
On-line Load BalancingYossi Azar1Dept. of Computer Science, Tel-Aviv University. ?Abstract. We survey on-line load balancing on various models.1 IntroductionGeneral: The machine load balancing problem is de�ned as follows: There aren parallel machines and a number of independent tasks (jobs); the tasks arriveat arbitrary times, where each task has an associated load vector and duration.A task has to be assigned immediately to exactly one of the machines, therebyincreasing the load on this machine by the amount speci�ed by the correspondingcoordinate of the load vector for the duration of the task. All tasks must beassigned, i.e., no admission control is allowed. The goal is usually to minimizethe maximumload, but we also consider other goal functions. We mainly considernon-preemptive load balancing, but in some cases we may allow preemption i.e.,reassignments of tasks. All the decisions are made by a centralized controller.The online load balancing problem naturally arises in many applicationsinvolving allocation of resources. As a simple concrete example, consider thecase where each \machine" represents a communication channel with boundedbandwidth. The problem is to assign each incoming request for bandwidth toone of the channels. Assigning a request to a certain communication channelincreases the load on this channel, i.e., increases the percentage of the usedbandwidth. The load is increased for the duration associated with the request.Load vs. Time: There are two independent parameters that characterize thetasks: the �rst is the duration and second is the type of the load vector. Thisleads to several load balancing problems. Note that the main di�erence betweenscheduling and load-balancing is that in scheduling there is only one axis (du-ration or load) in load balancing they are two independent axes(duration andload). Thus we may have tasks of high or low load with short or long durations.For example, in storing �les on set of servers �les that may have various sizesare created or deleted at arbitrary times which may be unrelated to their sizes.Duration: We classify the duration of tasks as follows: we call tasks whichstart at arbitrary times but continue forever permanent, while tasks that beginand end are said to be temporary. The duration of each task may or may not? E-Mail: azar@math.tau.ac.il. Research supported in part by Allon Fellowship and bythe Israel Science Foundation administered by the Israel Academy of Sciences.



2be known upon its arrival. Note that tasks arrive at speci�c times, depart atspeci�c times and are active for their whole durations. Thus delaying tasks isnot allowed. For example, in storing �les on servers, once a �le is created it mustbe stored immediately on a server until it is deleted.Clearly, permanent tasks are an important special case of temporary ones,(departure time is 1 or very large) and better results can be achieved for them.Also knowing the duration of (temporary) tasks may help in achieving betterresults compared with the unknown duration case. Note that permanent tasksmay be viewed also in the scheduling framework; where \load" corresponds to\execution time" (the durations are ignored). Restating the problem in theseterms, our goal is to decrease maximum execution time under the requirementthat the arriving tasks are scheduled immediately.Load vector: Formally, each arriving task j has an associated load vector,p(j) = (p1(j); p2(j); : : : ; pn(j)) where pi(j) de�nes the increase in the load ofmachine i if we were to assign task j to it. The load vector can be categorizedin several classes: identical machines case, related machines case, restricted as-signment case and unrelated machines case.In the identical machines case, all the coordinates of a load vector are thesame. In the relatedmachines case, the ith coordinate of each load vector is equalto w(j)=vi, where the \weight" w(j) depends only on the task j and the \speed"vi depends only on the machine i. In the restricted assignment case each task hasa weight and can be assigned to one of a subset of machines. In terms of the loadvector the coordinates are either w(j) or 1. The unrelated machines case is themost general case, i.e., pi(j) are arbitrary non-negative real numbers (1 may berepresented by largeM ). Clearly, related machines and the restricted assignmentare not comparable, but are both special cases of the unrelated machines case.The identical machines case is a special case of the related machines where allthe speeds vi are the same. It is also a special case of restricted assignment whereall the coordinates of tasks j are w(j).The measure: Since the arriving tasks have to be assigned without knowledgeof the future tasks, it is natural to evaluate the performance in terms of thecompetitive ratio w.r.t. some performance measure e.g., the maximum load. Inour case, the competitive ratio is the supremum, over all possible input sequences,of the ratio between the performance achieved by the on-line algorithm and theperformance achieved by the optimal o�-line algorithm. The competitive ratiomay be constant or depends on the number of machines n (which is usuallyrelatively small). It should not depend on the number of tasks that may bearbitrarily large.The most popular performance measure is the maximum load, i.e, the max-imum over machines and over time of the load. This measure focuses on theworst machine and is the equivalent of the makespan for scheduling problems.However, the maximum load is not the only reasonable measure. Measures thattake into account how well all the machines are balanced are, for example, theL2 norm or the Lp norm of the load vector.



