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Abstra
tThe 
on
ept of Quality of Servi
e (QoS) networks has gained growing attention re
ently,as the traÆ
 volume in the Internet 
onstantly in
reases, and QoS guarantees are essential toensure proper operation of most 
ommuni
ation based appli
ations. A QoS swit
h serves min
oming queues by transmitting pa
kets arriving at these queues through one output port, onepa
ket per time unit. Ea
h pa
ket is marked with a value indi
ating its guaranteed qualityof servi
e. Sin
e the queues have bounded 
apa
ity and the rate of arriving pa
kets 
an bemu
h higher than the transmission rate, pa
kets 
an be lost due to insuÆ
ient queue spa
e.The goal is to maximize the total value of transmitted pa
kets. This problem en
apsulatestwo dependent questions: admission 
ontrol, namely whi
h pa
kets to dis
ard in 
ase of queueover
ow, and s
heduling, i.e. whi
h queue to use for transmission in ea
h time unit. We use
ompetitive analysis to study online swit
h performan
e in QoS based networks. Spe
i�
ally, weprovide a novel generi
 te
hnique that de
ouples the admission 
ontrol and s
heduling problems.Our te
hnique transforms any single queue admission 
ontrol strategy (preemptive or non-preemptive) to a s
heduling and admission 
ontrol algorithm for our general m queues model,whose 
ompetitive ratio is at most twi
e the 
ompetitive ratio of the given admission 
ontrolstrategy. We use our te
hnique to derive 
on
rete algorithms for the general preemptive andnon-preemptive 
ases, as well as for the interesting spe
ial 
ases of the 2-value model and theunit value model. To the best of our knowledge this is the �rst result 
ombining both s
hedulingand admission 
ontrol de
isions for arbitrary pa
kets sequen
es in multi-queue swit
hes. We alsoprovide a 1:58-
ompetitive randomized algorithm for the unit value 
ase. This 
ase is interestingby itself sin
e most 
urrent networks (e.g. IP networks) only support a best-e�ort servi
e inwhi
h all pa
kets streams are treated equally.1 Introdu
tionOverview: During re
ent years, network traÆ
 has in
reased steadily, mainly due to the 
on-stant growing use of the Internet for both 
ommer
ial and personal purposes. This phenomenon,
ombined with the fa
t that Internet traÆ
 tends to 
u
tuate 
onstantly, frequently overloadsnetworking systems 
ausing 
onsiderable degradation in the quality of 
ommuni
ation based appli-
ations. As a result, the 
on
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ea
h traÆ
 stream, in terms of bandwidth, laten
y, maximum drop rate et
., has re
eived grow-ing attention lately within the 
ommuni
ation 
ommunity. Sin
e network overloads are frequent,QoS swit
hes often have to 
ope with in
reasing amounts of overloaded traÆ
, while attemptingto maximize the weighted throughput, where the weights 
orrespond to the required quality ofservi
e for ea
h pa
ket. Hen
e, the quality of the de
isions made by the swit
h 
an be measuredby 
onsidering the total weight of pa
kets it managed to pass through.We model the problem of maximizing swit
h throughput in QoS networks as follows. A swit
hhas m in
oming FIFO queues and one output port. At ea
h time unit new pa
kets arrive to thequeues, ea
h pa
ket marked with a value that 
orresponds to its guaranteed quality of servi
e.Additionally, at ea
h time unit the swit
h sele
ts one non-empty queue and transmits the pa
ketat the head of the queue through the output port. Sin
e the m in
oming queues have bounded
apa
ities, arriving pa
kets 
an over
ow the queues, and some pa
kets must be dis
arded. The goalis to maximize the total value of transmitted pa
kets. We 
onsider both the non-preemptive modeland the preemptive model, where pa
kets stored in the queues 
an be dis
arded in order to freespa
e for new pa
kets. Traditionally, similar problems were analyzed while assuming either some
onstant stru
ture of the sequen
e of arriving pa
kets, or a spe
i�
 distribution of the arrival rates(see e.g. [4, 13℄). We avoid any assumptions on the input and use 
ompetitive analysis to 
omparethe performan
e of online algorithms to the optimal solution. In our work we fa
e the 
ombinationof two dependent problems: admission 
ontrol, namely whi
h pa
kets to dis
ard in 
ase of queueover
ow, and s
heduling, i.e. from whi
h queue to transmit in every time unit. We present ageneri
 te
hnique that de
ouples the above problems and transforms any admission 
ontrol strategyfor a single queue (both preemptive and non-preemptive) to an algorithm for our general model(preemptive or non-preemptive, respe
tively). The 
ompetitive ratio of the 
onstru
ted algorithm isat most twi
e the 
ompetitive ratio of the given admission 
ontrol strategy. We therefore generalizeknown results [1, 2, 9, 10, 12℄ for preemptive and non-preemptive single queue admission 
ontrolto the general model of m queues.In addition, we also study the spe
ial 
ase where all pa
kets have unit value, and the goalis to maximize the number of transmitted pa
kets. This model is interesting by itself, sin
e themajority of 
urrent networks (most notably, IP networks) do not yet integrate full QoS 
apabilities,and provide a \best e�ort" servi
e, where pa
kets belonging to di�erent traÆ
 streams are treatedequally within intermediate swit
hes. We show a randomized algorithm and lower bounds for thisspe
ial 
ase.Our results:� Our main 
ontribution is a generi
 te
hnique to transform an admission 
ontrol strategy fora single queue (both preemptive and non-preemptive) to a s
heduling and admission 
ontrolalgorithm (preemptive or non-preemptive, respe
tively) for a swit
h with m queues. The
ompetitive ratio of the 
onstru
ted algorithm is at most twi
e the 
ompetitive ratio of theoriginal single queue admission 
ontrol algorithm.� We use our generi
 te
hnique to devise a 4-
ompetitive algorithm for our general m queuespreemptive model with pa
kets of arbitrary values.� In addition we employ our te
hnique to 
onstru
t the following algorithms:2



