
The zero-one priniple for swithing networksYossi Azar � Yossi Rihter yAbstratReently, approximation analysis has been extensively used to study algorithms for routingweighted pakets in various network settings. Although di�erent tehniques were applied in theanalysis of diverse models, one ommon property was evident: the analysis of input sequenesomposed solely of two di�erent values is always substantially easier, and many results are knownonly for restrited value sequenes. Motivated by this, we introdue our zero-one priniplefor swithing networks whih haraterizes a wide range of algorithms for whih ahieving -approximation (as well as -ompetitiveness) with respet to sequenes omposed of 0's and1's implies ahieving -approximation. The zero-one priniple proves to be very eÆient inthe design of swithing algorithms, and substantially failitates their analysis. We presentthree appliations. First, we onsider the Multi-Queue QoS Swithing model and design a 3-ompetitive algorithm, improving the result from [6℄. Seond, we study the Weighted DynamiRouting problem on a line topology of length k and present a (k + 1)-ompetitive algorithm,whih improves and generalizes the results from [1, 11℄. As a third appliation, we onsiderthe work of [14℄, that ompares the performane of loal algorithms to the global optimum invarious network topologies, and generalize their results from 2-value sequenes to arbitrary valuesequenes.1 IntrodutionOverview: Paket routing networks, most notably the Internet, have beome the preferred plat-form for arrying data of all kinds. Due to the steady inrease of network traÆ, and the fatthat Internet traÆ tends to onstantly utuate, Quality of Servie (QoS) networks, whih allowprioritization between di�erent traÆ streams have gained onsiderable attention within the net-working ommunity. As network overloads beome frequent, intermediate swithes have to opewith inreasing amounts of traÆ, while attempting to pass forward more \valuable" pakets, wherevalues orrespond to the required quality of servie for eah paket. We an measure the quality ofthe deisions made within a network by onsidering the total value of pakets that were deliveredto their destination.Traditionally, network routing algorithms were studied within the stability analysis framework,either by a probabilisti model for paket injetion (queuing theory, see e.g. [7, 17℄) or an adversarialmodel (adversarial queuing theory, see e.g. [5, 8℄). In stability analysis we onsider networks withunit-value pakets, and the goal is to measure the largest amount of pakets ever waiting fortransmission on a link, as a funtion of the network topology and the paket injetion model,thereby bounding the bu�er size needed to prevent paket drop. Sine it seems inevitable to drop�azar�tau.a.il. Shool of Computer Siene, Tel-Aviv University, Tel-Aviv, 69978, Israel. Researh supportedin part by the Israeli Ministry of industry and trade and by the Israel Siene Foundation.yyo�tau.a.il. Shool of Computer Siene, Tel-Aviv University, Tel-Aviv, 69978, Israel. Researh supported inpart by the Israeli Ministry of industry and trade. 1



pakets in real-world networks, approximation analysis framework, whih avoids any assumptionson the input sequene and ompares the performane of algorithms to the optimal solution, hasbeen adopted reently for studying throughput maximization problems. In partiular, ompetitiveanalysis has been applied lately to investigate online routing algorithms. Initially, researhershave investigated single-queue swithes in various settings [2, 4, 11, 12, 16℄, and later multi-queueswithes [6, 13℄ and multiple-node networks [1℄ have been studied.The zero-one priniple: While di�erent tehniques were used to analyze algorithms in variousswithing models, there was one ommon property: analysis of 2-value sequenes, in whih paketsan take only 2 distint values, was always substantially easier ompared with arbitrary paketsequenes. Moreover, many results are known only for restrited value sequenes, due to the fatthat handling the state of a system ontaining pakets with arbitrary values is signi�antly moreinvolved. Motivated by this, we introdue the zero-one priniple for swithing networks. Thispriniple applies to all omparison-based swithing algorithms, that base their deisions on therelative order between paket