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Abstract

The concept of Quality of Service (QoS) networks has gained growing attention recently,
as the traffic volume in the Internet constantly increases, and QoS guarantees are essential to
ensure proper operation of most communication based applications. A QoS switch serves m
incoming queues by transmitting packets arriving at these queues through one output port, one
packet per time unit. Each packet is marked with a value indicating its guaranteed quality
of service. Since the queues have bounded capacity and the rate of arriving packets can be
much higher than the transmission rate, packets can be lost due to insufficient queue space.
The goal is to maximize the total value of transmitted packets. This problem encapsulates
two dependent questions: admission control, namely which packets to discard in case of queue
overflow, and scheduling, i.e. which queue to use for transmission in each time unit. We use
competitive analysis to study online switch performance in QoS based networks. Specifically, we
provide a novel generic technique that decouples the admission control and scheduling problems.
Our technique transforms any single queue admission control strategy (preemptive or non-
preemptive) to a scheduling and admission control algorithm for our general m queues model,
whose competitive ratio is at most twice the competitive ratio of the given admission control
strategy. We use our technique to derive concrete algorithms for the general preemptive and
non-preemptive cases, as well as for the interesting special cases of the 2-value model and the
unit value model. To the best of our knowledge this is the first result combining both scheduling
and admission control decisions for arbitrary packets sequences in multi-queue switches. We also
provide a 1.58-competitive randomized algorithm for the unit value case. This case is interesting
by itself since most current networks (e.g. IP networks) only support a best-effort service in
which all packets streams are treated equally.

1 Introduction

Overview: During recent years, network traffic has increased steadily, mainly due to the con-
stant growing use of the Internet for both commercial and personal purposes. This phenomenon,
combined with the fact that Internet traffic tends to fluctuate constantly, frequently overloads
networking systems causing considerable degradation in the quality of communication based appli-
cations. As a result, the concept of networks supporting guaranteed Quality of Service (QoS) to
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each traffic stream, in terms of bandwidth, latency, maximum drop rate etc., has received grow-
ing attention lately within the communication community. Since network overloads are frequent,
QoS switches often have to cope with increasing amounts of overloaded traffic, while attempting
to maximize the weighted throughput, where the weights correspond to the required quality of
service for each packet. Hence, the quality of the decisions made by the switch can be measured
by considering the total weight of packets it managed to pass through.

We model the problem of maximizing switch throughput in QoS networks as follows. A switch
has m incoming FIFO queues and one output port. At each time unit new packets arrive to the
queues, each packet marked with a value that corresponds to its guaranteed quality of service.
Additionally, at each time unit the switch selects one non-empty queue and transmits the packet
at the head of the queue through the output port. Since the m incoming queues have bounded
capacities, arriving packets can overflow the queues, and some packets must be discarded. The goal
is to maximize the total value of transmitted packets. We consider both the non-preemptive model
and the preemptive model, where packets stored in the queues can be discarded in order to free
space for new packets. Traditionally, similar problems were analyzed while assuming either some
constant structure of the sequence of arriving packets, or a specific distribution of the arrival rates
(see e.g. [4, 13]). We avoid any assumptions on the input and use competitive analysis to compare
the performance of online algorithms to the optimal solution. In our work we face the combination
of two dependent problems: admission control, namely which packets to discard in case of queue
overflow, and scheduling, i.e. from which queue to transmit in every time unit. We present a
generic technique that decouples the above problems and transforms any admission control strategy
for a single queue (both preemptive and non-preemptive) to an algorithm for our general model
(preemptive or non-preemptive, respectively). The competitive ratio of the constructed algorithm is
at most twice the competitive ratio of the given admission control strategy. We therefore generalize
known results [1, 2, 9, 10, 12] for preemptive and non-preemptive single queue admission control
to the general model of m queues.

In addition, we also study the special case where all packets have unit value, and the goal
is to maximize the number of transmitted packets. This model is interesting by itself, since the
majority of current networks (most notably, IP networks) do not yet integrate full QoS capabilities,
and provide a “best effort” service, where packets belonging to different traffic streams are treated
equally within intermediate switches. We show a randomized algorithm and lower bounds for this
special case.

