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Abstract

Recently, approximation analysis has been extensively used to study algorithms for routing
weighted packets in various network settings. Although different techniques were applied in the
analysis of diverse models, one common property was evident: the analysis of input sequences
composed solely of two different values is always substantially easier, and many results are known
only for restricted value sequences. Motivated by this, we introduce our zero-one principle
for switching networks which characterizes a wide range of algorithms for which achieving c-
approximation (as well as c-competitiveness) with respect to sequences composed of 0’s and
1’s implies achieving c-approximation. The zero-one principle proves to be very efficient in
the design of switching algorithms, and substantially facilitates their analysis. We present
three applications. First, we consider the Multi-Queue QoS Switching model and design a 3-
competitive algorithm, improving the result from [6]. Second, we study the Weighted Dynamic
Routing problem on a line topology of length k and present a (k + 1)-competitive algorithm,
which improves and generalizes the results from [1, 11]. As a third application, we consider
the work of [14], that compares the performance of local algorithms to the global optimum in
various network topologies, and generalize their results from 2-value sequences to arbitrary value
sequences.

1 Introduction

Overview: Packet routing networks, most notably the Internet, have become the preferred plat-
form for carrying data of all kinds. Due to the steady increase of network traffic, and the fact
that Internet traffic tends to constantly fluctuate, Quality of Service (QoS) networks, which allow
prioritization between different traffic streams have gained considerable attention within the net-
working community. As network overloads become frequent, intermediate switches have to cope
with increasing amounts of traffic, while attempting to pass forward more “valuable” packets, where
values correspond to the required quality of service for each packet. We can measure the quality of
the decisions made within a network by considering the total value of packets that were delivered
to their destination.

Traditionally, network routing algorithms were studied within the stability analysis framework,
either by a probabilistic model for packet injection (queuing theory, see e.g. [7, 17]) or an adversarial
model (adversarial queuing theory, see e.g. [5, 8]). In stability analysis we consider networks with
unit-value packets, and the goal is to measure the largest amount of packets ever waiting for
transmission on a link, as a function of the network topology and the packet injection model,
thereby bounding the buffer size needed to prevent packet drop. Since it seems inevitable to drop
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packets in real-world networks, approximation analysis framework, which avoids any assumptions
on the input sequence and compares the performance of algorithms to the optimal solution, has
been adopted recently for studying throughput maximization problems. In particular, competitive
analysis has been applied lately to investigate online routing algorithms. Initially, researchers
have investigated single-queue switches in various settings [2, 4, 11, 12, 16], and later multi-queue
switches [6, 13] and multiple-node networks [1] have been studied.

The zero-one principle: While different techniques were used to analyze algorithms in various
switching models, there was one common property: analysis of 2-value sequences, in which packets
can take only 2 distinct values, was always substantially easier compared with arbitrary packet
sequences. Moreover, many results are known only for restricted value sequences, due to the fact
that handling the state of a system containing packets with arbitrary values is significantly more
involved. Motivated by this, we introduce the zero-one principle for switching networks. This
principle applies to all comparison-based switching algorithms, that base their decisions on the
relative order between packet values. The principle says that in order to prove that an algorithm
achieves c-approximation it is sufficient to prove that it achieves c-approximation with respect
to sequences composed solely of 0’s and 1’s, where ties between packets with equal values may
be broken arbitrarily. We note that one can assume that without loss of generality there are no
0-value packets in the input sequence since such packets could have been dropped. Indeed, the
optimal solution may ignore all the 0-value packets, however, the comparison-based algorithm may
not, since it only regards the relative order between values.