3To emphasize the di�erence between the maximum load and the L2 norm wetake an example where each task sees a delay in service that is proportional tothe number (or total weight) of tasks that are assigned to its machine. Then thetraditional load balancing which is to minimize the maximum load correspondsto minimize the maximum delay. Minimizing the sum of squares (equivalently,minimizing the L2 norm) corresponds to minimizing the average delay of tasksin the system.We note that all the de�nitions and theorems are stated for the maximumload performance measure except in the section where the Lp norm is considered.Reassignments: We recall that each task must be assigned to some machinefor its duration. It turns out that the performance of load balancing algorithmsmay be signi�cantly improved in some cases if we allow limited amount of re-assignments. More speci�cally, the algorithm can reassign some of the existingtasks.Observe that if the number of reassignments per task is not limited, it istrivial to maintain optimum load, i.e. competitive ratio of 1 by reassigning op-timally all the current tasks. However, reassignments are expensive process andshould be limited. Thus, we measure the quality of an on-line algorithm by thecompetitive ratio achieved and the number of reassignments performed duringthe run.Virtual circuit routing: Some of the algorithms for virtual circuit routingare extensions of the algorithms for load balancing. We consider the followingidealized setting: We are given a network. Requests for virtual circuits arrive online, where each request speci�es source and destination points, and a load vector(the number of coordinate is the number edges of the network). The routingalgorithm has to choose a path from the source to the destination, therebyincreasing the load on each edge of the path by the corresponding coordinate ofthe load vector for the duration of the virtual circuit. The duration may or maynot be speci�ed in advance. The goal is to minimize the maximum over all edgesof the load or some other function of the load. Reassignments which are calledhere reroutings may or may not be allowed.The above problem is called generalized virtual circuit routing problem. Itis easy to see that the load balancing problem is a special case of generalizedvirtual circuit routing. Load balancing can be reduced to a generalized virtualcircuit routing problem on a 2 vertices network with multiple edges betweenthem. Every edge corresponds to a machine and every arriving task is translatedinto a request between the two vertices s and t with the same load vector.In the classical (in contrast to generalized) virtual circuit routing problem weassume that the load vector of request j on edge e is r(j)=c(e) where r(j) is therequested bandwidth and c(e) is the capacity of the edge. Clearly the identicaland related machines problems are special cases of virtual circuit routing on the2 vertices network. There are various models for virtual circuit routing problems(e.g. allowing admission control and maximizing the throughput). For surveyson on-line virtual circuit routing refer to [21] and its references.



42 De�nition and basic schemes2.1 The modelThe input sequence consists of task arrival events for permanent tasks and oftask arrival and departure events for temporary tasks. Since the state of thesystem changes only as a result of one of these events, the event numbers canserve as time units, i.e. we can view time as being discrete. We say that time tcorresponds to the tth event. Initially the time is 0, and time 1 is the time atwhich the �rst task arrives. Whenever we speak about the \state of the system attime t" we mean the state of the system after the tth event was already handled.In other words, the response to the tth event takes the system from the \stateat t� 1" to the \state at t".A task j is represented by its \load vector" p(j) = (p1(j); p2(j); : : : ; pn(j)),where pi(j) � 0. Let `i(t� 1) denotes the load on machine i at time t� 1. If attime t a task j is assigned to machine i, the load on this machine increases bypi(j). In other words `k(t) which denotes the load on machine k at time t, i.e.,after the tth event is de�ned as follows:`k(t) = � `k(t� 1) + pk(j) if k = i`k(t� 1) otherwiseSimilarly, if at time t a task j departs from machine i, the load on thismachine decreases by pi(j).Let � = (�1; �2; : : :) be a particular sequence of arrivals and departures oftasks. Denote by `�k(t) the load of the optimal o�-line algorithm on machine kat time t. The maximum load achievable by an optimum o�ine algorithm isdenoted by OPT(�) which is the maximum of `�k(t) over time and machines. If� is clear from the context, we will use OPT for OPT(�).Recall that for identical machines, 8i; j : pi(j) = w(j). For related machines,8i; j : pi(j) = w(j)=vi where vi denotes the speed of machine i. For restrictedassignment pi(j) is either w(j) or 1. For unrelated machines pi(j) are arbitrarynon-negative real numbers.2.2 DoublingSeveral algorithms are designed as if the value of the optimal algorithm is known.This assumption can be easily eliminated by using simple doubling and losinga factor of 4 in the competitive ratio. More speci�cally, we de�ne the notion ofa designed performance guarantee � as follows: the algorithm A(�) accepts aparameter � and never creates load that exceeds ��. A(�) is allowed to return\fail" and to refuse to assign a task if � < OPT otherwise it has to assign all ofthe tasks.The algorithm A works in phases, the di�erence between phases is the valueof � assumed by the algorithm. Within a phase the algorithm A(�) is used toassign tasks, while ignoring all tasks assigned in previous phases. The �rst phasehas � = mini pi(1) = mini pi(1), which is the minimum possible load the �rst