values. The priniple says that in order to prove that an algorithmahieves -approximation it is suÆient to prove that it ahieves -approximation with respetto sequenes omposed solely of 0's and 1's, where ties between pakets with equal values maybe broken arbitrarily. We note that one an assume that without loss of generality there are no0-value pakets in the input sequene sine suh pakets ould have been dropped. Indeed, theoptimal solution may ignore all the 0-value pakets, however, the omparison-based algorithm maynot, sine it only regards the relative order between values.A zero-one priniple has been already introdued for sorting networks in the omparison model [3,9, 15℄, and it has been proved that a sorting network, that sorts orretly all sequenes that areomposed of 0's and 1's, is guaranteed to sort orretly an arbitrary sequene. In a similar mannerto the zero-one priniple for sorting networks, our priniple turns out to be very useful in the de-sign of a wide range of approximation algorithms for di�erent swithing models, and onsiderablyfailitates their analysis, due to the fat that it allows to fous on 0/1 sequenes. We note thatin ontrast with sorting networks where sorting 0's and 1's is equivalent to sorting any two dis-tint values, the analysis of 0/1 sequenes in swithing networks is easier ompared with arbitrary2-value sequenes. In addition, we note that there is a myriad of researh papers on throughputmaximization problems in networks transmitting unit-value pakets. Our paper provides a linkingstep between previous analysis of unit-value networks and QoS networks, by allowing to modifyprevious analysis only for 0/1 sequenes, whih are in many ases not very di�erent from uniformsequenes. We present three appliations to the zero-one priniple.Appliations: We �rst onsider the preemptive Multi-Queue QoS Swithing model that wasoriginally introdued in [6℄. In this model we have a swith with m inoming FIFO queues withbounded apaities and one output port. At eah time step new pakets arrive to the queues, eahassoiated with a value. Additionally, at eah time step the swith selets one non-empty queue andtransmits the paket at the head of the queue through the output port. The goal is to maximizethe total value of transmitted pakets. We present a 3-ompetitive algorithm for this problem,improving upon the 4-ompetitive algorithm that was shown in [6℄.Our seond appliation is the Weighted Dynami Routing problem on a line. We onsider anetwork with a topology of a line of length k , i.e. node i (i = 1; : : : ; k) is onneted to node i+ 1by a unidiretional link, and ontains a �xed-size FIFO queue to store the pakets waiting to betransmitted. At eah time step new pakets may arrive online to the network nodes, eah paket2



is assoiated with a value and a destination node. Additionally, eah node an transmit the paketat the head of its queue to the next node. The goal is to maximize the total value of pakets thatwere delivered to their destination. Speial ases of this model were studied in [1, 11℄. Kesselmanet al. [11℄ studied the single-queue model, i.e. k = 1, and proved that the natural greedy algorithmis asymptotially 2-ompetitive. The unweighted version of our model, in whih all pakets haveunit value, was investigated by Aiello et al. [1℄ who proved that the greedy algorithm is O(k)-ompetitive. We prove that the natural greedy algorithm is (k + 1)-ompetitive for the weightedproblem, therefore generalizing the results in [1, 11℄.Kesselman et al. [14℄ analyzed the performane of loal o�-line and on-line algorithms omparedwith the performane of the global optimal solution, in di�erent network topologies. Their strongestresults applied only to 2-value sequenes omposed of 1 and � values. As a third appliation, weemploy our zero-one priniple to generalize their results to arbitrary value sequenes.Related results: The online problem of throughput maximization in swithes supporting QoShas been studied extensively during reent years. Initially, single queue swithes were investigated,for both arbitrary paket sequenes, and 2-value sequenes. The preemptive model, in whih paketsstored in the queue an be disarded, was studied in [11, 12, 16℄. The non-preemptive model, inwhih a paket an be disarded only upon arrival, was initially studied by Aiello et al. [2℄, followedby