A zero-one principle has been already introduced for sorting networks in the comparison model [3,
9, 15], and it has been proved that a sorting network, that sorts correctly all sequences that are
composed of 0’s and 1’s, is guaranteed to sort correctly an arbitrary sequence. In a similar manner
to the zero-one principle for sorting networks, our principle turns out to be very useful in the de-
sign of a wide range of approximation algorithms for different switching models, and considerably
facilitates their analysis, due to the fact that it allows to focus on 0/1 sequences. We note that
in contrast with sorting networks where sorting 0’s and 1’s is equivalent to sorting any two dis-
tinct values, the analysis of 0/1 sequences in switching networks is easier compared with arbitrary
2-value sequences. In addition, we note that there is a myriad of research papers on throughput
maximization problems in networks transmitting unit-value packets. Our paper provides a linking
step between previous analysis of unit-value networks and QoS networks, by allowing to modify
previous analysis only for 0/1 sequences, which are in many cases not very different from uniform
sequences. We present three applications to the zero-one principle.

Applications: We first consider the preemptive Multi-Queue QoS Switching model that was
originally introduced in [6]. In this model we have a switch with m incoming FIFO queues with
bounded capacities and one output port. At each time step new packets arrive to the queues, each
associated with a value. Additionally, at each time step the switch selects one non-empty queue and
transmits the packet at the head of the queue through the output port. The goal is to maximize
the total value of transmitted packets. We present a 3-competitive algorithm for this problem,
improving upon the 4-competitive algorithm that was shown in [6].

Our second application is the Weighted Dynamic Routing problem on a line. We consider a
network with a topology of a line of length & , i.e. node i (i = 1,...,k) is connected to node i + 1
by a unidirectional link, and contains a fixed-size FIFO queue to store the packets waiting to be
transmitted. At each time step new packets may arrive online to the network nodes, each packet



is associated with a value and a destination node. Additionally, each node can transmit the packet
at the head of its queue to the next node. The goal is to maximize the total value of packets that
were delivered to their destination. Special cases of this model were studied in [1, 11]. Kesselman
et al. [11] studied the single-queue model, i.e. k£ = 1, and proved that the natural greedy algorithm
is asymptotically 2-competitive. The unweighted version of our model, in which all packets have
unit value, was investigated by Aiello et al. [1] who proved that the greedy algorithm is O(k)-
competitive. We prove that the natural greedy algorithm is (k 4+ 1)-competitive for the weighted
problem, therefore generalizing the results in [1, 11].

Kesselman et al. [14] analyzed the performance of local off-line and on-line algorithms compared
with the performance of the global optimal solution, in different network topologies. Their strongest
results applied only to 2-value sequences composed of 1 and « values. As a third application, we
employ our zero-one principle to generalize their results to arbitrary value sequences.

Related results: The online problem of throughput maximization in switches supporting QoS
has been studied extensively during recent years. Initially, single queue switches were investigated,
for both arbitrary packet sequences, and 2-value sequences. The preemptive model, in which packets
stored in the queue can be discarded, was studied in [11, 12, 16]. The non-preemptive model, in
which a packet can be discarded only upon arrival, was initially studied by Aiello et al. [2], followed
by Andelman et al. [4] who showed tight bounds. Recently, these results for a single queue were
generalized for switches with arbitrary number of queues in [6], by a general reduction from the m
queues model to the single queue model. An alternative model is the shared memory QoS switch,
in which memory is shared among all queues. Hahne et al. [10] studied buffer management policies
in this model while focusing on deriving upper and lower bounds for the natural Longest Queue
Drop policy.

Aiello et al. [1] studied the Dynamic Routing problem with unit packets and investigated the
performance of various greedy algorithms with comparison to their stability guarantees. In par-
ticular, they showed that the natural greedy algorithm is O(k)-competitive for a line topology. In
fact, the original model suggested in [1] is non-FIFO, and packets can be transmitted from the
queues in any order. Algorithm NTG (Nearest To Go) is shown to be O(k?/)-competitive for the
non-FIFO model.

Paper structure: The paper is organized as follows. Section 2 includes formal definitions and
notations. In section 3 we prove our zero-one principle. We apply our zero-one principle to three
different switching models in sections 4, 5 and 6.

2 Definitions and notations

In this section we formally define the three problems we consider throughout the paper and intro-
duce some notations.

