
On-line Steiner Trees in the Euclidean PlaneNoga Alon � Yossi Azar yAbstractSuppose we are given a sequence of n points in the Euclidean plane, andour objective is to construct, on-line, a connected graph that connects all ofthem, trying to minimize the total sum of lengths of its edges. The pointsappear one at a time, and at each step the on-line algorithm must construct aconnected graph that contains all current points by connecting the new pointto the previously constructed graph. This can be done by joining the newpoint (not necessarily by a straight line) to any point of the previous graph,(not necessarily one of the given points). The performance of our algorithm ismeasured by its competitive ratio: the supremum, over all sequences of points,of the ratio between the total length of the graph constructed by our algorithmand the total length of the best Steiner tree that connects all the points. Thereare known on-line algorithms whose competitive ratio is O(logn) even for allmetric spaces, but the only lower bound known is of [IW] for some contriveddiscrete metric space. Moreover, for the plane, on-line algorithms could havebeen more powerful and achieve a better competitive ratio, and no nontriviallower bounds for the best possible competitive ratio were known. Here we provean almost tight lower bound of
(logn= log logn) for the competitive ratio ofany on-line algorithm. The lower bound holds for deterministic algorithms aswell as for randomized ones, and obviously holds in any Euclidean space ofdimension greater than 2 as well.�Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel AvivUniversity, Tel-Aviv, Israel. Supported in part by a U.S.A.- Israeli BSF GrantyDEC Systems Research Center, 130 Lytton Ave. Palo-Alto, CA 94301.

11 IntroductionWe consider the on-line Steiner tree problem in the Euclidean plane. The problemcan be illustrated by the following example. Suppose a company is searching for oilin a certain (planar) region, and it is lucky enough to �nd a promising place for anoil well from time to time. In order to keep the communication between the variouswells running smoothly, the company needs to maintain a connected system of roadsthat enables one to move from any well to any other one. This road system is in factso crucial that it must be updated on-line; whenever a new well is found, the roadsystemmust be modi�ed instantly. Suppose that the price of a road is proportional toits length, and thus the objective is to minimize the total length of roads. Obviouslyonce an amount is spent building a road, it cannot be recovered by omitting it, andhence we may assume that the communication system is updated only by adding newroutes to it. Moreover, the manager wishes to be able to come to the stock holdersat the end of the searching process and show them that the total amount spent onthe communication system is not much larger than what it could have been even ifhe had known all the places of the wells in advance.This example and several similar ones that may arise naturally in the design ofvarious networks suggest the following problem, that we call here the on-line planarSteiner-tree problem. Suppose we are given a sequence of n points v1; : : : ; vn in theEuclidean plane, and our objective is to construct, on-line, a connected graph thatconnects all of them, trying to minimize the total sum of lengths of its edges. Weassume that the points appear one at a time, vi arriving at step i. At the end ofstep i, the on-line algorithm must construct a connected graph Ti that contains thepoints v1; : : : ; vi by connecting the new point vi to the previously constructed graphTi�1. This can be done by joining vi (not necessarily by a straight line) to any pointof Ti�1, which need not necessarily be one of the previously given points vj. Analgorithm A for the above problem is a procedure that decides how to construct thegraphs Ti for every given sequence of points vi. Let A(v1; : : : ; vn) denote the totallength of the last graph Tn constructed by the algorithm on the input v1; : : : ; vn, andlet OPT (v1; : : : ; vn) denote the minimum possible length of a connected graph in theplane that contains all the points vi, i.e., the length of the optimal Steiner tree forthis set of points. The performance of the algorithm A is measured by its competitive

