission phase at buffer i− 1 we have TA′

i−1(t − 1) ≥
TA

i−1(t− 1). Based on what we proved regarding the injection phase at buffer i, RA′

i (t) ≥ RA
i (t). Thus

if TA′

i (t − 1) < ⌈TA
i (t)⌉, then:

TA′

i−1(t − 1) + RA′

i (t) − TA′

i (t − 1) > TA
i−1(t − 1) + RA

i (t) − TA
i (t) ≥ 0

which implies that algorithm A′ has a packet to transmit.

Lemma 5.3 The load of buffer i of algorithm A′ is always smaller than the load of buffer i of algorithm
A plus two.

Proof: We prove the claim for an arbitrary time step t. The load of buffer i is always equal to the
subtraction of the accumulated sum of transmitted packets from the accumulated sum of accepted
packets from both buffer i − 1 and the injection to buffer i. By this and by lemma 5.2 the load of
buffer i of algorithm A′ after the injection phase of time step t is equal to:

TA′

i−1(t − 1) + RA′

i (t) − TA′

i (t − 1) =

⌈TA
i−1(t − 1)⌉ + ⌈RA

i (t)⌉ − ⌈TA
i (t − 1)⌉ <

TA
i−1(t − 1) + RA

i (t) − TA
i (t − 1) + 2

where the inequality is obtained from the ceiling properties. The last expression is equal to two plus
the load of buffer i of algorithm A after the injection phase of time step t. A similar argument holds
for the transmission phase.

Claim 5.4 Let B be the size of the buffers of algorithm A, then algorithm A′ is feasible using buffers
of size B + 1.

Proof: The load of a buffer of A doesn’t exceed B. Thus by lemma 5.3 the load of a buffer of A′ is
always smaller than B + 2. Since A′ is a discrete algorithm the load of its buffers is at most B + 1.

Claim 5.5 For every input sequence σ , A′(σ) ≥ A(σ).

Proof: By lemma 5.2, for every buffer i at every time step t, algorithm A′ holds the equalities TA′

i (t) =

⌈TA
i (t)⌉ and RA′

i (t) = ⌈RA
i (t)⌉. In particular for i = n − 1 it proves the claim.

Theorem 5.1 follows immediately from claims 5.4 and 5.5.

Next we show how to use RU to transform any c-competitive fractional algorithm for buffers of size
B into a discrete algorithm with buffers of size B whose competitive ratio is c · B

B−1 for B ≥ 2. We call
this transformation D (Discretization). Let A be a c-competitive fractional algorithm for information
gathering, when using buffers of size B. In Figure 9 we present the definition of D with algorithm A

as a parameter.

Theorem 5.6 Algorithm DA uses buffers of size B and is c · B
B−1 competitive for information gath-

ering.

14



Algorithm DA

1. Run a simulation of algorithm A with the input sequence σ.

2. Let S be the algorithm obtained by shrinking by B−1
B

each accepted/transmitted packet
fraction of the simulation of A .

3. Apply RUS .

Figure 9: Algorithm DA

Proof: Clearly, algorithm S uses buffers of size B−1 and yields a throughput of B−1
B

·A(σ). Therefore
for every B ≥ 2:

OPT (σ) ≤ c · A(σ)

= c · B

B − 1
· S(σ)

≤ c · B

B − 1
· RUS(σ) = c · B

B − 1
· DA(σ)

where the last inequality is obtained from Theorem 5.1. Note that DA is a discrete algorithm which
uses buffers of size B.

5.2 An O(logn) algorithm for information gathering

In this subsection we apply the discretization technique D from Subsection 5.1 on algorithm FIG

presented in Subsection 4.4 in order to construct an O(log n) competitive discrete algorithm for in-
formation gathering. The discrete algorithm IG for information gathering for buffers of size B ≥ 2 is
presented in Figure 10.

Algorithm IG (Information Gathering)

Use algorithm DFIG.

Figure 10: Algorithm IG.

Theorem 5.7 Algorithm IG is feasible and O(log n) competitive for information gathering (even
against a fractional OPT ).

Proof: The proof follows immediately from Theorem 4.17 and Theorem 5.6.

