
The zero-one prin
iple for swit
hing networksYossi Azar � Yossi Ri
hter yAbstra
tRe
ently, approximation analysis has been extensively used to study algorithms for routingweighted pa
kets in various network settings. Although di�erent te
hniques were applied in theanalysis of diverse models, one 
ommon property was evident: the analysis of input sequen
es
omposed solely of two di�erent values is always substantially easier, and many results are knownonly for restri
ted value sequen
es. Motivated by this, we introdu
e our zero-one prin
iplefor swit
hing networks whi
h 
hara
terizes a wide range of algorithms for whi
h a
hieving 
-approximation (as well as 
-
ompetitiveness) with respe
t to sequen
es 
omposed of 0's and1's implies a
hieving 
-approximation. The zero-one prin
iple proves to be very eÆ
ient inthe design of swit
hing algorithms, and substantially fa
ilitates their analysis. We presentthree appli
ations. First, we 
onsider the Multi-Queue QoS Swit
hing model and design a 3-
ompetitive algorithm, improving the result from [6℄. Se
ond, we study the Weighted Dynami
Routing problem on a line topology of length k and present a (k + 1)-
ompetitive algorithm,whi
h improves and generalizes the results from [1, 11℄. As a third appli
ation, we 
onsiderthe work of [14℄, that 
ompares the performan
e of lo
al algorithms to the global optimum invarious network topologies, and generalize their results from 2-value sequen
es to arbitrary valuesequen
es.1 Introdu
tionOverview: Pa
ket routing networks, most notably the Internet, have be
ome the preferred plat-form for 
arrying data of all kinds. Due to the steady in
rease of network traÆ
, and the fa
tthat Internet traÆ
 tends to 
onstantly 
u
tuate, Quality of Servi
e (QoS) networks, whi
h allowprioritization between di�erent traÆ
 streams have gained 
onsiderable attention within the net-working 
ommunity. As network overloads be
ome frequent, intermediate swit
hes have to 
opewith in
reasing amounts of traÆ
, while attempting to pass forward more \valuable" pa
kets, wherevalues 
orrespond to the required quality of servi
e for ea
h pa
ket. We 
an measure the quality ofthe de
isions made within a network by 
onsidering the total value of pa
kets that were deliveredto their destination.Traditionally, network routing algorithms were studied within the stability analysis framework,either by a probabilisti
 model for pa
ket inje
tion (queuing theory, see e.g. [7, 17℄) or an adversarialmodel (adversarial queuing theory, see e.g. [5, 8℄). In stability analysis we 
onsider networks withunit-value pa
kets, and the goal is to measure the largest amount of pa
kets ever waiting fortransmission on a link, as a fun
tion of the network topology and the pa
ket inje
tion model,thereby bounding the bu�er size needed to prevent pa
ket drop. Sin
e it seems inevitable to drop�azar�tau.a
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pa
kets in real-world networks, approximation analysis framework, whi
h avoids any assumptionson the input sequen
e and 
ompares the performan
e of algorithms to the optimal solution, hasbeen adopted re
ently for studying throughput maximization problems. In parti
ular, 
ompetitiveanalysis has been applied lately to investigate online routing algorithms. Initially, resear
hershave investigated single-queue swit
hes in various settings [2, 4, 11, 12, 16℄, and later multi-queueswit
hes [6, 13℄ and multiple-node networks [1℄ have been studied.The zero-one prin
iple: While di�erent te
hniques were used to analyze algorithms in variousswit
hing models, there was one 
ommon property: analysis of 2-value sequen
es, in whi
h pa
kets
an take only 2 distin
t values, was always substantially easier 
ompared with arbitrary pa
ketsequen
es. Moreover, many results are known only for restri
ted value sequen
es, due to the fa
tthat handling the state of a system 
ontaining pa
kets with arbitrary values is signi�
antly moreinvolved. Motivated by this, we introdu
e the zero-one prin
iple for swit
hing networks. Thisprin
iple applies to all 
omparison-based swit
hing algorithms, that base their de
isions on therelative order between pa
ket values. The prin
iple says that in order to prove that an algorithma
hieves 
-approximation it is suÆ
ient to prove that it a
hieves 
-approximation with respe
tto sequen
es 
omposed solely of 0's and 1's, where ties between pa
kets with equal values maybe broken arbitrarily. We note that one 
an assume that without loss of generality there are no0-value pa
kets in the input sequen
e sin
e su
h pa
kets 
ould have been dropped. Indeed, theoptimal solution may ignore all the 0-value pa
kets, however, the 
omparison-based algorithm maynot, sin
e it only regards the relative order between values.A zero-one prin
iple has been already introdu
ed for sorting networks in the 
omparison model [3,9, 15℄, and it has been proved that a sorting network, that sorts 
orre
tly all sequen
es that are
omposed of 0's and 1's, is guaranteed to sort 
orre
tly an arbitrary sequen
e. In a similar mannerto the zero-one prin
iple for sorting networks, our prin
iple turns out to be very useful in the de-sign of a wide range of approximation algorithms for di�erent swit
hing models, and 
onsiderablyfa
ilitates their analysis, due to the fa
t that it allows to fo
us on 0/1 sequen
es. We note thatin 
ontrast with sorting networks where sorting 0's and 1's is equivalent to sorting any two dis-tin
t values, the analysis of 0/1 sequen
es in swit
hing networks is easier 
ompared with arbitrary2-value sequen
es. In addition, we note that there is a myriad of resear
h papers on throughputmaximization problems in networks transmitting unit-value pa
kets. Our paper provides a linkingstep between previous analysis of unit-value networks and QoS networks, by allowing to modifyprevious analysis only for 0/1 sequen
es, whi
h are in many 
ases not very di�erent from uniformsequen
es. We present three appli
ations to the zero-one prin
iple.Appli
ations: We �rst 
onsider the preemptive Multi-Queue QoS Swit
hing model that wasoriginally introdu
ed in [6℄. In this model we have a swit
h with m in
oming FIFO queues withbounded 
apa
ities and one output port. At ea
h time step new pa
kets arrive to the queues, ea
hasso
iated with a value. Additionally, at ea
h time step the swit
h sele
ts one non-empty queue andtransmits the pa
ket at the head of the queue through the output port. The goal is to maximizethe total value of transmitted pa
kets. We present a 3-
ompetitive algorithm for this problem,improving upon the 4-
ompetitive algorithm that was shown in [6℄.Our se
ond appli
ation is the Weighted Dynami
 Routing problem on a line. We 
onsider anetwork with a topology of a line of length k , i.e. node i (i = 1; : : : ; k) is 
onne
ted to node i+ 1by a unidire
tional link, and 
ontains a �xed-size FIFO queue to store the pa
kets waiting to betransmitted. At ea
h time step new pa
kets may arrive online to the network nodes, ea
h pa
ket2