{ A (2edln�e)-
ompetitive algorithm for the general non-preemptive model where � is theratio between the largest value to the smallest one.{ An approximately 2:6-
ompetitive algorithm for the preemptive 2-value model.{ A (4� 2�)-
ompetitive algorithm for the non-preemptive 2-value model where the valuesare restri
ted to 1 and �.{ We show that any \reasonable" online algorithm (de�ned later) is 2-
ompetitive for thespe
ial 
ase of unit value pa
kets.� We present a ( ee�1)-
ompetitive randomized algorithm for the unit value 
ase. We also showdeterministi
 and randomized lower bounds in this model.We prove our upper bounds while assuming that all the queues in the swit
h are of equal size.We note that this is done for simpli
ity of notation only. The algorithms we present, in
ludingtheir bounds and analysis, remain the same when the queues have di�erent sizes.Our te
hniques: For our generi
 te
hnique, we begin by 
onsidering a relaxation of our pre-emptive m queues model, in whi
h pa
kets 
an be transmitted in any order out of the queues, notne
essarily FIFO. We present a natural algorithm in this preemptive relaxed model and analyze itsperforman
e by using a potential fun
tion. We then formulate our generi
 algorithm whi
h is givena single queue admission 
ontrol strategy as a parameter. The algorithm uses the given strategyfor admission 
ontrol in all m queues. In addition, the algorithm runs a simulation of the algorithmin the relaxed preemptive model and adopts its s
heduling de
isions. We prove that the simulationwe use allows us to analyze our algorithm's performan
e in ea
h queue separately.We also investigate the spe
ial 
ase of unit value pa
kets. We 
onstru
t a redu
tion to theproblem of �nding a maximum mat
hing in a bipartite graph, whose unique property is its inde-penden
e of the swit
hing algorithm. This method 
an be 
ombined with the te
hniques providedin [8℄ to produ
e a randomized algorithm whi
h is 1:58-
ompetitive. This is in 
ontrast to a naturalrandomized algorithm that turns out to be no better than (2 � o(1))-
ompetitive. The random-ized lower bound is proved by modelling the problem as a Markov 
hain (whi
h 
orresponds to anon-uniform random walk). A 
areful analysis of this Markov 
hain provides the lower bound.Related results: The online problem of throughput maximization in swit
hes supporting QoShas been studied extensively during re
ent years. Aiello et al. [1℄ initiated the study of di�erentqueuing poli
ies for the 2-value non-preemptive model in whi
h the swit
h has a single queue,preemption is not allowed and ea
h pa
ket has a value of either 1 or �. Re
ently, Andelman etal.[2℄ showed tight bounds for this 
ase. The preemptive 2-value single queue model was initiallystudied by Kesselman and Mansour [10℄, followed by Lotker and Patt-Shamir [12℄ who showedalmost tight bounds. The general preemptive single queue model, where pa
kets 
an take arbitraryvalues, was investigated by Kesselman et al. [9℄, who proved that the natural greedy algorithmis 2-
ompetitive (spe
i�
ally 2�=(1 + �)-
ompetitive where � � 1 is the ratio between the largestvalue to the smallest one). Our work generalizes all the above results for the general m queuesmodel. An alternative model to ours is the shared memory QoS swit
h, in whi
h memory is sharedamong all queues. Hahne et al. [7℄ studied bu�er management poli
ies in this model while fo
usingon deriving upper and lower bounds for the natural Longest Queue Drop poli
y.3



