
Throughput-Competitive On-Line RoutingBaruch Awerbuch�Lab. for Computer ScienceMIT Yossi AzaryTel-Aviv Universityand DEC SRC Serge PlotkinzDept. of Computer ScienceStanford UniversityAbstractWe develop a framework that allows us to address the issues of admission control androuting in high-speed networks under the restriction that once a call is admitted and routed,it has to proceed to completion and no reroutings are allowed. The \no rerouting" restrictionappears in all the proposals for future high-speed networks and stems from current hardwarelimitations, in particular the fact that the bandwidth-delay product of the newly developedoptical communication links far exceeds the bu�er capacity of the network.In case the goal is to maximize the throughput, our framework yields an on-line O(lognT )-competitive strategy, where n is the number of nodes in the network and T is the maximumcall duration. In other words, our strategy results in throughput that is within O(lognT )factor of the highest possible throughput achievable by an omniscient algorithm that knowsall of the requests in advance. Moreover, we show that no on-line strategy can achieve abetter competitive ratio.Our framework leads to competitive strategies applicable in several more general settings.Extensions include assigning each connection an associated \pro�t" that represents theimportance of this connection, and addressing the issue of call-establishment costs.1 IntroductionMotivation. High-speed integrated com-munication networks are going to be the mostimportant communication platform of the fu-ture. The technological advances in this area arequickly o�set by increase in consumption, dueto a wide spectrum of new applications (tele-conferencing, cable-TV, tele-shopping, etc.). It isthus important to address the fundamental prob-�Lab. for Computer Science, MIT. Supported by AirForce Contract TNDGAFOSR-86-0078, ARO contractDAAL03-86-K-0171, NSF contract 9114440-CCR, DARPAcontract N00014-J-92-1799, and a special grant from IBM.yDEC System Research Center, 130 Lytton, Palo Alto,CA 94301. Department of Computer Science, Tel-AvivUniversity, Israel.zDepartment of Computer Science, Stanford University.Research supported by U.S. Army Research O�ce GrantDAAL-03-91-G-0102, and by a grant from Mitsubishi Elec-tric Laboratories.
lem of e�cient allocation of network resources.One of the main network resources is the avail-able bandwidth of the communication channels.In order to use the network (say, transmit videosignal from one point to another) the user re-quests a (virtual) connection to be establishedbetween these points. Although the rate of infor-mation 
owing through such a connection mightvary in time, the network has to guarantee thatthe connection will support at least the bit ratethat was agreed upon during the connection es-tablishment negotiations. This guarantee is im-perative for correct operation of many of the ser-vices, including constant bit-rate video and voicetransmission. In other words, establishing a con-nection corresponds to reserving the requestedbandwidth along some path connecting the endpoints speci�ed by the user.In the context of low-speed networks (e.g. In-



ternet), where bu�er requirements are less ofan issue, the di�culties associated with on-linecircuit-switching may be alleviated by delayingthe transmission, slowing down its rate, or byrerouting the connection after it has been estab-lished. However, these approaches are usually in-appropriate in the context of Gigabit rate net-works (e.g. atm [2], paris/planet [4, 8]). This ismostly due to the fact that the product of trans-mission rates and network latency well exceedsthe available nodal bu�er space, in other wordsbecause of the high bandwidth-delay product.In this paper we describe an on-line frameworkthat allows us to address both the admission con-trol (i.e. which requests to satisfy and which onesto reject), and bandwidth reservation issues. Ourtechniques are applicable in the context of realtime high-speed networking environments withstrict performance guarantees: transmission muststart at a speci�c time, end at a speci�c time, usea speci�c amount of bandwidth, and is guaran-teed to be successfully accomplished, once admit-ted into the network. We assume that requestsfor establishment of connections arrive on-line;each request speci�es the source and destinationnodes, the requested bandwidth, and the dura-tion. The algorithm either rejects the request,or establishes a connection by allocating the re-quired bandwidth along some path between thesource and the destination nodes for the speci�edduration.A natural performance measure is the amor-tized throughput, which is de�ned as the averageover time of the number of bits transmitted bythe accepted connections.1 In fact, our frame-work can be described in terms of a generaliza-tion of the throughput. We assume that eachrequest for connection has an associated pro�t,which is received only if the request is satis�ed.The goal is to maximize the pro�t. In the sim-plest case, where the pro�t is proportional to the1To simplify the de�nitions, we assume that the cus-tomer will use as much bandwidth as he has requested.