is asso
iated with a value and a destination node. Additionally, ea
h node 
an transmit the pa
ketat the head of its queue to the next node. The goal is to maximize the total value of pa
kets thatwere delivered to their destination. Spe
ial 
ases of this model were studied in [1, 11℄. Kesselmanet al. [11℄ studied the single-queue model, i.e. k = 1, and proved that the natural greedy algorithmis asymptoti
ally 2-
ompetitive. The unweighted version of our model, in whi
h all pa
kets haveunit value, was investigated by Aiello et al. [1℄ who proved that the greedy algorithm is O(k)-
ompetitive. We prove that the natural greedy algorithm is (k + 1)-
ompetitive for the weightedproblem, therefore generalizing the results in [1, 11℄.Kesselman et al. [14℄ analyzed the performan
e of lo
al o�-line and on-line algorithms 
omparedwith the performan
e of the global optimal solution, in di�erent network topologies. Their strongestresults applied only to 2-value sequen
es 
omposed of 1 and � values. As a third appli
ation, weemploy our zero-one prin
iple to generalize their results to arbitrary value sequen
es.Related results: The online problem of throughput maximization in swit
hes supporting QoShas been studied extensively during re
ent years. Initially, single queue swit
hes were investigated,for both arbitrary pa
ket sequen
es, and 2-value sequen
es. The preemptive model, in whi
h pa
ketsstored in the queue 
an be dis
arded, was studied in [11, 12, 16℄. The non-preemptive model, inwhi
h a pa
ket 
an be dis
arded only upon arrival, was initially studied by Aiello et al. [2℄, followedby Andelman et al. [4℄ who showed tight bounds. Re
ently, these results for a single queue weregeneralized for swit
hes with arbitrary number of queues in [6℄, by a general redu
tion from the mqueues model to the single queue model. An alternative model is the shared memory QoS swit
h,in whi
h memory is shared among all queues. Hahne et al. [10℄ studied bu�er management poli
iesin this model while fo
using on deriving upper and lower bounds for the natural Longest QueueDrop poli
y.Aiello et al. [1℄ studied the Dynami
 Routing problem with unit pa
kets and investigated theperforman
e of various greedy algorithms with 
omparison to their stability guarantees. In par-ti
ular, they showed that the natural greedy algorithm is O(k)-
ompetitive for a line topology. Infa
t, the original model suggested in [1℄ is non-FIFO, and pa
kets 
an be transmitted from thequeues in any order. Algorithm NTG (Nearest To Go) is shown to be O(k2=3)-
ompetitive for thenon-FIFO model.Paper stru
ture: The paper is organized as follows. Se
tion 2 in
ludes formal de�nitions andnotations. In se
tion 3 we prove our zero-one prin
iple. We apply our zero-one prin
iple to threedi�erent swit
hing models in se
tions 4, 5 and 6.2 De�nitions and notationsIn this se
tion we formally de�ne the three problems we 
onsider throughout the paper and intro-du
e some notations.Multi-Queue QoS Swit
hing: In the online Multi-Queue QoS Swit
hing problem, originallyintrodu
ed in [6℄, we are given a swit
h with m FIFO queues, where queue i has size Bi, and oneoutput port. Pa
kets arrive online, ea
h pa
ket is destined to one of the queues and is asso
iatedwith a non-negative value. Initially, the m queues are empty. We assume that time is dis
rete, andea
h time step t � 0 is divided into two phases: at the beginning of the �rst phase of time t a set ofpa
kets arrive to the queues. Pa
kets 
an be inserted to ea
h queue without ex
eeding its 
apa
ity.3