Koga [11℄ and Bar-Noy et al. [3℄ investigated the online problem of minimizing the length of thelongest queue in a swit
h, whi
h is in some sense the dual to the unit value 
ase we study. In theirmodel queues are unbounded in size, hen
e pa
kets are not lost. Koga [11℄ proved that the naturalgreedy algorithm that always empties the longest queue is �(logm)-
ompetitive. Bar-Noy et al. [3℄suggested a di�erent algorithm that simulates the greedy algorithm in the 
ontinuous model and isalso �(logm)-
ompetitive. Chrobak et al. [6℄ studied the more general problem of minimizing thelength of the longest queue where queues 
an be emptied subje
t to 
on
i
ts 
onstraints.Paper stru
ture: Se
tion 2 in
ludes formal de�nitions and notations. Our generi
 te
hnique isshown in Se
tion 3. In se
tion 4 we present our randomized algorithm for the unit value 
ase.Se
tion 5 
ontains deterministi
 and randomized lower bounds for the unit value problem.2 Problem de�nition and notationsWe model the swit
h throughput maximization problem as follows. We are given a swit
h with mFIFO queues, where queue i has size Bi, and one output port. Pa
kets are arriving online, ea
hpa
ket is destined to one of the queues and is asso
iated with a non-negative value. We denotethe online pa
kets sequen
e by �. Initially, the m queues are empty. We assume that time isdis
rete, and ea
h time unit t � 0 is divided to two phases: at the beginning of the �rst phase oftime t a set �(t) of pa
kets arrive to the queues. Pa
kets 
an be inserted to ea
h queue withoutex
eeding its 
apa
ity. Remaining pa
kets must be dis
arded. In the se
ond phase of time t, theswit
hing algorithm may sele
t one of the non-empty queues and transmit the pa
ket at the headof the queue. The goal is to maximize the total value of transmitted pa
kets. We 
onsider boththe non-preemptive model and the preemptive model, in whi
h previously stored pa
kets 
an bedis
arded from the queues. We also study two interesting spe
ial 
ases of our model: the 2-value
ase, in whi
h pa
kets values are restri
ted to 1 and �, and the unit value model in whi
h all pa
ketshave unit value.Given an online swit
hing algorithm A we denote by A(�) the value of A given the sequen
e �,and by At(�) the value of A until time t (in
lusive). We denote the optimal (o�-line) algorithm byOPT , and use similar notations for it.A deterministi
 online algorithm A is 
-
ompetitive for a problem i� for every instan
e of theproblem and every pa
kets sequen
e � we have: OPT (�) � 
�A(�). We say that a randomized onlinealgorithm A is 
-
ompetitive i� for every sequen
e � the following holds: OPT (�) � 
 �E[A(�)℄. We
laim that a problem has a lower bound 
 if no algorithm 
an a
hieve a 
ompetitive ratio stri
tlylower than 
. Given an online algorithm A, we denote its 
ompetitive ratio by CA.We often fo
us on algorithms that transmit a pa
ket every time a pa
ket is available. We referto su
h algorithms as reasonable online algorithms. One 
an easily verify that any online algorithmA 
an be transformed into a reasonable online algorithm A0 su
h that CA0 � CA.3 Competitive algorithms for QoS swit
h managementIn this se
tion we present a generi
 te
hnique that de
ouples the admission 
ontrol and the s
hedul-ing problems and transforms any admission 
ontrol strategy for a single queue (for both the pre-emptive and non-preemptive models) to a 
ompetitive algorithm for the general m queues model.4



We use our generi
 te
hnique to 
onstru
t 
on
rete 
ompetitive algorithms for both the preemptiveand non-preemptive 
ases.We begin by de�ning a natural greedy preemptive admission 
ontrol strategy for a single queue.Algorithm GREEDYEnqueue a new pa
ket if:� The queue is not full.� Or the pa
ket with the smallest value in the queue has a lower value than the 
urrent pa
ket.In this 
ase the smallest pa
ket is dis
arded and the new pa
ket is enqueued.We now turn to 
onsider a relaxation of our preemptive model, in whi
h pa
kets 
an be trans-mitted from ea
h queue in any order, not ne
essarily FIFO. We note that although this relaxationadds 
onsiderable strength to the online algorithm, the optimal solution remains the same. There-fore, when referring to the optimal solution we do not distinguish between the original FIFO modeland its relaxation. We present the following natural greedy online algorithm for the preemptiverelaxed model.Algorithm TransmitLargest (TL)1. Admission 
ontrol: use algorithm GREEDY for admission 
ontrol in all m in
omingqueues.2. S
heduling: at ea
h time unit, transmit the pa
ket with the largest value among all pa
ketsstored in the queues.We return to our original FIFO model and present our generi
 te
hnique Generi
Swit
h(abbreviated GS) for both the preemptive and non-preemptive models. We fo
us on asyn
hronousadmission 
ontrol strategies for a single queue, de�ned as follows.De�nition 1. An admission 
ontrol strategy for a single FIFO queue is 
alled asyn
hronous if it
an handle arrival of pa
kets at 
ontinuous time.To the best of our knowledge, all known admission 
ontrol strategies for a single queue areasyn
hronous. We next present the de�nition of GS with an asyn
hronous admission 
ontrolstrategy A as a parameter.Algorithm GSA:1. Admission 
ontrol: apply admission 
ontrol strategy A to all m in
oming queues.2. S
heduling: run a simulation of algorithm TL (in the preemptive relaxed model) with theonline input sequen
e �. At ea
h time unit transmit the pa
ket at the head of the queue usedby TL simulation.In GSA, admission 
ontrol is 
arried out by exer
ising the asyn
hronous admission 
ontrolstrategy A on all queues. Consequently, algorithm GSA is preemptive only if A itself is preemptive,and non-preemptive otherwise. S
heduling is handled independently by simulating the operation5