bandwidth-duration product, maximizing the to-tal pro�t corresponds to maximizing the through-put. Roughly speaking, the pro�t abstraction isuseful if the connections di�er in importance; inthis case one can assign higher pro�t per bit forthe more important connection.Since the admission control and routing algo-rithm has to make decisions without knowledgeof the future requests, it is natural to evaluateits performance in terms of the competitive ra-tio [15], which in this case is the supremum, overall possible input sequences, of the ratio of thepro�t achieved by the on-line algorithm to thepro�t achieved by the optimal o�-line algorithm.Note that several natural approaches do not leadto algorithms with good competitive ratio. Onone hand, a greedy admission strategy that al-ways accepts a connection as long as there existsa path from source to sink with su�cient residualbandwidth may, in some cases, work very poorlysince certain admitted connection may end up\blocking" many future, perhaps more pro�table,connections. On the other hand, a conservativepolicy of waiting for most \pro�table" connec-tions may clearly lead to very poor performancein cases where only low-pro�t connections showup.Our results versus existing work. Inthis paper we describe an admission and routingstrategy that achieves an O(lognT ) competitiveratio if the pro�t of a call is proportional to thebandwidth-duration product, where T is maxi-mum duration of a call. We also prove that theabove bound is tight. We prove similar results forseveral generalizations of this problem; discussionof these generalizations is deferred to the end ofthis section.The techniques used in our algorithm resemblethe ones previously used in the context of mul-ticommodity network 
ow [14, 12], approximatefractional packing [13] and on-line load balanc-ing [1, 6]. In particular, we use of the idea ofassigning each edge a cost function that is expo-



nential in its current load, and the idea of concur-rently working with multiple copies of the graph,one copy per each time instance.The �rst competitive solutions for on-linethroughput maximization have been pioneeredby Garay and Gopal for the case of a singlelink [10], and by Garay, Gopal, Kutten, Man-sour and Yung [9] for a line network; the latterwork achieved logarithmic competitive ratio. Theproblem we are concerned with, namely competi-tively maximizing network throughput, has beenopen for general network topologies. Other pre-vious work on throughput concentrated on proba-bilisticmodels, and was based on various assump-tions on the distributions of call arrivals times andsource-destination pairs (see e.g. [11]).Instead of throughput, one can measure \rela-tive load" which is de�ned as the maximum (overall links and over all moments in time) of thelink capacity utilization by the currently routedcircuits.2 Roughly speaking, when we say thatthe competitive ratio of an on-line algorithm is� with respect to load means that, given any se-quence of requests that can be satis�ed by theo�-line algorithm without over
owing the capac-ities, we can satisfy all of these requests on-line ifwe reduce the rate of each request by a factor of�. Alternatively, the on-line algorithm can satisfyall of these requests if we increase the capacity ofeach edge by a factor of �.The problem of minimizing the relative load inthe context of machine scheduling was consideredin [7, 5]. On-line algorithms that are O(logn)competitive with respect to load for the case ofpermanent virtual circuit routing were presentedin [1]. Extension of these techniques to the caseof virtual circuits with known duration appearedin [6]. Recent results in [3] address the case wherethe duration of each virtual circuit is a priori un-2Note that using relative load as a performance measuremakes sense only if we implicitly assume that the o�-linealgorithm does not need to reject any requests and disallowrejections by the on-line algorithm as well.

