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AbstratThe onept of Quality of Servie (QoS) networks has gained growing attention reently,as the traÆ volume in the Internet onstantly inreases, and QoS guarantees are essential toensure proper operation of most ommuniation based appliations. A QoS swith serves minoming queues by transmitting pakets arriving at these queues through one output port, onepaket per time unit. Eah paket is marked with a value indiating its guaranteed qualityof servie. Sine the queues have bounded apaity and the rate of arriving pakets an bemuh higher than the transmission rate, pakets an be lost due to insuÆient queue spae.The goal is to maximize the total value of transmitted pakets. This problem enapsulatestwo dependent questions: admission ontrol, namely whih pakets to disard in ase of queueoverow, and sheduling, i.e. whih queue to use for transmission in eah time unit. We useompetitive analysis to study online swith performane in QoS based networks. Spei�ally, weprovide a novel generi tehnique that deouples the admission ontrol and sheduling problems.Our tehnique transforms any single queue admission ontrol strategy (preemptive or non-preemptive) to a sheduling and admission ontrol algorithm for our general m queues model,whose ompetitive ratio is at most twie the ompetitive ratio of the given admission ontrolstrategy. We use our tehnique to derive onrete algorithms for the general preemptive andnon-preemptive ases, as well as for the interesting speial ases of the 2-value model and theunit value model. To the best of our knowledge this is the �rst result ombining both shedulingand admission ontrol deisions for arbitrary pakets sequenes in multi-queue swithes. We alsoprovide a 1:58-ompetitive randomized algorithm for the unit value ase. This ase is interestingby itself sine most urrent networks (e.g. IP networks) only support a best-e�ort servie inwhih all pakets streams are treated equally.1 IntrodutionOverview: During reent years, network traÆ has inreased steadily, mainly due to the on-stant growing use of the Internet for both ommerial and personal purposes. This phenomenon,ombined with the fat that Internet traÆ tends to utuate onstantly, frequently overloadsnetworking systems ausing onsiderable degradation in the quality of ommuniation based appli-ations. As a result, the onept of networks supporting guaranteed Quality of Servie (QoS) to�azar�tau.a.il. Shool of Computer Siene, Tel-Aviv University, Tel-Aviv, 69978, Israel. Researh supportedin part by the Israeli Ministry of industry and trade and by the Israel Siene Foundation.yyo�tau.a.il. Shool of Computer Siene, Tel-Aviv University, Tel-Aviv, 69978, Israel. Researh supported inpart by the Israeli Ministry of industry and trade. 1



eah traÆ stream, in terms of bandwidth, lateny, maximum drop rate et., has reeived grow-ing attention lately within the ommuniation ommunity. Sine network overloads are frequent,QoS swithes often have to ope with inreasing amounts of overloaded traÆ, while attemptingto maximize the weighted throughput, where the weights orrespond to the required quality ofservie for eah paket. Hene, the quality of the deisions made by the swith an be measuredby onsidering the total weight of pakets it managed to pass through.We model the problem of maximizing swith throughput in QoS networks as follows. A swithhas m inoming FIFO queues and one output port. At eah time unit new pakets arrive to thequeues, eah paket marked with a value that orresponds to its guaranteed quality of servie.Additionally, at eah time unit the swith selets one non-empty queue and transmits the paketat the head of the queue through the output port. Sine the m inoming queues have boundedapaities, arriving pakets an overow the queues, and some pakets must be disarded. The goalis to maximize the total value of transmitted pakets. We onsider both the non-preemptive modeland the preemptive model, where pakets stored in the queues an be disarded in order to freespae for new pakets. Traditionally, similar problems were analyzed while assuming either someonstant struture of the sequene of arriving pakets, or a spei� distribution of the arrival rates(see e.g. [4, 13℄). We avoid any assumptions on the input and use ompetitive analysis to omparethe performane of online algorithms to the optimal solution. In our work we fae the ombinationof two dependent problems: admission ontrol, namely whih pakets to disard in ase of queueoverow, and sheduling, i.e. from whih queue to transmit in every time unit. We present ageneri tehnique that deouples the above problems and transforms any admission