2ratio: the supremum, over all sequences v1; : : : ; vn as above, of the ratioA(v1; : : : ; vn)OPT (v1; : : : ; vn) :(Note that the exact computation of OPT (v1; : : : ; vn) is in fact NP-hard (see [GJ]),but there are simple polynomial algorithms that approximate it up to a constantfactor).The Steiner tree problem is an extensively studied problem that has been consid-ered not only in the plane but also in arbitrary metric spaces. Given a set S = Sn of nvertices fvigni=1 which are points from a connected metric space, the minimum Steinertree for these points is the tree T of minimumweight that connects all the vertices inS. Here the weight of a tree is the sum of weights of its edges where a weight of anedge is the distance between its two end points. The Steiner tree problem is that of�nding the minimum Steiner tree for a given set of points in a metric space, or goodapproximations to it. This problem plays an important role in the study of variouscommunication networks. A survey can be found in [Wi]. The on-line version of thisproblem, described above for the planar case, is de�ned for a general metric space inthe obvious way.We evaluate the performance of on-line algorithms by the competitive ratio mea-sure, introduced by [ST], which has received a considerable amount of attention re-cently in the study of various algorithmic problems. For the Steiner tree problem (inany metric space) the competitive ratio of an on-line algorithm is the supremum, overall possible sets S, of the ratio between the weight of the connected graph constructedby the algorithm and the weight of the optimal Steiner tree for the set S. Note, thatwe must assume that the points are drawn from a metric space, i.e. the triangleinequality holds. This assumption is essential, since otherwise the competitive ratiocan be easily made unbounded as a function of n.A natural simple on-line algorithm for constructing on-line a Steiner tree is thegreedy algorithm. At each step i simply join vi to its closest point in Ti�1. Thevertex greedy algorithm is to join vi to its closest neighbor in the set fv1; : : : ; vi�1g.Observe that the greedy algorithm always performs at least as well as the vertexgreedy algorithm. As shown by Imase and Waxman in [IW] (using the ideas of[RSL]) the (vertex) greedy algorithm achieves an O(log n) competitive ratio in everymetric space. Moreover, they also showed that there are metric spaces in which thecompetitive ratio of any on-line algorithm is at least
(log n); however, the examples

3demonstrating this lower bound are not embeddable in the Euclidean plane, and assuggested by the example in the beginning of this section, the planar case is of specialinterest. Moreover, the lower bound of [IW] is proved for a contrived metric spacefor which, at each step, an algorithm must choose between symmetric paths and italways makes the wrong choice. However, in the Euclidean plane on-line algorithmsare not restricted, have in�nitely many possibilities to choose from and cannot becharacterized in a simple way. They may also use unexpected curves which dependin a complicated way on the whole history and the current state. Thus, the task ofobtaining a nontrivial lower bound is much harder for the Euclidean plane. In fact,we can even restrict ourselves to the case in which all the points are drawn from then � n grid while the algorithm, which knows this information, can connect verticesby any curve in the plane. The greedy algorithm is, of course, O(log n) competitivehere, too, and one may wonder if there is a much better algorithm for this case. Ourmain result is that the O(log n) estimate is nearly optimal, as stated in the followingtheorem.Theorem 1.1 No on-line algorithm can achieve a competitive ratio which is betterthan
(log n= log log n) for the Steiner tree problem of n points in the plane, or evenfor n points in the n by n grid.Although this gives a rather tight estimate for the best possible competitive ratiothere is still an O(log log n) multiplicative gap between our lower bound and theO(log n) upper bound given by the greedy algorithm, and it would be interesting todecide which of the two bounds is closer to the truth for the optimal algorithm. Ourtechnique for proving the lower bound is totally di�erent than the one used in [IW]for obtaining the (much simpler) lower bound for the non-Euclidean case.Our proof can be modi�ed to deal with randomized algorithms too. The cost ofa randomized on-line algorithm is de�ned to be the expected cost over all possiblecoin-ips performed by the algorithm, and the competitive ratio is de�ned as thesupremum, over all n-points inputs, of the ratio between this cost and the cost of thebest o�-line algorithm on the same input. Our lower bound holds for the obliviousadversary, i.e., the one that does not get to know the coin-ips of the algorithm, andtherefore, holds for all other types of adversaries (e.g. adaptive ones).Theorem 1.2 The
(log n= log log n) lower bound for the competitive ratio of anyon-line algorithm for the planar Steiner tree problem for n points in the plane holdsfor randomized on-line algorithms as well.