Our results:

e Our main contribution is a generic technique to transform an admission control strategy for
a single queue (both preemptive and non-preemptive) to a scheduling and admission control
algorithm (preemptive or non-preemptive, respectively) for a switch with m queues. The
competitive ratio of the constructed algorithm is at most twice the competitive ratio of the
original single queue admission control algorithm.

e We use our generic technique to devise a 4-competitive algorithm for our general m queues
preemptive model with packets of arbitrary values.

e In addition we employ our technique to construct the following algorithms:



A (2e[ln a])-competitive algorithm for the general non-preemptive model where « is the
ratio between the largest value to the smallest one.

An approximately 2.6-competitive algorithm for the preemptive 2-value model.

- A4d- %)—competitive algorithm for the non-preemptive 2-value model where the values
are restricted to 1 and «.

— We show that any “reasonable” online algorithm (defined later) is 2-competitive for the
special case of unit value packets.

e We present a (;%7)-competitive randomized algorithm for the unit value case. We also show

deterministic and randomized lower bounds in this model.

We prove our upper bounds while assuming that all the queues in the switch are of equal size.
We note that this is done for simplicity of notation only. The algorithms we present, including
their bounds and analysis, remain the same when the queues have different sizes.

Our techniques: For our generic technique, we begin by considering a relaxation of our pre-
emptive m queues model, in which packets can be transmitted in any order out of the queues, not
necessarily FIFO. We present a natural algorithm in this preemptive relaxed model and analyze its
performance by using a potential function. We then formulate our generic algorithm which is given
a single queue admission control strategy as a parameter. The algorithm uses the given strategy
for admission control in all m queues. In addition, the algorithm runs a simulation of the algorithm
in the relaxed preemptive model and adopts its scheduling decisions. We prove that the simulation
we use allows us to analyze our algorithm’s performance in each queue separately.

We also investigate the special case of unit value packets. We construct a reduction to the
problem of finding a maximum matching in a bipartite graph, whose unique property is its inde-
pendence of the switching algorithm. This method can be combined with the techniques provided
in [8] to produce a randomized algorithm which is 1.58-competitive. This is in contrast to a natural
randomized algorithm that turns out to be no better than (2 — o(1))-competitive. The random-
ized lower bound is proved by modelling the problem as a Markov chain (which corresponds to a
non-uniform random walk). A careful analysis of this Markov chain provides the lower bound.

Related results: The online problem of throughput maximization in switches supporting QoS
has been studied extensively during recent years. Aiello et al. [1] initiated the study of different
queuing policies for the 2-value non-preemptive model in which the switch has a single queue,
preemption is not allowed and each packet has a value of either 1 or a. Recently, Andelman et
al.[2] showed tight bounds for this case. The preemptive 2-value single queue model was initially
studied by Kesselman and Mansour [10], followed by Lotker and Patt-Shamir [12] who showed
almost tight bounds. The general preemptive single queue model, where packets can take arbitrary
values, was investigated by Kesselman et al. [9], who proved that the natural greedy algorithm
is 2-competitive (specifically 2a/(1 + a)-competitive where o > 1 is the ratio between the largest
value to the smallest one). Our work generalizes all the above results for the general m queues
model. An alternative model to ours is the shared memory QoS switch, in which memory is shared
among all queues. Hahne et al. [7] studied buffer management policies in this model while focusing
on deriving upper and lower bounds for the natural Longest Queue Drop policy.



Koga [11] and Bar-Noy et al. [3] investigated the online problem of minimizing the length of the
longest queue in a switch, which is in some sense the dual to the unit value case we study. In their
model queues are unbounded in size, hence packets are not lost. Koga [11] proved that the natural
greedy algorithm that always empties the longest queue is ©(log m)-competitive. Bar-Noy et al. [3]
suggested a different algorithm that simulates the greedy algorithm in the continuous model and is
also O(log m)-competitive. Chrobak et al. [6] studied the more general problem of minimizing the
length of the longest queue where queues can be emptied subject to conflicts constraints.