ontrol strategyfor a single queue (both preemptive and non-preemptive) to an algorithm for our general model(preemptive or non-preemptive, respetively). The ompetitive ratio of the onstruted algorithm isat most twie the ompetitive ratio of the given admission ontrol strategy. We therefore generalizeknown results [1, 2, 9, 10, 12℄ for preemptive and non-preemptive single queue admission ontrolto the general model of m queues.In addition, we also study the speial ase where all pakets have unit value, and the goalis to maximize the number of transmitted pakets. This model is interesting by itself, sine themajority of urrent networks (most notably, IP networks) do not yet integrate full QoS apabilities,and provide a \best e�ort" servie, where pakets belonging to di�erent traÆ streams are treatedequally within intermediate swithes. We show a randomized algorithm and lower bounds for thisspeial ase.Our results:� Our main ontribution is a generi tehnique to transform an admission ontrol strategy fora single queue (both preemptive and non-preemptive) to a sheduling and admission ontrolalgorithm (preemptive or non-preemptive, respetively) for a swith with m queues. Theompetitive ratio of the onstruted algorithm is at most twie the ompetitive ratio of theoriginal single queue admission ontrol algorithm.� We use our generi tehnique to devise a 4-ompetitive algorithm for our general m queuespreemptive model with pakets of arbitrary values.� In addition we employ our tehnique to onstrut the following algorithms:2



{ A (2edln�e)-ompetitive algorithm for the general non-preemptive model where � is theratio between the largest value to the smallest one.{ An approximately 2:6-ompetitive algorithm for the preemptive 2-value model.{ A (4� 2�)-ompetitive algorithm for the non-preemptive 2-value model where the valuesare restrited to 1 and �.{ We show that any \reasonable" online algorithm (de�ned later) is 2-ompetitive for thespeial ase of unit value pakets.� We present a ( ee�1)-ompetitive randomized algorithm for the unit value ase. We also showdeterministi and randomized lower bounds in this model.We prove our upper bounds while assuming that all the queues in the swith are of equal size.We note that this is done for simpliity of notation only. The algorithms we present, inludingtheir bounds and analysis, remain the same when the queues have di�erent sizes.Our tehniques: For our generi tehnique, we begin by onsidering a relaxation of our pre-emptive m queues model, in whih pakets an be transmitted in any order out of the queues, notneessarily FIFO. We present a natural algorithm in this preemptive relaxed model and analyze itsperformane by using a potential funtion. We then formulate our generi algorithm whih is givena single queue admission ontrol strategy as a parameter. The algorithm uses the given strategyfor admission ontrol in all m queues. In addition, the algorithm runs a simulation of the algorithmin the relaxed preemptive model and adopts its sheduling deisions. We prove that the simulationwe use allows us to analyze our algorithm's performane in eah queue separately.We also investigate the speial ase of unit value pakets. We onstrut a redution to theproblem of �nding a maximum mathing in a bipartite graph, whose unique property is its inde-pendene of the swithing algorithm. This method an be ombined with the tehniques providedin [8℄ to produe a randomized algorithm whih is 1:58-ompetitive. This is in ontrast to a naturalrandomized algorithm that turns out to be no better than (2 � o(1))-ompetitive. The random-ized lower bound is proved by modelling the problem as a Markov hain (whih orresponds to anon-uniform random walk). A areful analysis of this Markov hain provides the lower bound.Related results: The online problem of throughput maximization in swithes supporting QoShas been studied extensively during reent years. Aiello et al. [1℄ initiated the study of di�erentqueuing poliies for the 2-value non-preemptive model in whih the swith has a single queue,preemption is not allowed and eah paket has a value of either 1 or �. Reently, Andelman etal.[2℄ showed tight bounds for this ase. The preemptive 2-value single queue model was initiallystudied by Kesselman and Mansour [10℄, followed by Lotker and Patt-Shamir [12℄ who showedalmost tight bounds. The general preemptive single queue model, where pakets an take arbitraryvalues, was investigated by Kesselman et al. [9℄, who proved that the natural greedy algorithmis 2-ompetitive (spei�ally 2�=(1 + �)-ompetitive where � � 1 is the ratio between the largestvalue to the smallest one). Our work generalizes all the above results for the general m queuesmodel. An alternative model to ours is the shared memory QoS swith, in whih memory is sharedamong all queues. Hahne et al. [7℄ studied bu�er management poliies in this model while fousingon deriving upper and lower bounds for the natural Longest Queue Drop poliy.3