known. They show that in this case, in order to becompetitive, one has to allow to reroute circuits,and present an algorithm that reroutes each cir-cuit at most O(logn) times while maintaining acompetitive ratio of O(logn) with respect to load.Generalizations and extensions. Theframework presented in this paper leads to on-line algorithms with polylogarithmic competitiveratio in several more general settings. In particu-lar, we show that our algorithm can easily handlethe situation where the required bandwidth doesnot remain constant for the duration of the call,as long as the required bandwidth vs. time func-tion is known during the call negotiation phase.Similarly, the presented algorithm can handle thecase where the ratio of pro�t to the bandwidth-duration product varies from call to call.An interesting generalization of the model is toincorporate the notion of call-establishment costs.Here, the pro�t accrued by the system is com-puted as the di�erence between the pro�t asso-ciated with the request, and a cost which mightdepend both on the request and on the path usedto route the connection. A straightforward mod-i�cation of the presented algorithm leads to loga-rithmic competitive ratio in this model. It is alsopossible to adapt the algorithm to allow negoti-ation between the network and the customers onthe amount of the requested bandwidth. In thatcase the pro�t depends, of course, on the amountof bandwidth that the algorithm agrees to reservefor the customer.An important issue that arises in the context ofthis work is the question of how to de�ne compet-itiveness in a very long (or even non-terminating)execution. The disadvantage of the competi-tive factor as described above is that it providesan amortized measure of performance where theamortization is over all of the time interval inwhich the system was active. Roughly speaking,by measuring the total pro�t accrued since timezero, we allow on-line algorithm to grossly misbe-have locally in certain epochs of the execution's



history. Intuitively, this is unsatisfactory in theconsidered context, since the fact that the rout-ing algorithm accrued a lot of pro�t \last year"should not allow it to reject all the connectionsduring the \next year", if the duration of the re-quests is measured in days. A natural approachis to compare the performance of the on-line vs.o�-line algorithm on any su�ciently long (withrespect to the maximum call duration) intervalof time, not necessarily starting at time zero.As it turns out, our algorithm can be provedcompetitive with respect to this modi�ed mea-sure as well. For example, one of the propertiesof the presented algorithm is that the pro�t ac-crued by the o�-line algorithm during any giveninterval [�1; �2], is within a logarithmic factor ofthe pro�t accrued by the on-line algorithm in aslightly larger interval [�1�T; �2+T ], where T isthe maximum duration of a connection. A natu-ral question is why are we not comparing on-linevs. o�-line on the same given interval. To addressthis question, in the full paper we show that forany on-line algorithm and for any time interval,one can always �nd a sequence of requests wherethe o�-line to on-line pro�t ratio is unbounded.2 Preliminaries and De�nitionsThe network is represented by a capacitated (di-rected or undirected) graph G(V;E; u). The ca-pacity u(e) assigned to each edge e 2 E representsthe bandwidth available on this edge. The in-put sequence consists of a collection of connectionrequests: �1; �2; : : : ; �k, where the ith request isrepresented by the tuple:�i = �si; ti; ri(�); T s(i); T f(i); �(i)� :Node si is the origin of the connection �i, node tiis its destination, ri(�) is the function that de�nesthe tra�c rate at time � required by the connec-tion, and �(i) is the \revenue" that the algorithmreceives if it commits to routing this connection.

T s(i) and T f(i) are the starting time and comple-tion time, respectively, for the connection. Forsimplicity, we assume that these times are inte-ger. Upon receiving a connection request �i, thealgorithm either routes it by assigning it a pathPi from si to ti, or rejects it. In the later case,we set Pi = ;. To simplify notation, we assumethat ri(�) is de�ned for any � , but that ri(�) = 0for � 62 �T s(i); T f(i)�. The relative load on edge ejust before considering the kth request is de�nedby: �e(�; k) = Xe2Pi;i<k ri(�)u(e) :We require that the capacity constraints willbe enforced, i.e. 8�; e 2 E; k : �e(�; k) � 1:The goal of the algorithm is to route maximumnumber of connections weighted by their pro�ts,i.e. maximize PPi 6=; �(i):Another constraint on the algorithm is thatit must be on-line, in the sense that the deci-sion about routing or rejecting a connection �i ismade at its start point T s(i), without any knowl-edge about future connections. Once a connec-tion is made, it cannot be interrupted nor can itbe rerouted.Let T (j) = T f (j) � T s(j) be the duration ofconnection j, and T = maxjfT (j)g be the maxi-mum duration of a connection. As mentioned inthe introduction, we consider the case where thepro�t of each request is proportional to the rateand to the duration of this request. In fact, weallow some variation in the pro�t for a unit ofrate for a unit of time, as long as this variationis not very large. More precisely, we normalizethe pro�t such that for any connection �j andrj(�) 6= 0 we have:1 � 1n � �(j)rj(�)T (j) � F:(1)Note that 1=n factor in above inequalities isused only for convenience of normalization. Oneinteresting special case is when the requested rate