of algorithm TL (whi
h is de�ned in the preemptive relaxed model) on the online input sequen
e�, and adopting all its s
heduling de
isions, with no regard to the values of the pa
kets transmittedby TL or the pa
kets residing in its queues. It is 
ru
ial to note that we use the simulation of TLin the preemptive relaxed model even when we generate a non-preemptive algorithm GSA from asingle queue non-preemptive admission 
ontrol strategy A. Our main result is that the 
ompetitiveratio of GSA is at most twi
e the 
ompetitive ratio of A.We begin our analysis by bounding the performan
e of algorithm TL.Theorem 1. Algorithm TL is 2-
ompetitive in the preemptive relaxed model.Proof. For every i = 1; : : : ;m denote by fvtijg the values of the pa
kets stored in queue i at timet in TL, sorted from largest to smallest. Similarly, denote by f�vtijg the sorted values in queue i attime t in OPT . For simpli
ity of notation, we often omit the supers
ript t when meaning is 
lear,and we always 
onsider 1 � j � B, and pad the sequen
es with 0's, if ne
essary. Note that as a
onsequen
e, every time a pa
ket is inserted to queue i, a value is dis
arded from the 
orrespondingsorted sequen
e. We may view it as though we virtually extend the sorted sequen
e to B+1 entries,where entry B + 1 holds the dis
arded value (whi
h may be a padded '0' entry). If a pa
ket isinserted to the queue upon its arrival we refer to it as an a

epted pa
ket, otherwise we refer to itas a reje
ted pa
ket. Re
all that whenever algorithm TL dis
ards a pa
ket, it is the pa
ket with thesmallest value in the queue. The following observation argues the same with regard to the optimalsolution.Observation 1. Whenever OPT dis
ards a pa
ket in the relaxed model, it is the pa
ket with thesmallest value in the queue.For every queue i and time t we de�ne dti =PBj=1(�vtij�vtij)+, where x+ = maxfx; 0g. We de�nethe following potential fun
tion: �t =Pmi=1 dti. Note that �t � 0 for every t.Lemma 2. For every pa
kets sequen
e � and time unit t � 0 the following inequality holds:OPT t(�) + �t � 2 � TLt(�).Proof. We prove the lemma by indu
tion on the time units. For t = 0 the inequality 
learly holds.We assume 
orre
tness by the end of time unit t� 1 and prove that the inequality holds when timeunit t is �nished. Denote by �x the 
hange in
urred in the value of x when an operation takespla
e in the system, i.e. a pa
ket arrives or a pa
ket is transmitted. The next two 
laims provethat the inequality holds for every single operation o

urring in the system during time t.Claim 3. For ea
h pa
ket arriving at the �rst phase of time t we have: �OPT +�� � 2 ��TL.Proof. In the �rst phase of ea
h time unit, pa
kets are not transmitted, therefore �OPT = �TL =0. Consider any pa
ket arriving at time t. Let i be the queue to whi
h the pa
ket is destined. Weexamine the possible 
ases and prove that for all of them �� � 0. Clearly, �dj = 0 for all j 6= i,hen
e it suÆ
es to 
he
k �di. Note that we use here fvijg and f�vijg to denote the sorted valuessequen
es after the insertion.1. The pa
ket is a

epted by both OPT and TL. Let k � B be the index of the newpa
ket in the sequen
e of sorted values of queue i in OPT . Let l � B be the 
orrespondingindex for TL. We 
he
k the possible 
ases:6



(a) k � l:�di = BXj=k(�vij � vij)+ � 24 lXj=k+1(�vij � vi(j�1))+ + B+1Xj=l+1(�vij � vij)+35� BXj=k(�vij � vij)+ � 24 lXj=k+1(�vij � vi(j�1))+ + BXj=l+1(�vij � vij)+35= lXj=k(�vij � vij)+ � lXj=k+1(�vij � vi(j�1))+ = 0;where the last equality results from the fa
t that �vij1 � vij2 for every k � j1; j2 � l.(b) k > l:�di = BXj=l(�vij � vij)+ � 24k�1Xj=l(�vij � vi(j+1))+ + B+1Xj=k+1(�vij � vij)+35� BXj=l(�vij � vij)+ � 24k�1Xj=l(�vij � vi(j+1))+ + BXj=k+1(�vij � vij)+35= kXj=l(�vij � vij)+ � k�1Xj=l(�vij � vi(j+1))+= kXj=l(�vij � vij)+ � k�1Xj=l(�vij � vi(j+1)) (1)= kXj=l(�vij � vij)+ � 24 kXj=l(�vij � vij)� �vik + vil35 (2)= kXj=l(�vij � vij)+ � kXj=l(�vij � vij)+ = 0; (3)where in (2) �vik = vil and (1) and (3) follow from the fa
t that �vij1 � vij2 for everyl � j1; j2 � k.2. The pa
ket is a

epted by OPT , reje
ted by TL. Let k be the index of the new pa
ketin the list of sorted values in queue i in OPT . We have:�� = �di = BXj=k(�vij � vij)+ � B+1Xj=k+1(�vij � vi(j�1))+ � BXj=k(�vij � vij)+ = 0;where the last equality results from the fa
t that �vij1 � vij2 for every k � j1; j2 � B, sin
eTL reje
ted the new pa
ket. 7



