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Abstract. We survey on-line load balancing on various models.

1 Introduction

General: The machine load balancing problem is defined as follows: There are
n parallel machines and a number of independent tasks (jobs); the tasks arrive
at arbitrary times, where each task has an associated load vector and duration.
A task has to be assigned immediately to exactly one of the machines, thereby
increasing the load on this machine by the amount specified by the corresponding
coordinate of the load vector for the duration of the task. All tasks must be
assigned, 1.e., no admission control is allowed. The goal is usually to minimize
the maximumload, but we also consider other goal functions. We mainly consider
non-preemptive load balancing, but in some cases we may allow preemption :.e.,
reassignments of tasks. All the decisions are made by a centralized controller.
The online load balancing problem naturally arises in many applications
involving allocation of resources. As a simple concrete example, consider the
case where each “machine” represents a communication channel with bounded
bandwidth. The problem is to assign each incoming request for bandwidth to
one of the channels. Assigning a request to a certain communication channel
increases the load on this channel, i.e., increases the percentage of the used
bandwidth. The load is increased for the duration associated with the request.

Load vs. Time: There are two independent parameters that characterize the
tasks: the first is the duration and second is the type of the load vector. This
leads to several load balancing problems. Note that the main difference between
scheduling and load-balancing is that in scheduling there is only one axis (du-
ration or load) in load balancing they are two independent axes(duration and
load). Thus we may have tasks of high or low load with short or long durations.
For example, in storing files on set of servers files that may have various sizes
are created or deleted at arbitrary times which may be unrelated to their sizes.

Duration: We classify the duration of tasks as follows: we call tasks which
start at arbitrary times but continue forever permanent, while tasks that begin
and end are said to be temporary. The duration of each task may or may not
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be known upon its arrival. Note that tasks arrive at specific times, depart at
specific times and are active for their whole durations. Thus delaying tasks is
not allowed. For example, in storing files on servers, once a file is created it must
be stored immediately on a server until it is deleted.

Clearly, permanent tasks are an important special case of temporary ones,
(departure time is oo or very large) and better results can be achieved for them.
Also knowing the duration of (temporary) tasks may help in achieving better
results compared with the unknown duration case. Note that permanent tasks
may be viewed also in the scheduling framework; where “load” corresponds to
“execution time” (the durations are ignored). Restating the problem in these
terms, our goal is to decrease maximum execution time under the requirement
that the arriving tasks are scheduled immediately.

Load vector: Formally, each arriving task j has an associated load vector,
p(j) = (p1(5),p2(4),---,pn(j)) where p;(j) defines the increase in the load of
machine ¢ if we were to assign task j to it. The load vector can be categorized
in several classes: identical machines case, related machines case, restricted as-
signment case and unrelated machines case.

In the identical machines case, all the coordinates of a load vector are the
same. In the related machines case, the ith coordinate of each load vector is equal
to w(j)/vi, where the “weight” w(j) depends only on the task j and the “speed”
v; depends only on the machine 7. In the restricted assignment case each task has
a weight and can be assigned to one of a subset of machines. In terms of the load
vector the coordinates are either w(j) or co. The unrelated machines case is the
most general case, i.e., p;(j) are arbitrary non-negative real numbers (0o may be
represented by large M). Clearly, related machines and the restricted assignment
are not comparable, but are both special cases of the unrelated machines case.
The identical machines case is a special case of the related machines where all
the speeds v; are the same. It is also a special case of restricted assignment where
all the coordinates of tasks j are w(yj).

The measure: Since the arriving tasks have to be assigned without knowledge
of the future tasks, it is natural to evaluate the performance in terms of the
competitive ratio w.r.t. some performance measure e.g., the maximum load. In
our case, the competitive ratio is the supremum, over all possible input sequences,
of the ratio between the performance achieved by the on-line algorithm and the
performance achieved by the optimal off-line algorithm. The competitive ratio
may be constant or depends on the number of machines n (which is usually
relatively small). It should not depend on the number of tasks that may be
arbitrarily large.

The most popular performance measure is the maximum load, i.e, the max-
imum over machines and over time of the load. This measure focuses on the
worst machine and is the equivalent of the makespan for scheduling problems.
However, the maximum load is not the only reasonable measure. Measures that
take into account how well all the machines are balanced are, for example, the
Ly norm or the L, norm of the load vector.