5(non-zero) task may produce. At the beginning of every subsequent phase thevalue of � doubles. A new phase starts when the algorithm returns \fail". Thus,the last phase will never end.It is easy to see that this approach set the competitive factor of A to belarger than the designed performance guarantee by a factor of 4 (a factor of 2due to the load in all the rest of the phases except the last, and another factorof 2 due to imprecise approximation of OPT by �). Thus the competitive ratiois 4�. We note that the factor of 4 can be replaces by e = 2:7:: for restrictedclass of algorithms using randomization (see [27]).3 Permanent tasksTasks which start at arbitrary times but continue forever are called permanent.The situation in which all tasks are permanent is classi�ed as permanent tasks.Otherwise, it is classi�ed as temporary tasks. (Permanent task is a special caseof temporary one by assuming 1 or high departure time.) In the permanenttasks case, task j is assigned at time j. Thus `k(j) corresponds to the load onmachine k immediately after task j has been assigned.We note that for the o�-line problems there are polynomial approximationschemes for identical and related machines cases [26, 25] and 2 approximationfor restricted assignment and unrelated machines cases [31].3.1 Identical machinesIn the identical machines case, all the coordinates of a load vector are the same.This case was �rst considered by Graham [23, 24] who considered the naturalgreedy which is assigning the next task to the machine with the current minimumload.Theorem1. [23] The greedy algorithm has a competitive ratio of exactly 2� 1nwhere n is the number machines.The fact that greedy is not better than 2� 1n is shown by a simple examplewhich is n(n � 1) unit size tasks followed by one task of size n. For n = 2and n = 3 the competitive ratios are 3=2 and 5=3 (respectively) and are optimal.Somewhat better algorithms for small n � 4 appear in [22, 19]. It took some timeuntil an algorithm whose competitive ratio is strictly below c < 2 (for all n) wasfound [13]. The competitive ratio of this algorithm, which does not always assignthe next task to the lowest loaded machine, is 2� � for a small constant �. Thealgorithm was modi�ed in [28] and its competitive ratio was improved to 1:945.Recently, Albers [1] designed 1:923 competitive algorithm and improved thelower bound for large number of machines to 1:852 (the previous lower bound forpermanent tasks was 1:8370 [14]). We may also consider randomized algorithms.For example for two machines the competitive ratio (upper and lower bound) is4=3 [13]. Somewhat better algorithms for small n � 4 appear in [34]. For large



6n the best lower bound for randomized algorithms is 1.582 [18, 35] and the bestrandomized algorithm is just the deterministic one.It is worthwhile to note that one may consider the case where the value ofOPT is known. Then, for two machines the competitive ratio is exactly 4=3 [30].For any n a deterministic algorithm that is 1:625 competitive is given in [12].The lower bound for this case is only 4=3.The identical machines case for permanent tasks is also considered in theon-line scheduling framework. It is also called jobs arriving one by one. A com-prehensive survey on on-line scheduling appears in [36].Open problem 3.1 Determine the competitive ratio for deterministic and ran-domized load balancing algorithm for permanent tasks on identical machines.3.2 Related machinesRecall that in the related machines case, the ith coordinate of each load vectoris equal to w(j)=vi, where the \weight" w(j) depends only on the task j and the\speed" vi depends only on the machine i. This case was considered in [4] whoshowed an 8 competitive algorithm for the permanent tasks.Note that the related machines case is a generalization of the identical ma-chines case. However, assigning a task to the machine with minimum load (i.egreedy) results in an algorithm with competitive ratio that is at least the ratioof the fastest to slowest machines speed which maybe unbounded even for twomachines. Nevertheless, one may consider the following natural post-greedy al-gorithm: each task j is assigned upon its arrival to a machine k that minimizesthe resulting load i.e., a machine k that minimizes `k(j � 1) + pk(j). It is easyto see that for the identical machines case greedy and post-greedy algorithmsare the same. The lower bound of the next theorem was proved in [20] and theupper bound was proved in [4].Theorem2. [20, 4] The post-greedy algorithm has a competitive ratio �(logn)for related machines.A new algorithm is required to achieve constant competitive algorithm for therelated machine case. We will use the doubling technique and thus may assumea given parameter �, such that � � OPT. Roughly speaking, algorithm Assign-R will assign tasks to the slowest machine possible while making sure that themaximum load will not exceed twice �. More speci�cally, we assume that themachines are indexed according to increasing speed. The algorithm assign a taskto the machine i of minimum index such that `i(j� 1)+ pi(j) � 2� and returnsfails if such an index does not exists. The above algorithm may be viewed as anadaptation of the scheduling algorithm [37] to the context of load balancing.Theorem3. [4] If OPT � �, then algorithm Assign-R never fails. Thus, theload on a machine never exceeds 2�. If OPT is unknown in advance the doublingtechnique for � implies that Assign-R is 8 competitive.