Koga [11℄ and Bar-Noy et al. [3℄ investigated the online problem of minimizing the length of thelongest queue in a swith, whih is in some sense the dual to the unit value ase we study. In theirmodel queues are unbounded in size, hene pakets are not lost. Koga [11℄ proved that the naturalgreedy algorithm that always empties the longest queue is �(logm)-ompetitive. Bar-Noy et al. [3℄suggested a di�erent algorithm that simulates the greedy algorithm in the ontinuous model and isalso �(logm)-ompetitive. Chrobak et al. [6℄ studied the more general problem of minimizing thelength of the longest queue where queues an be emptied subjet to onits onstraints.Paper struture: Setion 2 inludes formal de�nitions and notations. Our generi tehnique isshown in Setion 3. In setion 4 we present our randomized algorithm for the unit value ase.Setion 5 ontains deterministi and randomized lower bounds for the unit value problem.2 Problem de�nition and notationsWe model the swith throughput maximization problem as follows. We are given a swith with mFIFO queues, where queue i has size Bi, and one output port. Pakets are arriving online, eahpaket is destined to one of the queues and is assoiated with a non-negative value. We denotethe online pakets sequene by �. Initially, the m queues are empty. We assume that time isdisrete, and eah time unit t � 0 is divided to two phases: at the beginning of the �rst phase oftime t a set �(t) of pakets arrive to the queues. Pakets an be inserted to eah queue withoutexeeding its apaity. Remaining pakets must be disarded. In the seond phase of time t, theswithing algorithm may selet one of the non-empty queues and transmit the paket at the headof the queue. The goal is to maximize the total value of transmitted pakets. We onsider boththe non-preemptive model and the preemptive model, in whih previously stored pakets an bedisarded from the queues. We also study two interesting speial ases of our model: the 2-valuease, in whih pakets values are restrited to 1 and �, and the unit value model in whih all paketshave unit value.Given an online swithing algorithm A we denote by A(�) the value of A given the sequene �,and by At(�) the value of A until time t (inlusive). We denote the optimal (o�-line) algorithm byOPT , and use similar notations for it.A deterministi online algorithm A is -ompetitive for a problem i� for every instane of theproblem and every pakets sequene � we have: OPT (�) � �A(�). We say that a randomized onlinealgorithm A is -ompetitive i� for every sequene � the following holds: OPT (�) �  �E[A(�)℄. Welaim that a problem has a lower bound  if no algorithm an ahieve a ompetitive ratio stritlylower than . Given an online algorithm A, we denote its ompetitive ratio by CA.We often fous on algorithms that transmit a paket every time a paket is available. We referto suh algorithms as reasonable online algorithms. One an easily verify that any online algorithmA an be transformed into a reasonable online algorithm A0 suh that CA0 � CA.3 Competitive algorithms for QoS swith managementIn this setion we present a generi tehnique that deouples the admission ontrol and the shedul-ing problems and transforms any admission ontrol strategy for a single queue (for both the pre-emptive and non-preemptive models) to a ompetitive algorithm for the general m queues model.4



We use our generi tehnique to onstrut onrete ompetitive algorithms for both the preemptiveand non-preemptive ases.We begin by de�ning a natural greedy preemptive admission ontrol strategy for a single queue.Algorithm GREEDYEnqueue a new paket if:� The queue is not full.� Or the paket with the smallest value in the queue has a lower value than the urrent paket.In this ase the smallest paket is disarded and the new paket is enqueued.We now turn to onsider a relaxation of our preemptive model, in whih pakets an be trans-mitted from eah queue in any order, not neessarily FIFO. We note that although this relaxationadds onsiderable strength to the online algorithm, the optimal solution remains the same. There-fore, when referring to the optimal solution we do not distinguish between the original FIFO modeland its relaxation. We present the following natural greedy online algorithm for the preemptiverelaxed model.Algorithm TransmitLargest (TL)1. Admission ontrol: use algorithm GREEDY for admission