3. The pa
ket is a

epted by TL, reje
ted by OPT . Let l be the index of the new pa
ketin the list of sorted values in queue i in TL. We get:�� = �di = BXj=l(�vij � vij)+ � BXj=l(�vij � vi(j+1))+ � 0;where the last inequality follows from the fa
t that (�vij � vij)+ � (�vij � vi(j+1))+ for everyl � j � B.4. The pa
ket is reje
ted by both OPT and TL. Clearly, �� = 0.Claim 4. For the transmission phase in time t the following holds: �OPT +�� � 2 ��TL.Proof. In this 
ontext we denote by fvijg and f�vijg the sorted values sequen
es before the trans-mission takes pla
e. Let r be the queue from whi
h TL takes a pa
ket for transmission. De�nevr(B+1) = 0. We have:�dr = BXj=1(�vrj � vr(j+1))+ � BXj=1(�vrj � vrj)+� BXj=1[(�vrj � vrj)+ + (vrj � vr(j+1))℄� BXj=1(�vrj � vrj)+= BXj=1(vrj � vr(j+1)) = vr1 � vr(B+1) = vr1 = �TL:Let s be the queue from whi
h OPT takes the pa
ket with the kth largest value for transmission(of 
ourse r = s is possible, and then fvsjg is the sequen
e after the �rst 
hange). We have:�ds = BXj=k+1(�vsj � vs(j�1))+ � BXj=k(�vsj � vsj)+� BXj=k+1(�vsj � vsj)+ � BXj=k+1(�vsj � vsj)+ � (�vsk � vsk)� �(�OPT ��TL);where the last inequality results from vsk � �TL. Putting it all together we get:�OPT +�� = �OPT +�dr +�ds � �OPT +�TL� (�OPT ��TL) = 2 ��TLClaims 3 and 4 imply that the inequality holds when time t is �nished. This 
ompletes theproof of Lemma 2. 8



Theorem 1 follows dire
tly from Lemma 2.We now return to our original FIFO model and analyze the performan
e of GS. Before wepro
eed we wish to elaborate on the intuition behind our generi
 algorithm. Algorithm GS usesthe simulation of algorithm TL to de
ide at ea
h time unit whi
h queue to use. This enables us to
ompare our algorithm's throughput with TL's throughput for ea
h queue separately. Informally,this means that we 
an forget about the s
heduling problem, lose a 
ompetitive fa
tor of 2 sin
ewe use TL that is 2-
ompetitive, and fo
us on our performan
e in ea
h queue separately. We arenow ready to state the main theorem of the paper.Theorem 2. Let GSA denote the algorithm obtained by running algorithm GS with the asyn-
hronous single queue admission 
ontrol strategy A (preemptive or non-preemptive). Then CGSA �2 � CA.Proof. We begin by introdu
ing some new de�nitions and notations. Given the input sequen
e �,denote by �i (i = 1; : : : ;m) the sequen
e of pa
kets arriving at queue i. For a given input sequen
e�, de�ne �ki to be the time unit at whi
h algorithm TL transmits a pa
ket from queue i for the k-thtime (�ki =1 if queue i is used less than k times). We now de�ne a more 
ompa
t representation of�i, denoted by �̂i, whi
h relies on TL operation. We 
onsider only time units in whi
h queue i wasused for transmission, and de�ne �̂i(t) = (�i(� t�1i + 1); : : : ; �i(� ti )), where we 
on
atenate pa
ketsarriving between time units � t�1i and � ti and assign them all to the latter time unit. Consideran algorithm ALG, that exer
ises an independent asyn
hronous admission 
ontrol poli
y in ea
hqueue (denote by Ai the poli
y used in queue i) and makes the same s
heduling de
isions as TL.Then, we 
an de
ouple admission 
ontrol and s
heduling and obtain : ALG(�) = Pmi=1Ai(�̂i).Spe
i�
ally, we have: GSA(�) = Pmi=1A(�̂i) and TL(�) = Pmi=1 TL(�̂i), where we denote by TLboth the algorithm for m queues and the restri
tion to a single queue.We 
an now prove the desired 
ompetitive ratio:OPT (�) � 2 � TL(�) = 2 mXi=1 TL(�̂i) � 2 mXi=1OPT (�̂i) � 2 mXi=1CA �A(�̂i) = 2 � CA �GSA(�);where the �rst inequality follows from Theorem 1, the third inequality follows from the fa
t thatthe optimal solution is at least as good as TL for �̂i and the forth inequality follows from the fa
tthat the optimal solution is the same for the preemptive and the non-preemptive models.We now show how to 
ombine our generi
 te
hnique with known admission 
ontrol algorithms fora single queue, in order to 
onstru
t spe
i�
 preemptive and non-preemptive algorithms for ourgeneral m queues FIFO model. These examples demonstrate both the 
exibility and the strengthof our generi
 te
hnique. All the following theorems are derived dire
tly from Theorem 2.General preemptive model: Kesselman et al. [9℄ proved that algorithm GREEDY is 2-
ompetitive in the single queue preemptive model. There follows:Theorem 3. Algorithm GSGREEDY in the general preemptive model is 4-
ompetitive.General non-preemptive model: Andelman et al. [2℄ re
ently presented a non-preemptiveadmission 
ontrol algorithm for a single queue 
alled Exponential-Interval Round Robin (ab-breviated EIRR), whi
h is (edln�e)-
ompetitive, where � denotes the ratio between the largestvalue in the pa
kets sequen
e � and the smallest one . Therefore:9



