
Making Commitments in the Face of Uncertainty:How to Pick a Winner Almost Every Time(Extended Abstract)Baruch Awerbuch� Yossi Azary Amos Fiatz Tom LeightonxAbstractIn this paper, we formulate and provide optimal solu-tions for a broad class of problems in which a decision-maker is required to select from among numerous com-peting options. The goal of the decision-maker is toselect the option that will have the best future perfor-mance. This task is made di�cult by the constraintthat the decision-maker has no way to predict the futureperformance of any of the options. Somewhat surpris-ingly, we �nd that the decision-maker can still (at leastin several important scenarios) pick a winner with highprobability.Our result has several applications. For example,consider the problem of scheduling background jobs ona network of workstations (NOW) when very little isknown about the future speed or availability of eachworkstation. In this problem, the goal is to scheduleeach job on a workstation which will have enough idlecapacity to complete the job within a reasonable or spec-i�ed amount of time. This task is complicated by thefact that any particular workstation might become sat-urated by higher priority jobs shortly after one of ourjobs is assigned to it, in which case progress will not�Johns Hopkins University and Lab. for Computer Science,MIT. Supported by Air Force Contract TNDGAFOSR-86-0078,ARO contract DAAL03-86-K-0171, NSF contract 9114440-CCR,DARPA contract N00014-J-92-1799, and a special grant fromIBM. E-Mail: baruch@theory.lcs.mit.edu.yDepartment of Computer Science, Tel Aviv University. E-Mail: azar@math.tau.ac.il. Research supported in part by AllonFellowship and by the Israel Science Foundation administered bythe Israel Academy of Sciences.zDepartment of Computer Science, Tel-Aviv University, Is-rael. E-Mail: �at@math.tau.ac.il. Research supported in partby the Israel Science Foundation administered by the IsraelAcademy of Sciences.xMathematics Department and Lab. for Computer Sci-ence, MIT. E-Mail: ftl@math.mit.edu. Research supported inpart by ARPA Contract N00014-95-1-1246 and Army ContractDAAH04-95-1-0607.

be made on our job. Thus, in order to complete thejobs within a speci�ed amount of time, we need to beable to accurately guess (or predict) which workstationswill be idle and when. Somewhat surprisingly, it is pos-sible to make such guesses with a very high degree ofaccuracy, even though very little is assumed about thefuture availability of the workstations. For example, ifat least k of n workstations will be available for at leastD units of time each (spread out over some interval of Iunits of time), then with probability at least 1�O(1=n),we will be able to complete k log n jobs with duration
(D= log n) within the interval. The result holds for allk, d, n, and I, and only knowledge of n is needed inorder to schedule the tasks. For small values of k, theresult is far superior to the (seemingly optimal) \dart-throwing" approach in which each job is assigned to arandom workstation in the hope that it will be idle.Our results can also be used to provide the �rst com-petitive algorithm for the video-on-demand schedulingproblem as well as the more general on-line set coverproblem. The results may also be of interest in thecontext of investment planning, strategic planning, andother areas where it is important to be able to predictthe future moves of an adversary or a market.1 IntroductionIn this paper, we consider a class of optimization prob-lems in which there is a decision-maker who is requiredto choose from among numerous competing options. Thegoal of the decision-maker is to select the option thatwill have the best future performance. The task is com-plicated by the fact that the decision-maker only hasinformation about the past performance of each option,and little or no information about future performancecan be assumed or inferred based on the past perfor-mances. Nevertheless, we will show how to make opti-mal or near-optimal selections in a variety of settings.Decision-making problems arise in numerous appli-cations. For concreteness, we will focus most of ourattention on one such application in this paper. In par-ticular, we will focus on the problem of scheduling back-ground or low-priority jobs on a network of workstations(NOW) when very little information is known about thefuture speed or availability of each of the workstations.We will then mention how the results can be generalized

and applied to other problems.1.1 Scheduling Jobs on Networks of Worksta-tionsConsider a company in which there is a network of nworkstations and where there is a hierarchy of prioritiesfor the various users of each workstation. For exam-ple, the owner of a workstation might have top prior-ity for his/her workstation, the president of the com-pany might have second priority for all workstations,and so forth. Sometimes, an employee (call him Bob)might have more work than can be handled by his ownworkstation and so he will schedule some of his jobson other workstations in a background or low-prioritymode. When those workstations are not busy workingon higher-priority tasks (say those of their owners), theywill work on Bob's background job.Such job scheduling on NOWs has become very com-mon. In fact, the \unused" capacity on NOWs has be-come increasingly viewed as a major computational re-source within companies. Accordingly, it is often desiredthat this resource be used (and used e�ciently) beforefunds are allocated to purchase additional equipment.In this paper, we describe e�cient algorithms forscheduling background jobs on NOWs. To begin, wefocus on the problem faced by a single user who needsto schedule a set of jobs (perhaps with precedence con-straints) on the workstations so that all of the jobs canbe accomplished within some interval of time. In orderto be e�cient, the user is restricted to assign each job toa single workstation.1 (E.g., the user is not allowed tomake n copies of a job and then simultaneously assignone copy to each workstation.) If the user is unsatis-�ed with the progress of a workstation on a job, he mayelect to kill the job and start over on another worksta-tion, however. Of course, the user will be reluctant tomake frequent switches because of the e�ort lost whenthe job is killed and the overhead incurred when the jobis moved elsewhere.The goal of the user is to assign the jobs to worksta-tions that will be able to complete them quickly. Thedi�culty is that the user does not know ahead of timewhich workstations will be able to �nish a job quickly.The user can monitor the NOW to see which worksta-tions are currently available, and which were availableat various times in the past, but we do not assume thatthere is any connection (probabilistic or otherwise) be-tween the past or present and the future. (E.g., the factthat the workstation was available for the last T secondsdoes not imply anything about the prospect that it willbe available in the next second.)2For simplicity, we will partition time into units ofequal length called steps, and we will assume that everyworkstation is either available or unavailable for each1Such a constraint may also be needed to insure coherency incases where the job makes use of external data or where the jobcould have side e�ects.2In some scenarios, it might be reasonable to assume thatsuch a dependency does exist (i.e., that workstations that wereidle in the past are more likely to be idle in the future), but wewill show that such assumptions are not necessary in order to ob-tain good performance. Hence, we will do without them, therebyobtaining algorithms with stronger guarantees of performance.