4Before concluding the introduction let us mention some related problems. It isinteresting to note that for the on-line spanning tree problem, the situation is muchsimpler. There, the algorithm is not allowed to use Steiner points and thus can useonly edges between current points. As observed in [CV], no on-line algorithm canperform better than the greedy algorithm for the on-line spanning tree problem. Thatfollows from the fact that the cost of adding new vertex i by any on-line algorithm isat least d(vi; fv1; : : : ; vi�1g), and the greedy algorithm (which is the same as vertexgreedy) encounters precisely this cost. Therefore the competitive ratio for the bestalgorithm for this problem is �(log n). Note also that for this problem algorithmscannot take advantage of the fact that the metric space is known in advance. Sincethe algorithms for the on-line spanning tree problem are so restricted the proofs oflower bounds are easy and not useful at all for Steiner trees.It is well known that for any set S of points in an arbitrary metric space, theweight of the optimal traveling salesman tour for S must be at least that of thebest Steiner tree for S and cannot exceed it by more than a factor of two. In factthese two problems are intimately related and there is a tight relationship betweenthe nearest neighbor algorithm for the traveling salesman problem and the greedyalgorithm for the Steiner tree problem (see, e.g., [RSL]). Various papers that exploreproperties of the traveling salesman problem and the nearest neighbor algorithm are[RSL, BS, Ne, Me, BM]. Our basic approach here resembles the one of Bentley andSaxe in [BS] but a few additional ideas are required.The next section contains the main technical part of this short paper including theproof of Theorem 1.1 and a sketch of the modi�cation needed to establish Theorem1.2. In section 3 we present a very short proof of the O(log n) upper bound estimatefor the greedy algorithm, �rst proved in a somewhat more complicated way in [IW].2 The Lower Bound ProofIn this section we prove Theorem 1.1 and sketch the proof of Theorem 1.2. Themetric space considered is the Euclidean plane and all the requested points thatappear one at a time in the course of the algorithm will belong to the n by n grid.De�ne x by x2x = n, so that x is (12 + o(1))(log n= log log n). In order to prove thelower bound we next show that an adversary can construct a set of at most 2n pointssuch that the weight of the optimal Steiner tree on these points is O(n) whereas the

5� � � � � � � � � � � � � � � � �� � � � �
� �-�

-�-�
a0 = x2x

a1a2
?
6?6a1 � c0 � a1x = a0=xa2 � c1 � a2x = a1=x

Figure 1: The construction for x = 2, n = 16on-line cost of any algorithm will be at least nx=8 =
(n log n= log log n). This yieldsa lower bound of
(log n= log log n), as needed.For simplicity of notation, we assume that x is an integer and omit all oorand ceiling signs; the proof can be repeated without this assumption with no realcomplications. Since we are interested in large values of n we assume that x � 2 andhence n � 16.The points given by the adversary consist of x+1 layers, where each layer is a setof equally spaced points on a horizontal line of length n = x2x. The coordinates of thepoints in layer i, 0 � i � x, are (jai; bi) where ai = x2x�2i and 0 � j � n=ai. Thusa0 = x2x(= n), a1 = x2x�2 and ax = 1. Hence in layer 0 there are only two points, inlayer 1 there are x2 + 1 and so on up to layer number x which contains n+ 1 points.(See Figure 1 for an example with x = 2; n = 16.) Let b0 = 0. The vertical distancebetween layer number i and layer number i+ 1 is ci = bi+1 � bi, where for all i,ai+1 � ci � ai+1x = ai=x:In fact, ci = kai+1 for some integer k between 1 and x, that is chosen by the