Theorem 4. Algorithm GSEIRR for the general non-preemptive model is (2edln�e)-
ompetitive .2-value preemptive model: In this spe
ial 
ase, studied in [10, 12℄, the values of the pa
kets arerestri
ted to two values, 1 and �. Lotker and Patt-Shamir [12℄ presented their mf (abbreviationfor mark&
ush) single queue preemptive admission 
ontrol algorithm for the problem whose
ompetitive ratio is approximately 1:3. Combined with GS we obtain:Theorem 5. Algorithm GSmf for the 2-value preemptive model is approximately 2:6-
ompetitive.2-value non-preemptive model: Andelman et al. [2℄ presented a single queue non-preemptivealgorithm 
alled Ratio Partition (abbreviated RP ) for this 
ase, with 
ompetitive ratio 2 � 1� ,where � denotes the ratio between the largest value in the pa
kets sequen
e � and the smallestone. We obtain:Theorem 6. Algorithm GSRP for the 2-value non-preemptive model is (4� 2�)-
ompetitive.Unit value pa
kets: In this spe
ial 
ase all pa
kets have unit values and the goal is to maximizethe number of transmitted pa
kets. This model 
orrespond to networks la
king QoS 
apabilities,most notably IP networks.Theorem 7. Every reasonable online algorithm is 2-
ompetitive in the unit value model.Proof. Note that the admission 
ontrol algorithm GREEDY is 1-
ompetitive in the unit valuemodel. Combined with Theorem 2 we obtain that algorithm GSGREEDY is 2-
ompetitive. More-over, sin
e all pa
kets have unit values algorithm TL (whi
h di
tates GS s
heduling de
isions) 
anuse any non-empty queue at ea
h time unit, hen
e every reasonable algorithm is 2-
ompetitive.4 Randomized algorithm for unit value pa
ketsWe present the following randomized algorithm for the unit value model.Algorithm RandomS
hedule (RS):1. The algorithm uses m auxiliary queues, ea
h of size B. These queues 
ontain real numbersfrom the range (0; 1), where ea
h number is labelled as either marked or unmarked. Initiallythese queues are empty. To avoid 
onfusion between the auxiliary queues and the swit
hqueues holding the pa
kets, denote the former by Q1; : : : ; Qm and the latter by q1; : : : ; qm.2. Consider the pa
kets arrival phase in ea
h time unit. Suppose a new pa
ket arrives at queueqi. The algorithm 
hooses uniformly at random a real number from the range (0; 1), that isinserted to queue Qi and labelled as unmarked. If queue Qi was full when the pa
ket arrived,the number at the head of the queue is deleted prior to the insertion of the new number.3. During the transmission phase in every time unit, we 
he
k whether queues Q1; : : : ; Qm
ontain any unmarked number. If there are unmarked numbers, letQi be the queue 
ontainingthe largest unmarked number. We 
hange the label of the largest number to 'marked' andsele
t queue qi for transmission in this time unit. Otherwise (no unmarked numbers), wetransmit a pa
ket from any non-empty queue, if su
h exists.10