To emphasize the difference between the maximum load and the Ls; norm we
take an example where each task sees a delay in service that is proportional to
the number (or total weight) of tasks that are assigned to its machine. Then the
traditional load balancing which is to minimize the maximum load corresponds
to minimize the mazimum delay. Minimizing the sum of squares (equivalently,
minimizing the Ly norm) corresponds to minimizing the average delay of tasks
in the system.

We note that all the definitions and theorems are stated for the maximum
load performance measure except in the section where the L, norm is considered.

Reassignments: We recall that each task must be assigned to some machine
for its duration. It turns out that the performance of load balancing algorithms
may be significantly improved in some cases if we allow limited amount of re-
assignments. More specifically, the algorithm can reassign some of the existing
tasks.

Observe that if the number of reassignments per task is not limited, it is
trivial to maintain optimum load, z.e. competitive ratio of 1 by reassigning op-
timally all the current tasks. However, reassignments are expensive process and
should be limited. Thus, we measure the quality of an on-line algorithm by the
competitive ratio achieved and the number of reassignments performed during
the run.

Virtual circuit routing: Some of the algorithms for virtual circuit routing
are extensions of the algorithms for load balancing. We consider the following
idealized setting: We are given a network. Requests for virtual circuits arrive on
line, where each request specifies source and destination points, and a load vector
(the number of coordinate is the number edges of the network). The routing
algorithm has to choose a path from the source to the destination, thereby
increasing the load on each edge of the path by the corresponding coordinate of
the load vector for the duration of the virtual circuit. The duration may or may
not be specified in advance. The goal is to minimize the maximum over all edges
of the load or some other function of the load. Reassignments which are called
here reroutings may or may not be allowed.

The above problem is called generalized virtual circuit routing problem. It
is easy to see that the load balancing problem is a special case of generalized
virtual circuit routing. Load balancing can be reduced to a generalized virtual
circuit routing problem on a 2 vertices network with multiple edges between
them. Every edge corresponds to a machine and every arriving task is translated
into a request between the two vertices s and ¢ with the same load vector.

In the classical (in contrast to generalized) virtual circuit routing problem we
assume that the load vector of request j on edge e is r(j)/c(e) where 7(j) is the
requested bandwidth and c¢(e) is the capacity of the edge. Clearly the identical
and related machines problems are special cases of virtual circuit routing on the
2 vertices network. There are various models for virtual circuit routing problems
(e.g. allowing admission control and maximizing the throughput). For surveys
on on-line virtual circuit routing refer to [21] and its references.
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2 Definition and basic schemes

2.1 The model

The input sequence consists of task arrival events for permanent tasks and of
task arrival and departure events for temporary tasks. Since the state of the
system changes only as a result of one of these events, the event numbers can
serve as time units, ¢.e. we can view time as being discrete. We say that time ¢
corresponds to the ¢th event. Initially the time is 0, and time 1 is the time at
which the first task arrives. Whenever we speak about the “state of the system at
time ¢t” we mean the state of the system after the tth event was already handled.
In other words, the response to the tth event takes the system from the “state
at t — 1”7 to the “state at ¢”.

A task j is represented by its “load vector” p(j) = (p1(7), p2(J5),- .., pn(7)),
where p;(7) > 0. Let £;(t — 1) denotes the load on machine 4 at time ¢ — 1. If at
time ¢ a task j is assigned to machine ¢, the load on this machine increases by
pi(j). In other words #;(¢) which denotes the load on machine & at time ¢, i.e.,
after the tth event is defined as follows:

_ (1) +pe(y) if k=1
() = {Zk (t—1) otherwise

Similarly, if at time ¢ a task j departs from machine 7, the load on this
machine decreases by p;(j).

Let ¢ = (01,03,...) be a particular sequence of arrivals and departures of
tasks. Denote by £;(t) the load of the optimal off-line algorithm on machine k&
at time £. The maximum load achievable by an optimum offline algorithm is
denoted by OPT(c¢) which is the maximum of £;(¢) over time and machines. If
o is clear from the context, we will use OPT for OPT(o).

Recall that for identical machines, V1,5 : p;(j) = w(j). For related machines,
Vi,j : pi(§) = w(j)/v; where v; denotes the speed of machine i. For restricted
assignment p;(j) is either w(j) or co. For unrelated machines p;(j) are arbitrary
non-negative real numbers.

2.2 Doubling

Several algorithms are designed as if the value of the optimal algorithm is known.
This assumption can be easily eliminated by using simple doubling and losing
a factor of 4 in the competitive ratio. More specifically, we define the notion of
a designed performance guarantee 3 as follows: the algorithm A(A) accepts a
parameter A and never creates load that exceeds SA. A(A) is allowed to return
“fail” and to refuse to assign a task if A < OPT otherwise it has to assign all of
the tasks.