Multi-Queue QoS Switching: In the online Multi-Queue QoS Switching problem, originally
introduced in [6], we are given a switch with m FIFO queues, where queue ¢ has size B;, and one
output port. Packets arrive online, each packet is destined to one of the queues and is associated
with a non-negative value. Initially, the m queues are empty. We assume that time is discrete, and
each time step t > 0 is divided into two phases: at the beginning of the first phase of time ¢ a set of
packets arrive to the queues. Packets can be inserted to each queue without exceeding its capacity.



Remaining packets must be discarded. In the second phase of time ¢, the switching algorithm may
select one of the non-empty queues and transmit the packet at the head of the queue. The goal
is to maximize the total value of transmitted packets. We consider the preemptive case, in which
previously stored packets can be discarded from the queues.

Weighted Dynamic Routing on a line: In the online Weighted Dynamic Routing on a line
problem we have a network organized in a line topology of length k, i.e. node 1 = 1,...,k is
connected to node 7 + 1 via a unidirectional link with unit capacity. Node ¢ = 1,...,k contains
a FIFO queue of size B;, which is initially empty, to buffer the packets waiting to be transmitted
via its outgoing link. We assume time proceeds in discrete steps, and each time step ¢ > 0 is
divided into two phases: at the first phase new packets may arrive online to nodes 7 = 1,...,k,
each packet is associated with a value and a destination node. During the second phase of time ¢,
node i = 1,..., k may transmit the packet at the head of its queue to node i+ 1. If a packet reaches
its destination it is absorbed. Otherwise, online arriving packets (from both phase 1 and phase 2)
can be enqueued without exceeding the queues capacities. Remaining packets must be discarded.
The goal is to maximize the total value of packets that reach their destination.

The Weighted Dynamic Routing problem can be generalized to an arbitrary directed graph
G = (V, E), where nodes represent the network switches, and edges represent unidirectional links.
In the general case each packet arrives with a predefined path from its source to destination,
and each directed link e € F is associated with a capacity c(e), and a FIFO queue Q. of size
size(Qe), to store the packets waiting for transmission on e. A special case of this problem was
originally introduced in [1], where all packets had unit values, links had unit capacities, and the
nodes contained buffers instead of FIFO queues, i.e. transmission was allowed in any order.

Work-Conserving Weighted Dynamic Routing: Kesselman et al. [14] studied the dynamic
routing problem in the same model described in the previous paragraph, under the work-conserving
assumption. In the following, we briefly review their definitions. A schedule is called work-
conserving if for every time ¢ and link e, the number of packets transmitted over e at time ¢
is the minimum between c¢(e) and the number of packets in Q.. We consider two network topolo-
gies: a directed line topology, identical to the one defined in the previous paragraph, and a directed
tree topology, where packets are only injected at the leaves and are destined to the root. An algo-
rithm is called local on-line if its action at time ¢ at node v depends only on the packets arriving
to v until time ¢. An algorithm is called local off-line if its action at time ¢ at node v depends
only on the sequence of packets arriving at node v (possibly after time ¢). We denote by OptL, the
local off-line optimal solution, that maximizes the total value transmitted out of v. For any acyclic
network we denote by OptL the algorithm that exercises OptL, in topological order. We denote by
Opt the global work-conserving optimal algorithm that knows all the information in the system (all
nodes, all times).

We now introduce the notations we use for all problems. We denote by o = {p1,...,pn} the
finite sequence of incoming packets, and by v, : ¢ — R the packets value function. Let A be a
switching algorithm, we denote by A(c) the set of packets delivered by A given the sequence o
(also referred to as the output sequence). Given a packet sequence o, we denote by V(o) the total
value of packets in the sequence, i.e. V(o) = ZpE » Vo (p). The optimal solution is denoted by Opt.

A deterministic (resp. randomized) approximation algorithm A achieves c-approximation (¢ >
1) for a maximization problem iff for every packet sequence o we have: V(Opt(o)) < ¢- V(A(0))
(resp. V(Opt(o)) < c- E[V(A(0))]). The definition of the competitive ratio with respect to online



algorithms is the same.