ontrol in all m inomingqueues.2. Sheduling: at eah time unit, transmit the paket with the largest value among all paketsstored in the queues.We return to our original FIFO model and present our generi tehnique GeneriSwith(abbreviated GS) for both the preemptive and non-preemptive models. We fous on asynhronousadmission ontrol strategies for a single queue, de�ned as follows.De�nition 1. An admission ontrol strategy for a single FIFO queue is alled asynhronous if itan handle arrival of pakets at ontinuous time.To the best of our knowledge, all known admission ontrol strategies for a single queue areasynhronous. We next present the de�nition of GS with an asynhronous admission ontrolstrategy A as a parameter.Algorithm GSA:1. Admission ontrol: apply admission ontrol strategy A to all m inoming queues.2. Sheduling: run a simulation of algorithm TL (in the preemptive relaxed model) with theonline input sequene �. At eah time unit transmit the paket at the head of the queue usedby TL simulation.In GSA, admission ontrol is arried out by exerising the asynhronous admission ontrolstrategy A on all queues. Consequently, algorithm GSA is preemptive only if A itself is preemptive,and non-preemptive otherwise. Sheduling is handled independently by simulating the operation5



of algorithm TL (whih is de�ned in the preemptive relaxed model) on the online input sequene�, and adopting all its sheduling deisions, with no regard to the values of the pakets transmittedby TL or the pakets residing in its queues. It is ruial to note that we use the simulation of TLin the preemptive relaxed model even when we generate a non-preemptive algorithm GSA from asingle queue non-preemptive admission ontrol strategy A. Our main result is that the ompetitiveratio of GSA is at most twie the ompetitive ratio of A.We begin our analysis by bounding the performane of algorithm TL.Theorem 1. Algorithm TL is 2-ompetitive in the preemptive relaxed model.Proof. For every i = 1; : : : ;m denote by fvtijg the values of the pakets stored in queue i at timet in TL, sorted from largest to smallest. Similarly, denote by f�vtijg the sorted values in queue i attime t in OPT . For simpliity of notation, we often omit the supersript t when meaning is lear,and we always onsider 1 � j � B, and pad the sequenes with 0's, if neessary. Note that as aonsequene, every time a paket is inserted to queue i, a value is disarded from the orrespondingsorted sequene. We may view it as though we virtually extend the sorted sequene to B+1 entries,where entry B + 1 holds the disarded value (whih may be a padded '0' entry). If a paket isinserted to the queue upon its arrival we refer to it as an aepted paket, otherwise we refer to itas a rejeted paket. Reall that whenever algorithm TL disards a paket, it is the paket with thesmallest value in the queue. The following observation argues the same with regard to the optimalsolution.Observation 1. Whenever OPT disards a paket in the relaxed model, it is the paket with thesmallest value in the queue.For every queue i and time t we de�ne dti =PBj=1(�vtij�vtij)+, where x+ = maxfx; 0g. We de�nethe following potential funtion: �t =Pmi=1 dti. Note that �t � 0 for every t.Lemma 2. For every pakets sequene � and time unit t � 0 the following inequality holds:OPT t(�) + �t � 2 � TLt(�).Proof. We prove the lemma by indution on the time units. For t = 0 the inequality learly holds.We assume orretness by the end of time unit t� 1 and prove that the inequality holds when timeunit t is �nished. Denote by �x the hange inurred in the value of x when an operation takesplae in the system, i.e. a paket arrives or a paket is transmitted. The next two laims provethat the inequality holds for every single operation ourring in the system during time t.Claim 3. For eah paket arriving at the �rst phase of time t we have: �OPT +�� � 2 ��TL.Proof. In the �rst phase of eah time unit, pakets are not transmitted, therefore �OPT = �TL =0. Consider any paket arriving at time t. Let i be the queue to whih the paket is destined. Weexamine the possible ases and prove that for all of them �� � 0. Clearly, �dj = 0 for all j 6= i,hene it suÆes to hek �di. Note that we use here fvijg and f�vijg to denote the sorted valuessequenes after the insertion.1. The paket is aepted by both OPT and TL. Let k � B be the index of the newpaket in the sequene of sorted values of queue i in OPT . Let l � B be the orrespondingindex for TL. We hek the possible ases:6