Theorem 8. For every sequen
e �, OPT (�)E[RS(�)℄ � ee�1 + o(1) � 1:58.Proof. We begin by introdu
ing a translation of our problem to the problem of �nding a maximummat
hing in a bipartite graph. We then prove the 
ompetitive ratio of algorithm RS by a redu
tionto the online algorithm for bipartite mat
hing shown in [8℄. We note that in the unit value model,there is no admission 
ontrol question, sin
e there is no reason to prefer one pa
ket over the other.Therefore, we deal with the s
heduling problem alone.Given a sequen
e �, we translate it to the bipartite graph G� = (U; V;E), whi
h is de�ned asfollows.� Let T denote the latest time unit in � in whi
h a pa
ket arrives. We de�ne the set of timenodes as U = fu1; : : : ; uT+mBg.� Let P be the total number of pa
kets spe
i�ed in �. We de�ne the set of pa
ket nodes asV = fv1; : : : ; vP g.� Let P ti denote the set of the last B pa
kets that arrive to queue qi until time t (in
lusive).De�ne P t = Smi=1 P ti . We de�ne the set of edges in G� as follows: E = f(ut; vp)jp 2 P tg.Before we pro
eed we introdu
e some new de�nitions.De�nition 2. A s
hedule S for a sequen
e of arriving pa
kets � is a set of pairs of the form (t; qi),where queue qi is s
heduled for transmission at time t. The size of the s
hedule, denoted jSj, is thesize of the set.De�nition 3. A s
hedule S for a sequen
e � is 
alled legal if for every pair (t; qi), queue qi is notempty at time t.The following lemmas 
onne
t bipartite mat
hing to our problem.Lemma 5. Every legal s
hedule S for the sequen
e � 
an be mapped to a mat
hing M in G� su
hthat jSj = jM j.Proof. Let S be a legal s
hedule for �. We 
onstru
t the desired mat
hing M in
rementally whilemoving ahead in time. For ea
h pair (t; qi) 2 S, we 
onne
t node ut to node vj , where j = minf1 �k � P j vk 2 P ti ; vk 62Mg. A simple indu
tion proves that for ea
h time t and queue qi the numberof unmat
hed nodes in P ti is equal to the number of pa
kets residing in queue qi at time t a

ordingto S. Hen
e, every transmitted pa
ket 
an be mapped to an edge inM . Clearly, by the 
onstru
tionjSj = jM j.Lemma 6. Every mat
hing M in G� 
an be translated in polynomial time to a legal s
hedule Sfor � su
h that jSj = jM j.Proof. Let M be a mat
hing in G� . We 
onstru
t a legal s
hedule S for � in
rementally, whilegoing over the nodes in U , starting from u1. Let node ut be 
onne
ted in M to node vj 2 P ti .Then we add the pair (t; qi) to the s
hedule S. A simple indu
tion shows that for every i and t,the number of nodes from P ti that are in
luded in M is at most the number of pa
kets residing inqueue qi at time t a

ording to S. Therefore, we 
an always translate an edge in M to a pa
ket11



transmission in S, and our obtained s
hedule is legal. Clearly, this translation takes polynomialtime and by the 
onstru
tion jSj = jM j.The following 
orollaries dire
tly result from Lemmas 5 and 6.Corollary 7. For any sequen
e �, the size of the optimal s
hedule for � is equal to the size of amaximum mat
hing in G�.Corollary 8. For any sequen
e �, an optimal s
hedule 
an be found (o�-line) in polynomial time.Consider algorithm RS as an algorithm for �nding a mat
hing in G�. The algorithm essentiallymaintains an order on the nodes in P t, and 
onne
ts node ut to the �rst node from P t (a

ordingto the maintained order) that has not been used yet. In fa
t, algorithm RS operates on G� exa
tlyas the algorithm presented in [8℄ for the online maximum bipartite mat
hing problem. Hen
e, theratio between the size of the maximum mat
hing in G� and the size of the mat
hing 
onstru
tedby algorithm RS is at most ee�1 + o(1). Clearly, by the algorithm's operation (step 3), for every1 � i � m, the number of pa
kets in queue qi is at least the number of unmarked elements in Qi.Therefore, there is always an available pa
ket in qi when the algorithm 
hooses it for transmission(step 3 in RS). In fa
t, it is worthwhile to note that the number of transmitted pa
kets 
an belarger than the size of the 
onstru
ted mat
hing. Hen
e, a

ording to 
orollary 7, RS is ( ee�1)-
ompetitive5 Lower bounds for the unit value modelIn the following theorems we prove deterministi
 and randomized lower bounds for the unit value
ase.Theorem 9. Every deterministi
 online algorithm for the unit value 
ase has 
ompetitive ratio atleast 2� 1=m.Proof. Fix any online algorithm A. We 
onsider the 
ase of unit size queues, i.e. B = 1. Theadversary 
onstru
ts the following sequen
e �:� At time t = 0, m pa
kets arrive, one for ea
h queue.� Immediately before any time t = 1; : : : ;m � 1, A has at least one full queue. At timet = 1; : : : ;m � 1 the adversary generates a pa
ket destined to queue it, where it is an indexof one of the full queues in A. Clearly, A 
an not a

ept a single pa
ket from this sequen
e.At time t (t = 0; : : : ;m � 2) OPT empties queue it+1, so it 
an a

ept all pa
kets in thesequen
e.� At the end of time unit t = m� 1, all queues in OPT are full ex
ept one, and all queues inA are empty. From this time on, no pa
kets arrive, hen
e only pa
kets 
urrently stored willbe transmitted.Clearly: OPT (�)A(�) = 2m�1m = 2� 1m . 12