3 The zero-one principle

In this section we introduce our zero-one principle for switching networks. We begin with some
additional definitions and notations. Given a function f : R — R we denote by f(o) the packet
sequence o with the modified value function v,y = f o v,. For a given switching algorithm A we
use the notation f(A(c)) to denote the set of transmitted packets with modified values. In the
following we define comparison-based algorithms for switching networks. Informally, an algorithm
A is said to be comparison-based if it bases its decisions on relative order between values alone,
and may break ties arbitrarily. We note that the latter means that A(c) is the set of all possible
output sequences, where we break ties between equal packet values in all possible ways (even if
algorithm A breaks ties in a specific way).

Definition 3.1 Let A be a switching algorithm that may break ties arbitrarily between packets
with equal values. A is called comparison-based if and only if for every monotonically increasing
function f: R — R we have A(o) C A(f(0)).

For the remainder of this section we slightly abuse notation, and denote by A(c) a specific
output sequence in A(c) and by A(f(c)) the same output sequence in A(f(c)) (where f is a
monotonically increasing function), that exists according to definition 3.1.

Theorem 3.1 [zero-one principle] Let A be a comparison-based switching algorithm (determin-
istic or randomized). A is a c-approzimation algorithm if and only if A achieves c-approzimation
for all packet sequences whose values are restricted to 0/1.

Proof: The “only if” direction is straightforward (even if A breaks ties between equal packet values
in a specific way), thus it remains to prove the other direction. For simplicity of notation we prove
the theorem for deterministic algorithms. Using linearity of expectation the theorem follows for
randomized algorithms. We define the monotonically increasing step function fi(z) by: fi(z) =
if x > ¢, and otherwise f;(z) = 0. In the following claims we show that the set of packets delivered
by an algorithm A can be broken into sequence of 0’s and 1’s by using f;. If A is comparison-based
we can apply the transformation directly to the input sequence.

Claim 3.2 Let o be any packet sequence. Then the following holds: V(o) = [[=, V(fi(0))dt.

Proof:
V(o) = = / Fo( () dt = / S Filvo ()t = / V(filo))dt
pEU pEo t= OpEU
where the second equality follows from ftozoo fi(x)dt = x. [

Claim 3.3 Let A be a comparison-based switching algorithm and let f be any monotonically in-
creasing function. Then the following holds for any packet sequence o: V(f(A(c))) = V(A(f(o)))-

Proof:
V(f( = Y )= D flsp) = V(A(f(0))),
peA(0) pEA(f(0))
where the second equality follows since A is comparison-based. [ |



We can now show for every sequence o:

V(A(0)) = / TV Ao))dt = / SV A o)))dt

=0 =0

> [T L voptaona =t [ virosoa

=0 C =0
= = V(Opt(o)),

where the first and last steps follow from claim 3.2, the second step follows from claim 3.3, the third
step follows since fi(o) is a 0/1 sequence, and the forth step follows since Opt(f;(c)) maximizes
the number of delivered packets with original value at least ¢. [

Given Theorem 3.1, if we wish to prove that a comparison-based algorithm A achieves c-
approximation, it is enough to show that for every 0/1 packet sequence o, and for each possible
output sequence O € A(0), i.e. for every possible way of breaking ties between equal values, we
have: V(Opt(0)) <c-V(0).

In many cases, the approximation ratio of a switching algorithm is given in terms of the ratio
between the largest to smallest packet values, denoted . In the following theorem we extend the
zero-one principle to this case, and prove that it is sufficient to consider packet sequences composed
solely of two values: 1 and «.

Theorem 3.4 Let A be a comparison-based switching algorithm (deterministic or randomized).
A is a c(a)-approzimation algorithm if and only if A achieves c(a)-approzimation for all packet
sequences whose values are restricted to 1/a.

Proof: The “only if” direction is straightforward, thus it remains to prove the other direction.
Again, for simplicity of notation we prove the theorem for deterministic algorithms, while the
randomized case follows easily. We define the monotonically increasing step function g;(z) : [1,a] —
{1,a} for 1 <t < «a as follows: ¢;(z) = o if 1 <t <z < a, otherwise g;(x) = 1. We begin by
restating claim 3.2.