Paper structure: Section 2 includes formal definitions and notations. Our generic technique is
shown in Section 3. In section 4 we present our randomized algorithm for the unit value case.
Section 5 contains deterministic and randomized lower bounds for the unit value problem.

2 Problem definition and notations

We model the switch throughput maximization problem as follows. We are given a switch with m
FIFO queues, where queue ¢ has size B;, and one output port. Packets are arriving online, each
packet is destined to one of the queues and is associated with a non-negative value. We denote
the online packets sequence by o. Initially, the m queues are empty. We assume that time is
discrete, and each time unit ¢ > 0 is divided to two phases: at the beginning of the first phase of
time ¢ a set o(t) of packets arrive to the queues. Packets can be inserted to each queue without
exceeding its capacity. Remaining packets must be discarded. In the second phase of time ¢, the
switching algorithm may select one of the non-empty queues and transmit the packet at the head
of the queue. The goal is to maximize the total value of transmitted packets. We consider both
the non-preemptive model and the preemptive model, in which previously stored packets can be
discarded from the queues. We also study two interesting special cases of our model: the 2-value
case, in which packets values are restricted to 1 and «, and the unit value model in which all packets
have unit value.

Given an online switching algorithm A we denote by A(o) the value of A given the sequence o,
and by A!(o) the value of A until time # (inclusive). We denote the optimal (off-line) algorithm by
OPT, and use similar notations for it.

A deterministic online algorithm A is c-competitive for a problem iff for every instance of the
problem and every packets sequence o we have: OPT (o) < c¢-A(o). We say that a randomized online
algorithm A is c-competitive iff for every sequence o the following holds: OPT' (o) < ¢-E[A(0)]. We
claim that a problem has a lower bound c if no algorithm can achieve a competitive ratio strictly
lower than c. Given an online algorithm A, we denote its competitive ratio by Cy4.

We often focus on algorithms that transmit a packet every time a packet is available. We refer
to such algorithms as reasonable online algorithms. One can easily verify that any online algorithm
A can be transformed into a reasonable online algorithm A’ such that C 4 < C4.

3 Competitive algorithms for QoS switch management

In this section we present a generic technique that decouples the admission control and the schedul-
ing problems and transforms any admission control strategy for a single queue (for both the pre-
emptive and non-preemptive models) to a competitive algorithm for the general m queues model.



We use our generic technique to construct concrete competitive algorithms for both the preemptive
and non-preemptive cases.

We begin by defining a natural greedy preemptive admission control strategy for a single queue.

Algorithm GREEDY
Enqueue a new packet if:

e The queue is not full.

e Or the packet with the smallest value in the queue has a lower value than the current packet.
In this case the smallest packet is discarded and the new packet is enqueued.

We now turn to consider a relaxation of our preemptive model, in which packets can be trans-
mitted from each queue in any order, not necessarily FIFO. We note that although this relaxation
adds considerable strength to the online algorithm, the optimal solution remains the same. There-
fore, when referring to the optimal solution we do not distinguish between the original FIFO model
and its relaxation. We present the following natural greedy online algorithm for the preemptive
relaxed model.

Algorithm TransmitLargest (7TL)

1. Admission control: use algorithm GREFEDY for admission control in all m incoming
queues.

2. Scheduling: at each time unit, transmit the packet with the largest value among all packets
stored in the queues.

We return to our original FIFO model and present our generic technique GenericSwitch
(abbreviated G'S) for both the preemptive and non-preemptive models. We focus on asynchronous
admission control strategies for a single queue, defined as follows.

Definition 1. An admission control strategy for a single FIFO queue is called asynchronous if it
can handle arrival of packets at continuous time.

To the best of our knowledge, all known admission control strategies for a single queue are
asynchronous. We next present the definition of GS with an asynchronous admission control
strategy A as a parameter.

Algorithm GS*:

1. Admission control: apply admission control strategy A to all m incoming queues.

2. Scheduling: run a simulation of algorithm T'L (in the preemptive relaxed model) with the
online input sequence o. At each time unit transmit the packet at the head of the queue used
by T'L simulation.