In the above lower bound we set B = 1. The next theorem shows a lower bound for any spe
i�
value of B.Theorem 10. For any spe
i�
 value of B, every deterministi
 online algorithm for the unit value
ase has 
ompetitive ratio at least 1:366 ��(1=m).Proof. Consider any spe
i�
 value for B and �x any online algorithm A. We prove the theorem forany number of queues. We distinguish between two possible 
ases:B � m: Let us assume that B divides m (note that sin
e the adversary 
an redu
e the number ofa
tive queues, this assumption is w.l.o.g). The sequen
e � produ
ed by the adversary is as follows:� At time t = 0, B pa
kets arrive at ea
h queue.� The sequen
e 
onsists of (k � mB � 1) B-phases, ea
h 
omposed of B 
onse
utive time units. Inea
h B-phase pa
kets arrive only at the last time unit. Denote by ij the most loaded queue inA before the last time unit of B-phase j. At the last time unit of B-phase j, B new pa
ketsarrive at queue ij.� After the B-phases are �nished, no additional pa
kets arrive.At the beginning of any time unit 1 � t � mB note that A holds at least mB � t pa
kets inits queues. Therefore, A has at least one queue with total load at least B � b tm
. For B-phase j(j = 1; : : : (k � mB � 1)) OPT empties queue ij during the �rst B time units, and hen
e it a

eptsall arriving pa
kets at the end of the phase. We now analyze the respe
tive throughput of A andOPT :OPT (�) = mB + km�B = m(B + k)�BA(�) = mB + (mB � 1) � 0 + mB � 1 + : : : mB � (k � 1) =m�B + k(k � 1)2B � :Therefore, we get:OPT (�)A(�) = B + k � BmB + k22B � k2B � B + k � 2BmB + k22B = B + kB + k22B ��� 1m� ;we take k = �B, where � = �1 +p3 maximizes the expression. We obtain:OPT (�)A(�) � p31 + 12(�1 +p3)2 ��� 1m� = 12(1 +p3)��� 1m� � 1:366 ��� 1m� :We note that although k 
an be a real number, either bk
 or dke obtain our desired ratio.B > m: The adversary generates a sequen
e � similar to the one used in the previous 
ase, onlynow it is 
omposed of k B-phases. From the same 
onsiderations as before we get:OPT (�)A(�) = mB + kBmB + bBm
+ : : :+ bkBm 
 � m+ km+ k(k+1)2m � m+ km+ k22m ��� 1m� � 1:366 ��� 1m� ;where the last inequality follows from the same 
al
ulation as in the previous 
ase.13



Theorem 11. Every randomized online algorithm for the unit value 
ase has 
ompetitive ratio atleast 1:46 ��(1=m).Proof. We prove the lower bound for unit size queues, i.e. B = 1. We provide a probabilitydistribution on sequen
es of inputs. We prove the lower bound for any deterministi
 algorithm.Sin
e any randomized algorithm is a probability distribution on deterministi
 ones this also providesa lower bound for any randomized algorithm (see also [5℄, 
hapter 8 for Yao's theorem). Theadversary 
onstru
ts the following sequen
e �:� At time t = 0, m pa
kets arrive, one for ea
h queue.� For every time t = 1; : : : ; r a pa
ket arrives to a queue that is randomly sele
ted a

ording tothe uniform distribution.� After time r no additional pa
kets arrive.Clearly, OPT 
an a

ept all pa
kets, be
ause it always transmits a pa
ket from the queue towhi
h the next pa
ket will arrive. Hen
e, its throughput is exa
tly m+ r. On the other hand, thebehavior of any online algorithm A 
an be des
ribed as a Markov 
hain. The Markov 
hain hasm states. State i for 0 � i � m � 1 
orresponds to a total of i pa
kets in the queues. Clearly, atthe beginning of time t = 1 the algorithm is in state m � 1. Let Xt denote the random variablethat indi
ates the state of the online deterministi
 algorithm at time t, and let �Xt denote theindi
ator random variable with value 1 i� the algorithm 
hanges its state during time t (
learly,Xt+1 = Xt��Xt). We further denote by pti the probability of the algorithm to be in state i at timet. At any time the probability of moving from state i to state i�1 is exa
tly i=m and the probabilityof staying at state i is 1 � i=m. Therefore, E[�Xt℄ = Pr[�Xt = 1℄ = Pm�1i=1 impti. The expe
tedstate at time t, whi
h 
orresponds to the expe
ted number of pa
kets in the queues, is: E[Xt℄ =Pm�1i=1 i � pti = m � E[�Xt℄. As a result, E[Xt+1℄ = E[Xt � �Xt℄ = E[Xt℄ � E[�Xt℄ = m�1m E[xt℄.Hen
e, after r time units the expe
ted number of pa
kets in the queues is (m � 1)(1 � 1=m)r.Sin
e the online algorithm transmitted at most one pa
ket at ea
h time unit we 
on
lude thatthe expe
ted throughput of any online algorithm is at most 1 + r + (m � 1)(1 � 1=m)r. By theappropriate (optimal) 
hoi
e of r (i.e. taking r = �m where � = 1:146) to maximize the ratiom+r1+r+(m�1)(1�1=m)r we 
on
lude that the ratio is at least 1:46 ��(1=m).Referen
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