The algorithm A works in phases, the difference between phases is the value
of A assumed by the algorithm. Within a phase the algorithm A(A) is used to
assign tasks, while ignoring all tasks assigned in previous phases. The first phase
has A = min; p;(1) = min; p;(1), which is the minimum possible load the first



(non-zero) task may produce. At the beginning of every subsequent phase the
value of A doubles. A new phase starts when the algorithm returns “fail”. Thus,
the last phase will never end.

It is easy to see that this approach set the competitive factor of A to be
larger than the designed performance guarantee by a factor of 4 (a factor of 2
due to the load in all the rest of the phases except the last, and another factor
of 2 due to imprecise approximation of OPT by A). Thus the competitive ratio
is 48. We note that the factor of 4 can be replaces by e = 2.7.. for restricted
class of algorithms using randomization (see [27]).

3 Permanent tasks

Tasks which start at arbitrary times but continue forever are called permanent.
The situation in which all tasks are permanent is classified as permanent tasks.
Otherwise, it is classified as temporary tasks. (Permanent task is a special case
of temporary one by assuming oo or high departure time.) In the permanent
tasks case, task j is assigned at time j. Thus £;(j) corresponds to the load on
machine k& immediately after task j has been assigned.

We note that for the off-line problems there are polynomial approximation
schemes for identical and related machines cases [26, 25] and 2 approximation
for restricted assignment and unrelated machines cases [31].

3.1 Identical machines

In the identical machines case, all the coordinates of a load vector are the same.
This case was first considered by Graham [23, 24] who considered the natural
greedy which is assigning the next task to the machine with the current minimum

load.

Theorem 1. [23] The greedy algorithm has @ competitive ratio of exactly 2 — %
where n is the number machines.

The fact that greedy is not better than 2 — % is shown by a simple example
which is n(n — 1) unit size tasks followed by one task of size n. For n = 2
and n = 3 the competitive ratios are 3/2 and 5/3 (respectively) and are optimal.
Somewhat better algorithms for small n > 4 appear in [22, 19]. It took some time
until an algorithm whose competitive ratio is strictly below ¢ < 2 (for all n) was
found [13]. The competitive ratio of this algorithm, which does not always assign
the next task to the lowest loaded machine, is 2 — € for a small constant €. The
algorithm was modified in [28] and its competitive ratio was improved to 1.945.
Recently, Albers [1] designed 1.923 competitive algorithm and improved the
lower bound for large number of machines to 1.852 (the previous lower bound for
permanent tasks was 1.8370 [14]). We may also consider randomized algorithms.
For example for two machines the competitive ratio (upper and lower bound) is
4/3 [13]. Somewhat better algorithms for small n > 4 appear in [34]. For large



n the best lower bound for randomized algorithms is 1.582 [18, 35] and the best
randomized algorithm is just the deterministic one.

It is worthwhile to note that one may consider the case where the value of
OPT is known. Then, for two machines the competitive ratio is exactly 4/3 [30].
For any n a deterministic algorithm that is 1.625 competitive is given in [12].
The lower bound for this case is only 4/3.

The identical machines case for permanent tasks is also considered in the
on-line scheduling framework. It is also called jobs arriving one by one. A com-
prehensive survey on on-line scheduling appears in [36].

Open problem 3.1 Determine the competitive ratio for deterministic and ran-
domized load balancing algorithm for permanent tasks on identical machines.

3.2 Related machines

Recall that in the related machines case, the th coordinate of each load vector
is equal to w(j)/v;, where the “weight” w(j) depends only on the task j and the
“speed” v; depends only on the machine 7. This case was considered in [4] who
showed an 8 competitive algorithm for the permanent tasks.

Note that the related machines case is a generalization of the identical ma-
chines case. However, assigning a task to the machine with minimum load (i.e
greedy) results in an algorithm with competitive ratio that is at least the ratio
of the fastest to slowest machines speed which maybe unbounded even for two
machines. Nevertheless, one may consider the following natural post-greedy al-
gorithm: each task j is assigned upon its arrival to a machine k that minimizes
the resulting load i.e., a machine k that minimizes £, (7 — 1) + pi(7). It is easy
to see that for the identical machines case greedy and post-greedy algorithms
are the same. The lower bound of the next theorem was proved in [20] and the
upper bound was proved in [4].