7Using randomized doubling it is possible to replace the deterministic 8 up-per bound by 2e � 5:436 expected value [27]. Recently it was shown by [16]that replacing the doubling by a more re�ned method improves the determin-istic competitive ratio to 3 +p8 � 5:828 and the randomized variant to about4:311. Also the lower bound is 2:438 for deterministic algorithms and 1:837 forrandomized ones.Open problem 3.2 Determine the competitive ratio for load balancing of per-manent tasks on related machines.3.3 Restricted assignmentEach task has a weight and can be assigned to one of a subset of admissiblemachines (which may depend on the task). This case was considered in [11],who described an optimal (up to an additive one) competitive algorithm forpermanent tasks. The algorithm AW is just a natural greedy that assign a taskto a machine with minimum load among the admissible machines breaking tiesarbitrarily.Theorem4. [11] Algorithm AW achieves a competitive ratio of dlog2 ne + 1.The competitive ratio of any on-line assignment algorithm is at least dlog2 ne.It is interesting to realize that randomized algorithms may improve the per-formance but only by a constant factor. More speci�cally:Theorem5. [11] The competitive ratio of any randomized on-line assignmentalgorithm is at least ln(n)Using the on-line randomized matching algorithm of [29] the lower boundcan be matched for the unit tasks case by an algorithm AR de�ned as follows.Choose a sequence of random permutations �(k) of 1 to n for k � 1. Assigntasks greedy. If the minimum load among the admissible machines for a giventask is k then breaks ties by priorities given by �(k). The result is summarizedin the next theorem.Theorem6. [11] For unit size tasks the (expected) competitive ratio of Algo-rithm AR is at most ln(n) + 1 assuming that the optimal load is 1.Open problem 3.3 Design a randomized algorithm for arbitrary sized tasks forthe permanent restricted assignment case that achieves ln(n)+O(1) competitiveratio or show an appropriate lower bound.3.4 Unrelated machinesThe general unrelated machines case for permanent tasks was considered in [4]who described an O(logn)-competitive algorithm.We note that natural greedy approaches are far from optimal for this case.More speci�cally consider the post greedy algorithm in which a task is assignedto a machine that minimizes the resulting load or an algorithm in which a taskis assigned to a machine whose increase in load is minimum.