Remaining pa
kets must be dis
arded. In the se
ond phase of time t, the swit
hing algorithm maysele
t one of the non-empty queues and transmit the pa
ket at the head of the queue. The goalis to maximize the total value of transmitted pa
kets. We 
onsider the preemptive 
ase, in whi
hpreviously stored pa
kets 
an be dis
arded from the queues.Weighted Dynami
 Routing on a line: In the online Weighted Dynami
 Routing on a lineproblem we have a network organized in a line topology of length k, i.e. node i = 1; : : : ; k is
onne
ted to node i + 1 via a unidire
tional link with unit 
apa
ity. Node i = 1; : : : ; k 
ontainsa FIFO queue of size Bi, whi
h is initially empty, to bu�er the pa
kets waiting to be transmittedvia its outgoing link. We assume time pro
eeds in dis
rete steps, and ea
h time step t � 0 isdivided into two phases: at the �rst phase new pa
kets may arrive online to nodes i = 1; : : : ; k,ea
h pa
ket is asso
iated with a value and a destination node. During the se
ond phase of time t,node i = 1; : : : ; k may transmit the pa
ket at the head of its queue to node i+1. If a pa
ket rea
hesits destination it is absorbed. Otherwise, online arriving pa
kets (from both phase 1 and phase 2)
an be enqueued without ex
eeding the queues 
apa
ities. Remaining pa
kets must be dis
arded.The goal is to maximize the total value of pa
kets that rea
h their destination.The Weighted Dynami
 Routing problem 
an be generalized to an arbitrary dire
ted graphG = (V;E), where nodes represent the network swit
hes, and edges represent unidire
tional links.In the general 
ase ea
h pa
ket arrives with a prede�ned path from its sour
e to destination,and ea
h dire
ted link e 2 E is asso
iated with a 
apa
ity 
(e), and a FIFO queue Qe of sizesize(Qe), to store the pa
kets waiting for transmission on e. A spe
ial 
ase of this problem wasoriginally introdu
ed in [1℄, where all pa
kets had unit values, links had unit 
apa
ities, and thenodes 
ontained bu�ers instead of FIFO queues, i.e. transmission was allowed in any order.Work-Conserving Weighted Dynami
 Routing: Kesselman et al. [14℄ studied the dynami
routing problem in the same model des
ribed in the previous paragraph, under the work-
onservingassumption. In the following, we brie
y review their de�nitions. A s
hedule is 
alled work-
onserving if for every time t and link e, the number of pa
kets transmitted over e at time tis the minimum between 
(e) and the number of pa
kets in Qe. We 
onsider two network topolo-gies: a dire
ted line topology, identi
al to the one de�ned in the previous paragraph, and a dire
tedtree topology, where pa
kets are only inje
ted at the leaves and are destined to the root. An algo-rithm is 
alled lo
al on-line if its a
tion at time t at node v depends only on the pa
kets arrivingto v until time t. An algorithm is 
alled lo
al o�-line if its a
tion at time t at node v dependsonly on the sequen
e of pa
kets arriving at node v (possibly after time t). We denote by OptLv thelo
al o�-line optimal solution, that maximizes the total value transmitted out of v. For any a
y
li
network we denote by OptL the algorithm that exer
ises OptLv in topologi
al order. We denote byOpt the global work-
onserving optimal algorithm that knows all the information in the system (allnodes, all times).We now introdu
e the notations we use for all problems. We denote by � = fp1; : : : ; png the�nite sequen
e of in
oming pa
kets, and by v� : � ! R the pa
kets value fun
tion. Let A be aswit
hing algorithm, we denote by A(�) the set of pa
kets delivered by A given the sequen
e �(also referred to as the output sequen
e). Given a pa
ket sequen
e �, we denote by V (�) the totalvalue of pa
kets in the sequen
e, i.e. V (�) =Pp2� v�(p). The optimal solution is denoted by Opt.A deterministi
 (resp. randomized) approximation algorithm A a
hieves 
-approximation (
 �1) for a maximization problem i� for every pa
ket sequen
e � we have: V (Opt(�)) � 
 � V (A(�))(resp. V (Opt(�)) � 
 �E[V (A(�))℄). The de�nition of the 
ompetitive ratio with respe
t to online4