Theorem 2. [20, 4] The post-greedy algorithm has a competitive ratio ©(logn)
for related machines.

A new algorithm is required to achieve constant competitive algorithm for the
related machine case. We will use the doubling technique and thus may assume
a given parameter A, such that A > OPT. Roughly speaking, algorithm Assian-
R will assign tasks to the slowest machine possible while making sure that the
maximum load will not exceed twice A. More specifically, we assume that the
machines are indexed according to increasing speed. The algorithm assign a task
to the machine 4 of minimum index such that £;( — 1) + pi(§) < 24 and returns
fails if such an index does not exists. The above algorithm may be viewed as an
adaptation of the scheduling algorithm [37] to the context of load balancing.

Theorem 3. [4] If OPT < A, then algorithm AssieN-R never fails. Thus, the
load on a machine never exceeds 2A. If OPT s unknown in advance the doubling
technique for A implies that AssieN-R s 8 competitive.



Using randomized doubling it is possible to replace the deterministic 8 up-
per bound by 2e a1 5.436 expected value [27]. Recently it was shown by [16]
that replacing the doubling by a more refined method improves the determin-
istic competitive ratio to 3 + +/8 ~ 5.828 and the randomized variant to about
4.311. Also the lower bound is 2.438 for deterministic algorithms and 1.837 for
randomized ones.

Open problem 3.2 Determine the competitive ratio for load balancing of per-
manent tasks on related machines.

3.3 Restricted assignment

Each task has a weight and can be assigned to one of a subset of admissible
machines (which may depend on the task). This case was considered in [11],
who described an optimal (up to an additive one) competitive algorithm for
permanent tasks. The algorithm AW is just a natural greedy that assign a task
to a machine with minimum load among the admissible machines breaking ties
arbitrarily.

Theorem4. [11] Algorithm AW achieves a competitive ratio of [logyn]| + 1.
The competitive ratio of any on-line assignment algorithm is at least [log, n].

It is interesting to realize that randomized algorithms may improve the per-
formance but only by a constant factor. More specifically:

Theorem 5. [11] The competitive ratio of any randomized on-line assignment
algorithm is at least In(n)

Using the on-line randomized matching algorithm of [29] the lower bound
can be matched for the unit tasks case by an algorithm AR defined as follows.
Choose a sequence of random permutations m(k) of 1 to n for k& > 1. Assign
tasks greedy. If the minimum load among the admissible machines for a given
task is k then breaks ties by priorities given by m(k). The result is summarized
in the next theorem.

Theorem 6. [11] For unit size tasks the (ezpected) competitive ratio of Algo-
rithm AR is ot most In(n) + 1 assuming that the optimal load is 1.

Open problem 3.3 Design a randomized algorithm for arbitrary sized tasks for
the permanent restricted assignment case that achieves In(n)+ O(1) competitive
ratio or show an appropriate lower bound.

3.4 Unrelated machines

The general unrelated machines case for permanent tasks was considered in [4]
who described an O(logn)-competitive algorithm.

We note that natural greedy approaches are far from optimal for this case.
More specifically consider the post greedy algorithm in which a task is assigned
to a machine that minimizes the resulting load or an algorithm in which a task
is assigned to a machine whose increase in load is minimum.



Lemma 7. [4] The competitive ratios of the above greedy algorithms are ezactly
n for the unrelated machines case.

For describing the O(logn)-competitive algorithm we first consider the case
where we are given a parameter A, such that A > OPT. As before, an appropriate
value of A can be “guessed” using a simple doubling approach, increasing the
competitive ratio by at most a factor of 4. We use tilde to denote normalization
by A, i.e. & = z/A.

We use again the notion of designed performance guarantee. Let 1 < a < 2
be any constant and 3 the designed performance guarantee. The basic step of
the algorithm called AssienN-U is to assign task j to a machine s such that after
the assignment Z?:l atU) is as small as possible. More precisely, we compute

Increase;(j) = G- 148:5) _ GLii-1)

and assign the task to a machine s with minimum increase unless £,(j — 1) +
ps(j) > BA which results in returning “fail”.

Theorem 8. [4] There exists 8 = O(logn) such that if OPT < A then algorithm
AssiaN-U never fails. Thus, the load on a machine never exceeds BA.

The lower bound for the restricted assignment case implies that the algorithm
is optimal (up to a constant factor). Also it is interesting to note that for the
restricted assignment case the algorithm becomes the AW greedy algorithm
described in the previous subsection.