8Lemma7. [4] The competitive ratios of the above greedy algorithms are exactlyn for the unrelated machines case.For describing the O(logn)-competitive algorithm we �rst consider the casewhere we are given a parameter �, such that � � OPT. As before, an appropriatevalue of � can be \guessed" using a simple doubling approach, increasing thecompetitive ratio by at most a factor of 4. We use tilde to denote normalizationby �, i.e. ~x = x=�.We use again the notion of designed performance guarantee. Let 1 < a < 2be any constant and � the designed performance guarantee. The basic step ofthe algorithm called Assign-U is to assign task j to a machine s such that afterthe assignmentPni=1 a~̀i(j) is as small as possible. More precisely, we computeIncreasei(j) = a~̀i(j�1)+~pi(j) � a~̀i(j�1)and assign the task to a machine s with minimum increase unless `s(j � 1) +ps(j) > �� which results in returning \fail".Theorem8. [4] There exists � = O(logn) such that if OPT � � then algorithmAssign-U never fails. Thus, the load on a machine never exceeds ��.The lower bound for the restricted assignment case implies that the algorithmis optimal (up to a constant factor). Also it is interesting to note that for therestricted assignment case the algorithm becomes the AW greedy algorithmdescribed in the previous subsection.3.5 Virtual circuit routingSurprisingly, the algorithm for the unrelated machines case can be extendibleto the more complex case of virtual circuit routing. We are given a (directed orundirected) graph and requests for virtual paths arrive on-line. The jth request is(sj ; tj; r(j)) where sj ; tj are source and destination points and r(j) is a requiredbandwidth. If the path assigned to request j uses an edge e then the load `(e) isincreased by pe(j) = r(j)=c(e) where c(e) is the capacity of the edge. The goalis to minimize the maximum load over the edges.As usual we assume that we are given a parameter � � OPT. The algorithmassigns a route such that Pe2E a~̀e(j) is as small as possible. More precisely, wecompute Increasee(j) = a~̀e(j�1)+~pe(j) � a~̀e(j�1)and assign the request to the shortest path from sj to tj unless some load exceeds�� which results in returning \fail".Theorem9. [4] If OPT � �, then there exists � = O(logn) such that therouting algorithm never fails. Thus, the load on a link never exceeds ��.It is possible to translate the 
(logn) lower bound for restricted assignmentto the virtual circuit routing problem on directed graphs. Recently [15] showedthat the lower bounds hold also for undirected graphs.



9Competitive ratioIdentical 2� �Related �(1)Restricted �(log n)Unrelated �(log n)Routing �(log n)Fig. 1. Summary of competitive ratio for permanent tasks4 Temporary tasks unknown durationTasks that arrive and may also depart are called temporary tasks. Recall thatpermanent tasks is a special case of temporary tasks. We refer to the case thatthe duration of a task is unknown at its arrival (in fact until it actually departs)as unknown duration.4.1 Identical machinesIt turns out that the analysis of Graham [23, 24] of the greedy algorithm for per-manent tasks also holds for temporary tasks. It is shown in [9] that no algorithmcan achieve a better competitive ratio. Thus, the optimal algorithm is greedywhich is (2 � 1n)-competitive. Recall that for permanent tasks the competitiveratio is below 1:923 which implies that the temporary tasks case is a strictlyharder than the permanent tasks case. However, for n = 2; 3 the competitiveratio is the same as for permanent tasks. It turns out that randomization doesnot help much. Speci�cally, randomized algorithms cannot achieve a competi-tive ratio which is better than 2 � 2=(n + 1) [9]. If the sequence is limited to apolynomial size in n then the lower bound is 2� O(log logn= logn) = 2� o(1).Also, the tight lower bound for randomized algorithms for n = 2 is 3=2. Thisis contrast to the 4=3 randomized competitive ratio for permanent tasks. Theabove facts separate between permanent to temporary tasks also for randomizedalgorithms.As we have seen randomization cannot help much for temporary tasks andthe obvious question is whether it can help at all here.Open problem 4.1 Can we get below the 2�1=n using randomized algorithmsfor temporary tasks of unknown durations on identical machines ?



104.2 Related machinesThis case was considered in [10] who showed a 20 competitive algorithm fortemporary tasks. Recall that for permanent tasks there is a 5.828 (improvementover the 8) competitive algorithm.We use again the notion of designed performance guarantee and give an al-gorithm Slow-Fit which guarantees a load of 5� given a parameter � � OPT.By the simple doubling approach this results in a 20-competitive algorithm. As-sume that the machines are indexed according to increasing speed. For a taskj that arrives at time t we say j is assignable to machine i if w(j)=vi � � and`i(t� 1) + w(j)=vi � c � �. Slow-Fit assign task j to the assignable machine ofminimum index.Theorem10. [10] Provided c � 5 and � � OPT, the Slow-Fit guaranteesthat every task is assignable. Thus, if OPT is unknown in advance the doublingtechnique for � implies that Slow-Fit algorithm is 20-competitive.The best lower bound is the following:Theorem11. [10] The competitive factor c of any on-line algorithm for therelated machines case satis�es c � 3� o(1).Note that the lower bound is proved even when the value of OPT is knownto the algorithm (the upper bound is 5 if OPT is known).Open problem 4.2 Determine the competitive ratio for load balancing of taskswith unknown durations on related machines.4.3 Restricted assignmentRecall that in the restricted assignment case for permanent tasks the competitiveratio of the greedy algorithm is at most logn+ 2 and that no algorithm can dobetter (up to an additive one).In contrast for the case of temporary tasks with unknown duration it is shownin [8, 10] that there is an algorithm with competitive ratio �(pn) and that noalgorithm can do better. More precisely, the following theorems are proved:Theorem12. [8] The competitive ratio of the greedy on-line assignment algo-rithm is exactly (3n)2=32 (1 + o(1)).Theorem13. [8] The competitive ratio of any deterministic on-line assign-ment algorithm is at least bp2nc. For randomized algorithms the lower bound is
(n1=2).The lower bound is proved using exponential size sequence of requests. It isshown in [33] that the lower bound can also be achieved (up to some constantfactor) even on polynomial length sequence.