Remark 3 In information gathering, packets at a specific buffer are exchangeable. Thus transmit-
ting the packet at the head of the buffer, instead of transmitting an arbitrary packet, will modify our
information gathering algorithm to hold in a model in which FIFO queues are imposed.

6 Multi-Destination Routing

In this section we give an O(log2 n) randomized algorithm for multi-destination routing. For this
algorithm we use the known technique ”Classify and Randomly Select” (e.g [12]) and our result from
Subsection 5.2. We classify a packet p according to its source to destination distance dp , and its source
location sp , by the following rule: let l = ⌊log(dp)⌋ then classify p into class number (l, ⌊sp

2l ⌋ mod 3).
The above rule classifies the packets into 3 log n disjoint classes.

15



Definition 6.1 Nodes j, . . . , j + 3d − 1 are an interval of class (l, a) if d = 2l and j mod 3d = da.

By the classification rule and the interval definition the following fact immediately follows:

Fact 6.1 A packet of a class is injected at the first third of an interval of the class, and absorbed
somewhere in its next two-thirds.

Definition 6.2 A super exit of an interval of a class is the first node after the first third of the
interval.

In Figure 11 we present algorithm MD for the multi-destination routing:

Algorithm MD (Multi-Destination)

1. Randomly select class i∗ uniformly from the 3 log n classes.

2. Reject all packets which are not from class i∗.

3. For each interval of the class i∗:

• Run a simulation of IG in the first third of the interval while changing the destination
of all the packets to be the super exit of the interval.

• Apply the actions of the simulation in the first third of the interval.

• Apply a greedy transmission in the last two-thirds of the interval.

Figure 11: Algorithm MD.

Theorem 6.1 The randomized algorithm MD is O(log2 n) competitive for multi-destination routing.

Proof: We begin with the performance of MD within the selected class i∗. We denote by Ci∗ the
throughput of MD within class i∗, and by O∗

i the throughput of the optimum for packets in class i∗.

Claim 6.2 MD is O(log n) competitive against the optimum for packets in class i∗.

Proof: From fact 6.1 the throughput obtained in class i∗ is the sum of throughputs obtained at each
interval of the class. Thus it’s enough to show that on each interval of class i∗, MD is O(log n)
competitive against the optimum for packets in class i∗. Clearly, the throughput of MD on an interval
is the throughput of the simulated IG. From fact 6.1, packets from class i∗ are injected only at the
first third of an interval, thus changing their destination to be the super exit, would not change the
throughput of the optimum for packets in class i∗ on the interval. Then by theorem 5.7, on each
interval of class i∗, MD is O(log n) competitive against the optimum for packets in class i∗.

Therefore for every σ:

E[MD(σ)] =

3 log n−1
∑

i=0

Pr[MD chooses class i] · Ci ≥
3 log n−1

∑

i=0

1

3 log n
· 1

O(log n)
· Oi

=
1

O(log2 n)
·
3 log n−1

∑

i=0

Oi ≥
1

O(log2 n)
OPT (σ)

Where the first inequality is obtained from Claim 6.2, and the second from the fact that the throughput
of OPT within class i can not be more than Oi.

16



Remark 4 We can easily modify our multi-destination routing algorithm so that it uses FIFO queues
with the same competitive ratio (see remark 3).

7 Extension to Rings and Trees

In this section we extend our results to rings and trees.

1. Information gathering in unidirectional ring is the same as in the line. For the multi-destination
routing in a unidirectional ring we can also get O(log2 n) competitive algorithm. This can be
done in a similar way described in Section 6 with the small modification that the definition of
the interval should be considered under the modulo operation.

2. For the multi-destination routing on a bidirectional ring we can also get O(log2 n) competitive
algorithm. We pick one direction with probability of 1

2 and apply the algorithm for the unidi-
rectional case. Since the sum of throughputs of the two unidirectional optimal solutions is at
least the throughput of the bidirectional optimal solution, the competitiveness of this algorithm
is twice the competitiveness of the algorithm for the unidirectional case, i.e O(log2 n).