3.5 Virtual circuit routing

Surprisingly, the algorithm for the unrelated machines case can be extendible
to the more complex case of virtual circuit routing. We are given a (directed or
undirected) graph and requests for virtual paths arrive on-line. The jth request is
(sj,tj,7(j)) where s;,t; are source and destination points and r(j) is a required
bandwidth. If the path assigned to request j uses an edge e then the load £(e) is
increased by p.(j) = 7(j)/c(e) where c(e) is the capacity of the edge. The goal
is to minimize the maximum load over the edges.

As usual we assume that we are given a parameter A > OPT. The algorithm
assigns a route such that ZEEE alel9) is as small as possible. More precisely, we
compute ) )

Increase.(j) = gtelU-1+8:(7) _ gte(7-1)
and assign the request to the shortest path from s; to t; unless some load exceeds

BA which results in returning “fail”.

Theorem 9. [4] If OPT < A, then there exists 8 = O(logn) such that the
routing algorithm never fails. Thus, the load on a link never exceeds BA.

It is possible to translate the £2(logn) lower bound for restricted assignment
to the virtual circuit routing problem on directed graphs. Recently [15] showed
that the lower bounds hold also for undirected graphs.



Competitive ratio
Identical 2—¢
Related o(1)
Restricted O(log n)
Unrelated O(log n)
Routing O(log n)

Fig. 1. Summary of competitive ratio for permanent tasks

4 Temporary tasks unknown duration

Tasks that arrive and may also depart are called temporary tasks. Recall that
permanent tasks is a special case of temporary tasks. We refer to the case that
the duration of a task is unknown at its arrival (in fact until it actually departs)
as unknown duration.

4.1 Identical machines

It turns out that the analysis of Graham [23, 24] of the greedy algorithm for per-
manent tasks also holds for temporary tasks. It is shown in [9] that no algorithm
can achieve a better competitive ratio. Thus, the optimal algorithm is greedy
which is (2 — %)—competitive. Recall that for permanent tasks the competitive
ratio is below 1.923 which implies that the temporary tasks case is a strictly
harder than the permanent tasks case. However, for n = 2,3 the competitive
ratio is the same as for permanent tasks. It turns out that randomization does
not help much. Specifically, randomized algorithms cannot achieve a competi-
tive ratio which is better than 2 — 2/(n + 1) [9]. If the sequence is limited to a
polynomial size in n then the lower bound is 2 — O(loglogn/logn) = 2 — o(1).
Also, the tight lower bound for randomized algorithms for n = 2 is 3/2. This
is contrast to the 4/3 randomized competitive ratio for permanent tasks. The
above facts separate between permanent to temporary tasks also for randomized
algorithms.

As we have seen randomization cannot help much for temporary tasks and
the obvious question is whether it can help at all here.

Open problem 4.1 Can we get below the 2—1/n using randomized algorithms
for temporary tasks of unknown durations on identical machines ?
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4.2 Related machines

This case was considered in [10] who showed a 20 competitive algorithm for
temporary tasks. Recall that for permanent tasks there is a 5.828 (improvement
over the 8) competitive algorithm.

We use again the notion of designed performance guarantee and give an al-
gorithm Srow-F1T which guarantees a load of 54 given a parameter A > OPT.
By the simple doubling approach this results in a 20-competitive algorithm. As-
sume that the machines are indexed according to increasing speed. For a task
J that arrives at time ¢ we say j is assignable to machine ¢ if w(j)/v; < 4 and
L;(t— 1)+ w(j)/vi <c-A. SLow-Fir assign task j to the assignable machine of
minimum index.

Theorem 10. [10] Provided ¢ > 5 and A > OPT, the SLow-FiT guarantees
that every task is assignable. Thus, if OPT is unknown in advance the doubling
technique for A implies that SLow-F1T algorithm is 20-competitive.

The best lower bound is the following:

Theorem 11. [10] The competitive factor ¢ of any on-line algorithm for the
related machines case satisfies ¢ > 3 — o(1).

Note that the lower bound is proved even when the value of OPT is known
to the algorithm (the upper bound is 5 if OPT is known).

Open problem 4.2 Determine the competitive ratio for load balancing of tasks
with unknown durations on related machines.

4.3 Restricted assignment

Recall that in the restricted assignment case for permanent tasks the competitive
ratio of the greedy algorithm is at most logn + 2 and that no algorithm can do
better (up to an additive one).