6adversary. The adversary presents the points to the algorithm layer by layer (bottomto top), where in each step it chooses ci carefully forcing the algorithm to work hardin building its on-line Steiner tree. Note that the on-line algorithm knows all theinformation stated above (e.g. the x-coordinate of all points and the range of ci forall i). The only piece of information which the on-line algorithm does not get to knowis the exact value of ci till it is done with all the points in layer i.First, observe that the total number of points presented isxXi=0(n=ai + 1) = xXi=0(n=x2x�2i + 1) = xXi=0(n=x2i + 1) � 2n:Note also that bx = x�1Xi=0 ci � x�1Xi=0 ai=x = n=x x�1Xi=0 1x2i � 2n=x � nand therefore all the points lie, indeed, in the n by n grid.Next observe that the length of the optimal (o� line) Steiner tree is at most O(n).Indeed, one can take the horizontal line in the last layer (layer number x) togetherwith vertical lines from it to any other point. The total length of this tree isn+ x�1Xi=0 ci(nai + 1) � n(1 + x�1Xi=0 2ci=ai) � n(1 + x2x) = 3n:The next lemma shows that the adversary can force the on-line algorithm toconstruct a connected graph of total weight
(nx). The on-line algorithm cannotimitate the adversary's tree since it does not know the exact value of ci till it is donewith all the points in layer i. Guessing the value, or being prepared for di�erentvalues or any other strategy turn out to be either useless or too expensive as shownby the next lemma.Lemma 2.1 For each i, 1 � i � x, the adversary can choose ci�1 in such a way thatwhen it reveals the points in layer i to the on-line algorithm this algorithm will haveto add total length of at least n=8 for connecting the new given points, unless the totallength of the graph it has before these points appear is already at least nx=8.Once the lemma is proved, the assertion of the theorem follows easily. Indeed, iffor some i it turns out that the on-line algorithm already has a graph of total lengthat least nx=8, there is nothing to prove. Otherwise, by the lemma, the adversary can

7force the algorithm to add total length of at least n=8 for each layer, giving again therequired total nx=8 length, as needed.It remains to prove the lemma. To this end, we consider, for a �xed i, the variouspossibilities to choose ci�1 = kai where k is an integer in the range 1 to x. We mustshow that either the algorithm has to pay at least n=8 for at least one of these choices,or it has already paid at least nx=8.For a �xed i, there are x possibilities to place the horizontal line of layer i, andfor each such possibility, there are (nai +1) points. Consider the set of (nai +1)x pointswhich is the union of points on all possible line placements of layer i. Let P be theset of all (nai +1)x � nx=ai discs Cp whose centers are these points, where the radiusof each disc is ai=2. Note that since the distance between any two centers is at leastai the interiors of the discs are pairwise disjoint. De�ne another set Q of discs Cq asfollows. For each disc in P we have a disc in Q with the same center but with radiusai=4. Clearly, jP j = jQj and the discs in Q are also pairwise disjoint. In fact thedistance between any two of them is at least ai=2.Let Ti�1 denote the graph of the on-line algorithm just before it gets the pointsin layer i. For each k, 1 � k � x let rk be the number of discs in Q whose centersare on the k-th possible line of layer i, and no point in the disc contains any pointof Ti�1. Put r = Pxk=1 rk. If r � nx2ai then there are more than nx2ai discs of Q thatcontain points of Ti�1. But Ti�1 is connected and contains points outside each discin P (since it contains the points in layer i� 1). Therefore for each disc Cq in Q thatcontains a point of Ti�1 there must be a path that connects this point to a point onthe boundary of the corresponding disc Cp in P that contains it. This path lies in theinterior of Cp and its length is clearly at least ai=2 � ai=4 = ai=4. Since there are atleast nx2ai such paths and they are pairwise disjoint we conclude that the total weightof Ti�1 is at least nx2ai � ai4 = nx=8 as needed. (In fact this estimate can be improved bya factor of 2 by being a little bit more careful, but we make no attempt to optimizethe constants here and in what follows).It remains to check the case r � nx2ai . In this case there exists an l such thatrl � n2ai . The adversary can now choose ci�1 = ail. In order to connect the pointsof layer i corresponding to this choice of ci�1 to Ti�1 the algorithm must add at leastrl paths connecting the centers of the discs in Q that lie in this horizontal line andcontain no point of Ti�1 to the circles bounding them, (since these centers have to bejoined to the graph). These paths are pairwise disjoint (and are disjoint from Ti�1)