step. We will also assume that all workstations areequally fast and that there is no penalty incurred when aworkstation swaps back and forth between a low-priorityjob and a higher-priority job. Hence, a workstation Wwill complete a d-step background job in the dth stepthat W was available after the job was assigned to W.3We also assume that an adversary decides which work-stations will be available at each step and that this ad-versary is aware of our scheduling algorithm, but notthe results of our random coin tosses.We �rst consider the scenario when Bob wants toschedule a single background job of duration d on theNOW. Bob may schedule the job on any machine that hechooses and he is assumed to have full knowledge of thepast availability of every machine. After scheduling thejob, Bob may later kill the job and restart elsewhere if heis not satis�ed with the performance of his �rst choice.The number of times that Bob must restart his job issomething that we would like to minimize (in additionto the total time needed to get the job done).In order for Bob to get his job done in some intervalof I steps, it is necessary that at least one workstation beavailable for d steps within the interval. Unfortunately,this condition is not su�cient to guarantee that Bobcan get his job done since Bob does not know until itis too late which workstation(s) will be available for dsteps. Even if many (say m) of the n workstations willbe available for d steps, the probability that Bob willbe able to pick one of the m good workstations canbe limited to m=n by the adversary. (In this case, theadversary need only make n�m workstations availablefor fewer than d steps and m workstations available forexactly d steps. Them good workstations can be chosenrandomly. Bob's best strategy is to schedule the job ona random workstation at the beginning of the intervaland then to hope for the best. It will not help Bob tomake any changes in this case.)The preceding example is very discouraging since itdemonstrates that Bob will not be likely to get his jobdone even though there may be a great deal of unusedcapacity in the NOW. Even worse, the adversary neednot be malicious since even a random adversary is suf-�cient to thwart Bob.In the paper, we show that if the adversary is re-stricted slightly, however, then Bob can �nd a goodworkstation with very high probability. In particular,if at least one workstation will be available for �d log nsteps (where � = �(1)), then Bob will be able to gethis d-step job done with probability 1�O(1=n). In fact,even if Bob has log n d-step jobs which must be done insequence, he will still be able to get them all done withprobability 1 � O(1=n). Moreover, in the latter case,the number of times that Bob will need to kill a joband switch workstations will be very small compared tothe number of times that Bob picks a good workstationfor one of his jobs. In other words, Bob will almostalways be able to pick a \good" workstation when he3Most of these assumptions can be relaxed without changingthe results that we prove, although the analysis becomes moredi�cult. For example, our methods can also be applied to sce-narios where machines run at di�erent speeds and where there isa penalty for swapping between jobs. In fact, the methods evenwork for a model where job swapping is not allowed (e.g., if ajob is swapped out, it is killed).

goes to schedule a job. Viewed in another way, our re-sult shows that if Bob partitions his work into jobs ofsize O(D= log n), where D is the amount of time thatthe most idle workstation will be available, then he willalmost certainly be able to get �(D) work done. More-over, if Bob is allowed to schedule O(1) jobs at once,then he will be able to get (1� �)D work done for anyconstant � > 0 with high probability.4The results can be extended to a scenario wherethere are multiple users with varying priorities. In thiscase, if the ith most available machine is available forDi steps, then for all i, the user with the ith prior-ity can be assured (with high probability) of getting atleast (1� �)Di work done. Knowledge of the Di's is notneeded in order to obtain these results and no coordi-nation is needed among the users.Our scheduling algorithm is quite simple and tendsto schedule jobs on machines that have been available inthe past (thus con�rming that what may be considereda standard practice is, in fact, good practice). Althoughthe past is not related to the future, we will show thatsuch a strategy makes it di�cult for the adversary toprevent any of the users from making progress whilealso making sure that i workstations are available forat least Di steps. (This is provided, of course, that thestrategy is randomized and that the random choices aremade in the right way.)1.2 A General Problem FormulationThe problem just described can be formulated in a moregeneral context. For example, consider a problem inwhich there are n commodities. A decision-maker ortrader (call her Alice) is allowed to \hold" at most onecommodity at any time. At each step, each commoditymay or may not issue a \dividend" or a return of, say,$1. Allice collects the dividend as pro�t if and only if sheis holding the commodity at the time that the dividendis paid. Alice may or may not be allowed to change thecommodity that she is holding and there may or maynot be a steep penalty or cost every time that Alicemakes a change. Alice's goal, of course, is to maximizeher pro�t while minimizing the number of changes thatshe makes.54Although the constraint that some workstation be availablefor D = �d logn steps may seem strange at �rst, it is really amild assumption. For example, such a condition would be likelyto arise if workstations were available with some constant prob-ability at each step. Such a condition may also be likely to arisein practice since some workstations may be idle for long periodsof time. By focusing on the D-step availability constraint, weare merely identifying a salient feature that makes the problemtractable. The fact that we have identi�ed a salient feature isdemonstrated by the matching lower bounds that are proved inthe paper. Finally, the constraint is useful in guiding the choiceof job sizes. In particular, we �nd that by partitioning maximal-length jobs into �(logn) chunks, we will be assured of schedulingthem e�ciently, even without knowledge of which workstationswill be available.5The connection between the trading problem and jobscheduling on NOWs is quite close. The workstations correspondto commodities and dividends correspond to workstation avail-ability. The only di�erence is that a job is completed on a work-station only when a threshold is reached in terms of availability.Such a threshold can be modeled by a steep trading cost. Ourmethods can also be applied to a scenario in which a job is com-pleted i� a workstation is available for d consecutive steps, inwhich case the dividends can be collected i� they are issued for

Let D denote the number of dividends paid by thebest commodity. At �rst glance, it seems as thoughAlice's best strategy is to select a random commodity,in which case her expected pro�t might be as small as�(D=n). In fact, Alice can do much better.For example, even if Alice is not allowed to make anytrades (i.e., she is allowed to hold only one commodity)and D � log n, then our selection algorithm will obtaina pro�t of
(D= log n) for Alice with probability at least0:99. (This is optimal.) By making O(log n) trades,Alice's pro�t can be increased to �(D) with probability1�O(1=n). (This is also optimal.) If Alice is allowed tohold O(1) commodities at any step, then her pro�t canbe increased to :99D with high probability. The valueof D need not be known in advance, although then thenumber of trades may increase to O(log n log(D= log n))if D is not known.6 The results can also be extended toa scenario where there are multiple traders or to whereAlice is allowed to own several commodities at the sametime. In each case, we will show how Alice can almostalways pick a winner every time.1.3 On-line Set Cover and Related ApplicationsIt turns out that our methods can also be used to givea �(log n log mk) competitive algorithm for the on-lineset cover problem.78 In the on-line set cover problem,we are given a family of n sets F = fS1; S2; : : : ; Sng.Elements v1; v2; : : : ; vm arrive one at a time where eachvi belongs to at least one of the sets. As each elementarrives, the sets to which it belongs are revealed to theplayer. The goal of the player is to pick k sets so as tomaximize the number of elements that are covered. Inthis version of the problem, the player can make selec-tions at any time, but cannot change a selection onceit is made. In addition, the player only gets credit forelements that are contained in a set that was selected bythe player before or during the step when the elementarrived. Moreover, the player only gets credit for eachelement at most once, even if he/she has selected manysets that contain the element.In the case when the sets are constrained to be dis-joint, we have the special case of the commodity tradingproblem described in the previous section where Aliceis allowed to own k commodities but cannot make anytrades. Alice's pro�t is simply the number of elementscovered.9d consecutive steps during which Alice holds that commodity.6If D is not known and Alice is not allowed to make trades,then her probability of obtaining a pro�t of
(D= logn) isdecreased.7This bound is optimal for many values of n, m, and k.8We use the convention that the competitive ratio is alwaysgreater than one, even though we consider bene�t problemsrather than cost problems. Thus, an upper bound of c on thecompetitive ratio really means that the ratio between the on-linebene�t and the adversary bene�t is at least 1=c. A lower boundof c on the competitive ratio means that the above ratio is atmost 1=c.9Technically, Alice only gets credit for dividends paid on com-modities that she owned in previous steps, in which case, we needto assume that the return of the o�-line player is
(k logn) inorder to guarantee that Alice will be O(logn log mk) competitive.