In GS*, admission control is carried out by exercising the asynchronous admission control
strategy A on all queues. Consequently, algorithm G S is preemptive only if A itself is preemptive,
and non-preemptive otherwise. Scheduling is handled independently by simulating the operation



of algorithm T'L (which is defined in the preemptive relaxed model) on the online input sequence
o, and adopting all its scheduling decisions, with no regard to the values of the packets transmitted
by T'L or the packets residing in its queues. It is crucial to note that we use the simulation of T'L
in the preemptive relaxed model even when we generate a non-preemptive algorithm GS* from a
single queue non-preemptive admission control strategy A. Our main result is that the competitive
ratio of GS4 is at most twice the competitive ratio of A.

We begin our analysis by bounding the performance of algorithm T'L.

Theorem 1. Algorithm TL is 2-competitive in the preemptive relazed model.

Proof. For every ¢ = 1,...,m denote by {vfj} the values of the packets stored in queue ¢ at time
t in T'L, sorted from largest to smallest. Similarly, denote by {ﬁfj} the sorted values in queue 7 at
time ¢t in OPT. For simplicity of notation, we often omit the superscript ¢ when meaning is clear,
and we always consider 1 < j < B, and pad the sequences with 0’s, if necessary. Note that as a
consequence, every time a packet is inserted to queue i, a value is discarded from the corresponding
sorted sequence. We may view it as though we virtually extend the sorted sequence to B+ 1 entries,
where entry B + 1 holds the discarded value (which may be a padded 0’ entry). If a packet is
inserted to the queue upon its arrival we refer to it as an accepted packet, otherwise we refer to it
as a rejected packet. Recall that whenever algorithm T'L discards a packet, it is the packet with the
smallest value in the queue. The following observation argues the same with regard to the optimal
solution.

Observation 1. Whenever OPT discards a packet in the relaxed model, it is the packet with the
smallest value in the queue.

For every queue i and time ¢ we define d! = Zle(z_)fj —vf;) 4, where 2, = max{z,0}. We define

the following potential function: ®¢ = "7 d!. Note that ®' > 0 for every t.

Lemma 2. For every packets sequence o and time unit t > 0 the following inequality holds:
OPT!(0) + ®' < 2-TL!(0).

Proof. We prove the lemma by induction on the time units. For ¢ = 0 the inequality clearly holds.
We assume correctness by the end of time unit ¢ — 1 and prove that the inequality holds when time
unit ¢ is finished. Denote by Az the change incurred in the value of x when an operation takes
place in the system, i.e. a packet arrives or a packet is transmitted. The next two claims prove
that the inequality holds for every single operation occurring in the system during time .

Claim 3. For each packet arriving at the first phase of time t we have: AOPT + A® < 2-ATL.

Proof. In the first phase of each time unit, packets are not transmitted, therefore AOPT = ATL =
0. Consider any packet arriving at time ¢. Let ¢ be the queue to which the packet is destined. We
examine the possible cases and prove that for all of them A® < 0. Clearly, Ad; = 0 for all j # i,
hence it suffices to check Ad;. Note that we use here {v;;} and {7;;} to denote the sorted values
sequences after the insertion.

1. The packet is accepted by both OPT and TL. Let £ < B be the index of the new
packet in the sequence of sorted values of queue 7 in OPT. Let [ < B be the corresponding
index for T'L. We check the possible cases:
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where in (2) 7;; = vy and (1) and (3) follow from the fact that o;;, > v;;, for every
I <j1,j2 < k.

2. The packet is accepted by OPT, rejected by T'L. Let k be the index of the new packet
in the list of sorted values in queue ¢z in OPT. We have:

B B+1 B
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where the last equality results from the fact that v;;, < v;;, for every k < ji,j2 < B, since
TL rejected the new packet.