Andelman et al. [4℄ who showed tight bounds. Reently, these results for a single queue weregeneralized for swithes with arbitrary number of queues in [6℄, by a general redution from the mqueues model to the single queue model. An alternative model is the shared memory QoS swith,in whih memory is shared among all queues. Hahne et al. [10℄ studied bu�er management poliiesin this model while fousing on deriving upper and lower bounds for the natural Longest QueueDrop poliy.Aiello et al. [1℄ studied the Dynami Routing problem with unit pakets and investigated theperformane of various greedy algorithms with omparison to their stability guarantees. In par-tiular, they showed that the natural greedy algorithm is O(k)-ompetitive for a line topology. Infat, the original model suggested in [1℄ is non-FIFO, and pakets an be transmitted from thequeues in any order. Algorithm NTG (Nearest To Go) is shown to be O(k2=3)-ompetitive for thenon-FIFO model.Paper struture: The paper is organized as follows. Setion 2 inludes formal de�nitions andnotations. In setion 3 we prove our zero-one priniple. We apply our zero-one priniple to threedi�erent swithing models in setions 4, 5 and 6.2 De�nitions and notationsIn this setion we formally de�ne the three problems we onsider throughout the paper and intro-due some notations.Multi-Queue QoS Swithing: In the online Multi-Queue QoS Swithing problem, originallyintrodued in [6℄, we are given a swith with m FIFO queues, where queue i has size Bi, and oneoutput port. Pakets arrive online, eah paket is destined to one of the queues and is assoiatedwith a non-negative value. Initially, the m queues are empty. We assume that time is disrete, andeah time step t � 0 is divided into two phases: at the beginning of the �rst phase of time t a set ofpakets arrive to the queues. Pakets an be inserted to eah queue without exeeding its apaity.3



Remaining pakets must be disarded. In the seond phase of time t, the swithing algorithm mayselet one of the non-empty queues and transmit the paket at the head of the queue. The goalis to maximize the total value of transmitted pakets. We onsider the preemptive ase, in whihpreviously stored pakets an be disarded from the queues.Weighted Dynami Routing on a line: In the online Weighted Dynami Routing on a lineproblem we have a network organized in a line topology of length k, i.e. node i = 1; : : : ; k isonneted to node i + 1 via a unidiretional link with unit apaity. Node i = 1; : : : ; k ontainsa FIFO queue of size Bi, whih is initially empty, to bu�er the pakets waiting to be transmittedvia its outgoing link. We assume time proeeds in disrete steps, and eah time step t � 0 isdivided into two phases: at the �rst phase new pakets may arrive online to nodes i = 1; : : : ; k,eah paket is assoiated with a value and a destination node. During the seond phase of time t,node i = 1; : : : ; k may transmit the paket at the head of its queue to node i+1. If a paket reahesits destination it is absorbed. Otherwise, online arriving pakets (from both phase 1 and phase 2)an be enqueued without exeeding the queues apaities. Remaining pakets must be disarded.The goal is to maximize the total value of pakets that reah their destination.The Weighted Dynami Routing problem an be generalized to an arbitrary direted graphG = (V;E), where nodes represent the network swithes, and edges represent unidiretional links.In the general ase eah paket arrives with a prede�ned path from its soure to destination,and eah direted link e 2 E is assoiated with a apaity (e), and a FIFO queue Qe of sizesize(Qe), to store the pakets waiting for transmission on e. A speial ase of this problem wasoriginally introdued in [1℄, where all pakets had unit values, links had unit apaities, and thenodes ontained bu�ers instead of FIFO queues, i.e. transmission was allowed in any order.Work-Conserving Weighted Dynami Routing: Kesselman et al. [14℄ studied the dynamirouting problem in the same model desribed in the previous paragraph, under the work-onservingassumption. In the following, we briey review their de�nitions. A shedule is alled work-onserving if for every time t and link e, the number of pakets transmitted over e at time tis the minimum between (e) and the number of pakets in Qe. We onsider two network topolo-gies: a direted line