1.3.1 Video-on-Demand SchedulingThe disjoint version of the set cover problem is alsoequivalent to the \video-on-demand" scheduling prob-lem posed in [AGH94]. In this problem, customers issuerequests for movies (which will start at a prearrangedlater time) to a video server with limited capacity k.Each customer demand is immediately accepted or re-jected. If the demand is accepted, that movie must beshown. If the demand is rejected, the customer is lost.The goal is to be able to accept the largest number ofdemands subject to the capacity constraint k.The on-line algorithms in [AGH94] achieve linear(O(m)) competitive ratio; the semi-o�ine algorithmswith look-ahead (where the decision can be postponedto the time when future demand is known) achieve loga-rithmic ratio. In this case, the movies correspond to thesets, and the customers correspond to the base elements.The more general (non-disjoint) set cover problem cor-responds to a setting in which every customer disclosesa list of alternative movie titles that he/she wants towatch.1.3.2 Investment PlanningThe disjoint set cover problem also has applications inthe context of investment planning. For example, previ-ous work on the competitive analysis of �nancial prob-lems [EFKT92, EK93, CEL93] focused on trading prob-lems, where algorithms were allowed to make partial in-vestments, to retract from previous decisions (at somecost), or were based on some statistical knowledge ofthe input. In contrast, on-line set cover captures sit-uations where investment decisions are indivisible andirrevocable: once an investor has decided to invest inbuilding a new factory, he/she must hope that there willbe high demand for the product produced by the fac-tory, in which case the dividends paid to investors willbe high. In our model, investment decisions do not haveto take place immediately; investors can postpone thedecision until he/she get convinced that the companyis doing well and indeed paying lofty dividends. Stillthere is risk involved since the future and the past arenot necessarily related and once the investor decides toinvest in a company, demand for its product could dropto zero, in which case the investor is stuck with the fac-tory building and a warehouse full of merchandise thatnobody wants. Hence, with limited �nancial resources,the investor has to decide what investments to make andat what stage along the curve of increasing demand.The more general (non-disjoint) set cover problemcaptures scenarios where there may be complex relation-ships between between one company's growth and an-other's (e.g., they are producing a competitive productor mutually exclusive lines of products). For example,the marginal revenues of investing in a factory produc-ing answering machines may be too low after purchase ofa factory producing answering machines with a cordlessphone. To analyze such problems, we view companiesas sets of products, and arriving customers as base ele-ments. Upon their arrival, customers disclose mutuallyexclusive lists of products they would like to purchase.If, by that time, the investor has already has purchaseda company producing any one of these products, the

investor makes a pro�t. Otherwise, the customer (andthe money) are lost, since the client may not wait.1.3.3 Strategic PlanningThe methods developed in this paper may also be ofinterest in the domain of strategic planning and wargaming. For example, consider the following oversim-pli�ed battle�eld scenario where a general needs to de-cide where and when to attack an enemy defender. Inthe scenario, the general wants to �nd a single soft spotfrom among n enemy defensive positions. The enemydoes not have the resources to defend all n positions,but he can shift his forces on a daily basis. The attack-ing general has access to intelligence data that revealswhich enemy positions were well defended in all previousdays, but this data does not provide the general withany information about which positions will be defendedduring the coming day(s).The general's problem is to pick a position p 2 [1; n]and a day q 2 [1; T] for the attack. The general wins ifsite p is not well defended on day q, and he loses oth-erwise. The only knowledge possessed by the generalabout the future is that over the course of the next Tdays, at least one of the n positions will not be defendedfor at least �(log nT) consecutive days.10 In this case,our results provide a strategy for the general that willresult in victory with probability near one, no matterwhat strategy is used by the enemy. The high successprobability holds even if the enemy knows the strategybeing followed by the general (but not the result of thecoin tosses being used by the general each morning whendeciding whether or not to attack). In other words, it isnot possible for the enemy to trick the general into at-tacking a well-defended position by, for example, leavinga position undefended for several consecutive days, onlyto switch and suddenly ramp up defenses in anticipationof an attack.Our results can also be applied to scenarios wheremultiple attacks are being planned and/or where attackscan be broken o� quickly if a position is attacked thatis well defended. In such cases, the general can achievesuccess against even less restricted enemies. The gen-eral's decision about where and when to attack doesrely on random coin tosses each morning (which mightbe disconcerting to some) but it is the randomness inthe coin tosses that insures that the general will be suc-cessful with high probability. (For instance, without therandomness, the general will have no chance of successagainst an enemy who has acquired the general's strat-egy.)1.4 Additional Previous WorkVarious on-line optimization variants of many combina-torial problems have been subject to competitive anal-10In some cases, the restriction that a position be left unde-fended for �(lognT) consecutive days is unrealistic. Indeed, theenemy may decide to continually move his forces so that no siteis left undefended for more than o(lognT) days at a time. How-ever, continual movement of forces might be costly, and even-tually, the enemy may be forced to leave some sights less welldefended for longer periods of time. If this ever happens, thegeneral will win with high probability.

ysis [ST85a, KMRS88]. Such problems include, for ex-ample, on-line matching [KVV90], partition [FKT89],on-line steiner tree and generalizations [IW91, CV92,ABF93, WY93], and also on-line graph coloring [Vish90,Irani90, HS92].The subject of job scheduling in the face of uncer-tainty has also been studied previously [BL94, KP94,BCLR95], though our results di�er from those of priorresearchers in several respects. The closest prior work isthat of Kalyanasundaram and Pruhs [KP94], who devisecompetitive algorithms for task scheduling of unrelatedjobs on a NOW where processors may become faulty. Inthe case when most processors are faulty and replicationis not allowed, the results are mostly negative. In con-trast, the positive nature of the results in this paper arepossible because we consider a di�erent adversary andobjective function. Bhatt et al. [BCLR95], on the otherhand, study a related cycle-stealing problem in whichthe goal is to maximize the amount of uninterruptedwork that can be stolen from a single workstation.1.5 Outline of the PaperThe remainder of the paper is divided into sections asfollows. In Section 2, we describe an optimal algorithmfor picking a winner with probability close to 1 on the�rst try. We then show how this algorithm can be usedto provide an optimal solution to the on-line set coverproblem. In Section 3, we describe a more e�cient algo-rithm for picking winners repeatedly if we are allowedto kill and reschedule jobs. Several extensions of theresults are presented in Section 4. We conclude withsome acknowledgements and references.2 Picking a Winner on the First TryWe begin by considering the scenario where Bob wantsto run a single d-step job and he is only allowed toschedule the job once. (This corresponds to the scenariowhere Alice is allowed to own only one commodity andto the on-line set cover problem where we can select justone set.) We will assume that at least one of the n work-stations will be available for at least D � 3d log n steps.In what follows, we will show how to select a worksta-tion so that the job is completed with probability atleast 1�O(d log nD).The algorithm for selecting the workstation is quitesimple. Label the workstations as W1;W2; : : : ;Wn. Ateach step, Bob checks the status of each workstation tosee which are available. For each i (i = 1; 2; : : : ; n in se-quence), if Wi was available at the end of the last step,Bob
ips a coin to decide whether or not to assign thejob to Wi. In particular, Bob will assign the job to Wiwith probability n3x=D�2=d, where x is the number ofsteps for which Wi has been available thus far. If thejob is ever assigned to some workstation, then Bob stops
ipping coins and just waits for the job to be completed.In what follows, we will show that with probability atleast 1�O((d log n)=D + 1=n), the job will be assignedto a workstation that will be available for d or moresteps following the assignment, no matter what strat-egy is employed by the adversary in determining whenmachines are available.