3. The packet is accepted by T'L, rejected by OPT. Let [ be the index of the new packet
in the list of sorted values in queue 7 in T'L. We get:

B B
Ad = Ad; = Z Dij — Vij)+ Z Uij — Vi(j+1) )+ <0,
Jj=l =l

where the last inequality follows from the fact that (vi; — vij)1 < (vij — vi(j41))+ for every
1<j<B

4. The packet is rejected by both OPT and TL. Clearly, A® = 0.

Claim 4. For the transmission phase in time t the following holds: AOPT + A® <2 - ATL.
Proof. In this context we denote by {v;;} and {v;;} the sorted values sequences before the trans-

mission takes place. Let r be the queue from which T'L takes a packet for transmission. Define
vp(B+1) = 0. We have:
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Let s be the queue from which OPT takes the packet with the kth largest value for transmission
(of course r = s is possible, and then {v,;} is the sequence after the first change). We have:
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where the last inequality results from vy, < AT L. Putting it all together we get:
AOPT + A® = AOPT + Ad, + Ads < AOPT + ATL — (AOPT — ATL)=2-ATL

O

Claims 3 and 4 imply that the inequality holds when time ¢ is finished. This completes the
proof of Lemma 2. O



Theorem 1 follows directly from Lemma 2. O

We now return to our original FIFO model and analyze the performance of GS. Before we
proceed we wish to elaborate on the intuition behind our generic algorithm. Algorithm GS uses
the simulation of algorithm T'L to decide at each time unit which queue to use. This enables us to
compare our algorithm’s throughput with T'L’s throughput for each queue separately. Informally,
this means that we can forget about the scheduling problem, lose a competitive factor of 2 since
we use T'L that is 2-competitive, and focus on our performance in each queue separately. We are
now ready to state the main theorem of the paper.

Theorem 2. Let GS* denote the algorithm obtained by running algorithm GS with the asyn-
chronous single queue admission control strategy A (preemptive or non-preemptive). Then Cgga <
2-Cy.

Proof. We begin by introducing some new definitions and notations. Given the input sequence o,
denote by o; (i = 1,...,m) the sequence of packets arriving at queue i. For a given input sequence
o, define ’Tik to be the time unit at which algorithm T'L transmits a packet from queue ¢ for the k-th
time (Tik = oo if queue i is used less than k times). We now define a more compact representation of
oi, denoted by &;, which relies on T'L operation. We consider only time units in which queue 7 was
used for transmission, and define &;(t) = (o;(7/™" 4+ 1),...,0;(7})), where we concatenate packets
arriving between time units 7',;’71 and 7! and assign them all to the latter time unit. Consider
an algorithm ALG, that exercises an independent asynchronous admission control policy in each
queue (denote by A; the policy used in queue 7) and makes the same scheduling decisions as T'L.
Then, we can decouple admission control and scheduling and obtain : ALG(c) = Y1, A;(6y).
Specifically, we have: GS4(0) = -7, A(6;) and TL(0) = 7, TL(4;), where we denote by T'L
both the algorithm for m queues and the restriction to a single queue.

We can now prove the desired competitive ratio:

m m m

OPT(0) <2-TL(o) =2 TL(6;) <2) OPT(6;) <23 Ca-A(6;) =2-Ca -GS (0),
i=1 i=1 i=1

where the first inequality follows from Theorem 1, the third inequality follows from the fact that

the optimal solution is at least as good as T'L for &; and the forth inequality follows from the fact

that the optimal solution is the same for the preemptive and the non-preemptive models. O

We now show how to combine our generic technique with known admission control algorithms for
a single queue, in order to construct specific preemptive and non-preemptive algorithms for our
general m queues FIFO model. These examples demonstrate both the flexibility and the strength
of our generic technique. All the following theorems are derived directly from Theorem 2.

General preemptive model: Kesselman et al. [9] proved that algorithm GREEDY is 2-
competitive in the single queue preemptive model. There follows:

Theorem 3. Algorithm GSEREEDY in the general preemptive model is 4-competitive.

General non-preemptive model: Andelman et al. [2] recently presented a non-preemptive
admission control algorithm for a single queue called Exponential-Interval Round Robin (ab-
breviated EIRR), which is (e[ln a])-competitive, where « denotes the ratio between the largest
value in the packets sequence o and the smallest one . Therefore:



Theorem 4. Algorithm GSFIEE for the general non-preemptive model is (2e[ln «] )-competitive .