topology, idential to the one de�ned in the previous paragraph, and a diretedtree topology, where pakets are only injeted at the leaves and are destined to the root. An algo-rithm is alled loal on-line if its ation at time t at node v depends only on the pakets arrivingto v until time t. An algorithm is alled loal o�-line if its ation at time t at node v dependsonly on the sequene of pakets arriving at node v (possibly after time t). We denote by OptLv theloal o�-line optimal solution, that maximizes the total value transmitted out of v. For any aylinetwork we denote by OptL the algorithm that exerises OptLv in topologial order. We denote byOpt the global work-onserving optimal algorithm that knows all the information in the system (allnodes, all times).We now introdue the notations we use for all problems. We denote by � = fp1; : : : ; png the�nite sequene of inoming pakets, and by v� : � ! R the pakets value funtion. Let A be aswithing algorithm, we denote by A(�) the set of pakets delivered by A given the sequene �(also referred to as the output sequene). Given a paket sequene �, we denote by V (�) the totalvalue of pakets in the sequene, i.e. V (�) =Pp2� v�(p). The optimal solution is denoted by Opt.A deterministi (resp. randomized) approximation algorithm A ahieves -approximation ( �1) for a maximization problem i� for every paket sequene � we have: V (Opt(�)) �  � V (A(�))(resp. V (Opt(�)) �  �E[V (A(�))℄). The de�nition of the ompetitive ratio with respet to online4



algorithms is the same.3 The zero-one prinipleIn this setion we introdue our zero-one priniple for swithing networks. We begin with someadditional de�nitions and notations. Given a funtion f : R ! R we denote by f(�) the paketsequene � with the modi�ed value funtion vf(�) = f Æ v�. For a given swithing algorithm A weuse the notation f(A(�)) to denote the set of transmitted pakets with modi�ed values. In thefollowing we de�ne omparison-based algorithms for swithing networks. Informally, an algorithmA is said to be omparison-based if it bases its deisions on relative order between values alone,and may break ties arbitrarily. We note that the latter means that A(�) is the set of all possibleoutput sequenes, where we break ties between equal paket values in all possible ways (even ifalgorithm A breaks ties in a spei� way).De�nition 3.1 Let A be a swithing algorithm that may break ties arbitrarily between paketswith equal values. A is alled omparison-based if and only if for every monotonially inreasingfuntion f : R ! R we have A(�) � A(f(�)).For the remainder of this setion we slightly abuse notation, and denote by A(�) a spei�output sequene in A(�) and by A(f(�)) the same output sequene in A(f(�)) (where f is amonotonially inreasing funtion), that exists aording to de�nition 3.1.Theorem 3.1 [zero-one priniple℄ Let A be a omparison-based swithing algorithm (determin-isti or randomized). A is a -approximation algorithm if and only if A ahieves -approximationfor all paket sequenes whose values are restrited to 0/1.Proof: The \only if" diretion is straightforward (even if A breaks ties between equal paket valuesin a spei� way), thus it remains to prove the other diretion. For simpliity of notation we provethe theorem for deterministi algorithms. Using linearity of expetation the theorem follows forrandomized algorithms. We de�ne the monotonially inreasing step funtion ft(x) by: ft(x) = 1if x � t, and otherwise ft(x) = 0. In the following laims we show that the set of pakets deliveredby an algorithm A an be broken into sequene of 0's and 1's by using ft. If A is omparison-basedwe an apply the transformation diretly to the input sequene.Claim 3.2 Let � be any paket sequene. Then the following holds: V (�) = R1t=0 V (ft(�))dt.Proof: V (�) =Xp2� v�(p) =Xp2� Z 1t=0 ft(v�(p))dt = Z 1t=0Xp2� ft(v�(p))dt = Z 1t=0 V (ft(�))dt;where the seond equality follows from R1t=0 ft(x)dt = x.Claim 3.3 Let A be a omparison-based swithing algorithm and let f be any monotonially in-reasing funtion. Then the following holds for any paket sequene �: V (f(A(�))) = V (A(f(�))).Proof: V (f(A(�))) = Xp2A(�) f(v�(p)) = Xp2A(f(�)) f(v�(p)) = V (A(f(�)));where the seond equality follows sine A is omparison-based.5