Let S denote a sample space of coin tosses wherethere will be one coin toss for each pair (i; j) for whichWi is available at step j. If Wi is available for the xthtime at step j, then the probability of Heads for the(i; j)
ip is set to be n3x=D�2=d.There is a sample point in S for each possible com-bination of Heads and Tails for the
ips. Each sam-ple point also corresponds to an outcome of the coins
ipped by Bob to determine when and where to sched-ule his job. In particular, Bob will schedule his job onWi at step j if the (i; j) coin is Heads and if the (i0; j0)coin is Tails for all (i0; j0) such that j0 < j or j0 = j andi0 < i.Let Swin denote the subspace of S consisting of sam-ple points for which Bob is successful in getting his jobdone. These are the sample points for which there is atleast one Head among the
ips and for which the �rst
ip to result in Heads occurs for a workstation that isavailable for at least d subsequent steps (i.e., for whichthere are at least d subsequent
ips). The probabilitythat Bob is successful is then Pr[Swin].In order to show that Pr[Swin] is close to 1, we willconsider a second space S 0 � S for which it is easy toshow that Pr[S 0] is large and that Pr[Swin] is nearlyas large as Pr[S 0]. In particular, we de�ne S 0 to con-sist of the sample points for which there is at least oneHead and for which the �rst d
ips for each workstationresulted in Tails.Lemma 2.1 Pr[S 0] � 1� O(1=n).Proof: The probability of getting a Head among the(at most) dn
ips for which x � d is at mostdn(n3d=D�2=d) � 2=n:The probability that there are no Heads among thelast d
ips for the workstation that is available for Dsteps is either 0 or at most(1� n3(D�d)=D�2d)d � (1� n2d)d � e�n=2: 2Lemma 2.2 Pr[Swin] � (1� O(d log nD))Pr[S 0].Proof: We will construct an injection f : S 0 ! Swinfor which8s0 2 S 0 Pr[f(s0)] � (1� O(d log nD))Pr[s0]:The lemma will then follow.Consider any sample point s0 2 S 0. Let Wi be theworkstation for which a
ip is �rst Heads in s0 and letx denote the number of steps that Wi had been avail-able up to and including the step when the �rst Headsoccurred. By the de�nition of S 0, we know that x > d.Let z0 = n3x=D�2=d

and z = n3(x�d)=D�2=d= n�3d=Dz0= (1� �(d log nD))z0:If z0 � 1=2, then de�ne f(s0) to be the sample pointwhich is identical to s0 in every way except that theoutcome of the (x � d)th
ip for Wi is changed fromTails to Heads. By de�nition, this sample point is inSwin. Moreover,Pr[f(s0)]Pr[s0] = z1� z= (1��(d log nD))z01� (1��(d log nD))z0� 12 ��(d log nD)12 +�(d log nD)= 1��(d log nD);since z0 � 1=2.If z0 � 1=2, then de�ne f(s0) to be the sample pointwhich is identical to s0 except that the outcome of the(x�d)th
ip forWi is changed from Tails to Heads andthe outcome of the xth
ip forWi is changed from Headsto Tails. Once again, it is easy to see that f(s0) 2 Swin.It is also easy to check that f is an injection. Moreover,Pr[f(s0)]Pr[s0] = z1� z � 1� z0z0� (1��(d log nD))� 1� z01� z0 + �(d log nD z0)� 1��(d log nD);since z0 � 1=2. 2Theorem 2.3 Pr[Swin] � 1�O(d log nD + 1n).Proof: Follows immediately from Lemmas 2.1 and 2.2.2Remark 2.4 By being more careful with the asymp-totic analysis and adjusting the probability of the
ipsslightly, it is possible to make Pr[Swin] � 1� 3d log nD � 2n .Remark 2.5 The probability bound of Theorem 2.3cannot be improved by more than a constant factor,no matter what algorithm is used to select a worksta-tion. This is because the adversary can select �jn of theworkstations at random to be available for the �rst djsteps for 1 � j � D=d where � = 1��(d log nD). (In otherwords, (�j � �j+1)n machines will cease to be availableimmediately after step dj.) No matter what selectionalgorithm is used, it can have at most a � chance ofpicking a winner. More generally, a similar adversarycan be used to show that if D 2 [td; (t+ 1)d � 1], thenBob can select a good workstation with probability atmost n�1=t.

2.1 Application to On-line Set CoverNext, we show how to adapt the preceding algorithmto provide an optimal O(log n log mk)-competitive algo-rithm for the on-line set cover problem.In the set cover problem, we are given n sets F =fS1; S2; : : : ; Sng, of which we are allowed to choose k.The elements v1; v2; : : : ; vm arrive one per step (withoutloss of generality), and as each element arrives, we learnwhat sets it belongs to. In what follows, we will assumethat credit is given for an element if we have chosen aset containing the element in the past or if we choosea set containing the element during the step when theelement arrives.11 (E.g., in the video-on-demand prob-lem, we can get credit for a request for a movie afterseeing the request, but only if we immediately acceptthe request.)For clarity of exposition, we will think of the k choicesas being made by k di�erent people P1;P2; : : : ;Pk, eachof whom will make at most one choice. When a personPl chooses some set S, he will get credit for all elementsv 2 S that arrived during or after the step when he se-lected S and that are not credited to Pl0 for l0 < l. (Inother words, if v is contained in a set that was selectedby Pl0 for some l0 < l before or during the step when varrived, then v is not credited to Pl.) By prioritizing theallocation of credit in this way, we can ensure that weonly get credit for each element once, even if the sameset is selected more than once. The prioritization alsoallows the analysis to proceed as if P1 selects �rst (see-ing all the elements before P2 selects), P2 selects fromwhat remains, and so forth, even though all the play-ers make their decisions as each element arrives. (So,in fact, P1 might select the same set as P2 after it isselected by P2. In this case, P2 stops getting credit forthe set as soon as P1 selects the set.)Pl makes his selection using the protocol followed byBob in the previous section, but with the following mod-i�cations. First the value of D is replaced by Dl = 2j�1where j is selected at random from [1; log mk]. (Each Dlis chosen independently from the others.) The value of dis replaced by dl = b Dl� log nc, where � is a suitably largeconstant. Next, we identify set Si with workstation Wifor each i. Wi will be considered to be \available" byPl at the jth step i� vj 2 Si and vj 62 Si0 for all i0 suchthat Si0 was previously selected by Pl0 for some l0 < l.(In other words, Si is considered to be available at stepj by Pl if Pl would have gotten credit for vj had Plchosen Si in the past or if Pl chooses Si now.) If dl = 0and this is the �rst time that Pl has a chance to getcredit for an element, then Pl selects Si. Otherwise, Plselects Si at step j with the same probability that Bobwould select Wi at step j.In what follows, we use Rl to denote the randomvariable that counts the number of covered elementsthat are credited to Pl. We also de�ne R = R1 +R2 + � � � + Rk to be the size of the cover producedby the algorithm. Our goal is to show that Ex[R] �11The results can be modi�ed to handle a scenario where creditis only given for elements that are contained in previously-heldsets, but we will then need to assume that the optimal k-covercontains L � �k logn elements where � is a su�ciently largeconstant, although we will not assume that the value of L isknown in advance.