2-value preemptive model: In this special case, studied in [10, 12], the values of the packets are
restricted to two values, 1 and a. Lotker and Patt-Shamir [12] presented their mf (abbreviation
for mark&flush) single queue preemptive admission control algorithm for the problem whose
competitive ratio is approximately 1.3. Combined with GS we obtain:

Theorem 5. Algorithm GS™ for the 2-value preemptive model is approzimately 2.6-competitive.

2-value non-preemptive model: Andelman ef al. [2] presented a single queue non-preemptive
algorithm called Ratio Partition (abbreviated RP) for this case, with competitive ratio 2 — é,
where « denotes the ratio between the largest value in the packets sequence ¢ and the smallest
one. We obtain:

Theorem 6. Algorithm GSEP for the 2-value non-preemptive model is (4 — %)—competitive.

Unit value packets: In this special case all packets have unit values and the goal is to maximize
the number of transmitted packets. This model correspond to networks lacking QoS capabilities,
most notably IP networks.

Theorem 7. Fvery reasonable online algorithm is 2-competitive in the unit value model.

Proof. Note that the admission control algorithm GRFEFEDY is 1-competitive in the unit value
model. Combined with Theorem 2 we obtain that algorithm GSEREEDY ig 9 competitive. More-
over, since all packets have unit values algorithm T'L (which dictates GS scheduling decisions) can
use any non-empty queue at each time unit, hence every reasonable algorithm is 2-competitive. [J

4 Randomized algorithm for unit value packets

We present the following randomized algorithm for the unit value model.
Algorithm RandomSchedule (RS):

1. The algorithm uses m auxiliary queues, each of size B. These queues contain real numbers
from the range (0, 1), where each number is labelled as either marked or unmarked. Initially
these queues are empty. To avoid confusion between the auxiliary queues and the switch
queues holding the packets, denote the former by Q1,...,Q, and the latter by q1, ..., qgn.

2. Consider the packets arrival phase in each time unit. Suppose a new packet arrives at queue
¢;- The algorithm chooses uniformly at random a real number from the range (0, 1), that is
inserted to queue Q; and labelled as unmarked. If queue Q; was full when the packet arrived,
the number at the head of the queue is deleted prior to the insertion of the new number.

3. During the transmission phase in every time unit, we check whether queues @Q1,...,Qm
contain any unmarked number. If there are unmarked numbers, let (); be the queue containing
the largest unmarked number. We change the label of the largest number to 'marked’ and
select queue ¢; for transmission in this time unit. Otherwise (no unmarked numbers), we
transmit a packet from any non-empty queue, if such exists.

10



Theorem 8. For every sequence o, g[;:g((g;} < %5 +o(1) = 1.58.

Proof. We begin by introducing a translation of our problem to the problem of finding a maximum
matching in a bipartite graph. We then prove the competitive ratio of algorithm RS by a reduction
to the online algorithm for bipartite matching shown in [8]. We note that in the unit value model,
there is no admission control question, since there is no reason to prefer one packet over the other.
Therefore, we deal with the scheduling problem alone.

Given a sequence o, we translate it to the bipartite graph G = (U, V, E), which is defined as
follows.

e Let T denote the latest time unit in ¢ in which a packet arrives. We define the set of time
nodes as U = {u1,...,ur1mB}-

e Let P be the total number of packets specified in 0. We define the set of packet nodes as
V = {’Ul,...,vp}.

e Let P! denote the set of the last B packets that arrive to queue g; until time ¢ (inclusive).
Define P! = (J*, P!. We define the set of edges in G as follows: E = {(u¢,v,)|p € P'}.

Before we proceed we introduce some new definitions.

Definition 2. A schedule S for a sequence of arriving packets o is a set of pairs of the form (¢, ¢;),
where queue ¢; is scheduled for transmission at time ¢. The size of the schedule, denoted |S]|, is the
size of the set.

Definition 3. A schedule S for a sequence o is called legal if for every pair (¢, ¢;), queue g; is not
empty at time ¢.