Claim 3.5 Let o be any packet sequence whose values lie in the range [1,a]. Then the following
holds: V(o) = L5 [2 V(ge(0))dt.

Proof:
1 @ 1 @ 1 @
Vi) =S o) = ¥ o [ atoaoit = = [ S ateonat = = [ viao)i
pEo pEoc pEo
where the second equality follows since [2 g;(2)dt = a(z — 1) + (¢ — z) = (a — 1)z. ]
We can now show for every sequence o whose values lie in [1, a]:
1 @ 1 @
V@) = 5 [ ViAo = — [ Vi@
a—1 /- a—1/—
1 “1 1 1 @
> [ Vs> -1 [ Vi)
a—1/),_c a—1 ¢ Ji—

= V(Opt(o)),

where the first and last steps follow from claim 3.5, the second step follows from claim 3.3, the third
step follows since g;(0) is a 1/a sequence, and the forth step follows since Opt(g:(0)) maximizes
the total value (with respect to g;) of the packets transmitted. |



4 Application 1: Multi-Queue QoS Switching

In this section we present the first application of our zero-one principle. We consider the problem of
online Multi-Queue QoS Switching and design a 3-competitive algorithm for the problem, improving
the 4-competitive algorithm suggested in [6].

We begin by repeating the description of the greedy preemptive admission control algorithm
for a single queue from [11] (figure 1) and then we present our algorithm TransmitLargestHead
(abbreviated TLH) for the problem (figure 2).

Algorithm Greedy [Single-Queue]
Enqueue a new packet if:
e The queue is not full.

e Or the packet with the smallest value in the queue has a lower value than the current
packet. In this case the smallest packet is discarded and the new packet is enqueued.

Figure 1: Algorithm Greedy.

Algorithm TLH [Multi-Queue]

1. Admission control: use algorithm Greedy for admission control in all m incoming
queues.

2. Scheduling: at each time step, transmit the packet with the largest value among all
packets at the head of the queues.

Figure 2: Algorithm TLH.

Theorem 4.1 Algorithm TLH is 3-competitive for the Multi-Queue QoS Switching problem.

Proof: Clearly, algorithm TLH bases its admission control and scheduling decisions solely on rel-
ative order between values, therefore is it comparison-based. According to our zero-one principle
(Theorem 3.1) we need only show that the algorithm is 3-competitive for 0/1 sequences. We note,
however, that since a comparison-based algorithm may break ties arbitrarily between packets with
equal values, we should consider cases where a packet stored in the queues is discarded in favor of
a packet with an equal value.

Let o be a 0/1 sequence composed solely of packets with value 1 (abbreviated 1-packets) and
packets with value 0 (0-packets in short). With slight abuse of notation we denote by TLH(o) the
set of 1-packets transmitted by the algorithm, and by Opt(c) the set of packets transmitted by
the optimal solution (note that we may assume that the optimal solution does not transmit any
0-packets). Theorem 4.1 directly follows from the next lemma.

Lemma 4.2 For every 0/1 sequence o we have: |Opt(o) \ TLH(o)| < 2-|TLH(0)|.

Proof: We prove the lemma by providing a matching from (Opt(c) \ TLH(o)) to TLH(o) in which
each 1-packet from TLH(o) is matched at most twice. This is done by a marking scheme that
marks one of the 1-packets stored in the queues according to TLH operation, whenever a 1-packet



Marking scheme

For each time step ¢ do:
1. For each incoming 1-packet to queue ¢ do:

(a) If the packet is accepted by TLH, consider it as an unmarked packet.
(b) Otherwise, if the packet is accepted by Opt, look for the first unmarked 1-packet,
starting from the head of the queue and moving to its tail, and mark it.

2. In the transmission phase, whenever Opt transmits a packet do:

(a) If Opt and TLH use the same queue for transmission, do nothing.

(b) Otherwise, let i # j be the queues used by Opt and TLH, respectively. If queue i
contains marked packets, unmark the marked 1-packet closest to the tail in queue i
and mark the packet transmitted from queue j.

Figure 3: Marking scheme for TLH.

is accepted by Opt but rejected by TLH, and when transmissions take place. A description of the
marking scheme follows (figure 3).