In contrast for the case of temporary tasks with unknown duration it is shown
in [8, 10] that there is an algorithm with competitive ratio @(4/n) and that no
algorithm can do better. More precisely, the following theorems are proved:

Theorem 12. [8] The competitive ratio of the greedy on-line assignment algo-

. . 3p)2/8
rithm is exzactly %(1 +o(1)).
Theorem 13. [8] The competitive ratio of any deterministic on-line assign-
ment algorithm is at least |v/2n|. For randomized algorithms the lower bound is

.Q(nl/z).

The lower bound is proved using exponential size sequence of requests. It is
shown in [33] that the lower bound can also be achieved (up to some constant
factor) even on polynomial length sequence.
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Next we describe an O(+/n) competitive algorithm called RoBin-Hoop. Again
we first design an algorithm for the case that we are given a parameter A > OPT.
A machine g is said to be rich at some point in time ¢ if £4(¢) > +/n4, and is
said to be poor otherwise. A machine may alternate between being rich and poor
over time.

If g is rich at ¢, its windfall time at t is the last moment in time it became
rich. More precisely, ¢ has windfall time ¢¢ at ¢ if g is poor at time ¢o — 1, and
is rich for all times ¢’ ¢o < ¢' <t.

Algorithm RoBIN-HoobD assigns a new task to some poor machine if possible.
Otherwise, it assigns to the machine with the most recent windfall time.

Theorem 14. [10] The competitive ratio of Algorithm RoBIN-Hoob is at most
2y/n+ 1.

We can apply doubling to overcome the problem that OPT is unknown in
advance. This would result in increasing the competitive ratio by a factor of 4.
However, it turns out that we do not need to lose this factor of 4. We do so by
maintaining an estimate L(t) and use it instead of A. Instead of doubling L(%)
it is updated after the arrival of a new task j at time ¢ by setting

L(t) = max{L(t — 1), w;, %(w,- +) 4t -1))}.

4.4 TUnrelated machines

The only facts that are known for tasks of unknown duration on unrelated ma-
chines is that the competitive ratio is at least £2(y/n) (by the restricted assign-
ment lower bound) and at most n (many versions of greedy). The main open
problem here is the following:

Open problem 4.3 Determine the competitive ratio for load balancing of tasks
with unknown durations on unrelated machines.

5 Known duration

It is not known if knowing the durations of tasks help in the identical and
related machines cases. Recall that for identical machines, if the duration are
not known then the deterministic and randomized competitive ratios are 2—o(1).
An interesting open problem is the following:

Open problem 5.1 Can we get a competitive ratio which is below 2 for iden-
tical machines knowing the duration (deterministic or randomized) ?

Knowing the durations certainly helps in the restricted assignment and un-
related machines cases. Denote by T is the ratio of the maximum to minimum
duration (the minimum possible task duration is known in advance). Recall the
£2(4/n) lower bound on the competitive ratio for the restricted assignment case
when the duration of a task is not known upon its arrival [8]. In contrast if the
duration is known we have the following:
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Theorem 15. [10] There is an online load balancing algorithm for unrelated
machines with known tasks duration which is O(lognT)-competitive.

It is unclear if the logT is really necessary when the durations are known.
Of course, we can ignore the durations and get O(4/n) competitive algorithm for
the restricted assignment (which is better for huge T'). The obvious question is
whether we can do better.

Open problem 5.2 Can we get below the @(y/n) bound for restricted assign-
ment assuming known durations and can we prove lower bounds ?

Open problem 5.3 Can we get below the O(n) for unrelated machine case
knowing the durations and can we prove lower bounds ?

Unknown durations [Known durations |Permanent
Identical 2 —o0(1) ? 2—¢€
Related o(1) o(1) o(1)
Restricted O(n'’?) O(log nT) O(log n)
Unrelated ? O(log nT) O(logn)
Routing ? O(log nT) O(logn)

Fig. 2. Summary of competitive ratio for the various models

6 Reassignments

In order to overcome the above large lower bounds for load balancing of tasks
with unknown durations, one may allow task reassignments.

6.1 Restricted assignment

For the unit size task i.e. all coordinates of the load vector are either oo or 1, [32]
presented an algorithm that achieves O(logn) competitive ratio with respect to
load while making at most a constant amortized number of reassignments per
task. Their algorithm belongs to the class of algorithm that does not perform re-
assignments unless tasks departs. Hence the £2(log n) lower bound for permanent
tasks holds for this type of algorithms.
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Later, [7] considered the unit size task case. They gave an algorithm that
achieves a constant competitive ratio while making O(logn) amortized reassign-
ments per task. However, they required that the optimum load achieved by the
off-line algorithm is at least logn. The algorithm has been extended in [38] and
that assumption has been removed.