algorithms is the same.3 The zero-one prin
ipleIn this se
tion we introdu
e our zero-one prin
iple for swit
hing networks. We begin with someadditional de�nitions and notations. Given a fun
tion f : R ! R we denote by f(�) the pa
ketsequen
e � with the modi�ed value fun
tion vf(�) = f Æ v�. For a given swit
hing algorithm A weuse the notation f(A(�)) to denote the set of transmitted pa
kets with modi�ed values. In thefollowing we de�ne 
omparison-based algorithms for swit
hing networks. Informally, an algorithmA is said to be 
omparison-based if it bases its de
isions on relative order between values alone,and may break ties arbitrarily. We note that the latter means that A(�) is the set of all possibleoutput sequen
es, where we break ties between equal pa
ket values in all possible ways (even ifalgorithm A breaks ties in a spe
i�
 way).De�nition 3.1 Let A be a swit
hing algorithm that may break ties arbitrarily between pa
ketswith equal values. A is 
alled 
omparison-based if and only if for every monotoni
ally in
reasingfun
tion f : R ! R we have A(�) � A(f(�)).For the remainder of this se
tion we slightly abuse notation, and denote by A(�) a spe
i�
output sequen
e in A(�) and by A(f(�)) the same output sequen
e in A(f(�)) (where f is amonotoni
ally in
reasing fun
tion), that exists a

ording to de�nition 3.1.Theorem 3.1 [zero-one prin
iple℄ Let A be a 
omparison-based swit
hing algorithm (determin-isti
 or randomized). A is a 
-approximation algorithm if and only if A a
hieves 
-approximationfor all pa
ket sequen
es whose values are restri
ted to 0/1.Proof: The \only if" dire
tion is straightforward (even if A breaks ties between equal pa
ket valuesin a spe
i�
 way), thus it remains to prove the other dire
tion. For simpli
ity of notation we provethe theorem for deterministi
 algorithms. Using linearity of expe
tation the theorem follows forrandomized algorithms. We de�ne the monotoni
ally in
reasing step fun
tion ft(x) by: ft(x) = 1if x � t, and otherwise ft(x) = 0. In the following 
laims we show that the set of pa
kets deliveredby an algorithm A 
an be broken into sequen
e of 0's and 1's by using ft. If A is 
omparison-basedwe 
an apply the transformation dire
tly to the input sequen
e.Claim 3.2 Let � be any pa
ket sequen
e. Then the following holds: V (�) = R1t=0 V (ft(�))dt.Proof: V (�) =Xp2� v�(p) =Xp2� Z 1t=0 ft(v�(p))dt = Z 1t=0Xp2� ft(v�(p))dt = Z 1t=0 V (ft(�))dt;where the se
ond equality follows from R1t=0 ft(x)dt = x.Claim 3.3 Let A be a 
omparison-based swit
hing algorithm and let f be any monotoni
ally in-
reasing fun
tion. Then the following holds for any pa
ket sequen
e �: V (f(A(�))) = V (A(f(�))).Proof: V (f(A(�))) = Xp2A(�) f(v�(p)) = Xp2A(f(�)) f(v�(p)) = V (A(f(�)));where the se
ond equality follows sin
e A is 
omparison-based.5