is constant per connection, and when the pro�tis exactly proportional to the rate-duration prod-uct, i.e. to the number of bits that can be sent us-ing this connection. For this case, we have F = 1.Denote � = 2nTF +1. We assume that for anyj and � , rj(�) � minefu(e)glog � :(2)Informally, this means that the requested ratesare signi�cantly smaller than the minimum avail-able capacity in the network. Although, at �rstglance, this restriction seems somewhat arti�cial,in Section 4 we show that without this restrictionit is impossible to design on-line algorithms withpolylogarithmic competitive ratio.3 The Admission Control andRouting AlgorithmThe admission control and routing algorithmRoute or Block is shown in Figure 1. ConsiderT s(j), the start time of request �j. With eachedge e and time instance � , we associate a \cost"of this edge, de�ned by ce(�; j) = u(e)(��e(�;j) �1). The algorithm routes �j on a path that issmall with respect to a weighted average of thesecosts. More precisely, if e 2 Pj , then e's contri-bution to the cost of the path is computed as:P� rj (�)u(e) ce(�; j): If there exists a path which costis bounded by the pro�t �(j), then this path isused to route the connection �j . Otherwise, theconnection is rejected.The analysis of the algorithm is divided intotwo parts. First, we prove that the algorithm doesnot violate the capacity constraints, and then weshow that the pro�t accrued by the algorithm iswithin a logarithmic factor of the pro�t accruedby the optimal o�-line algorithm.Informally, the reason that the capacity con-straints are always satis�ed, is that when an edge

New Connection(s; t; T s; T f ; r(�); �):8�; e 2 E : ce(�; j) u(e)(��e(�;j) � 1);if 9 path P in G(V;E) from s to t s.t.X� r(�)u(e)ce(�; j)� �then route the connection on P , and set:8e 2 P; T s � � � T f ,�e(�; j + 1) �e(�; j)+ r(�)u(e)else block the connectionFigure 1: The Route or Block Algorithm.that is close to being saturated, its cost is highenough that it will never be used for routing. LetA denote the set of indices of requests that weresatis�ed by Route or Block, i.e. A = fi : Pi 6=;g.Lemma 3.1 For all edges e 2 E and all times � ,Pi2A;e2Pi ri(�) � u(e).Proof: Let �j be the �rst connection that was as-signed to an edge e and that caused relative loadto exceed 1. In other words, e has available ca-pacity less than rj(�) at some instance � whereT s(j) � � � T f(j). By the de�nition of rela-tive load, we have �e(�; j) > 1� rj(�)u(e) . Using theassumption that rj(�) � u(e)log� , we get:ce(�; j)=u(e) = ��e(�;j) � 1� �1� 1log � � 1= �=2� 1 = TFnTherefore, using Assumption (1):rj(�)u(e) ce(�; j)� TFn � rj(�) � �(j):Hence, connection j could not have used link e.The next lemma shows that we can use sum of



link costs to lower-bound the total pro�t accruedby our algorithm.Lemma 3.2 Let A be the set of indices of connec-tions routed by Route or Block algorithm, andlet k be the index of the last connection. Then2 log�Xj2A�(j) �X� Xe ce(�; k+ 1):Proof: By induction on k. For k = 0 the inequal-ity is trivially true since both sides are 0. Con-nections that were refused do not change eitherside of the inequality. Thus, it is enough to showthat, for any j, if we admit connection �j, we get:X� Xe [ce(�; j + 1)� ce(�; j)]� 2�(j) log�:Consider link e 2 Pj. Using the de�nition ofthe link cost, we get:ce(�; j + 1)� ce(�; j) =u(e)(��e(�;j)+rj (�)u(e) � ��e(�;j))= u(e)���e(�;j)(� rj(�)u(e) � 1)�= u(e)���e(�;j)(2log� rj (�)u(e) � 1)�By Assumption (2), we have rj(�) � u(e)log � . Since2x � 1 � x for 0 � x � 1, we concludece(�; j+ 1)� ce(�; j)� ��e(�;j)rj(�) log�= �ce(�; j)rj(�)u(e) + rj(�)� log�:The above upper bound on the change in costs,the fact that the connection �j was admitted, andAssumption (1) imply:

X� Xe [ce(�; j + 1)� ce(�; j)]� log �X� Xe2Pj �ce(�; j)rj(�)u(e) + rj(�)�� log � �(j) +X� jPjj � rj(�)!� 2�(j) log�:Next we show that sum of the link costs is anupper bound on the maximum pro�t that can beobtained by the optimal o�-line algorithm.Lemma 3.3 Let Q be the set of indices of the con-nections that were admitted by the o�-line algo-rithm but not by the on-line algorithm, and denote` = maxfQg. Then Pj2Q �(j) �P� Pe ce(�; `):Proof: Let P 0j be the path used by the o�-linealgorithm to route �j, for j 2 Q. The fact that�j was not admitted and monotonicity in j of thecosts ce(�; j) imply�(j) � X� Xe2P 0j rj(�)ce(�; j)=u(e)� X� Xe2P 0j rj(�)ce(�; `)=u(e):Summing over all j 2 Q, we get:Xj2Q �(j) � Xj2QX� Xe2P 0j rj(�)u(e) ce(�; `)� X� Xe ce(�; `) Xj2Q;e2P 0j rj(�)u(e)� X� Xe ce(�; `):The last inequality follows from the fact thatthe o�-line algorithm cannot exceed unit relativeload at any instance in time.



Theorem 3.4 The Route or Block Algorithm,shown in Figure 1, never violates the capacity con-straints and accrues at least 12 log(2�) -fraction of thepro�t accrued by the optimal o�-line algorithm.Proof: The pro�t accrued by the o�-line algo-rithm can be bounded from above by:Xi2Q �(i) +Xi2A�(i)Using Lemma 3.3, this pro�t is upper-boundedby: X� Xe ce(�; `) +Xi2A�(i):Since ce(�; k+1) is the �nal cost of the edge e, weknow that 8e 2 E; ce(�; k+1)� ce(�; `): Togetherwith Lemma 3.2, this implies that the pro�t of theo�-line is bounded by2 log�Xi2A�(i) +Xi2A�(i)� (2 log�+ 1)Xi2A�(i)� 2 log(2�)Xi2A�(i):The above bound on the accrued pro�t, togetherwith Lemma 3.1, complete the proof of the claim.Remark: As we have mentioned in the Introduc-tion, it is interesting to compare the o�-line andon-line pro�ts performance over an arbitrary in-terval in time that does not start at time zero.More precisely, let [�1; �2] be some interval in timeand consider the pro�t �o�[�1; �2] obtained by theo�-line algorithm due to requests f�j : T s(j) 2[�1; �2]g, and let �on[�1; �2] be the correspondingpro�t of the on-line algorithm. In the full paperwe show that �on[�1 � T; �2 + T ] is within a log-arithmic factor of the �o�[�1; �2]. Roughly speak-ing, this implies that the o�-line pro�t on a giveninterval is not much higher than the correspond-ing on-line pro�t on a slightly larger interval. We