11Next we describe an O(pn) competitive algorithm called Robin-Hood. Againwe �rst design an algorithm for the case that we are given a parameter � � OPT.A machine g is said to be rich at some point in time t if `g(t) � pn�, and issaid to be poor otherwise. A machine may alternate between being rich and poorover time.If g is rich at t, its windfall time at t is the last moment in time it becamerich. More precisely, g has windfall time t0 at t if g is poor at time t0 � 1, andis rich for all times t0 t0 � t0 � t.Algorithm Robin-Hood assigns a new task to some poor machine if possible.Otherwise, it assigns to the machine with the most recent windfall time.Theorem14. [10] The competitive ratio of Algorithm Robin-Hood is at most2pn+ 1.We can apply doubling to overcome the problem that OPT is unknown inadvance. This would result in increasing the competitive ratio by a factor of 4.However, it turns out that we do not need to lose this factor of 4. We do so bymaintaining an estimate L(t) and use it instead of �. Instead of doubling L(t)it is updated after the arrival of a new task j at time t by settingL(t) = maxfL(t� 1); wj; 1n (wj +Xg `g(t� 1))g :4.4 Unrelated machinesThe only facts that are known for tasks of unknown duration on unrelated ma-chines is that the competitive ratio is at least 
(pn) (by the restricted assign-ment lower bound) and at most n (many versions of greedy). The main openproblem here is the following:Open problem 4.3 Determine the competitive ratio for load balancing of taskswith unknown durations on unrelated machines.5 Known durationIt is not known if knowing the durations of tasks help in the identical andrelated machines cases. Recall that for identical machines, if the duration arenot known then the deterministic and randomized competitive ratios are 2�o(1).An interesting open problem is the following:Open problem 5.1 Can we get a competitive ratio which is below 2 for iden-tical machines knowing the duration (deterministic or randomized) ?Knowing the durations certainly helps in the restricted assignment and un-related machines cases. Denote by T is the ratio of the maximum to minimumduration (the minimum possible task duration is known in advance). Recall the
(pn) lower bound on the competitive ratio for the restricted assignment casewhen the duration of a task is not known upon its arrival [8]. In contrast if theduration is known we have the following:



12Theorem15. [10] There is an online load balancing algorithm for unrelatedmachines with known tasks duration which is O(lognT )-competitive.It is unclear if the logT is really necessary when the durations are known.Of course, we can ignore the durations and get O(pn) competitive algorithm forthe restricted assignment (which is better for huge T ). The obvious question iswhether we can do better.Open problem 5.2 Can we get below the �(pn) bound for restricted assign-ment assuming known durations and can we prove lower bounds ?Open problem 5.3 Can we get below the �(n) for unrelated machine caseknowing the durations and can we prove lower bounds ?Unknown durations Known durations PermanentIdentical 2� o(1) ? 2� �Related �(1) �(1) �(1)Restricted �(n1=2) O(log nT ) �(log n)Unrelated ? O(log nT ) �(log n)Routing ? O(log nT ) �(log n)Fig. 2. Summary of competitive ratio for the various models6 ReassignmentsIn order to overcome the above large lower bounds for load balancing of taskswith unknown durations, one may allow task reassignments.6.1 Restricted assignmentFor the unit size task i.e. all coordinates of the load vector are either 1 or 1, [32]presented an algorithm that achieves O(logn) competitive ratio with respect toload while making at most a constant amortized number of reassignments pertask. Their algorithm belongs to the class of algorithm that does not perform re-assignments unless tasks departs. Hence the 
(logn) lower bound for permanenttasks holds for this type of algorithms.