We 
an now show for every sequen
e �:V (A(�)) = Z 1t=0 V (ft(A(�)))dt = Z 1t=0 V (A(ft(�)))dt� Z 1t=0 1
 � V (Opt(ft(�)))dt � 1
 � Z 1t=0 V (ft(Opt(�)))dt= 1
 � V (Opt(�));where the �rst and last steps follow from 
laim 3.2, the se
ond step follows from 
laim 3.3, the thirdstep follows sin
e ft(�) is a 0/1 sequen
e, and the forth step follows sin
e Opt(ft(�)) maximizesthe number of delivered pa
kets with original value at least t.Given Theorem 3.1, if we wish to prove that a 
omparison-based algorithm A a
hieves 
-approximation, it is enough to show that for every 0/1 pa
ket sequen
e �, and for ea
h possibleoutput sequen
e O 2 A(�), i.e. for every possible way of breaking ties between equal values, wehave: V (Opt(�)) � 
 � V (O).In many 
ases, the approximation ratio of a swit
hing algorithm is given in terms of the ratiobetween the largest to smallest pa
ket values, denoted �. In the following theorem we extend thezero-one prin
iple to this 
ase, and prove that it is suÆ
ient to 
onsider pa
ket sequen
es 
omposedsolely of two values: 1 and �.Theorem 3.4 Let A be a 
omparison-based swit
hing algorithm (deterministi
 or randomized).A is a 
(�)-approximation algorithm if and only if A a
hieves 
(�)-approximation for all pa
ketsequen
es whose values are restri
ted to 1=�.Proof: The \only if" dire
tion is straightforward, thus it remains to prove the other dire
tion.Again, for simpli
ity of notation we prove the theorem for deterministi
 algorithms, while therandomized 
ase follows easily. We de�ne the monotoni
ally in
reasing step fun
tion gt(x) : [1; �℄ !f1; �g for 1 � t � � as follows: gt(x) = � if 1 � t � x � �, otherwise gt(x) = 1. We begin byrestating 
laim 3.2.Claim 3.5 Let � be any pa
ket sequen
e whose values lie in the range [1; �℄. Then the followingholds: V (�) = 1��1 R �t=1 V (gt(�))dt.Proof:V (�) =Xp2� v�(p) =Xp2� 1�� 1 Z �t=1 gt(v�(p))dt = 1�� 1 Z �t=1Xp2� gt(v�(p))dt = 1�� 1 Z �t=1 V (gt(�))dt;where the se
ond equality follows sin
e R �t=1 gt(x)dt = �(x� 1) + (�� x) = (�� 1)x.We 
an now show for every sequen
e � whose values lie in [1; �℄:V (A(�)) = 1�� 1 Z �t=1 V (gt(A(�)))dt = 1�� 1 Z �t=1 V (A(gt(�)))dt� 1�� 1 Z �t=1 1
 � V (Opt(gt(�)))dt � 1�� 1 � 1
 � Z �t=1 V (gt(Opt(�)))dt= 1
 � V (Opt(�));where the �rst and last steps follow from 
laim 3.5, the se
ond step follows from 
laim 3.3, the thirdstep follows sin
e gt(�) is a 1=� sequen
e, and the forth step follows sin
e Opt(gt(�)) maximizesthe total value (with respe
t to gt) of the pa
kets transmitted.6



4 Appli
ation 1: Multi-Queue QoS Swit
hingIn this se
tion we present the �rst appli
ation of our zero-one prin
iple. We 
onsider the problem ofonline Multi-Queue QoS Swit
hing and design a 3-
ompetitive algorithm for the problem, improvingthe 4-
ompetitive algorithm suggested in [6℄.We begin by repeating the des
ription of the greedy preemptive admission 
ontrol algorithmfor a single queue from [11℄ (�gure 1) and then we present our algorithm TransmitLargestHead(abbreviated TLH) for the problem (�gure 2).Algorithm Greedy [Single-Queue℄Enqueue a new pa
ket if:� The queue is not full.� Or the pa
ket with the smallest value in the queue has a lower value than the 
urrentpa
ket. In this 
ase the smallest pa
ket is dis
arded and the new pa
ket is enqueued.Figure 1: Algorithm Greedy.Algorithm TLH [Multi-Queue℄1. Admission 
ontrol: use algorithm Greedy for admission 
ontrol in all m in
omingqueues.2. S
heduling: at ea
h time step, transmit the pa
ket with the largest value among allpa
kets at the head of the queues.Figure 2: Algorithm TLH.Theorem 4.1 Algorithm TLH is 3-
ompetitive for the Multi-Queue QoS Swit
hing problem.Proof: Clearly, algorithm TLH bases its admission 
ontrol and s
heduling de
isions solely on rel-ative order between values, therefore is it 
omparison-based. A

ording to our zero-one prin
iple(Theorem 3.1) we need only show that the algorithm is 3-
ompetitive for 0/1 sequen
es. We note,however, that sin
e a 
omparison-based algorithm may break ties arbitrarily between pa
kets withequal values, we should 
onsider 
ases where a pa
ket stored in the queues is dis
arded in favor ofa pa
ket with an equal value.Let � be a 0/1 sequen
e 
omposed solely of pa
kets with value 1 (abbreviated 1-pa
kets) andpa
kets with value 0 (0-pa
kets in short). With slight abuse of notation we denote by TLH(�) theset of 1-pa
kets transmitted by the algorithm, and by Opt(�) the set of pa
kets transmitted bythe optimal solution (note that we may assume that the optimal solution does not transmit any0-pa
kets). Theorem 4.1 dire
tly follows from the next lemma.Lemma 4.2 For every 0/1 sequen
e � we have: jOpt(�) n TLH(�)j � 2 � jTLH(�)j.Proof: We prove the lemma by providing a mat
hing from (Opt(�) n TLH(�)) to TLH(�) in whi
hea
h 1-pa
ket from TLH(�) is mat
hed at most twi
e. This is done by a marking s
heme thatmarks one of the 1-pa
kets stored in the queues a

ording to TLH operation, whenever a 1-pa
ket7



Marking s
hemeFor ea
h time step t do:1. For ea
h in
oming 1-pa
ket to queue i do:(a) If the pa
ket is a

epted by TLH, 
onsider it as an unmarked pa
ket.(b) Otherwise, if the pa
ket is a