(a) k � l:�di = BXj=k(�vij � vij)+ � 24 lXj=k+1(�vij � vi(j�1))+ + B+1Xj=l+1(�vij � vij)+35� BXj=k(�vij � vij)+ � 24 lXj=k+1(�vij � vi(j�1))+ + BXj=l+1(�vij � vij)+35= lXj=k(�vij � vij)+ � lXj=k+1(�vij � vi(j�1))+ = 0;where the last equality results from the fat that �vij1 � vij2 for every k � j1; j2 � l.(b) k > l:�di = BXj=l(�vij � vij)+ � 24k�1Xj=l(�vij � vi(j+1))+ + B+1Xj=k+1(�vij � vij)+35� BXj=l(�vij � vij)+ � 24k�1Xj=l(�vij � vi(j+1))+ + BXj=k+1(�vij � vij)+35= kXj=l(�vij � vij)+ � k�1Xj=l(�vij � vi(j+1))+= kXj=l(�vij � vij)+ � k�1Xj=l(�vij � vi(j+1)) (1)= kXj=l(�vij � vij)+ � 24 kXj=l(�vij � vij)� �vik + vil35 (2)= kXj=l(�vij � vij)+ � kXj=l(�vij � vij)+ = 0; (3)where in (2) �vik = vil and (1) and (3) follow from the fat that �vij1 � vij2 for everyl � j1; j2 � k.2. The paket is aepted by OPT , rejeted by TL. Let k be the index of the new paketin the list of sorted values in queue i in OPT . We have:�� = �di = BXj=k(�vij � vij)+ � B+1Xj=k+1(�vij � vi(j�1))+ � BXj=k(�vij � vij)+ = 0;where the last equality results from the fat that �vij1 � vij2 for every k � j1; j2 � B, sineTL rejeted the new paket. 7



3. The paket is aepted by TL, rejeted by OPT . Let l be the index of the new paketin the list of sorted values in queue i in TL. We get:�� = �di = BXj=l(�vij � vij)+ � BXj=l(�vij � vi(j+1))+ � 0;where the last inequality follows from the fat that (�vij � vij)+ � (�vij � vi(j+1))+ for everyl � j � B.4. The paket is rejeted by both OPT and TL. Clearly, �� = 0.Claim 4. For the transmission phase in time t the following holds: �OPT +�� � 2 ��TL.Proof. In this ontext we denote by fvijg and f�vijg the sorted values sequenes before the trans-mission takes plae. Let r be the queue from whih TL takes a paket for transmission. De�nevr(B+1) = 0. We have:�dr = BXj=1(�vrj � vr(j+1))+ � BXj=1(�vrj � vrj)+� BXj=1[(�vrj � vrj)+ + (vrj � vr(j+1))℄� BXj=1(�vrj � vrj)+= BXj=1(vrj � vr(j+1)) = vr1 � vr(B+1) = vr1 = �TL:Let s be the queue from whih OPT takes the paket with the kth largest value for transmission(of ourse r = s is possible, and then fvsjg is the sequene after the �rst hange). We have:�ds = BXj=k+1(�vsj � vs(j�1))+ � BXj=k(�vsj � vsj)+� BXj=k+1(�vsj � vsj)+ � BXj=k+1(�vsj � vsj)+ � (�vsk � vsk)� �(�OPT ��TL);where the last inequality results from vsk � �TL. Putting it all together we get:�OPT +�� = �OPT +�dr +�ds � �OPT +�TL� (�OPT ��TL) = 2 ��TLClaims 3 and 4 imply that the inequality holds when time t is �nished. This ompletes theproof of Lemma 2. 8



Theorem 1 follows diretly from Lemma 2.We now return to our original FIFO model and analyze the performane of GS. Before weproeed we wish to elaborate on the intuition behind our generi algorithm. Algorithm GS usesthe simulation of algorithm TL to deide at eah time unit whih queue to use. This enables us toompare our algorithm's throughput with TL's throughput for eah queue separately. Informally,this means that we an forget about the sheduling problem, lose a ompetitive fator of 2 sinewe use TL that is 2-ompetitive, and fous on our performane in eah queue separately. We arenow ready to state the main theorem of the paper.Theorem 2. Let GSA denote the algorithm obtained by running algorithm GS with the asyn-hronous single queue admission ontrol strategy A (preemptive or non-preemptive). Then CGSA �2 � CA.Proof. We begin by introduing some new de�nitions and notations. Given the input sequene �,denote by �i (i = 1; : : : ;m) the sequene of pakets arriving at queue i. For a given input sequene�, de�ne �ki to be the time unit at whih algorithm TL transmits a paket from queue i for the k-thtime (�ki =1 if queue i is used less than k times). We now de�ne a more ompat representation of�i, denoted by �̂i, whih relies on TL operation. We onsider only time units in whih queue i wasused for transmission, and de�ne �̂i(t) = (�i(� t�1i + 1); : : : ; �i(� ti )), where we onatenate paketsarriving between time units � t�1i and � ti and assign them all to the latter time unit. Consideran algorithm ALG, that exerises an independent asynhronous admission ontrol poliy in eahqueue (denote by Ai the poliy used in queue i) and makes the same sheduling deisions as TL.Then, we an deouple admission ontrol and sheduling and obtain : ALG(�) = Pmi=1Ai(�̂i).Spei�ally, we have: GSA(�) = Pmi=1A(�̂i) and TL(�) = Pmi=1 TL(�̂i), where we denote by TLboth the algorithm for m queues and the restrition to a single queue.We an now prove the desired ompetitive ratio:OPT (�) � 2 � TL(�) = 2 mXi=1 TL(�̂i) � 2 mXi=1OPT (�̂i) � 2 mXi=1CA �A(�̂i) = 2 � CA �GSA(�);where the �rst inequality follows from Theorem 1, the third inequality follows from the fat thatthe optimal solution is at least as good as TL for �̂i and the forth inequality follows from the fatthat the optimal solution is the same for the preemptive and