13Later, [7] considered the unit size task case. They gave an algorithm thatachieves a constant competitive ratio while making O(logn) amortized reassign-ments per task. However, they required that the optimum load achieved by theo�-line algorithm is at least logn. The algorithm has been extended in [38] andthat assumption has been removed.We �rst describe the algorithm that maintain constant competitive ratio andO(logn) reassignment per unit size task with the assumption that OPT � logn.As usual we assume that the algorithm has a knowledge of � � OPT. Thealgorithm will maintain the following stability condition:De�nition16. Let j be some task which is currently assigned to machine i.Consider a machine i0 which is an eligible assignment for task j (i.e. machine iwith pi0j = 1). We say that the algorithm is in a stable state if for any such iand i0, we have: `i � `i0 � 2�= lognThe main idea of the algorithm is to make sure that the above stabilitycondition is satis�ed. More precisely the algorithm is described as follows: Anew task j is assigned to any eligible machine and when a task departs, it isremoved from the machine on which it is currently assigned. If at any momentthe stability condition is not satis�ed by some task j that is currently assignedto machine i, the algorithm reassigns j to a least loaded machine among themachines that are eligible with respect to j.Theorem17. [7] The assignment algorithm maintains load of at most 4� withO(logn) reassignments per arrival or departure of a task assuming � � OPT.As before we eliminate the need to know the optimal load in advance by thedoubling technique. This increases the competitive ratio by at most a factor of4 to be 16.Observe that, as opposed to the previous algorithm, this algorithm reassignstasks both as a result of task arrival and departure. As mentioned this is neces-sary to achieve constant competitive ratio, since the lower bound of [11] impliesthat an algorithm that does not reassign tasks as a result of task arrivals cannot achieve better than 
(logn) competitive ratio.Next, we describe how to get rid of the assumption that OPT � logn [38].Regard the problem as a game on dynamic bipartite graph. On one side themachines V and on the other side the tasks U . An edge (u; v) indicate that ucan be assigned to v. Edge (u; v) is matching if u is assigned to v.Let `(v) denote the load on v 2 V , i.e., the number of matching edges incidenton v. A balancing path is an even-length path sequence of alternating matchedand unmatched edges (v1; u1); (u1; v2); : : : ; (um�1; vm) with the property that`(vi) < `(v1) for 1 � i � m� 1 and `(vm) < `(v1)�OPT. A balancing path canbe used to reduce the maximum load on v1; v2; : : : ; vm by reassigning ui to vi+1for 1 � i � m� 1. The machines are r-balanced if there is no balancing path oflength r or less.



14 The algorithm is described as follows: A new task j is assigned to any eligiblemachine and when a task departs, it is removed from the machine on which itis currently assigned. If at any moment there is a balancing path of length r orless then re-balance using this path. For r = logn we haveTheorem18. [38] The assignment algorithm above is constant competitive withO(logn) reassignments per arrival or departure of a task.Open problem 6.1 Is it possible to achieve constant ratio and constant numberof reassignments per task.6.2 Unrelated machinesThe general case i.e. load balancing of unknown duration tasks with no restric-tions on the load vectors was considered in [7]. They designed a new algorithmthat makes O(logn) reassignments per task and achieves O(logn) competitiveratio with respect to the load.We �rst assume that the algorithm has a knowledge of � � OPT. Let 1 <a < 2 be a constant. At every instance t, each active task j is assigned to somemachine i. De�ne the height hji (t) of task j that is assigned to machine i at timet as follows. It is the sum of pi(j) for all tasks j0 that are currently assigned to iand were last reassigned to machine i before j was last assigned to i. The weightof task j is W ji (t) = a~hji (t)+~pi(j) � a~hji (t)Note that the weight of task j immediately after it is assigned to machine i is:a~̀i(t) � a~̀i(t)�~pi(j)where t is the time immediately after the assignment.From now on we will omit the parameter t. The algorithm maintains thefollowing stability condition:De�nition19. We say that the algorithm is in a stable state if for any machinei0 we have: W ji = a~hji+~pi(j) � a~hji � 2�a~̀i0+~pi0 (j) � a~̀i0� :Intuitively, the main idea of the algorithm is to make sure that the abovestability condition is satis�ed. More precisely the algorithm is described as fol-lows:A task is assigned upon its arrival to a machine i which minimizesW ji . Whena task departs it is removed from the machine on which it is currently assigned.If at any moment the stability condition is not satis�ed by some task j that iscurrently assigned to some machine i, the algorithm reassigns j on machine i0that minimizes W ji0 .Observe that the algorithm will never reassign as a result of an arrival of anew task. The stability condition is strong enough to maintain the competitiveratio and weak enough to cause many reassignments.