epted by Opt, look for the �rst unmarked 1-pa
ket,starting from the head of the queue and moving to its tail, and mark it.2. In the transmission phase, whenever Opt transmits a pa
ket do:(a) If Opt and TLH use the same queue for transmission, do nothing.(b) Otherwise, let i 6= j be the queues used by Opt and TLH, respe
tively. If queue i
ontains marked pa
kets, unmark the marked 1-pa
ket 
losest to the tail in queue iand mark the pa
ket transmitted from queue j.Figure 3: Marking s
heme for TLH.is a

epted by Opt but reje
ted by TLH, and when transmissions take pla
e. A des
ription of themarking s
heme follows (�gure 3).Clearly, ea
h 1-pa
ket in TLH(�) 
an be marked at most twi
e, on
e while it resides in thequeue and on
e while it is transmitted. The following 
laims prove that ea
h 1-pa
ket transmittedby Opt but not by TLH is mat
hed through the marking s
heme to a 1-pa
ket in TLH(�). We beginby proving that whenever we 
hange a marking (step 2b) a 1-pa
ket is transmitted, and thereforethe 
hange is possible.Claim 4.3 For ea
h time step t, if the queues hold any marked pa
kets, then a 1-pa
ket is trans-mitted.Proof: Let queue i hold a marked pa
ket p at time t. When p was marked, queue i 
ontained no0-pa
kets, hen
e all the pa
kets 
loser to the head than p are 1-pa
kets. In parti
ular, the pa
ketat the head of queue i at time t is a 1-pa
ket. Therefore, a 0-pa
ket 
an not be transmitted at timet. Before we pro
eed we introdu
e some notations. Let us des
ribe the state of the system at a
ertain point by the 
ontents of the queues in TLH and Opt. We denote the sequen
e of states,starting from the initial state, by [S1; : : : ; Sr℄. A 
hange of state 
an o

ur whenever a pa
ketarrives or transmission takes pla
e. We denote by U ji (j = 1; : : : ; r) the number of unmarkedpa
kets in queue i at state Sj. We further denote by TLHji and Optji the number of 1-pa
kets inqueue i at state Sj in TLH and Opt, respe
tively. For simpli
ity of notation we drop the supers
riptj whenever the state is 
lear from 
ontext. To 
omplete the proof of Lemma 4.2, it remains toshow that whenever a 1-pa
ket destined to queue i is reje
ted by TLH but a

epted by Opt, queuei 
ontains unmarked pa
kets (step 1b).Claim 4.4 For ea
h state Sj (1 � j � r) and queue i, (1 � i � m), U ji � TLHji �Optji .Proof: First re
all that TLH may breaks ties arbitrarily. However, ex
hanging 0-pa
kets does notinterfere with the marking s
heme, and 1-pa
kets 
an be ex
hanged only when the queue is full8



with 1-pa
kets, hen
e we may ignore this s
enario as it does not 
hange the values stored in thequeue. We prove the 
laim by indu
tion on the states. For the initial state S1 the inequality
learly holds. We assume 
orre
tness for state Sj and prove that the inequality holds for stateSj+1. Consider a 1-pa
ket p arriving to queue i. If p is a

epted by TLH, Ui in
reases and theinequality holds. Otherwise, if p is reje
ted by TLH and a

epted by Opt, then by the indu
tionhypothesis Ui � TLHi �Opti and sin
e TLHi = Bi and Opti < Bi we have an unmarked pa
ket inqueue i. After we mark a 1-pa
ket both sides of the inequality de
rease by 1. Now, 
onsider thetransmission phase. Let i and j be the queues used for transmission by Opt and TLH, respe
tively.The inequality 
learly holds for queue j if it does not hold any marked pa
kets. Otherwise, amarked pa
ket is transmitted from queue j (sin
e we mark pa
kets in the dire
tion from the headto the tail), Uj is un
hanged while the right hand side of the inequality 
an only de
rease. If i 6= j,we in
rease Ui by unmarking a pa
ket (step 2b), and the inequality 
ontinues to hold for queue i.This 
on
ludes the proof of Lemma 4.2 and Theorem 4.1.The following lemma proves that our analysis of TLH is asymptoti
ally tight. Proof 
an be foundin appendix ALemma 4.5 Algorithm TLH is at least (3� 1m)-
ompetitive.5 Appli
ation 2: Weighted Dynami
 RoutingIn this se
tion we present our se
ond appli
ation of the zero-one prin
iple. We 
onsider the problemof dynami
 routing on a line (see se
tion 2 for formal de�nition) and present a (k+1)-
ompetitivealgorithm for the problem (�gure 4).Algorithm PF (PushForward)For ea
h node i = 1; : : : ; k do:1. Arrival phase: use the Greedy algorithm to a

ept pa
kets into the queue.2. Transmission phase: if the queue is not empty, transmit the pa
ket at the head of thequeue to the next node. Figure 4: Algorithm PF.Theorem 5.1 Algorithm PF is (k+1)-
ompetitive for the Weighted Dynami
 Routing problem ona line of length k.Proof: Clearly, algorithm PF bases its admission 
ontrol de
isions solely on relative order betweenvalues, therefore it is 
omparison-based. A