We an now show for every sequene �:V (A(�)) = Z 1t=0 V (ft(A(�)))dt = Z 1t=0 V (A(ft(�)))dt� Z 1t=0 1 � V (Opt(ft(�)))dt � 1 � Z 1t=0 V (ft(Opt(�)))dt= 1 � V (Opt(�));where the �rst and last steps follow from laim 3.2, the seond step follows from laim 3.3, the thirdstep follows sine ft(�) is a 0/1 sequene, and the forth step follows sine Opt(ft(�)) maximizesthe number of delivered pakets with original value at least t.Given Theorem 3.1, if we wish to prove that a omparison-based algorithm A ahieves -approximation, it is enough to show that for every 0/1 paket sequene �, and for eah possibleoutput sequene O 2 A(�), i.e. for every possible way of breaking ties between equal values, wehave: V (Opt(�)) �  � V (O).In many ases, the approximation ratio of a swithing algorithm is given in terms of the ratiobetween the largest to smallest paket values, denoted �. In the following theorem we extend thezero-one priniple to this ase, and prove that it is suÆient to onsider paket sequenes omposedsolely of two values: 1 and �.Theorem 3.4 Let A be a omparison-based swithing algorithm (deterministi or randomized).A is a (�)-approximation algorithm if and only if A ahieves (�)-approximation for all paketsequenes whose values are restrited to 1=�.Proof: The \only if" diretion is straightforward, thus it remains to prove the other diretion.Again, for simpliity of notation we prove the theorem for deterministi algorithms, while therandomized ase follows easily. We de�ne the monotonially inreasing step funtion gt(x) : [1; �℄ !f1; �g for 1 � t � � as follows: gt(x) = � if 1 � t � x � �, otherwise gt(x) = 1. We begin byrestating laim 3.2.Claim 3.5 Let � be any paket sequene whose values lie in the range [1; �℄. Then the followingholds: V (�) = 1��1 R �t=1 V (gt(�))dt.Proof:V (�) =Xp2� v�(p) =Xp2� 1�� 1 Z �t=1 gt(v�(p))dt = 1�� 1 Z �t=1Xp2� gt(v�(p))dt = 1�� 1 Z �t=1 V (gt(�))dt;where the seond equality follows sine R �t=1 gt(x)dt = �(x� 1) + (�� x) = (�� 1)x.We an now show for every sequene � whose values lie in [1; �℄:V (A(�)) = 1�� 1 Z �t=1 V (gt(A(�)))dt = 1�� 1 Z �t=1 V (A(gt(�)))dt� 1�� 1 Z �t=1 1 � V (Opt(gt(�)))dt � 1�� 1 � 1 � Z �t=1 V (gt(Opt(�)))dt= 1 � V (Opt(�));where the �rst and last steps follow from laim 3.5, the seond step follows from laim 3.3, the thirdstep follows sine gt(�) is a 1=� sequene, and the forth step follows sine Opt(gt(�)) maximizesthe total value (with respet to gt) of the pakets transmitted.6



4 Appliation 1: Multi-Queue QoS SwithingIn this setion we present the �rst appliation of our zero-one priniple. We onsider the problem ofonline Multi-Queue QoS Swithing and design a 3-ompetitive algorithm for the problem, improvingthe 4-ompetitive algorithm suggested in [6℄.We begin by repeating the desription of the greedy preemptive admission ontrol algorithmfor a single queue from [11℄ (�gure 1) and then we present our algorithm TransmitLargestHead(abbreviated TLH) for the problem (�gure 2).Algorithm Greedy [Single-Queue℄Enqueue a new paket if:� The queue is not full.� Or the paket with the smallest value in the queue has a lower value than the urrentpaket. In this ase the smallest paket is disarded and the new paket is enqueued.Figure 1: Algorithm Greedy.Algorithm TLH [Multi-Queue℄1. Admission ontrol: use algorithm Greedy for admission ontrol in all m inomingqueues.2. Sheduling: at eah time step, transmit the paket with the largest value among allpakets at the head of the queues.Figure 2: Algorithm TLH.Theorem 4.1 Algorithm TLH is 3-ompetitive for the Multi-Queue QoS Swithing problem.Proof: Clearly, algorithm TLH bases its admission ontrol and sheduling deisions solely on rel-ative order between values, therefore is it omparison-based. Aording to our zero-one priniple(Theorem 3.1) we need only show that the algorithm is 3-ompetitive for 0/1 sequenes. We note,however, that sine a omparison-based algorithm may break ties arbitrarily between pakets withequal values, we should onsider ases where a paket stored in the queues is disarded in favor ofa paket with an equal value.Let � be a 0/1 sequene omposed solely of pakets with value 1 (abbreviated 1-pakets) andpakets with value 0 (0-pakets in short). With slight abuse of notation we denote by TLH(�) theset of 1-pakets transmitted by the algorithm, and by Opt(�) the set of pakets transmitted bythe optimal solution (note that we may assume that the optimal solution does not transmit any0-pakets). Theorem 4.1 diretly follows from the next lemma.Lemma 4.2 For every 0/1 sequene � we have: jOpt(�) n TLH(�)j � 2 � jTLH(�)j.Proof: We prove the lemma by providing a mathing from (Opt(�) n TLH(�)) to TLH(�) in whiheah 1-paket from TLH(�) is mathed at most twie. This is done by a marking sheme thatmarks one of the 1-pakets stored in the queues aording to TLH operation, whenever a 1-paket7