We first describe the algorithm that maintain constant competitive ratio and
O(log n) reassignment per unit size task with the assumption that OPT > logn.

As usual we assume that the algorithm has a knowledge of A > OPT. The
algorithm will maintain the following stability condition:

Definition16. Let j be some task which is currently assigned to machine 1.
Consider a machine ¢/ which is an eligible assignment for task j (i.e. machine ¢
with pi; = 1). We say that the algorithm is in a stable state if for any such 4
and 7/, we have:

b — 4 < 2/1/ logn

The main idea of the algorithm is to make sure that the above stability
condition is satisfied. More precisely the algorithm is described as follows: A
new task j is assigned to any eligible machine and when a task departs, it is
removed from the machine on which it is currently assigned. If at any moment
the stability condition is not satisfied by some task j that is currently assigned
to machine ¢, the algorithm reassigns j to a least loaded machine among the
machines that are eligible with respect to j.

Theorem 17. [7] The assignment algorithm maintains load of at most 4A with
O(logn) reassignments per arrival or departure of a task assuming A > OPT.

As before we eliminate the need to know the optimal load in advance by the
doubling technique. This increases the competitive ratio by at most a factor of
4 to be 16.

Observe that, as opposed to the previous algorithm, this algorithm reassigns
tasks both as a result of task arrival and departure. As mentioned this is neces-
sary to achieve constant competitive ratio, since the lower bound of [11] implies
that an algorithm that does not reassign tasks as a result of task arrivals can
not achieve better than f2(logn) competitive ratio.

Next, we describe how to get rid of the assumption that OPT > logn [38].
Regard the problem as a game on dynamic bipartite graph. On one side the
machines V and on the other side the tasks U. An edge (u,v) indicate that u
can be assigned to v. Edge (u,v) is matching if u is assigned to v.

Let £(v) denote the load on v € V, i.e., the number of matching edges incident
on v. A balancing path is an even-length path sequence of alternating matched
and unmatched edges (v1,u1), (1, v2),. -, (¥m—1, Um) with the property that
£(v;) < £(vq1) for 1 <1< m—1and £(vy) < £(v1) — OPT. A balancing path can
be used to reduce the maximum load on v1,vs,..., vm by reassigning u; to viq1
for 1 <7 < m — 1. The machines are r-balanced if there is no balancing path of
length r or less.
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The algorithm is described as follows: A new task j is assigned to any eligible
machine and when a task departs, it is removed from the machine on which it
is currently assigned. If at any moment there is a balancing path of length r or
less then re-balance using this path. For » = logn we have

Theorem 18. [38] The assignment algorithm above is constant competitive with
O(logn) reassignments per arrival or departure of a task.

Open problem 6.1 Is it possible to achieve constant ratio and constant number
of reassignments per task.

6.2 TUnrelated machines

The general case i.e. load balancing of unknown duration tasks with no restric-
tions on the load vectors was considered in [7]. They designed a new algorithm
that makes O(log n) reassignments per task and achieves O(logn) competitive
ratio with respect to the load.

We first assume that the algorithm has a knowledge of A > OPT. Let 1 <
a < 2 be a constant. At every instance ¢, each active task j is assigned to some
machine 3. Define the height h(t) of task j that is assigned to machine ¢ at time
t as follows. It is the sum of p;(j) for all tasks j' that are currently assigned to ¢
and were last reassigned to machine i before j was last assigned to :. The weight
of task j is

Wi (t) = aPiO4+5:0) _ ghi(e)

Note that the weight of task j immediately after it is assigned to machine 3 is:
azi(t) _ azi(t)—ﬁi(j)

where ¢ is the time immediately after the assignment.
From now on we will omit the parameter ¢{. The algorithm maintains the
following stability condition:

Definition19. We say that the algorithm is in a stable state if for any machine

¢ we have: ' » B B )
Wi = aFi+5:0) _ ght < 9 (ati: +Bu(7) _ azir) .

Intuitively, the main idea of the algorithm is to make sure that the above
stability condition is satisfied. More precisely the algorithm is described as fol-
lows: '

A task is assigned upon its arrival to a machine ¢ which minimizes W;. When
a task departs it is removed from the machine on which it is currently assigned.
If at any moment the stability condition is not satisfied by some task j that is
currently assigned to some machine 4, the algorithm reassigns j on machine 4’
that minimizes W.