ording to our zero-one prin
iple (Theorem 3.1) weneed only show that the algorithm is (k + 1)-
ompetitive for 0/1 sequen
e.Let � be a 0/1 sequen
e. With slight abuse of notation we denote by PF(�) the set of 1-pa
ketsthat were delivered by PF, and by Opt(�) the set of pa
kets delivered by Opt. Theorem 5.1 dire
tlyfollows from the next lemma.Lemma 5.2 For every 0/1 sequen
e � we have: jOpt(�) n PF(�)j � k � jPF(�)j.9



Proof: We prove the lemma by providing a mat
hing from (Opt(�)nPF(�)) to PF(�) in whi
h ea
hpa
ket from PF(�) is mat
hed at most k times. This is done by a marking s
heme that marksone of the 1-pa
kets in PF queues whenever a 1-pa
ket is a

epted by Opt but reje
ted by PF. Ades
ription of the marking s
heme follows (�gure 5).Marking s
hemeFor ea
h node i = 1; : : : ; k do:1. For ea
h in
oming 1-pa
ket do:(a) If the pa
ket is a

epted by PF, 
onsider it as an unmarked pa
ket.(b) Otherwise, if the pa
ket is a

epted by Opt, look for the �rst unmarked 1-pa
ket,starting from the head of queue i and moving to its tail, and mark it.2. In the transmission phase:If a 1-pa
ket arrives from the previous node, it is 
onsidered to be unmarked.Figure 5: Marking s
heme for PF.We observe that ea
h 1-pa
ket is marked at most k times (at most on
e in ea
h of the inter-mediate nodes on its path), and that pa
kets are not dropped during the transmission phase sin
eall nodes that store pa
kets push a pa
ket forward. Therefore, it remains to prove that we alwayshave an available unmarked pa
ket when we reje
t a pa
ket that is a

epted by Opt (step 1b inthe marking s
heme). In the following we refer to system states [S1; : : : ; Sr℄ and use the notationsU ji , PFji and Optji (i = 1; : : : ; k ; j = 1; : : : ; r) with similar meanings to those used in the proof ofClaim 4.4.Claim 5.3 For ea
h state Sj (1 � j � r) and queue i (1 � i � k), U ji � PFji �Optji .Proof: First, we re
all that algorithm PF may break ties arbitrarily. We may ignore these s
enariosfrom the same 
onsiderations given in the proof of Claim 4.4. We prove the 
laim by indu
tion onthe states. At the initial state S1 the queues are empty, hen
e the inequality 
learly holds. Weassume 
orre
tness for state Sj and prove that the inequality 
ontinues to hold for state Sj+1. We�rst 
onsider the pa
ket arrival phase. Consider a 1-pa
ket p arriving to queue i. If p is a

eptedby PF, Ui in
reases and the inequality holds. Otherwise, if p is reje
ted by PF and is a

eptedby Opt, then by the indu
tion hypothesis Ui � PFi � Opti and sin
e PFi = Bi and Opti < Biwe have an unmarked 1-pa
ket in queue i. After we mark a pa
ket both sides of the inequalityde
rease by 1. Next, 
onsider the transmission phase. Re
all that no pa
kets are dropped duringthis phase. We examine the 
hanges in both the transmitting end and the re
eiving end. At thetransmitting end, note that if queue i does not 
ontain marked pa
kets then the inequality 
learlyholds. Otherwise, Ui remains un
hanged (sin
e a marked pa
ket is transmitted) while the righthand side of the inequality 
an only de
rease (if Opt 
hooses not to transmit). At the re
eivingend, we �rst observe that a pa
ket that rea
hes its destination has no e�e
t. A 1-pa
ket enqueuedinto queue i in PF 
auses Ui to in
rease; A pa
ket enqueued by Opt 
auses the right hand side ofthe inequality to de
rease. In either 
ase, the inequality 
ontinues to hold.Theorem 5.1 
an be generalized as follows. The proof follows the same lines and is omitted.10