The following lemmas connect bipartite matching to our problem.

Lemma 5. FEvery legal schedule S for the sequence o can be mapped to a matching M in G° such
that |S| = |M]|.

Proof. Let S be a legal schedule for ¢. We construct the desired matching M incrementally while
moving ahead in time. For each pair (¢,¢;) € S, we connect node u; to node v;, where j = min{1 <
k < P|vg € P',uy ¢ M}. A simple induction proves that for each time ¢ and queue ¢; the number
of unmatched nodes in P! is equal to the number of packets residing in queue ¢; at time ¢ according
to S. Hence, every transmitted packet can be mapped to an edge in M. Clearly, by the construction
|S| = |M]. O

Lemma 6. FEvery matching M in G° can be translated in polynomial time to a legal schedule S
for o such that |S| = |M].

Proof. Let M be a matching in G°. We construct a legal schedule S for ¢ incrementally, while
going over the nodes in U, starting from u;. Let node u; be connected in M to node v; € PY.
Then we add the pair (¢,¢;) to the schedule S. A simple induction shows that for every i and ¢,
the number of nodes from P! that are included in M is at most the number of packets residing in
queue ¢; at time t according to S. Therefore, we can always translate an edge in M to a packet

11



transmission in S, and our obtained schedule is legal. Clearly, this translation takes polynomial
time and by the construction |S| = |M|. O

The following corollaries directly result from Lemmas 5 and 6.

Corollary 7. For any sequence o, the size of the optimal schedule for o is equal to the size of a
maximum matching in G?.

Corollary 8. For any sequence o, an optimal schedule can be found (off-line) in polynomial time.

Consider algorithm RS as an algorithm for finding a matching in G?. The algorithm essentially
maintains an order on the nodes in P!, and connects node u; to the first node from P! (according
to the maintained order) that has not been used yet. In fact, algorithm RS operates on G exactly
as the algorithm presented in [8] for the online maximum bipartite matching problem. Hence, the
ratio between the size of the maximum matching in G and the size of the matching constructed
by algorithm RS is at most —*5 + o(1). Clearly, by the algorithm’s operation (step 3), for every
1 <14 < m, the number of packets in queue ¢; is at least the number of unmarked elements in Q);.
Therefore, there is always an available packet in ¢; when the algorithm chooses it for transmission
(step 3 in RS). In fact, it is worthwhile to note that the number of transmitted packets can be

e

larger than the size of the constructed matching. Hence, according to corollary 7, RS is (;%5)-

competitive ]

5 Lower bounds for the unit value model

In the following theorems we prove deterministic and randomized lower bounds for the unit value
case.

Theorem 9. Every deterministic online algorithm for the unit value case has competitive ratio at
least 2 — 1/m.

Proof. Fix any online algorithm A. We consider the case of unit size queues, i.e. B = 1. The
adversary constructs the following sequence o:

e At time t = 0, m packets arrive, one for each queue.

e Immediately before any time ¢ = 1,...,m — 1, A has at least one full queue. At time
t=1,...,m — 1 the adversary generates a packet destined to queue #;, where #; is an index
of one of the full queues in A. Clearly, A can not accept a single packet from this sequence.
At time ¢t (¢ = 0,...,m — 2) OPT empties queue i;41, so it can accept all packets in the
sequence.

e At the end of time unit ¢ = m — 1, all queues in OPT are full except one, and all queues in
A are empty. From this time on, no packets arrive, hence only packets currently stored will
be transmitted.

Clearly: Oig;()a) =ml_p_ 1
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In the above lower bound we set B = 1. The next theorem shows a lower bound for any specific
value of B.

Theorem 10. For any specific value of B, every deterministic online algorithm for the unit value
case has competitive ratio at least 1.366 — O(1/m).