Clearly, each 1-packet in TLH(o) can be marked at most twice, once while it resides in the
queue and once while it is transmitted. The following claims prove that each 1-packet transmitted
by Opt but not by TLH is matched through the marking scheme to a 1-packet in TLH(o). We begin
by proving that whenever we change a marking (step 2b) a 1-packet is transmitted, and therefore
the change is possible.

Claim 4.3 For each time step t, if the queues hold any marked packets, then a 1-packet is trans-
mitted.

Proof: Let queue ¢ hold a marked packet p at time ¢. When p was marked, queue ¢ contained no
0-packets, hence all the packets closer to the head than p are 1-packets. In particular, the packet
at the head of queue ¢ at time ¢ is a 1-packet. Therefore, a O-packet can not be transmitted at time
t. [ |

Before we proceed we introduce some notations. Let us describe the state of the system at a
certain point by the contents of the queues in TLH and Opt. We denote the sequence of states,
starting from the initial state, by [Si,...,S;]. A change of state can occur whenever a packet
arrives or transmission takes place. We denote by U/ (j = 1,...,r) the number of unmarked
packets in queue 7 at state S;. We further denote by TLH{ and Optg the number of 1-packets in
queue ¢ at state S; in TLH and Opt, respectively. For simplicity of notation we drop the superscript
j whenever the state is clear from context. To complete the proof of Lemma 4.2, it remains to
show that whenever a 1-packet destined to queue ¢ is rejected by TLH but accepted by Opt, queue
i contains unmarked packets (step 1b).

Claim 4.4 For each state S; (1 <j <r) and queue i, (1 <i<m), Uij > TLHg — Optg.

Proof: First recall that TLH may breaks ties arbitrarily. However, exchanging 0-packets does not
interfere with the marking scheme, and 1-packets can be exchanged only when the queue is full



with 1-packets, hence we may ignore this scenario as it does not change the values stored in the
queue. We prove the claim by induction on the states. For the initial state S; the inequality
clearly holds. We assume correctness for state S; and prove that the inequality holds for state
Sjy1. Consider a 1-packet p arriving to queue 7. If p is accepted by TLH, U; increases and the
inequality holds. Otherwise, if p is rejected by TLH and accepted by Opt, then by the induction
hypothesis U; > TLH; — Opt; and since TLH; = B; and Opt; < B; we have an unmarked packet in
queue . After we mark a 1-packet both sides of the inequality decrease by 1. Now, consider the
transmission phase. Let ¢ and j be the queues used for transmission by Opt and TLH, respectively.
The inequality clearly holds for queue j if it does not hold any marked packets. Otherwise, a
marked packet is transmitted from queue j (since we mark packets in the direction from the head
to the tail), U; is unchanged while the right hand side of the inequality can only decrease. If i # j,
we increase U; by unmarking a packet (step 2b), and the inequality continues to hold for queue i.

This concludes the proof of Lemma 4.2 and Theorem 4.1. [ |

The following lemma proves that our analysis of TLH is asymptotically tight. Proof can be found
in appendix A

Lemma 4.5 Algorithm TLH is at least (3 — L )-competitive.

5 Application 2: Weighted Dynamic Routing

In this section we present our second application of the zero-one principle. We consider the problem
of dynamic routing on a line (see section 2 for formal definition) and present a (k + 1)-competitive
algorithm for the problem (figure 4).

Algorithm PF (PushForward)

For each node ¢ =1,...,k do:
1. Arrival phase: use the Greedy algorithm to accept packets into the queue.

2. Transmission phase: if the queue is not empty, transmit the packet at the head of the
queue to the next node.

Figure 4: Algorithm PF.

Theorem 5.1 Algorithm PF is (k + 1)-competitive for the Weighted Dynamic Routing problem on
a line of length k.

Proof: Clearly, algorithm PF bases its admission control decisions solely on relative order between
values, therefore it is comparison-based. According to our zero-one principle (Theorem 3.1) we
need only show that the algorithm is (k + 1)-competitive for 0/1 sequence.