3. Information gathering in trees, i.e., routing packets to a single node of a tree, can be done in the
same way described in Section 4 and Section 5. The discretization in the case of a tree results
in the multiplication of the competitiveness of the fractional algorithm by a factor of B

B−d+1

(instead of B
B−1 as shown for the line topology), where d is the maximum input degree of a node.

Thus for B ≥ (1+ǫ)(d−1) we obtain an O(log n) competitive algorithm. For example for binary
tree (d = 3) we need B ≥ 3. See appendix A for details.

References

[1] W. Aiello, E. Kushilevitz, and R. Ostrovsky. Adaptive packet routing for bursty adversarial traffic. In
Proc. of the 30th ACM Symp. on Theory of Computing (STOC), pages 359–368, 1998.

[2] W. Aiello, R. Ostrovsky, E. Kushilevitz, and A. Rosén. Dynamic routing on networks with fixed-size
buffers. In Proc. 14th ACM-SIAM Symp. on Discrete Algorithms, pages 771–780, 2003.

[3] S. Albers and M. Schmidt. On the performance of greedy algorithms in packet buffering. In Proc. 36th
ACM Symp. on Theory of Computing, pages 35–44, 2004.

[4] M. Andrews, B. Awerbuch, A. Fernández, J. Kleinberg, T. Leighton, and Z. Liu. Universal stability results
for greedy contention-resolution protocols. In Proc. 37th IEEE Symp. on Found. of Comp. Science, pages
380–389, 1996.

[5] S. Angelov, S. Khanna, and K. Kunal. The network as a storage device: Dynamic routing with bounded
buffers. In APPROX, 2005.

[6] Jim Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, and Orli Waarts. On-line load balancing with applica-
tions to machine scheduling and virtual circuit routing. In Proc. 25th ACM Symp. on Theory of Computing,
pages 623–631, May 1993.

[7] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput competitive on-line routing. In Proc. 34th IEEE Symp.
on Found. of Comp. Science, pages 32–40, November 1993.

[8] B. Awerbuch, P. Berenbrink, A. Brinkmann, and C. Scheideler. Simple online strategies for adversarial
systems. In Proc. of the 42nd IEEE Symp. on Foundation of Comupter Science (FOCS), 2001.

[9] B. Awerbuch, A. Brinkmann, and C. Scheideler. Anycasting and multicasting in adversarial systems:
Routing and admission control. In Proc. 30th ICALP, pages 1153–1168, 2003.

17



[10] B. Awerbuch and F. Leighton. Improved approximation algorithms for the multi-commodity flow prob-
lem and local competitive routing in dynamic networks. In Proc. of the 26th ACM Symp. on Theory of
Computing (STOC), pages 487–496, 1994.

[11] B. Awerbuch, Y. Mansour, and N. Shavit. End-to-end communication with polynomial overhead. In Proc.
of the 30th IEEE Symp. on Foundation of Comupter Science (FOCS), pages 358–363, 1989.

[12] Baruch Awerbuch, Yair Bartal, Amos Fiat, and Adi Rosén. Competitive non-preemptive call control. In
Proc. 5’th ACM-SIAM Symp. on Discrete Algorithms, pages 312–320, 1994.

[13] Baruch Awerbuch, Rainer Gawlick, Tom Leighton, and Yuval Rabani. On-line admission control and circuit
routing for high performance computation and communication. In Proc. 35th IEEE Symp. on Found. of
Comp. Science, pages 412–423, 1994.

[14] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Raecke. Optimal oblivious routing in polynomial time. In
Proc. of the 35th STOC (San Diego), pages 383–388, 2003.

[15] Y. Azar and A. Litichevskey. Maximizing throughput in multi-queue switches. In Proc. 12th Annual
European Symposium on Algorithms, pages 53–64, 2004.

[16] Y. Azar and Y. Richter. An improved algorithm for CIOQ switches. In Proc. 12th Annual European
Symposium on Algorithms, pages 65–76, 2004.

[17] Y. Azar and Y. Richter. The zero-one principle for switching networks. In Proc. 36th ACM Symp. on
Theory of Computing, 2004. 64–71.

[18] M. Bienkowski, M. Korzeniowski, and H. Raecke. A practical algorithm for constructing oblivious routing
schemes. In Proc. of the 15th SPAA (San Diego), pages 24–33, 2003.