Proof. Consider any specific value for B and fix any online algorithm A. We prove the theorem for
any number of queues. We distinguish between two possible cases:

B < m: Let us assume that B divides m (note that since the adversary can reduce the number of
active queues, this assumption is w.l.o.g). The sequence o produced by the adversary is as follows:

e At time t = 0, B packets arrive at each queue.

e The sequence consists of (k- — 1) B-phases, each composed of B consecutive time units. In
each B-phase packets arrive only at the last time unit. Denote by 7; the most loaded queue in
A before the last time unit of B-phase j. At the last time unit of B-phase j, B new packets
arrive at queue i;.

e After the B-phases are finished, no additional packets arrive.

At the beginning of any time unit 1 < ¢t < mB note that A holds at least mB — t packets in
its queues. Therefore, A has at least one queue with total load at least B — L%J For B-phase j
(j=1,...(k- 5 — 1)) OPT empties queue i; during the first B time units, and hence it accepts
all arriving packets at the end of the phase. We now analyze the respective throughput of A and

OPT:

OPT(c) = mB+km—-B=m(B+k)—B
R ()

Therefore, we get:

m

OPT(0) B+k-2 _B+k-28 pByg 1
A = k2 k Z k2 = k2 - @ — )
() B+&-L~ B+l BtE
we take k = aB, where & = —1 + /3 maximizes the expression. We obtain:
OPT (o) V3 <1> 1 1 1
> -0 (— :—1+\/§—®<—>z1.366—@<—>.
Alo) T 14+ 3(-1+3)? m 2( ) m m

We note that although k can be a real number, either |k or [k] obtain our desired ratio.

B > m: The adversary generates a sequence o similar to the one used in the previous case, only
now it is composed of k B-phases. From the same considerations as before we get:

OPT (o mB + kB m+k m+k 1 1
= () ) _ — > e > o —© (E) > 1.366 — © (E)
g mB+ |2+ + 0] T m+ S T mt g
where the last inequality follows from the same calculation as in the previous case. O
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Theorem 11. Fvery randomized online algorithm for the unit value case has competitive ratio at
least 1.46 — ©(1/m).

Proof. We prove the lower bound for unit size queues, i.e. B = 1. We provide a probability
distribution on sequences of inputs. We prove the lower bound for any deterministic algorithm.
Since any randomized algorithm is a probability distribution on deterministic ones this also provides
a lower bound for any randomized algorithm (see also [5], chapter 8 for Yao’s theorem). The
adversary constructs the following sequence o:

e At time t = 0, m packets arrive, one for each queue.

e For every time ¢ = 1,...,r a packet arrives to a queue that is randomly selected according to
the uniform distribution.

e After time r no additional packets arrive.

Clearly, OPT can accept all packets, because it always transmits a packet from the queue to
which the next packet will arrive. Hence, its throughput is exactly m + r. On the other hand, the
behavior of any online algorithm A can be described as a Markov chain. The Markov chain has
m states. State ¢ for 0 < i < m — 1 corresponds to a total of 7 packets in the queues. Clearly, at
the beginning of time ¢t = 1 the algorithm is in state m — 1. Let X; denote the random variable
that indicates the state of the online deterministic algorithm at time ¢, and let AX; denote the
indicator random variable with value 1 iff the algorithm changes its state during time ¢ (clearly,
Xi+1 = X;—AX;). We further denote by p! the probability of the algorithm to be in state i at time
t. At any time the probability of moving from state i to state i —1 is exactly i/m and the probability
of staying at state i is 1 — i/m. Therefore, E[AX;] = Pr[AX, = 1] = Y7 Lpt. The expected
state at time ¢, which corresponds to the expected number of packets in the queues, is: E[X;] =

;1_117, pf =m- E[AXt] As a result, E[Xt+1] = E[Xt — AXt] = E[Xt] — E[AXt] = %E[fl?ﬂ
Hence, after r time units the expected number of packets in the queues is (m — 1)(1 — 1/m)".
Since the online algorithm transmitted at most one packet at each time unit we conclude that
the expected throughput of any online algorithm is at most 1 +r + (m — 1)(1 — 1/m)". By the
appropriate (optimal) choice of r (i.e. taking r = am where @ = 1.146) to maximize the ratio
we conclude that the ratio is at least 1.46 — ©(1/m). O

m+r
1+r+(m—-1)(1-1/m)"
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