Marking shemeFor eah time step t do:1. For eah inoming 1-paket to queue i do:(a) If the paket is aepted by TLH, onsider it as an unmarked paket.(b) Otherwise, if the paket is aepted by Opt, look for the �rst unmarked 1-paket,starting from the head of the queue and moving to its tail, and mark it.2. In the transmission phase, whenever Opt transmits a paket do:(a) If Opt and TLH use the same queue for transmission, do nothing.(b) Otherwise, let i 6= j be the queues used by Opt and TLH, respetively. If queue iontains marked pakets, unmark the marked 1-paket losest to the tail in queue iand mark the paket transmitted from queue j.Figure 3: Marking sheme for TLH.is aepted by Opt but rejeted by TLH, and when transmissions take plae. A desription of themarking sheme follows (�gure 3).Clearly, eah 1-paket in TLH(�) an be marked at most twie, one while it resides in thequeue and one while it is transmitted. The following laims prove that eah 1-paket transmittedby Opt but not by TLH is mathed through the marking sheme to a 1-paket in TLH(�). We beginby proving that whenever we hange a marking (step 2b) a 1-paket is transmitted, and thereforethe hange is possible.Claim 4.3 For eah time step t, if the queues hold any marked pakets, then a 1-paket is trans-mitted.Proof: Let queue i hold a marked paket p at time t. When p was marked, queue i ontained no0-pakets, hene all the pakets loser to the head than p are 1-pakets. In partiular, the paketat the head of queue i at time t is a 1-paket. Therefore, a 0-paket an not be transmitted at timet. Before we proeed we introdue some notations. Let us desribe the state of the system at aertain point by the ontents of the queues in TLH and Opt. We denote the sequene of states,starting from the initial state, by [S1; : : : ; Sr℄. A hange of state an our whenever a paketarrives or transmission takes plae. We denote by U ji (j = 1; : : : ; r) the number of unmarkedpakets in queue i at state Sj. We further denote by TLHji and Optji the number of 1-pakets inqueue i at state Sj in TLH and Opt, respetively. For simpliity of notation we drop the supersriptj whenever the state is lear from ontext. To omplete the proof of Lemma 4.2, it remains toshow that whenever a 1-paket destined to queue i is rejeted by TLH but aepted by Opt, queuei ontains unmarked pakets (step 1b).Claim 4.4 For eah state Sj (1 � j � r) and queue i, (1 � i � m), U ji � TLHji �Optji .Proof: First reall that TLH may breaks ties arbitrarily. However, exhanging 0-pakets does notinterfere with the marking sheme, and 1-pakets an be exhanged only when the queue is full8



with 1-pakets, hene we may ignore this senario as it does not hange the values stored in thequeue. We prove the laim by indution on the states. For the initial state S1 the inequalitylearly holds. We assume orretness for state Sj and prove that the inequality holds for stateSj+1. Consider a 1-paket p arriving to queue i. If p is aepted by TLH, Ui inreases and theinequality holds. Otherwise, if p is rejeted by TLH and aepted by Opt, then by the indutionhypothesis Ui � TLHi �Opti and sine TLHi = Bi and Opti < Bi we have an unmarked paket inqueue i. After we mark a 1-paket both sides of the inequality derease by 1. Now, onsider thetransmission phase. Let i and j be the queues used for transmission by Opt and TLH, respetively.The inequality learly holds for queue j if it does not hold any marked pakets. Otherwise, amarked paket is transmitted from queue j (sine we mark pakets in the diretion from the headto the tail), Uj is unhanged while the right hand side of the inequality an only derease. If i 6= j,we inrease Ui by unmarking a paket (step 2b), and the inequality ontinues to hold for queue i.This onludes the proof of Lemma 4.2 and Theorem 4.1.The following lemma proves that our analysis of TLH is asymptotially tight. Proof an be foundin appendix ALemma 4.5 Algorithm TLH is at least (3� 1m)-ompetitive.5 Appliation 