[19] A. Birman, H. R. Gail, S. L. Hantler, Z. Rosberg, and M. Sidi. An optimal service policy for buffer systems.
Journal of the Association Computing Machinery (JACM), 42(3):641–657, 1995.

[20] A. Blum, A. Fiat, H. Karloffa, and Y. Rabani. Personal communication. 1993.

[21] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge University Press,
1998.

[22] A. Borodin, J.Kleinberg, P. Raghavan, M. Sudan, and D. Williamson. Adversarial queuing theory. In Proc.
28th ACM Symp. on Theory of Computing, pages 376–385, 1996.

[23] D. Gamarnik. Stability of adaptive and non-adaptive packet routing policies in adversarial queueing net-
works. In Proc. of the 31st ACM Symp. on Theory of Computing (STOC), pages 206–214, 1999.

[24] Juan Garay, Inder Gopal, Shay Kutten, Yishay Mansour, and Moti Yung. Efficient on-line call control
algorithms. Journal of Algorithms, 23:180–194, 1997. Also in Proc. 2’nd Annual Israel Conference on
Theory of Computing and Systems, 1993.

[25] E. Gordon and A. Rosen. Competitive weighted throughput analysis of greedy protocols on dags. In PODC,
2005.

[26] E. L. Hahne, A. Kesselman, and Y. Mansour. Competitive buffer management for shared-memory switches.
In Proceedings of the 13th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 53–58,
2001.

[27] A. Kesselman, Z. Lotker, Y. Mansour, and B. Patt-Shamir. Buffer overflows of merging streams. In Proc.
11th Annual European Symposium on Algorithms, pages 349–360, 2003.

[28] A. Kesselman and Y. Mansour. Harmonic buffer management policy for shared memory switches. In
INFOCOM, 2002.

[29] J. Kleinberg and E. Tardos. Disjoint paths in densely embedded graphs. In Proc. of the 34th Annual IEEE
Symposium on the Foundations of Computer Science, pages 52–61, 1995.

[30] K. Kothapalli and C. Scheideler. Information gathering in adversarial systems: Lines and cycles. In Proc.
15th ACM Symposium on Parallel Algorithms and Architectures, 2003.

[31] M. May, J. C. Bolot, A. Jean-Marie, and C. Diot. Simple performance models of differentiated services for
the internet. In Proceedings of the IEEE INFOCOM 1999, pages 1385–1394.

18



[32] H. Raecke. Minimizing congestion in general networks. In Proc. of the 43rd FOCS (Vancouver), pages
43–52, 2002.

[33] C. Scheideler and B. Vocking. From static to dynamic routing: efficient transformations of store-and-
forward protocols. In Proc. of the 31st ACM Symp. on Theory of Computing (STOC), pages 215–224,
1999.

A Information Gathering in Trees

In this section we construct an information gathering algorithm for trees. We achieve an O(log n)
competitiveness for size of buffers B ≥ (1+ ǫ)(d− 1), where d is the maximum input degree of a node.
We briefly go through the stages in the construction of the algorithm for the line while emphasizing
the needed modifications.

A.1 Fractional Information Gathering with Bounded Delay

In this subsection we develop an O(log T ) competitive algorithm for the problem of fractional infor-
mation gathering with bounded delay, where T is the bound on the delay of a packet fraction in the
network. As in the line case we first translate the problem to the problem of call admission and circuit
routing. We first elaborate on the structure of the graph G for the translated call admission and circuit
routing problem. Each buffer is represented by an infinite directed line. We assign a B capacity for all
odd edges of this line. The capacity of the even edges is unbounded. We connect between those lines
according to the tree structure. If buffer i is next to buffer j in the tree, then for all k ≥ 1 we place
a directed edge with a capacity 1 from node 2k − 1 on line j to node 2k on line i. The graph G also
includes a single node v which represents the destination node. If node r is the root of the tree, then
for all k ≥ 0 we place a directed edge with an unbounded capacity from node 2k on line r to node
v. Except for node v the nodes of G are positioned in a matrix shape in which each two consequent
columns represent one time step. Next we translate the input sequence σ. If packet p was injected to
buffer j at time step t, we translate it to a call request of bandwidth 1 from node 2t on line j to node
v. We set the bound D on the allowed maximum length of a path used in the translated fractional
call admission and circuit routing problem to be 2T + 1. Algorithm BIG for fractional information
gathering in trees is represented in Figure 12.