Let o be a 0/1 sequence. With slight abuse of notation we denote by PF(c) the set of 1-packets
that were delivered by PF, and by Opt(o) the set of packets delivered by Opt. Theorem 5.1 directly
follows from the next lemma.

Lemma 5.2 For every 0/1 sequence o we have: |Opt(o) \ PF(o)| < k- |PF(0)].



Proof: We prove the lemma by providing a matching from (Opt(o)\ PF(0)) to PF(o) in which each
packet from PF(c) is matched at most & times. This is done by a marking scheme that marks
one of the 1-packets in PF queues whenever a 1-packet is accepted by Opt but rejected by PF. A
description of the marking scheme follows (figure 5).

Marking scheme
For each node: =1,...,k do:
1. For each incoming 1-packet do:

(a) If the packet is accepted by PF, consider it as an unmarked packet.

(b) Otherwise, if the packet is accepted by Opt, look for the first unmarked 1-packet,
starting from the head of queue ¢ and moving to its tail, and mark it.

2. In the transmission phase:
If a 1-packet arrives from the previous node, it is considered to be unmarked.

Figure 5: Marking scheme for PF.

We observe that each 1-packet is marked at most k times (at most once in each of the inter-
mediate nodes on its path), and that packets are not dropped during the transmission phase since
all nodes that store packets push a packet forward. Therefore, it remains to prove that we always
have an available unmarked packet when we reject a packet that is accepted by Opt (step 1b in
the marking scheme). In the following we refer to system states [Si,...,S;] and use the notations
U/, PF} and Opt] (i =1,...,k, j=1,...,r) with similar meanings to those used in the proof of
Claim 4.4.

Claim 5.3 For each state S; (1 <j <r) and queue i (1 <i<k), Uij > PF{ — Optg.

Proof: First, we recall that algorithm PF may break ties arbitrarily. We may ignore these scenarios
from the same considerations given in the proof of Claim 4.4. We prove the claim by induction on
the states. At the initial state S; the queues are empty, hence the inequality clearly holds. We
assume correctness for state S; and prove that the inequality continues to hold for state S;i. We
first consider the packet arrival phase. Consider a 1-packet p arriving to queue i. If p is accepted
by PF, U; increases and the inequality holds. Otherwise, if p is rejected by PF and is accepted
by Opt, then by the induction hypothesis U; > PF; — Opt; and since PF; = B; and Opt; < B;
we have an unmarked 1-packet in queue i. After we mark a packet both sides of the inequality
decrease by 1. Next, consider the transmission phase. Recall that no packets are dropped during
this phase. We examine the changes in both the transmitting end and the receiving end. At the
transmitting end, note that if queue 7 does not contain marked packets then the inequality clearly
holds. Otherwise, U; remains unchanged (since a marked packet is transmitted) while the right
hand side of the inequality can only decrease (if Opt chooses not to transmit). At the receiving
end, we first observe that a packet that reaches its destination has no effect. A 1-packet enqueued
into queue ¢ in PF causes U; to increase; A packet enqueued by Opt causes the right hand side of
the inequality to decrease. In either case, the inequality continues to hold. [ |

Theorem 5.1 can be generalized as follows. The proof follows the same lines and is omitted.
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Theorem 5.4 Let G = (V, E) be a directed graph with uniform edge capacities such that Yv €
Vdin(v) = 1. The competitive ratio of algorithm PF on networks with topology G is £(G) + 1
(where £(G) is the length of the longest acyclic directed path in G).

Observe that in particular Theorem 5.4 implies that algorithm PF is (k 4+ 1)-competitive for a
cycle topology. The following lemma shows that our analysis of PF is tight up to a factor of 2.
Proof can be found in appendix A

Lemma 5.5 Algorithm PF is at least k/2-competitive on a line topology of length k.