15Theorem20. [7] For the unrelated machines problem where the duration oftasks is a-priori unknown, the above assignment algorithm makes O(logn) re-assignments per task and achieves O(logn) competitive ratio with respect to theload.Recall that for restricted assignment (and therefore for unrelated machines)an 
(logn) lower bound was proved on the competitive ratio for the load bal-ancing case where tasks never depart. Observe that the algorithm reassignstasks only as a result of task departures, and hence can not achieve better thanO(logn) competitive ratio with respect to load.A natural extension of the algorithm also works for the virtual circuit routingproblems [7]. By making O(logn) reroutings per path achieves O(logn) compet-itive ratio with respect to the load.6.3 Current loadWe conclude this subsection by an alternative de�nition of competitive ratiowhich requires reassignments to get reasonable results. In the standard de�nitioncompare the maximum on-line load to the the maximum o�-line load. It wassuggested in [38] to compare the current load against the current o�-line load.It is easy to see that for permanent tasks the standard de�nition and the newde�nition are the same (since the sequence may stop at any time and the on-lineand o�-line loads are monotonically non-decreasing). However, for temporarytasks it is immediate to show that if no reroutings are allowed then the lowerbound is n even on identical machines. Speci�cally, n2 unit tasks appear, afterwhich some machine k must have load at least n. Then, all tasks depart exceptfor those on k. Thus, the current on-line load is n while the current optimal o�-line load is 1. Thus, one must allow reassignments to achieve signi�cant resultsfor this model. Algorithms for this purpose appear in [32, 38, 2, 3].7 Lp normIn all the previous sections we evaluated the performance of the algorithm bythe maximum load. In section we consider the Lp norm measure (p � 1).Recall that `k(t) denotes the load on machine k at time t and `�k(t) denotesthe load on machine k at time t of the optimal o�-line algorithm.For a given vector X = (x1; x2; : : : ; xn) the Lp norm and L1 norm of X arejXjp = 0@ X1�i�n jxijp1A1=p and jXj1 = max1�i�nfjxijg:The L2 norm is the Euclidean norm, which measures the length of the vector Xin Euclidean space. The maximumload measure of an algorithm is the maximumover time of j`(t)j1. The Lp norm measure for an algorithm A on a sequence



16� denote by A(�) is the maximum over time of j`(t)jp. The performance of analgorithm A is the supremum over all sequences of A(�)=OPT(�).We �rst consider permanent tasks. It is not hard to show that for identicalmachines the greedy algorithm, (i.e assign to the minimum loaded machine)is2 competitive. In fact, the competitive ratio of greedy is determined in [5]. Inparticular, for the L2 norm it is p4=3 and no algorithm can achieve a bettercompetitive ratio. Surprisingly, the asymptotic competitive ratio is belowp4=3��. Next we consider unrelated machine. A natural post greedy type algorithmfor minimizing the Lp norm is to assign a task on a machine to minimizePi `pi (j).More precisely, when task j arrives we compute weights to the machines,Increasei(j) = (`i(j � 1) + ri(j))p � `pi (j � 1)and assign the task to a machine with minimum increase. Note that for the iden-tical machines and the restricted assignment cases the algorithm is equivalentto the greedy that assigns a task to a least loaded machine.Theorem21. [6] The above algorithm is 1+p2 competitive with respect to theL2 norm.Theorem22. [6] For any constant p � 1 the above load balancing algorithm isO(p)-competitive in the Lp norm. Moreover, any deterministic algorithm mustbe 
(p)-competitive even for the restricted assignment case.Theorem23. [17] For the restricted assignment case with unit jobs the greedyalgorithm is approximately 2:01 competitive with respect to the L2 norm.Open problem 7.1 Design an algorithm for related machine case (permanenttasks) whose competitive ratio in the Lp norm is constant (independent of p).It is not quite clear how to de�ne the performance measure for temporarytasks. One possible de�nition is the maximumover the duration of the Lp norm ofthe load vector. For the case of known duration one may use a di�erent de�nitionwhich is the Lp norm of the nT vector of the n machines over the sequence oftotal length T . For this de�nition one can achieve a competitive ratio of O(p)(known durations). Not much is known for the unknown duration case.Open problem 7.2 Determine the competitive ratio in the Lp norm for taskswith unknown duration for related machines, unrelated machines and for re-stricted assignment with and without reassignments.References1. S. Albers. Better bounds for on-line scheduling. In Proc. 29th ACM Symp. onTheory of Computing, pages 130{139, 1997.2. M. Andrews. Constant factor bounds for on-line load balancing on related ma-chines. Manuscript.
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