2: Weighted Dynami RoutingIn this setion we present our seond appliation of the zero-one priniple. We onsider the problemof dynami routing on a line (see setion 2 for formal de�nition) and present a (k+1)-ompetitivealgorithm for the problem (�gure 4).Algorithm PF (PushForward)For eah node i = 1; : : : ; k do:1. Arrival phase: use the Greedy algorithm to aept pakets into the queue.2. Transmission phase: if the queue is not empty, transmit the paket at the head of thequeue to the next node. Figure 4: Algorithm PF.Theorem 5.1 Algorithm PF is (k+1)-ompetitive for the Weighted Dynami Routing problem ona line of length k.Proof: Clearly, algorithm PF bases its admission ontrol deisions solely on relative order betweenvalues, therefore it is omparison-based. Aording to our zero-one priniple (Theorem 3.1) weneed only show that the algorithm is (k + 1)-ompetitive for 0/1 sequene.Let � be a 0/1 sequene. With slight abuse of notation we denote by PF(�) the set of 1-paketsthat were delivered by PF, and by Opt(�) the set of pakets delivered by Opt. Theorem 5.1 diretlyfollows from the next lemma.Lemma 5.2 For every 0/1 sequene � we have: jOpt(�) n PF(�)j � k � jPF(�)j.9



Proof: We prove the lemma by providing a mathing from (Opt(�)nPF(�)) to PF(�) in whih eahpaket from PF(�) is mathed at most k times. This is done by a marking sheme that marksone of the 1-pakets in PF queues whenever a 1-paket is aepted by Opt but rejeted by PF. Adesription of the marking sheme follows (�gure 5).Marking shemeFor eah node i = 1; : : : ; k do:1. For eah inoming 1-paket do:(a) If the paket is aepted by PF, onsider it as an unmarked paket.(b) Otherwise, if the paket is aepted by Opt, look for the �rst unmarked 1-paket,starting from the head of queue i and moving to its tail, and mark it.2. In the transmission phase:If a 1-paket arrives from the previous node, it is onsidered to be unmarked.Figure 5: Marking sheme for PF.We observe that eah 1-paket is marked at most k times (at most one in eah of the inter-mediate nodes on its path), and that pakets are not dropped during the transmission phase sineall nodes that store pakets push a paket forward. Therefore, it remains to prove that we alwayshave an available unmarked paket when we rejet a paket that is aepted by Opt (step 1b inthe marking sheme). In the following we refer to system states [S1; : : : ; Sr℄ and use the notationsU ji , PFji and Optji (i = 1; : : : ; k ; j = 1; : : : ; r) with similar meanings to those used in the proof ofClaim 4.4.Claim 5.3 For eah state Sj (1 � j � r) and queue i (1 � i � k), U ji � PFji �Optji .Proof: First, we reall that algorithm PF may break ties arbitrarily. We may ignore these senariosfrom the same onsiderations given in the proof of Claim 4.4. We prove the laim by indution onthe states. At the initial state S1 the queues are empty, hene the inequality learly holds. Weassume orretness for state Sj and prove that the inequality ontinues to hold for state Sj+1. We�rst onsider the paket arrival phase. Consider a 1-paket p arriving to queue i. If p is aeptedby PF, Ui inreases and the inequality holds. Otherwise, if p is rejeted by PF and is aeptedby Opt, then by the indution hypothesis Ui � PFi � Opti and sine PFi = Bi and Opti < Biwe have an unmarked 1-paket in queue i. After we mark a paket both sides of the inequalityderease by 1. Next, onsider the transmission phase. Reall that no pakets are dropped duringthis phase. We examine the hanges in both the transmitting end and the reeiving end. At thetransmitting end, note that if queue i does not ontain marked pakets then the inequality learlyholds. Otherwise, Ui remains unhanged (sine a marked paket is transmitted) while the righthand side of the inequality an only derease (if Opt hooses not to transmit). At the reeivingend, we �rst observe that a paket that reahes its destination has no e�et. A 1-paket enqueuedinto queue i in PF auses Ui to inrease; A paket enqueued by Opt auses the right hand side ofthe inequality to derease. In either ase, the inequality ontinues to hold.Theorem 5.1 an be generalized as follows. The proof follows the same lines and is omitted.10