the non-preemptive models.We now show how to ombine our generi tehnique with known admission ontrol algorithms fora single queue, in order to onstrut spei� preemptive and non-preemptive algorithms for ourgeneral m queues FIFO model. These examples demonstrate both the exibility and the strengthof our generi tehnique. All the following theorems are derived diretly from Theorem 2.General preemptive model: Kesselman et al. [9℄ proved that algorithm GREEDY is 2-ompetitive in the single queue preemptive model. There follows:Theorem 3. Algorithm GSGREEDY in the general preemptive model is 4-ompetitive.General non-preemptive model: Andelman et al. [2℄ reently presented a non-preemptiveadmission ontrol algorithm for a single queue alled Exponential-Interval Round Robin (ab-breviated EIRR), whih is (edln�e)-ompetitive, where � denotes the ratio between the largestvalue in the pakets sequene � and the smallest one . Therefore:9



Theorem 4. Algorithm GSEIRR for the general non-preemptive model is (2edln�e)-ompetitive .2-value preemptive model: In this speial ase, studied in [10, 12℄, the values of the pakets arerestrited to two values, 1 and �. Lotker and Patt-Shamir [12℄ presented their mf (abbreviationfor mark&ush) single queue preemptive admission ontrol algorithm for the problem whoseompetitive ratio is approximately 1:3. Combined with GS we obtain:Theorem 5. Algorithm GSmf for the 2-value preemptive model is approximately 2:6-ompetitive.2-value non-preemptive model: Andelman et al. [2℄ presented a single queue non-preemptivealgorithm alled Ratio Partition (abbreviated RP ) for this ase, with ompetitive ratio 2 � 1� ,where � denotes the ratio between the largest value in the pakets sequene � and the smallestone. We obtain:Theorem 6. Algorithm GSRP for the 2-value non-preemptive model is (4� 2�)-ompetitive.Unit value pakets: In this speial ase all pakets have unit values and the goal is to maximizethe number of transmitted pakets. This model orrespond to networks laking QoS apabilities,most notably IP networks.Theorem 7. Every reasonable online algorithm is 2-ompetitive in the unit value model.Proof. Note that the admission ontrol algorithm GREEDY is 1-ompetitive in the unit valuemodel. Combined with Theorem 2 we obtain that algorithm GSGREEDY is 2-ompetitive. More-over, sine all pakets have unit values algorithm TL (whih ditates GS sheduling deisions) anuse any non-empty queue at eah time unit, hene every reasonable algorithm is 2-ompetitive.4 Randomized algorithm for unit value paketsWe present the following randomized algorithm for the unit value model.Algorithm RandomShedule (RS):1. The algorithm uses m auxiliary queues, eah of size B. These queues ontain real numbersfrom the range (0; 1), where eah number is labelled as either marked or unmarked. Initiallythese queues are empty. To avoid onfusion between the auxiliary queues and the swithqueues holding the pakets, denote the former by Q1; : : : ; Qm and the latter by q1; : : : ; qm.2. Consider the pakets arrival phase in eah time unit. Suppose a new paket arrives at queueqi. The algorithm hooses uniformly at random a real number from the range (0; 1), that isinserted to queue Qi and labelled as unmarked. If queue Qi was full when the paket arrived,the number at the head of the queue is deleted prior to the insertion of the new number.3. During the transmission phase in every time unit, we hek whether queues Q1; : : : ; Qmontain any unmarked number. If there are unmarked numbers, letQi be the queue ontainingthe largest unmarked number. We hange the label of the largest number to 'marked' andselet queue qi for transmission in this time unit. Otherwise (no unmarked numbers), wetransmit a paket from any non-empty queue, if suh exists.10



Theorem 8. For every sequene �, OPT (�)E[RS(�)℄ � ee�1 + o(1) � 1:58.Proof. We begin by introduing a translation of our problem to the problem of �nding a maximummathing in a bipartite graph. We then prove the ompetitive ratio of algorithm RS by a redutionto the online algorithm for bipartite mathing shown in [8℄. We note that in the unit value model,there is no admission ontrol question, sine there is no reason to prefer one paket over the other.Therefore, we deal with the sheduling problem alone.Given a sequene �, we translate it to the bipartite graph G� = (U; V;E), whih is de�ned asfollows.� Let T denote the latest time unit in � in whih a paket arrives. We de�ne the set of timenodes as U = fu1; : : : ; uT+mBg.� Let P be the total number of pakets spei�ed in �. We de�ne the set of paket nodes asV = fv1; : : : ; vP g.