Theorem 5.4 Let G = (V;E) be a dire
ted graph with uniform edge 
apa
ities su
h that 8v 2V din(v) = 1. The 
ompetitive ratio of algorithm PF on networks with topology G is `(G) + 1(where `(G) is the length of the longest a
y
li
 dire
ted path in G).Observe that in parti
ular Theorem 5.4 implies that algorithm PF is (k + 1)-
ompetitive for a
y
le topology. The following lemma shows that our analysis of PF is tight up to a fa
tor of 2.Proof 
an be found in appendix ALemma 5.5 Algorithm PF is at least k=2-
ompetitive on a line topology of length k.6 Appli
ation 3: Work-Conserving Weighted Dynami
 RoutingKesselman et al. [14℄ studied the dynami
 routing problem under the work-
onserving assumption.Spe
i�
ally, they 
ompared the performan
e of the lo
al on-line Greedy algorithm and the lo
alo�-line OptL algorithm to the global work-
onserving optimum, in networks with line and treetopologies (see se
tion 2 for exa
t de�nitions). The strongest results in [14℄ are shown only forsequen
es restri
ted to two values: 1 and �, while the bounds for arbitrary sequen
es remain asopen questions. Using our zero-one prin
iple we 
an generalize their results to arbitrary sequen
eas follows. First, we observe that the lo
al o�-line algorithm, OptLv, is in fa
t a 
omparison-basedalgorithm that sorts the sequen
e of pa
kets a

ording to their values and then attempts to s
hedulethe pa
kets starting from the largest value (see e.g. [16℄). The lo
al on-line Greedy algorithm is
learly 
omparison-based. With a few minor modi�
ations, that are omitted here, we 
an modifythe proofs shown in [14℄ to work for 0/1 sequen
es and algorithms that break ties arbitrarily. Beforewe pro
eed to restate the main results from [14℄ in their general form, we need to introdu
e someadditional de�nitions and notations from [14℄.De�nition 6.1 For a given link e in a given network, de�ne the delay of e, denoted D(e), to bethe ratio dsize(Qe)=
(e)e. The delay of a given path is the sum of the edge delays on that path.De�nition 6.2 Let e = (u; v) be any dire
ted link in a given tree topology. The height of e, denotedh(e), is the maximum path delay, over all paths starting at a leaf and ending at v. The weaknessof e, denoted �(e), is de�ned to be �(e) = h(e)D(e) .We are now ready to restate the main results from [14℄ in their generalized form, for arbitrarysequen
es. We emphasize that all other results in [14℄ restri
ted to sequen
es with two values 
anbe generalized as well.Theorem 6.1 The 
ompetitive ratio of Greedy for any given tree topology G = (V;E) isO(maxf�(e) j e 2 Eg).Theorem 6.2 The approximation ratio of OptL for a 
omplete binary tree of depth h is at mostO(h= log h).Theorem 6.3 The approximation ratio of OptL for a line of length h is O(ph).
11
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tion we prove the lower bounds presented in the paper.Proof: [Lemma 4.5℄ We 
onstru
t the following sequen
e �:1. At t = 0, Bi pa
kets with value " arrive to queue i (i = 1; : : : ;m).2. For 1 � i � m�1, during time stepsPi�1j=1Bj ; : : : ; (Pij=1Bj)�1, Bi pa
kets with value 1+ Æarrive to queue i, one pa
ket at a time. Then, during the next Bm time steps, Bm pa
ketswith value 1 arrive to queue m, one pa
ket at a time. Denote by P the set of pa
kets arrivingat this phase.3. When phase 2 is 
ompleted, a set of pa
kets P arrives (identi
al to the set of pa
kets fromphase 2, only they all arrive together).4. During the nextPm�1i=1 Bi time steps, a pa
ket with value 1 arrives at ea
h time step to queuem.5. No more pa
kets arrive.We now analyze the 
ompetitive ratio of TLH while we assume w.l.o.g Bm = min1�i�mBi andwe take "; Æ ! 0, thereby 
onsidering � to 
onsist of 0's and 1's. Algorithm TLH a

epts all thepa
kets that arrive at step 1. During phase 2 these "-pa
kets are transmitted while the queues are�lled with 1-pa
kets. All the pa
kets that arrive in step 3 are thus dis
arded. During phase 4 TLHempties queues [1;m� 1℄ �rst, therefore dis
arding all the pa
kets that arrive during this phase toqueue m. In 
ontrast, Opt dis
ards all the "-pa
kets that arrive at the beginning, and 
an thereforetransmit all subsequent pa
kets. Hen
e:Opt(�)TLH(�) = 3 �Pmi=1Bi �BmPmi=1Bi � 3� 1m:Proof: [Lemma 5.5℄ Consider the following pa
ket sequen
e � arriving to a network with uniformqueues sizes:1. At time t = 0, 2B pa
kets are inje
ted at node i (i = 1; : : : ; k), the �rst B pa
kets have value1+" and are destined to node k+1, the last B pa
kets have value 1 and are destined to nodei+ 1.2. Pa
kets with value 1 and destination i + 1 are inje
ted at node i (i = 2; : : : ; k) during timesteps 1; : : : ; i �B � 1. 13



Algorithm PF a

epts the B more valuables pa
kets inje
ted at step 1 at ea
h node and reje
tsall other pa
kets in the sequen
e. In 
ontrast, Opt reje
ts the valuable pa
kets inje
ted at step 1,and 
an therefore deliver all other pa
kets. Taking "! 0 we obtain:Opt(�)PF(�) = Pk�1i=1 i �B(k � 1)B = k2 :
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