6 Application 3: Work-Conserving Weighted Dynamic Routing

Kesselman et al. [14] studied the dynamic routing problem under the work-conserving assumption.
Specifically, they compared the performance of the local on-line Greedy algorithm and the local
off-line OptL algorithm to the global work-conserving optimum, in networks with line and tree
topologies (see section 2 for exact definitions). The strongest results in [14] are shown only for
sequences restricted to two values: 1 and «, while the bounds for arbitrary sequences remain as
open questions. Using our zero-one principle we can generalize their results to arbitrary sequence
as follows. First, we observe that the local off-line algorithm, OptL,, is in fact a comparison-based
algorithm that sorts the sequence of packets according to their values and then attempts to schedule
the packets starting from the largest value (see e.g. [16]). The local on-line Greedy algorithm is
clearly comparison-based. With a few minor modifications, that are omitted here, we can modify
the proofs shown in [14] to work for 0/1 sequences and algorithms that break ties arbitrarily. Before
we proceed to restate the main results from [14] in their general form, we need to introduce some
additional definitions and notations from [14].

Definition 6.1 For a given link e in a given network, define the delay of e, denoted D(e), to be
the ratio [size(Qe)/c(e)]. The delay of a given path is the sum of the edge delays on that path.

Definition 6.2 Let e = (u,v) be any directed link in a given tree topology. The height of e, denoted
h(e), is the mazimum path delay, over all paths starting at a leaf and ending at v. The weakness

of e, denoted X\(e), is defined to be A(e) = g((?)

We are now ready to restate the main results from [14] in their generalized form, for arbitrary
sequences. We emphasize that all other results in [14] restricted to sequences with two values can
be generalized as well.

Theorem 6.1 The competitive ratio of Greedy for any given tree topology G = (V, E) is
O(max{\(e) | e € E}).

Theorem 6.2 The approximation ratio of OptL for a complete binary tree of depth h is at most
O(h/logh).

Theorem 6.3 The approzimation ratio of OptL for a line of length h is O(Vh).
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A Lower bounds
In this section we prove the lower bounds presented in the paper.

Proof: [Lemma 4.5] We construct the following sequence o:
1. At t =0, B; packets with value ¢ arrive to queue i (i = 1,...,m).

2. For 1 <i < m—1, during time steps E;;ll Bj, ..., (23:1 Bj) —1, B; packets with value 146
arrive to queue 7, one packet at a time. Then, during the next B,, time steps, B,, packets
with value 1 arrive to queue m, one packet at a time. Denote by P the set of packets arriving

at this phase.

3. When phase 2 is completed, a set of packets P arrives (identical to the set of packets from
phase 2, only they all arrive together).

4. During the next Zzn:_ll B, time steps, a packet with value 1 arrives at each time step to queue
m.

5. No more packets arrive.

We now analyze the competitive ratio of TLH while we assume w.l.o.g By, = min;<j<,, B; and
we take €,0 — 0, thereby considering o to consist of 0’s and 1’s. Algorithm TLH accepts all the
packets that arrive at step 1. During phase 2 these e-packets are transmitted while the queues are
filled with 1-packets. All the packets that arrive in step 3 are thus discarded. During phase 4 TLH
empties queues [1, m — 1] first, therefore discarding all the packets that arrive during this phase to
queue m. In contrast, Opt discards all the e-packets that arrive at the beginning, and can therefore
transmit all subsequent packets. Hence:

Opt(c) _ 3->31% Bi— Bm 1

= >3- —.
TLH(0) > B - m

Proof: [Lemma 5.5] Consider the following packet sequence o arriving to a network with uniform
queues sizes:

1. At time t = 0, 2B packets are injected at node i (i = 1,...,k), the first B packets have value
14 ¢ and are destined to node £+ 1, the last B packets have value 1 and are destined to node
1+ 1.

2. Packets with value 1 and destination ¢ 4+ 1 are injected at node 7 (i = 2,...,k) during time
steps 1,...,4- B — 1.
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Algorithm PF accepts the B more valuables packets injected at step 1 at each node and rejects
all other packets in the sequence. In contrast, Opt rejects the valuable packets injected at step 1,
and can therefore deliver all other packets. Taking ¢ — 0 we obtain:

Opt(o) _ Siii-B _k

PF(¢) (k—1)B 2
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