� Let P ti denote the set of the last B pakets that arrive to queue qi until time t (inlusive).De�ne P t = Smi=1 P ti . We de�ne the set of edges in G� as follows: E = f(ut; vp)jp 2 P tg.Before we proeed we introdue some new de�nitions.De�nition 2. A shedule S for a sequene of arriving pakets � is a set of pairs of the form (t; qi),where queue qi is sheduled for transmission at time t. The size of the shedule, denoted jSj, is thesize of the set.De�nition 3. A shedule S for a sequene � is alled legal if for every pair (t; qi), queue qi is notempty at time t.The following lemmas onnet bipartite mathing to our problem.Lemma 5. Every legal shedule S for the sequene � an be mapped to a mathing M in G� suhthat jSj = jM j.Proof. Let S be a legal shedule for �. We onstrut the desired mathing M inrementally whilemoving ahead in time. For eah pair (t; qi) 2 S, we onnet node ut to node vj , where j = minf1 �k � P j vk 2 P ti ; vk 62Mg. A simple indution proves that for eah time t and queue qi the numberof unmathed nodes in P ti is equal to the number of pakets residing in queue qi at time t aordingto S. Hene, every transmitted paket an be mapped to an edge inM . Clearly, by the onstrutionjSj = jM j.Lemma 6. Every mathing M in G� an be translated in polynomial time to a legal shedule Sfor � suh that jSj = jM j.Proof. Let M be a mathing in G� . We onstrut a legal shedule S for � inrementally, whilegoing over the nodes in U , starting from u1. Let node ut be onneted in M to node vj 2 P ti .Then we add the pair (t; qi) to the shedule S. A simple indution shows that for every i and t,the number of nodes from P ti that are inluded in M is at most the number of pakets residing inqueue qi at time t aording to S. Therefore, we an always translate an edge in M to a paket11



transmission in S, and our obtained shedule is legal. Clearly, this translation takes polynomialtime and by the onstrution jSj = jM j.The following orollaries diretly result from Lemmas 5 and 6.Corollary 7. For any sequene �, the size of the optimal shedule for � is equal to the size of amaximum mathing in G�.Corollary 8. For any sequene �, an optimal shedule an be found (o�-line) in polynomial time.Consider algorithm RS as an algorithm for �nding a mathing in G�. The algorithm essentiallymaintains an order on the nodes in P t, and onnets node ut to the �rst node from P t (aordingto the maintained order) that has not been used yet. In fat, algorithm RS operates on G� exatlyas the algorithm presented in [8℄ for the online maximum bipartite mathing problem. Hene, theratio between the size of the maximum mathing in G� and the size of the mathing onstrutedby algorithm RS is at most ee�1 + o(1). Clearly, by the algorithm's operation (step 3), for every1 � i � m, the number of pakets in queue qi is at least the number of unmarked elements in Qi.Therefore, there is always an available paket in qi when the algorithm hooses it for transmission(step 3 in RS). In fat, it is worthwhile to note that the number of transmitted pakets an belarger than the size of the onstruted mathing. Hene, aording to orollary 7, RS is ( ee�1)-ompetitive5 Lower bounds for the unit value modelIn the following theorems we prove deterministi and randomized lower bounds for the unit valuease.Theorem 9. Every deterministi online algorithm for the unit value ase has ompetitive ratio atleast 2� 1=m.Proof. Fix any online algorithm A. We onsider the ase of unit size queues, i.e. B = 1. Theadversary onstruts the following sequene �:� At time t = 0, m pakets arrive, one for eah queue.� Immediately before any time t = 1; : : : ;m � 1, A has at least one full queue. At timet = 1; : : : ;m � 1 the adversary generates a paket destined to queue it, where it is an indexof one of the full queues in A. Clearly, A an not aept a single paket from this sequene.At time t (t = 0; : : : ;m � 2) OPT empties queue it+1, so it an aept all pakets in thesequene.� At the end of time unit t = m� 1, all queues in OPT are full exept one, and all queues inA are empty. From this time on, no pakets arrive, hene only pakets urrently stored willbe transmitted.Clearly: OPT (�)A(�) = 2m�1m = 2� 1m . 12