Algorithm BIG (Bounded delay Information Gathering)

• Maintain a running simulation of FAAP on G with the translated input sequence σ.

• If FAAP accepted a call fraction, accept its corresponding packet fraction and route it
according to the path of the call fraction.

Figure 12: Algorithm BIG.

In a similar way to the one presented in Subsection 4.1 it can be proved that algorithm BIG is O(log T )
competitive for the problem of fractional information gathering with bounded delay.

A.2 An O(log(nB)) algorithm for fractional information gathering

Based on algorithm BIG from Subsection A.1 we construct an O(log(nB)) competitive algorithm for
information gathering in trees. Recall that BIG is O(log T ) competitive in a fractional model in which
a packet fraction must not stay more than T time steps in the network. In figure 13 we present the
fractional algorithm QIG for information gathering on trees.

19



Algorithm QIG (Quick Information Gathering)

Apply algorithm BIG with bounded delay T = 2nB.

Figure 13: The QIG algorithm

In a similar way to the one presented in Subsection 4.2 it can be proved that algorithm QIG is
O(log(nB)) competitive for the fractional information gathering problem.

A.3 An O(log n) competitive algorithm for fractional information gathering

Clearly for B ≤ n an O(log n) competitiveness can be achieved by using algorithm QIG directly. As
in the line case for larger buffers we use the GR technique presented in Subsection 4.3. Algorithm
FTIG for fractional information gathering in trees is presented in Figure 14.

Algorithm FTIG (Fractional Tree Information Gathering)

• if B ≤ n:
Use algorithm QIG.

• else

1. Let A be algorithm QIG for buffers of size n
2 scaled up by ⌊B

n
⌋.

2. Use algorithm GRA.

Figure 14: Algorithm FTIG.

It can be easily proved that using GR when B > n results in the multiplication of the competitiveness
of algorithm A in Figure 14 by a constant. Thus by the competitiveness of algorithm QIG for B ≤ n,
algorithm FTIG is O(log n) competitive.

A.4 Discretization of a fractional Information Gathering algorithm

For size of buffers B ≥ d, we use the RU technique described in Subsection 5.1 to transform any
c-competitive fractional algorithm for information gathering in trees into a c · B

B−d+1 - competitive
discrete algorithm. Note that the overhead of one slot in each buffer when applying RU in the line case
is derived from the fact that the input degree of each node is 2 (see lemma 5.3 and claim 5.4). From
this the overhead will not exceed d− 1 slots when a tree of maximum input degree d is considered. In
Figure 15 we present the definition of transformation I with the fractional algorithm A as a parameter.

Algorithm IA

1. Run a simulation of algorithm A with the input sequence σ.

2. Let S be the algorithm obtained by shrinking by B−d+1
B

each accepted/transmitted packet
fraction of the simulation of A .

3. Apply RUS .

Figure 15: Algorithm IA

By the properties of algorithm A, algorithm S uses buffers of size B−d+1 and is c · B
B−d+1 competitive

20



against the optimal solution with buffers of size B. Thus by the properties of RU , the discrete algorithm
IA = RUS uses buffers of size B and is c · B

B−d+1 competitive.

A.5 An O(log n) algorithm for information gathering in trees

We give our information gathering algorithm for trees in Figure 16.

Algorithm TIG (Tree Information Gathering)

Use algorithm IFTIG.

Figure 16: Algorithm TIG.

From Subsection A.4, transformation I increases the competitiveness by B
B−d+1 . Thus for size of

buffers B ≥ (1 + ǫ)(d− 1), it increases the competitiveness by at most 1+ǫ
ǫ

. Since the competitiveness
of algorithm FTIG is O(log n), algorithm TIG is O(log n) competitive, for B ≥ (1 + ǫ)(d − 1).

21