(Llog n log(m=k)), where L is the size of the optimal o�-line k-cover.Let Ll be the random variable that denotes the max-imum amount that any workstation (or set) appearedto be available to Pl. If Ll � L=2k, then Dl willbe chosen so that L4k � Dl � Ll with probability atleast 1= log mk . If this happens (i.e., if L4k � Dl � Ll)and dl � 1, then we can use Theorem 2.3 to showthat Rl � dl �
(Dllog n) �
(Lk log n) with probabil-ity close to 1. If L4k � Dl � Ll and dl = 0, thenRl = 1 �
(Dllog n) �
(Lk log n) with certainty. Com-bining the preceding facts yields the conclusion thatRl �
(Lk log n) with probability at least
(1= log mk)(all provided Ll � L=2k).We next show that if Ll < L=2k for some l, thenR � L=2. The proof is by contradiction. Suppose thatR < L=2. Then R1+R2+ � � �+Rl�1 < L=2. Since thereare k sets that cover L items, this means that some setmust cover at least L�L=2k � L2k items that were notcredited to P1;P2; : : :, or Pl�1. By the de�nition ofavailability to Pl, this means that Ll � L=2k. Hence, ifLl < L=2k for some l, then R � L=2, as claimed.Let Tl = Rl + R=k. Then Ex[Tl] �
(Lk log n log mk)since we get that contribution from Ex[Rl] if Ll � L=2kand we get more than that from Ex[R=k] otherwise.Let T denote the sum of the Tl. Then Ex[T] =2Ex[R] and Ex[T] �
(Llog n log mk). Hence, Ex[R] �
(Llog n log mk), as claimed.The preceding algorithm allowed the same set to bechosen more than once, even though each element wascredited only once. In fact, it never helps to select a seta second time and so we can easily restrict our algorithmto select each set only once. In this case, we may selectfewer than k sets overall.2.2 Lower BoundsThe lower bounds we give hold even in the special casewhere the sets are disjoint, i.e., every element belongsto precisely one set.We �rst show that m=(2k) is a lower bound on thecompetitiveness of any deterministic algorithm. Thisbound is obviously tight up to a factor of 2.The adversary �rst presents elements taken from setnumber 1. Once the on-line algorithm commits to thisset, no further elements from set 1 arrive, but elementsfrom set number 2 are presented. This process is re-peated until the on-line algorithm commits to k sets orat total of m elements have been presented overall.For every set chosen by the on-line algorithm, the on-line bene�t is 1 giving a total bene�t of no more thank for all sets. If after k such sets at least m=2 elementswere presented then the o�-line algorithm accepts allthese sets in advance and obtains a bene�t of at leastm=2. Otherwise at least m=2 elements belonging to setk + 1 arrive. The o�-line algorithm accepts this setobtaining a bene�t of at least m=2 whereas the on-linealgorithm remains at bene�t k as it cannot accept anymore sets. In any case the o�-line bene�t is at least m=2

whereas the on-line bene�t is at most k. This impliesthe lower bound.The randomized lower bound is more complicated.We prove it for the case when k = 1. A similar resultcan be proved for some larger values.The competitive ratio of a randomized algorithm isde�ned as the supremum over all sequences of the ratioboff=E(bon). To prove the lower bound we apply a vari-ation of Yao's theorem to the competitive ratios underconsideration. (See ABM-93 for this variation). Thisallows us to replace randomness in the algorithm withrandomness in the input. We will choose a distributionon the input sequence such that the expected competi-tive ratio of any deterministic algorithm is at least thedesired lower bound when averaging over the possiblesequence inputs.Consider the following probability distribution oversequences of elements from the sets:1. Choose integers y and z such that n � 2yz andm � 2z2y.2. Choose an integer 1 � i� � z uniformly at ran-dom.3. Construct sequences that consists of i� phases whileeach phase consists of y steps. Associated withphase i step j, 0 � i < i�, 1 � j � y, is a set of2y�j sets S(i; j) (S(i; j) � fS1; : : : ; Sng). Duringphase i step j, 2i di�erent elements are presentedfrom every set S 2 S(i; j).Throughout the sequence, no element is ever pre-sented twice. (In fact, elements names are not sig-ni�cant, only the sets to which they belong, andevery element belongs to exactly one set).The set of sets S(i; 1) consists of 2y�1 sets andis pairwise disjoint with sets of sets S(r; 1) for allr 6= i, 0 � i < i�.The set of sets S(i; j), j > 1, (elements from whoseelements are presented at phase i step j), is a ran-dom set of size 2y�j out of the 2y�j+1 sets associ-ated with the previous step (S(i; j � 1)). In otherwords S(i; j) is a random half of S(i; j � 1).Note that the number of new sets in each phase isprecisely 2y�1 and there are at most z phases. Thusthe number of sets is at most 2y�1z � n. Moreover,the number of elements requested in phase i is less than2y2i. Hence the total number of elements is boundedby 2y2z � m. This justi�es the choice of y and z as afunction of m and n.Since the o�-line algorithm knows the value of i� andthe set that will be used in the last step of phase i�, it iseasy for the o�-line algorithm to get a bene�t of 2i��1y.Matters are more di�cult for the on-line algorithm,however, since it knows neither piece of information. Infact, we will next show that the on-line algorithm cannot do any better than picking a predetermined pointat which to select the set, where the selected set is theset containing the item just presented.Consider \simple" deterministic on-line algorithmsof the following form: \wait until the element ` is pre-sented, choose the set to which it belongs." We can now