In the above lower bound we set B = 1. The next theorem shows a lower bound for any spei�value of B.Theorem 10. For any spei� value of B, every deterministi online algorithm for the unit valuease has ompetitive ratio at least 1:366 ��(1=m).Proof. Consider any spei� value for B and �x any online algorithm A. We prove the theorem forany number of queues. We distinguish between two possible ases:B � m: Let us assume that B divides m (note that sine the adversary an redue the number ofative queues, this assumption is w.l.o.g). The sequene � produed by the adversary is as follows:� At time t = 0, B pakets arrive at eah queue.� The sequene onsists of (k � mB � 1) B-phases, eah omposed of B onseutive time units. Ineah B-phase pakets arrive only at the last time unit. Denote by ij the most loaded queue inA before the last time unit of B-phase j. At the last time unit of B-phase j, B new paketsarrive at queue ij.� After the B-phases are �nished, no additional pakets arrive.At the beginning of any time unit 1 � t � mB note that A holds at least mB � t pakets inits queues. Therefore, A has at least one queue with total load at least B � b tm. For B-phase j(j = 1; : : : (k � mB � 1)) OPT empties queue ij during the �rst B time units, and hene it aeptsall arriving pakets at the end of the phase. We now analyze the respetive throughput of A andOPT :OPT (�) = mB + km�B = m(B + k)�BA(�) = mB + (mB � 1) � 0 + mB � 1 + : : : mB � (k � 1) =m�B + k(k � 1)2B � :Therefore, we get:OPT (�)A(�) = B + k � BmB + k22B � k2B � B + k � 2BmB + k22B = B + kB + k22B ��� 1m� ;we take k = �B, where � = �1 +p3 maximizes the expression. We obtain:OPT (�)A(�) � p31 + 12(�1 +p3)2 ��� 1m� = 12(1 +p3)��� 1m� � 1:366 ��� 1m� :We note that although k an be a real number, either bk or dke obtain our desired ratio.B > m: The adversary generates a sequene � similar to the one used in the previous ase, onlynow it is omposed of k B-phases. From the same onsiderations as before we get:OPT (�)A(�) = mB + kBmB + bBm+ : : :+ bkBm  � m+ km+ k(k+1)2m � m+ km+ k22m ��� 1m� � 1:366 ��� 1m� ;where the last inequality follows from the same alulation as in the previous ase.13



Theorem 11. Every randomized online algorithm for the unit value ase has ompetitive ratio atleast 1:46 ��(1=m).Proof. We prove the lower bound for unit size queues, i.e. B = 1. We provide a probabilitydistribution on sequenes of inputs. We prove the lower bound for any deterministi algorithm.Sine any randomized algorithm is a probability distribution on deterministi ones this also providesa lower bound for any randomized algorithm (see also [5℄, hapter 8 for Yao's theorem). Theadversary onstruts the following sequene �:� At time t = 0, m pakets arrive, one for eah queue.� For every time t = 1; : : : ; r a paket arrives to a queue that is randomly seleted aording tothe uniform distribution.� After time r no additional pakets arrive.Clearly, OPT an aept all pakets, beause it always transmits a paket from the queue towhih the next paket will arrive. Hene, its throughput is exatly m+ r. On the other hand, thebehavior of any online algorithm A an be desribed as a Markov hain. The Markov hain hasm states. State i for 0 � i � m � 1 orresponds to a total of i pakets in the queues. Clearly, atthe beginning of time t = 1 the algorithm is in state m � 1. Let Xt denote the random variablethat indiates the state of the online deterministi algorithm at time t, and let �Xt denote theindiator random variable with value 1 i� the algorithm hanges its state during time t (learly,Xt+1 = Xt��Xt). We further denote by pti the probability of the algorithm to be in state i at timet. At any time the probability of moving from state i to state i�1 is exatly i=m and the probabilityof staying at state i is 1 � i=m. Therefore, E[�Xt℄ = Pr[�Xt = 1℄ = Pm�1i=1 impti. The expetedstate at time t, whih orresponds to the expeted number of pakets in the queues, is: E[Xt℄ =Pm�1i=1 i � pti = m � E[�Xt℄. As a result, E[Xt+1℄ = E[Xt � �Xt℄ = E[Xt℄ � E[�Xt℄ = m�1m E[xt℄.Hene, after r time units the expeted number of pakets in the queues is (m � 1)(1 � 1=m)r.Sine the online algorithm transmitted at most one paket at eah time unit we onlude thatthe expeted throughput of any online algorithm is at most 1 + r + (m � 1)(1 � 1=m)r. By theappropriate (optimal) hoie of r (i.e. taking r = �m where � = 1:146) to maximize the ratiom+r1+r+(m�1)(1�1=m)r we onlude that the ratio is at least 1:46 ��(1=m).Referenes[1℄ W. A. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosen. Competitive queue poliies fordi�erentiated servies. In Proeedings of the IEEE INFOCOM 2000, pages 431{440.[2℄ N. Andelman, Y. Mansour, and A. Zhu. Competitive queueing poliies for QoS swithes. InPro. 14th ACM-SIAM Symp. on Disrete Algorithms, pages 761{770, 2003.[3℄ A. Bar-Noy, A. Freund, S. Landa, and J. Naor. Competitive on-line swithing poliies. InPro. 13th ACM-SIAM Symp. on Disrete Algorithms, pages 525{534, 2002.[4℄ A. Birman, H. R. Gail, S. L. Hantler, Z. Rosberg, and M. Sidi. An optimal servie poliyfor bu�er systems. Journal of the Assoiation Computing Mahinery (JACM), 42(3):641{657,1995. 14
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