8as each of them lies completely inside the corresponding member of Q. Therefore,the algorithm must pay at least rl � ai4 � n2ai � ai4 = n=8 total length, completing theproof of the lemma and hence that of Theorem 1.1. 2The proof can be modi�ed to apply to the randomized case (and hence establishTheorem 1.2). The argument, that is sketched below, combines the easy direction ofa result of [Ya] with the above construction. More precisely, since any randomizedalgorithm is simply a probability distribution on deterministic ones it su�ces toestablish a lower bound for the expected time of deterministic algorithms over someprobability distribution of the input. Thus, we de�ne a distribution on the possibleinputs such that the expected cost for any on-line algorithm is
(nx) while the cost ofthe o�-line one on each possible instance isO(n). The adversary can use essentially thesame construction, but since it cannot compute the actual values of rk for 1 � k � x, itwill choose the value of k uniformly at random for each layer independently. Considerany on-line algorithm: if the expected value of r = P rk at some step i is at mostnx2ai we are done since the expected weight of the graph is already at least nx=8 (bylinearity of expectation). Otherwise, for each i the expected value of r at step i isat least nx2ai . Thus, for each i, the expected value of rl at step i (when l is chosenat random) is at least n2ai . Thus, the expected cost for the algorithm at each step isat least n=8 and, therefore, the expected weight of the �nal graph is at least nx=8,completing the proof. 23 The Upper BoundIn this section we give a simple proof for the upper bound theorem of [IW] for thecompetitive ratio of the vertex greedy algorithm. We hope that such a simple proofmay shed more light on the behavior of the algorithm.Theorem 3.1 The (vertex) greedy algorithm achieves a competitive ratio of O(log n)for the Steiner tree problem for n points in any metric space.Proof: We need the following.Lemma 3.1 Let l be the length of the optimal Steiner tree. The number of steps inwhich the greedy algorithm pays more than 2l=k is less than k

9Proof of Lemma: Let S be the set of points whose addition caused the greedyalgorithm to pay more than 2l=k. Clearly the distance between any two of them ismore than 2l=k. Thus the length of the shortest Hamilton tour on these points ismore than jSj2l=k and hence the weight of the optimum Steiner tree for them is morethan jSjl=k. Since S is a subset of the original set of points the weight of the Steinertree of S is at most l implying that jSj < k. 2To complete the proof of the theorem observe that the lemma implies that theweight of the k'th largest edge of the tree constructed by the on-line algorithm is atmost 2l=k and thus its total weight is at most Pnk=1 2l=k = O(l log n). 24 AcknowledgementWe would like to thank Leo Guibas and John Hershberger for helpful discussions.References[BM] B. Bollob�as and A. Meir, A traveling salesman problem in the k-dimensional unit cube, Operations Research Letters, to appear.[BS] J.L. Bentley and J.B. Saxe, An analysis of two heuristics for the EuclideanTraveling salesman, 18th Annual Allerton Conference on Communication,Control and Computing, Monticello, 1980, pp. 41-49.[CV] B. Chandra and S. Vishwanathan, Constructing reliable communicationnetworks of small weight on-line, Manuscript.[IW] M. Imase and B.M. Waxman, Dynamic Steiner tree problem, SIAM J.Disc Math. 4, (1991), pp. 369-384.[GJ] M. R. Garey and D. S. Johnson, Computers and Intractability: a guide tothe theory of NP-completeness, Freeman and Company, New York, 1979.[Me] A. Meir, A geometric problem involving the nearest neighbor algorithm,Operations Research Letters 6 (1987), pp. 289-291.[Ne] D.J. Newman, A problem seminar, Springer, Berlin 1982, 9, Problem 57.

10[RSL] D.J. Rosenkrantz, R.E. Strearns and P.M. Lewis II, An analysis of sev-eral heuristics for the traveling salesman problem, SIAM J. Computing 6,(1977), pp. 563-581.[ST] D. Sleator and R. Tarjan, Amortized e�ciency of list update and pagingrules, Communications of the ACM 28, 2 (1985), 202{208.[Wi] P. Winter, Steiner problem in networks, a survey, Networks 17 (1987), pp.129-167.[Ya] A. C. C. Yao, Probabilistic computation: towards a uni�ed measure ofcomplexity, Proc. 18th Annual IEEE FOCS, Providence, RI (1977), pp.222-227.