argue that given any deterministic on-line algorithm Afor this problem with inputs drawn from the above dis-tribution, there exists a simple deterministic algorithmA0 such that the expected bene�t of A0, over the abovedistribution on input sequences, is at least the expectedbene�t of A on the same distribution. This is becausenothing is signi�cant in one sequence over another. (Upto reordering the input and the set lables, every input ofa �xed length in the same.) Hence, we can successivelymodify A, without decreasing the expected bene�t, un-til a simple algorithm is obtained.It follows that to prove a lower bound on the com-petitive ratio it su�ces to prove an upper bound onthe expected ratio between the on-line bene�t of simpledeterministic algorithms and the adversary bene�t.A simple deterministic on-line algorithm has a sin-gle parameter ` as discussed above, this translates tochoosing a set which has an element presented in phasei0, step j0 for some 0 � i0 < z, 1 � j0 � y.Then the probability that i� = i0 + s for 1 � i0 �s � z � i0 is 1z . Now, if s � 0 then the on-line bene-�t is zero because the sequence ends before the on-linealgorithm chooses any set. If s � 1 then the on-linealgorithm chooses some set S 2 S(i0; j0). The on-linebene�t depends on the maximal value j0 � k � yfor which S 2 S(i0; k), in which case it is no morethan (k � j + 1)2i0 . The conditional probability thatS 2 S(i0; k + r), r � 0, given that S 2 S(i0; k), is 2�r .It now follows that the expected ratio between theon-line bene�t and the adversary bene�t is no more than�1z� ��2i02i0 + 2i02i0+1 + 2i02i0+2 + � � ����2�0 + 2�1 + 2�2 + : : :y � � 4yz :This implies the yz=4 lower bound on the competitiveratio. Note that in terms of n and m the lower boundis log n logm for wide range of values.3 Picking Winners RepeatedlyWe next consider the scenario where Bob has log n d-step jobs to run and where he may elect to kill a joband restart it on another workstation if he is not sat-is�ed with the progress thus far. To make mattersmore di�cult, we will assume that the jobs, call themJ1; : : : ;Jlog n, must be run in sequence (i.e., that Ji+1cannot be scheduled until Ji is completed for all i <log n).In what follows, we will show how to schedule thejobs so that all of them are completed with probabil-ity 1 � O(1=n). We will assume only that at least oneworkstation will eventually be available forD � �d log nsteps where � is a su�ciently large constant.As before, the scheduling algorithm is quite sim-ple. In this case, we
ip (1 + �) log n coins (call themC1; C1; : : : ; C(1+�) log n) for every pair (i; j) where Wi isavailable at step j. (� = �(1= log �) is a small constant

that will be speci�ed later.) The probability of a Headsfor Ch will be2�c1hnc2x=D�2=dwhere c1 = �(log �) and c2 = �(log �) are large con-stants that will be speci�ed later and x is the numberof steps that Wi has been available thus far. Wheneverone of the coins is Heads for the �rst time (i.e., if thehth coin is Heads for the �rst time at step j ofWi), thenBob schedules a job on Wi. If a job was still running onanother workstation, then it is killed and restarted onWi. Otherwise, the next job in the queue is scheduledon Wi.The proof that this algorithm works is similar tobut more complicated than the proof for the case whenBob schedules a job only once. The complication arisesbecause we need to overcome the log n barrier describedin Remark 2.5 as well as dependence problems causedby occasionally having to kill jobs in order to be moree�cient. We begin by getting good bounds on wheneach coin is likely to �rst come up Heads.Each time that some workstation is available at astep, there is a chance (speci�cally, the probability is2�c1hnc2x=D�2=d) that Ch will come up Heads. Let mhdenote the sum of these probabilities up to and includ-ing the current
ip. (In the case that 2�c1hnc2x=D�2=d >1, we still add the full amount into mh. Then, it willbe the case that mh+1 = 2�c1mh for all h.) We saythat a coin is early if Ch comes up Heads for the �rsttime when mh < 2�c1=2 and late if Ch does not comeup Heads while mh < 2c1=2. In what follows, we showthat the probability that a coin is either early or late issmall.Lemma 3.1 For any h, the probability that Ch is earlyis at most 2�c1=2 and the probability that Ch is late is atmost e�2c1=2 .Proof: The probability that there is a Heads amongthe �rst r tosses of Ch is at most p1 + p2 + � � � + prwhere pl is the probability of a Heads on the lth
ipof Ch (over all workstations and steps). For Ch to beearly, one of these tosses must result in Heads wheremh = p1+ p2+ � � �+ pr < 2�c1=2. Thus, the probabilitythat Ch is early is at most 2�c1=2.By similar reasoning, the probability that Ch is lateis at mostsYl=1(1� pl) � e�(p1+���+ps)where mh = p1+ � � �+ps � 2c1=2. Thus, the probabilitythat Ch is late is at most e�2c1=2 . 2Lemma 3.2 With probability 1�O(1=n), at most �6 log ncoins will be either early or late.Proof: By Lemma 3.1 and the independence of thecoins, the probability that �6 log n or more coins are ei-ther early or late is at most�(1 + �) log n�6 log n �(2�c1=2 + e�2c1=2) �6 log n:

This probability is O(1=n) provided that � � 1 andthat c1 � 36=�. Henceforth, we will assume that � islarge enough and that c1 and � are selected so that bothconditions are satis�ed. 2Lemma 3.3 For each h < (1 + �) log n, the probabil-ity that Ch �rst becomes Heads after Ch+1 �rst becomesHeads is at most 2�c1=2 + e�2c1=2 .Proof: The step at which mh �rst reaches 2c1=2 is thesame as the step at which mh+1 �rst reaches 2�c1=2(since mh+1 = 2�c1mh by de�nition). Thus in order forCh to �rst become Heads after Ch+1 �rst becomes heads,it must be the case that either Ch is late or Ch+1 is early.The result then immediately follows from Lemma 3.1.2Lemma 3.4 For any h � (1 + �) log n, with probability1 � O(c2=�+ 2�c1=2 + 1=n), Ch will eventually becomeHeads and it will �rst become Heads when
ipped for aworkstation which will be available for at least d stepsbefore Ch+1 �rst becomes Heads.Proof: The proof is similar to the proof in Section 2.In particular, let S denote the sample space of all
ipsfor Ch and Ch+1. Let S 0 denote the subspace of samplepoints for which Ch �rst becomes Heads at or before thestep where Ch+1 �rst becomes Heads and for which the�rst d
ips of Ch for each workstation results in Tails.Let Swin denote the subspace of points for which thecondition of the Lemma holds; namely, that Ch will �rstbecome Heads when
ipped for a workstation that willbe available for at least d steps before Ch+1 �rst becomesHeads.We �rst show that Pr[S 0] is close to 1. The proba-bility of getting a Heads among the (at most) dn
ipsof Ch for which x � d is at mostdn(2�c1hnc2d=D�2=d) � nc2d=D�1= 2c2=�n= O(1=n)since c2 = O(log �).The probability that there are no Heads among thelast d
ips of Ch for the workstation that is available forD steps is either 0 or at most(1 � 2�c1hnc2(D�d)=D�2=d)d� (1� n�c1(1+�)+c2�c2d=D�2=d)d� e�nc2(1�d=D)�c1 (1+�)�2� O(1=n)provided that c2 � 3+2c1, � � 1 and � � 1. Henceforth,we will assume that � is large enough and that c2 and� are selected so that these conditions are satis�ed.Combining the previous two bounds with the boundof Lemma 3.3, we �nd thatPr[S 0] � 1� 2�c1=2 � e�2c1=2 �O(1=n):