also show that for any on-line algorithm and forany time interval, one can always �nd a sequenceof requests where the ratio of �o�[�1; �2]=�on[�1; �2]is unbounded.4 The Lower BoundsIn this section we show that our algorithm is opti-mal with respect to the achieved competitive ra-tio. We also justify our assumption of boundingthe rates of the requests. First we show that evenif all the requested rates are very small, the pro�taccrued by the o�-line algorithm can exceed thebest possible on-line pro�t by at least an 
(log�)factor. In all of the subsequent proof we assumethat all the capacities are 1, and that all requestsappear at the beginning. Moreover, we assumethat all the requests have some �xed rate �. Inthe end of this section, we show much strongerbounds for the case where � is allowed to be largerelative to the capacities in the network.Let G(n) be a graph which is a line of n edges(n+1 vertices). Denote the vertices by v0; : : : ; vn,and let n be a power of 2.Lemma 4.1 Any on-line algorithm for G(n) hascompetitive ratio of 
(logn).Proof: Let all requests have unit duration. Con-sider sequence of requests that consists of log n+1phases. Each phase i, for 0 � i � logn, consistsof 2i groups of requests, 0 � j � 2i � 1. A re-quest in phase i, group j has vjn=2i as its startingnode and v(j+1)n=2i as its destination. For eachi; j there are 1=� identical requests, each request-ing capacity � and providing the same pro�t, say�. Let xi be the amount of pro�t that the on-linealgorithm accrues due to the requests in phase i.A unit of pro�t due to requests in phase i can beachieved only by using up n=2i units of capacity.Since there are only n units of capacity overall, we



get: Plogni=0 2�inxi � n: De�ne Sj = 2�jPji=0 xi.Then,lognXj=0 Sj = X0�i�j�logn 2�jxi � lognXi=0 2 � 2�ixi � 2Hence, there exists k such that Sk � 2= logn.Now consider a pre�x consisting of the �rst kphases of the request sequence. The bene�t ofthe on-line algorithm in this case is Pki=0 xi =2kSk � 2k � (2= logn). The o�-line algorithm canreject all the requests except the ones in phase k,accruing bene�t of 2k.Consider a case where the graph consists ofa single link. By constructing a sequence of re-quests that have exponentially growing durationfrom phase to phase and another sequence of re-quests where the pro�t per transmitted bit in-creases exponentially with the phase number, itis relatively easy to show the following claim:Lemma 4.2 Any on-line algorithm has competitiveratio of 
(log(TF )).By combining the Lemmas 4.2 and 4.1, we get thefollowing theorem.Theorem 4.3 Any on-line algorithm has through-put competitive ratio of 
(lognFT )Next we show that if some connections requestrates in excess of 1=k-factor of the capacity, thenthe competitive ratio of any on-line algorithm isbounded by 
(T 1=k+F 1=k+n1=k). In other words,in order to achieve polylogarithmic competitiveratio, we need to bound the maximal rate of aconnection to be below log(TFn)= log log(TFn)fraction of the minimum capacity. This boundis close to the log(TFn)-fraction bound that, asshown in Section 3, implies logarithmic competi-tive ratio of the Route or Block algorithm.Lemma 4.4 If we allow requests of rate as largeas 1=k-fraction of the minimum capacity, then the

competitive ratio is at least 
(T 1=k+F 1=k) for anyalgorithm.Proof: Omitted.For the next lower bound we use G(n) whichis a line of n unit-capacity edges, where n be apower of 2. All requests have unit duration.Lemma 4.5 If we allow requests of rate 1=k thenthe competitive ratio is 
(n1=k) for any algorithmfor G(n).Proof: The sequence of requests consists of k+ 1phases. In phase 0 there is a request from v0 tovn. The �rst request must be accepted since itmight be the only request. Thus before phase 1the utilization of each edge is 1=k and the bene�tof the on-line is 1=k. For phases 1 � i � k wemaintain the following invariant. Either the lowerbound was already proved or before phase i theutilization of each edge in the range li to li +n1�(i�1)=k is i=k and the total bene�t of the on-line for all previous requests is only i=k.Let l1 = 0. The invariant clearly holds for i =1. We assume by induction that the invariant istrue for i and some li and we prove it for i+1 andsome li+1. We make k requests between vli+jn1�i=kto vli+(j+1)n1�i=k for each 0 � j < n1=k. If theon-line algorithm reject all of these request weare done, since the o�-line algorithm can acceptall the request in the phase and get bene�t n1=k.The bene�t of the on-line algorithm in this caseis bounded by i=k � 1 which implies the lowerbound.On the other hand if some request was ac-cepted, then we stop phase i after that �rst suchrequest. That request is between vli+jn1�i=k tovli+(j+1)n1�i=k . De�ne li+1 = li+jn1�i=k. We claimthat the invariant holds for i+ 1. The total ben-e�t of the on-line algorithm before phase i+ 1 isi=k+1=k = (i+1)=k; the utilization of the edgesfrom li+1 to li+1+n1�i=k is i=k+1=k = (i+1)=k.