Observe that the algorithm will never reassign as a result of an arrival of a
new task. The stability condition is strong enough to maintain the competitive
ratio and weak enough to cause many reassignments.



15

Theorem 20. [7] For the unrelated machines problem where the duration of
tasks is a-priori unknown, the above assignment algorithm makes O(logn) re-
assignments per task and achieves O(logn) competitive ratio with respect to the

load.

Recall that for restricted assignment (and therefore for unrelated machines)
an f2(logn) lower bound was proved on the competitive ratio for the load bal-
ancing case where tasks never depart. Observe that the algorithm reassigns
tasks only as a result of task departures, and hence can not achieve better than
O(logn) competitive ratio with respect to load.

A natural extension of the algorithm also works for the virtual circuit routing
problems [7]. By making O(logn) reroutings per path achieves O(logn) compet-
itive ratio with respect to the load.

6.3 Current load

We conclude this subsection by an alternative definition of competitive ratio
which requires reassignments to get reasonable results. In the standard definition
compare the maximum on-line load to the the maximum off-line load. It was
suggested in [38] to compare the current load against the current off-line load.
It is easy to see that for permanent tasks the standard definition and the new
definition are the same (since the sequence may stop at any time and the on-line
and off-line loads are monotonically non-decreasing). However, for temporary
tasks it is immediate to show that if no reroutings are allowed then the lower
bound is n even on identical machines. Specifically, n? unit tasks appear, after
which some machine k£ must have load at least n. Then, all tasks depart except
for those on k. Thus, the current on-line load is n while the current optimal off-
line load is 1. Thus, one must allow reassignments to achieve significant results
for this model. Algorithms for this purpose appear in [32, 38, 2, 3].

7 L, norm

In all the previous sections we evaluated the performance of the algorithm by
the maximum load. In section we consider the L, norm measure (p > 1).

Recall that £x(t) denotes the load on machine k at time ¢ and £} (¢) denotes
the load on machine k at time ¢ of the optimal off-line algorithm.

For a given vector X = (1, %2,...,%n) the L, norm and L norm of X are
i/p
Xlp=| Y el and [X[e = max {|zi[}.
- 1<i<n
1<i<n - -

The L3 norm is the Euclidean norm, which measures the length of the vector X
in Euclidean space. The maximum load measure of an algorithm is the maximum
over time of |£(¢)|oo. The L, norm measure for an algorithm A on a sequence
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o denote by A(c) is the maximum over time of |¢(t)|p. The performance of an
algorithm A is the supremum over all sequences of A(c)/OPT(o).

We first consider permanent tasks. It is not hard to show that for identical
machines the greedy algorithm, (i.e assign to the minimum loaded machine)is
2 competitive. In fact, the competitive ratio of greedy is determined in [5]. In
particular, for the Ly norm it is 4/4/3 and no algorithm can achieve a better
competitive ratio. Surprisingly, the asymptotic competitive ratio is below \/4/_3—
€.

Next we consider unrelated machine. A natural post greedy type algorithm
for minimizing the L, norm is to assign a task on a machine to minimize },; £(5).
More precisely, when task j arrives we compute weights to the machines,

Increase;(j) = (&(j — 1)+ r:(5))? — £(5 — 1)

and assign the task to a machine with minimum increase. Note that for the iden-
tical machines and the restricted assignment cases the algorithm is equivalent
to the greedy that assigns a task to a least loaded machine.

Theorem 21. [6] The above algorithm is 1 ++/2 competitive with respect to the
Ly norm.

Theorem 22. [6] For any constant p > 1 the above load balancing algorithm s
O(p)-competitive in the L, norm. Moreover, any deterministic algorithm must
be £2(p)-competitive even for the restricted assignment case.

Theorem 23. [17] For the restricted assignment case with unit jobs the greedy
algorithm is approzimately 2.01 competitive with respect to the Ly norm.

Open problem 7.1 Design an algorithm for related machine case (permanent
tasks) whose competitive ratio in the L, norm is constant (independent of p).

It is not quite clear how to define the performance measure for temporary
tasks. One possible definition is the maximum over the duration of the L, norm of
the load vector. For the case of known duration one may use a different definition
which is the L, norm of the nT vector of the n machines over the sequence of
total length 7. For this definition one can achieve a competitive ratio of O(p)
(known durations). Not much is known for the unknown duration case.

Open problem 7.2 Determine the competitive ratio in the L, norm for tasks
with unknown duration for related machines, unrelated machines and for re-
stricted assignment with and without reassignments.
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