We next show that Pr[Swin] is large. The proof isnearly identical to that of Lemma 2.2. In particular, weconstruct an injectionf : S 0 ! Swinfor which 8s0 2 S 0Pr[f(s0)] � (1� �(c2=�))Pr[s0]:The injection is constructed by identifying the worksta-tion Wi and
ip x for which Ch is �rst Heads, and thenchanging the (x � d)th
ip of Ch for Wi to be Headsinstead of Tails. If z0 = 2�c1hnc2x=D�2=d is less than1=2, then we also change the xth
ip of Ch for Wi to beTails instead of Heads.As a result, we can conclude thatPr[Swin] � (1�O(c2=�))Pr[S 0]� 1� O(c2=�+ 2�c1=2 + 1=n): 2Lemma 3.5 With probability 1 � O(1=n), for all but�2 log n values of h � (1+ �) log n, Ch will become Headsand will �rst become Heads for a workstation which willbe available for at least d steps before Ch+1 �rst becomesHeads.Proof:We �rst consider the case when h is even. Then theprobability that the condition of Lemma 3.4 holds willbe independent for each h. In particular, the probabilitythat the condition of Lemma 3.4 fails for more than�4 log n even values of h is at most�1+�2 log n�4 log n �(O(c2=�+ 2�c1=2 + 1=n)) �4 log n:This probability is O(1=n) provided that � � 1, c1is a su�ciently large constant multiple of 1=�, c2 isO(1=�), and � is a su�ciently large constant multiple of1= log �. All of these conditions (as well as the prior con-straints in the constants) can be met provided that � isa su�ciently large constant and where � = �(1= log �),c1 = �(log �), and c2 = �(log�).An identical argument can be use to show that theprobability that the condition in Lemma 3.4 fails formore that �4 log n odd values of h is at most O(1=n).Thus, with probability 1 � O(1=n), the condition ofLemma 3.4 fails for at most �2 log n values of h. 2Theorem 3.6 With probability 1�O(1=n), the schedul-ing algorithm will result in all log n jobs being completedand at most � log n instances where a job is killed andrestarted on another workstation.Proof:Let Ih denote the interval of time between the stepwhen Ch is �rst Heads and the step when Ch+1 is �rstHeads. If both of Ch and Ch+1 are neither early norlate, we say that Ih is good. Otherwise, we say that Ihis bad. By Lemma 3.2, we know that with probability1�O(1=n), there are at most �3 log n bad intervals.

Since no two good intervals overlap, we can again useLemma 3.2 to show that with probability 1 � O(1=n),there are at most �6 log n good intervals Ih during whichanother coin (other than Ch or Ch+1) �rst becomes Heads.By Lemma 3.5, we know that with probability 1 �O(1=n), for all but at most �2 log n values of h, Ch willbecome Heads for a workstation which will be availablefor at least d steps before Ch+1 �rst becomes Heads.Combining the previous three facts and adding fail-ure probabilities, we can conclude that with probability1�O(1=n), there are at least(1 + �) log n � �3 log n � �6 log n� �2 log n = log nvalues of h for which Ch �rst becomes Heads for a work-station that will be available for at least d steps beforeany other coin �rst becomes Heads. The job that isassigned to such a workstation is guaranteed to be com-pleted before the algorithm attempts to schedule an-other job. Since only (1+ �) log n attempts are made toschedule a job, only � log n can end in failure. 2The result in Theorem 3.6 can be shown to be tightor nearly tight in several respects. For example, by con-sidering a randomized adversary of the type outlined inRemark 2.5 (with � = 1= log n), it can be shown thatif D = O((d log n)= log log n), then no scheduling algo-rithm will have better than a �(1= log log n) chance ofscheduling even one job, no matter how many swapsand restarts it makes.4 Extensions4.1 Obtaining Higher E�ciencyThe algorithm described in Section 3 is ine�cient by afactor of �. This is because there is a workstation thatwas available for D = �d log n steps, but we only com-pleted log n d-step jobs with high probability. In whatfollows, we will show how to attain higher e�ciency byallowing the user to schedule up to �=� = O(1) jobsat the same time. (Each workstation still only activelyworks on one job at a time, of course, and there are noprecedence constraints between jobs scheduled at thesame time.)The improvement is quite simple. Assume that someworkstation will be available for D� steps. Then theuser runs �=� versions of the algorithm described in Sec-tion 3 with d = D� log n and D = D�=(2 + 1=�). Eachversion is assigned a unique priority and works inde-pendently from the others. (In fact, we can think ofthe �=� versions as if each was being run by a separateuser.) Whenever a higher-priority job is scheduled ona workstation, that workstation simply appears to beunavailable to all lower priority versions. (The reverseis not true. In other words, a workstation running alow-priority job will appear to be available to a higher-priority user.)The key to proving that (�=�) log n jobs are com-pleted with high probability rests on the fact that eachversion can consume at most (1 + �)d log n availablesteps. (This is because a version starts at most (1 +

�) log n jobs, each of which has length at most d.) Hence,even if all �=� versions consume (1+ �)d log n steps on asingle workstation, some workstation will still be avail-able for at leastD� � �� (1 + �)d log n = D(2 + 1=�)� D� (1 + �)= Dsteps, which means that every version of the algorithmwill be able to complete log n jobs with high probabilityby Theorem 3.6.The total amount of work accomplished by the �=�versions is�� d log n = D� = D��(1=�+ 2)= D�1 + 2� � (1� 2�)D�:By making � be small, this amount can be made arbi-trarily close to D�.The preceding analysis ignored the scenario whenthere is more than one workstation that is available forD� steps. We show how to exploit the available capacityin multiple workstations in the following section wherewe also handle the case of multiple users.4.2 The Case of Multiple SchedulersOne particularly nice aspect of our scheduling algorithmis that (with only small modi�cations) it can be usedsimultaneously by multiple individuals without coordi-nation. (Alternatively, it can be used by a few individ-uals who want to use multiple workstations | this isreducible to the case where there are multiple users.)For example, consider a scenario where there are atleast k workstations that will be available for at least D�steps each. In this case, each user will be instructed touse the algorithm of Section 3 with D = D�=(2 + 1=�).For simplicity, the users will be prioritized, but they willnot otherwise interact. Each user runs the schedulingalgorithm as if he/she were the only individual runningbackground jobs. Workstations will be considered to beavailable to a user i� they are not running a higher-priority job. Higher-priority jobs will always interruptlower-priority jobs. Knowledge of k is not needed andis used only for the purposes of the analysis. In orderto attain near maximum use of the available time inthe k workstations, we will assume that there are atleast (�=�)k users, each with log n d-step jobs whered = D=(� log n). Somewhat surprisingly, the (�=�)kusers will get all of their log n jobs run (in sequence)with high probability. This is because each of the (�=�)kusers can consume at most (1 + �)d log n available timeusing the algorithm of Section 3. This means that atleast one of the k workstations will still be available forD� � (�=�)k(1 + �)d log nk= (2 + 1=�)D� (1 + ��)D = Dsteps no matter what the (�=�)k users do. Hence, byTheorem 3.6, each of the (�=�)k users will get all log n