This completes the proof of the invariant.The invariant implies that at the start of phasek, all the edges from lk to lk + n1=k are fullyutilized. Thus, the the on-line algorithm hasto reject all the requests from vlk+j to vlk+j+10 � j < n1=k. In contrast to this, the o�-linealgorithm accepts all of these requests, and getsbene�t n1=k. The claim follows since the on-linebene�t is bounded by 1.By combining the Lemmas 4.4 and 4.5, we get thefollowing theorem:Theorem 4.6 If the rate of requests can be as largeas 1=k of the capacities then throughput competi-tiveness of any on-line algorithm is 
(T 1=k+F 1=k+n1=k).AcknowledgementsWe would like to thank Orli Waarts for manyhelpful discussions.References[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, andO. Waarts. On-line machine scheduling withapplications to load balancing and virtualcircuit routing. In Proc. 25th Annual ACMSymposium on Theory of Computing, pages623{631, May 1993.[2] Special issue on Asynchronous TransferMode. Int. Journal of Digital and AnalogCabled Systems, 1(4), 1988.[3] B. Awerbuch, Y. Azar, S. Plotkin, andO. Waarts. Competitive routing of virtualcircuits with unknown duration. Unpub-lished manuscript, July 1993.[4] B. Awerbuch, I. Cidon, I. Gopal, M. Ka-plan, and S. Kutten. Distributed control for

PARIS. In Proc. 9th Annual ACM Sympo-sium on Principles of Distributed Comput-ing, pages 145{160, 1990.[5] Y. Azar, A. Broder, and A. Karlin. On-line load balancing. In Proc. 33rd IEEEAnnual Symposium on Foundations of Com-puter Science, pages 218{225, 1992.[6] Y. Azar, B. Kalyanasundaram, S. Plotkin,K. Pruhs, and O. Waarts. On-line load bal-ancing of temporary tasks. In Proc. Work-shop on Algorithms and Data Structures,August 1993.[7] Y. Azar, J. Naor, and R. Rom. The com-petitiveness of on-line assignment. In Proc.3rd ACM-SIAM Symposium on Discrete Al-gorithms, pages 203{210, 1992.[8] I. Cidon and I. S. Gopal. PARIS: An ap-proach to integrated high-speed private net-works. International Journal of Digital &Analog Cabled Systems, 1(2):77{86, April-June 1988.[9] J. Garay, I. Gopal, S. Kutten, Y. Mansour,and M. Yung. E�cient on-line call control al-gorithms. In Proc. of 2nd Annual Israel Con-ference on Theory of Computing and Sys-tems, 1993.[10] J.A. Garay and I.S. Gopal. Call preemptionin communication networks. In Proc. INFO-COM '92, volume 44, pages 1043{1050, Flo-rence, Italy, 1992.[11] F. P. Kelly. Blocking probabilities in largecircuit-switched networks. Advances in Appl.Prob., 18:473{505, 1986.[12] T. Leighton, F. Makedon, S. Plotkin,C. Stein, �E. Tardos, and S. Tragoudas. Fastapproximation algorithms for multicommod-ity 
ow problem. In Proc. 23th ACM Sym-posium on the Theory of Computing, pages101{111, May 1991.



[13] S. Plotkin, D. Shmoys, and �E. Tardos.Fast approximation algorithms for fractionalpacking and covering problems. In Proc.32nd IEEE Annual Symposium on Founda-tions of Computer Science, pages 495{504,October 1991.[14] F. Shahrokhi and D. Matula. The maximumconcurrent 
ow problem. J. Assoc. Comput.Mach., 37:318{334, 1990.[15] D.D. Sleator and R.E. Tarjan. Amortizede�ciency of list update and paging rules.Comm. ACM, 28(2):202{208, 1985.