jobs done with high probability. (Actually, we need toboost the success probability of the analysis in Theo-rem 3.6 in order to make the preceding result hold withprobability 1�O(1=n), but this is easy to do by adjust-ing the constant factors.)It is worth noting that the preceding result attainsgreater e�ciency since we are able to accomplish�� kd log n = kD� = kD��(1=�+ 2)= kD�1 + 2� � (1� 2�)kD�productive work.4.3 The Case when D� is UnknownThe algorithms described thus far used knowledge ofD�in order to schedule the jobs. In what follows, we showhow to modify the algorithms so that dependence onD� is no longer required.In the case when D� is not known, the schedulerpartitions time into intervals as follows. The �rst inter-val lasts until some workstation has been available for� log n steps. During this time, the scheduler runs thealgorithm for d-step jobs where d = 1.For i > 1 the ith interval starts after the (i�1)stinterval has �nished and lasts until some workstationhas been available for �2i�1 log n steps (counting fromthe beginning of the interval, only). During this time,the scheduler runs the algorithm for d-step jobs whered = 2i.Even without knowing the value D�, log n jobs oflength O(D�= log n) will still be completed with proba-bility 1 � O(1=n). Jobs of shorter length will also becompleted, although the number of killed jobs couldgrow as large as � log n log(D�= log n). The algorithmsin Sections 4.1 and 4.2 can be modi�ed in a similar man-ner in order to improve e�ciency.In fact, if the users each have a unique priority, andif each user is allowed to run �=� jobs at the same time,then for all k, the kth user will be able to get (1�2�)D�kwork done with high probability whereD�k is the amountof time available on the kth most available machine.5 AcknowledgmentsWe would like to thank Allan Borodin, Leonid Levin,Prabhakar Raghavan, Mike Sipser, Bob Tarjan, Al Vezza,and Joel Wein for helpful remarks, suggestions, and ref-erences.References[ABFR94] B. Awerbuch, Y. Bartal, A. Fiat, and A. Ros�en.Competitive Non-Preemptive Call-Control. InProc. of the 5th Ann. ACM-SIAM Symp. on Dis-crete Algorithms, pages 312-320, January 1994.[ABF93] B. Awerbuch, Y. Bartal, and A. Fiat. CompetitiveDistributed File Allocation. In Proc. of the 25thAnn. ACM Symp. on Theory of Computing, pages164-173, May 1993.

[ABM93] Y. Azar, A. Broder, and M. Mannase. On-linechoice of on-line algorithms. In Proc. 4th ACM-SIAM Symp. on Discrete Algorithms, pages 432{440, 1993.[AGH94] A. Aggarwal, Juan Garay, and Amir Herzberg.Adaptive video on demand. In Proc. ThirteenthACM PODC Symp., page 402, 1994. also appearedas an IBM Research Report, RC19770, Oct, 1994.[BCLR95] S. Bhatt, F. Chung, T. Leighton, and A. Rosen-berg. Optimal strategies for stealing cycles. Un-published manuscript, 1995.[BL94] R.D. Blumofe and C.E. Leiserson. SchedulingMul-tithreaded Computations by Work Stealing. InProc. of the 35th Ann. IEEE Symp. on Founda-tions of Computer Science, pages 356-368, Novem-ber 1994.[CEL93] J. Cooperstock, R. El-Yaniv, T. Leighton. TheStatistical Adversary Allows Online Foreign Ex-change with no Risk. Proceedings of SODA '95.[CV92] B. Chandra and S. Vishwanathan. Construct-ing Reliable Communication Networks of SmallWeight On-line. Journal of Algorithms, 1992.[EFKT92] R. El-Yaniv, A. Fiat, R. Karp, and G. Turpin.Competitive Analsys of Financial Games. In Proc.of the 33th Ann. IEEE Symp. on Foundations ofComputer Science, pages 327-333, October 1992.[EK93] R. El-Yaniv and R. Karp. The Mortage Problem.In Proc. of the 2nd Ann. Israeli Symp. on Theo-retical Computer Science, May 1993.[FKT89] U. Faigle, W. Kern and Gy�orgy Tur�an. On thePerformance of On-Line Algorithms for Parti-tion Problems. Acta Cybernetica 9, pages 107-119,1989.[HS92] M.M. Halld�orsson and M. Szegedy. Lower Boundsfor On-Line Graph Coloring. In Proc. of the 3rdAnn. ACM-SIAM Symp. on Discrete Algorithms,pages 211-216, January 1992.[Irani90] S. Irani. Coloring Inductive Graphs On-Line. InProc. of the 31st Ann. IEEE Symp. on Founda-tions of Computer Science, pages 470-479, Octo-ber 1990.[IW91] M. Imase and B.M. Waxman. Dynamic SteinerTree Problem. In SIAM Journal on DiscreteMathematics, 4(3):369-384, August 1991.[KP94] B. Kalyanasundaram and K.R. Pruhs. Fault-Tolerant Scheduling. In Proc. of the 26th Ann.ACM Symp. on Theory of Computing, pages 115-124, May 1994.[KMRS88] A.R. Karlin, M.S. Manasse, L. Rudolph, andD.D. Sleator. Competitive Snoopy Caching. In Al-gorithmica, 3(1):79-119, 1988.[KVV90] R.M. Karp, U.V. Vazirani, and V.V. Vazirani. AnOptimal Algorithm for On-Line Bipartite Match-ing. In Proc. of the 22rd Ann. ACM Symp. onTheory of Computing, pages 352-358, May 1990.[LT94] Richard J. Lipton and Andrew Tomkins. On-line interval scheduling. In Proc. 5th ACM-SIAMSymp. on Discrete Algorithms, pages 302{311, Ar-lington, VA, January 1994.[ST85a] D.D. Sleator and R.E. Tarjan. Amortized E�-ciency of List Update and Paging Rules. In Com-munications of the ACM, 28(2) pages 202-208,1985.[ST85b] D.D. Sleator and R.E. Tarjan. Self-AdjustingBinary Search Trees. Journal of the ACM, 32:652{686, 1985.

[Vish90] S. Vishwanathan. Randomized Online Graph Col-oring. In Proc. of the 31st Ann. IEEE Symp. onFoundations of Computer Science, October 1990.[WY93] J. Westbrook. and D.K. Yan. Greedy On-LineSteiner Tree and Generalized Steiner Problems. InProc. of the 3rd Workshop in Algorithms and DataStructures, Also Lecture Notes in Computer Sci-ence, vol. 709, pages 622-633, Montr�eal, Canada,1993, Springer-Verlag.