Theorem 5.4 Let G = (V;E) be a direted graph with uniform edge apaities suh that 8v 2V din(v) = 1. The ompetitive ratio of algorithm PF on networks with topology G is `(G) + 1(where `(G) is the length of the longest ayli direted path in G).Observe that in partiular Theorem 5.4 implies that algorithm PF is (k + 1)-ompetitive for ayle topology. The following lemma shows that our analysis of PF is tight up to a fator of 2.Proof an be found in appendix ALemma 5.5 Algorithm PF is at least k=2-ompetitive on a line topology of length k.6 Appliation 3: Work-Conserving Weighted Dynami RoutingKesselman et al. [14℄ studied the dynami routing problem under the work-onserving assumption.Spei�ally, they ompared the performane of the loal on-line Greedy algorithm and the loalo�-line OptL algorithm to the global work-onserving optimum, in networks with line and treetopologies (see setion 2 for exat de�nitions). The strongest results in [14℄ are shown only forsequenes restrited to two values: 1 and �, while the bounds for arbitrary sequenes remain asopen questions. Using our zero-one priniple we an generalize their results to arbitrary sequeneas follows. First, we observe that the loal o�-line algorithm, OptLv, is in fat a omparison-basedalgorithm that sorts the sequene of pakets aording to their values and then attempts to shedulethe pakets starting from the largest value (see e.g. [16℄). The loal on-line Greedy algorithm islearly omparison-based. With a few minor modi�ations, that are omitted here, we an modifythe proofs shown in [14℄ to work for 0/1 sequenes and algorithms that break ties arbitrarily. Beforewe proeed to restate the main results from [14℄ in their general form, we need to introdue someadditional de�nitions and notations from [14℄.De�nition 6.1 For a given link e in a given network, de�ne the delay of e, denoted D(e), to bethe ratio dsize(Qe)=(e)e. The delay of a given path is the sum of the edge delays on that path.De�nition 6.2 Let e = (u; v) be any direted link in a given tree topology. The height of e, denotedh(e), is the maximum path delay, over all paths starting at a leaf and ending at v. The weaknessof e, denoted �(e), is de�ned to be �(e) = h(e)D(e) .We are now ready to restate the main results from [14℄ in their generalized form, for arbitrarysequenes. We emphasize that all other results in [14℄ restrited to sequenes with two values anbe generalized as well.Theorem 6.1 The ompetitive ratio of Greedy for any given tree topology G = (V;E) isO(maxf�(e) j e 2 Eg).Theorem 6.2 The approximation ratio of OptL for a omplete binary tree of depth h is at mostO(h= log h).Theorem 6.3 The approximation ratio of OptL for a line of length h is O(ph).
11



Referenes[1℄ W. Aiello, R. Ostrovsky, E. Kushilevitz, and A. Ros�en. Dynami routing on networks with�xed-size bu�ers. In Pro. 14th ACM-SIAM Symp. on Disrete Algorithms, pages 771{780,2003.[2℄ W. A. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosen. Competitive queue poliies fordi�erentiated servies. In Proeedings of the IEEE INFOCOM 2000, pages 431{440.[3℄ M. Ajtai, J. Koml�os, and E. Szemer�edi. An o(n log n) sorting network. In Pro. 15th ACMSymp. on Theory of Computing, pages 1{9, 1983.[4℄ N. Andelman, Y. Mansour, and A. Zhu. Competitive queueing poliies for QoS swithes. InPro. 14th ACM-SIAM Symp. on Disrete Algorithms, pages 761{770, 2003.[5℄ M. Andrews, B. Awerbuh, A. Fern�andez, J. Kleinberg, T. Leighton, and Z. Liu. Universalstability results for greedy ontention-resolution protools. In Pro. 37th IEEE Symp. onFound. of Comp. Siene, pages 380{389, 1996.[6℄ Y. Azar and Y. Rihter. Management of multi-queue swithes in QoS networks. In Pro. 35thACM Symp. on Theory of Computing, pages 82{89, 2003.[7℄ A. Birman, H. R. Gail, S. L. Hantler, Z. Rosberg, and M. Sidi. An optimal servie poliyfor bu�er systems. Journal of the Assoiation Computing Mahinery (JACM), 42(3):641{657,1995.[8℄ A. Borodin, J.Kleinberg, P. Raghavan, M. Sudan, and D. Williamson. Adversarial queuingtheory. In Pro. 28th ACM Symp. on Theory of Computing, pages 376{385, 1996.[9℄ T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introdution to Algorithms. The MIT Press,1990.[10℄ E. L. Hahne, A. Kesselman, and Y. Mansour. Competitive bu�er management for shared-memory swithes. In Proeedings of the 13th Annual ACM Symposium on Parallel Algorithmsand Arhitetures, pages 53{58, 2001.[11℄ A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Shieber, and M. Sviridenko. Bu�eroverow management in QoS swithes. In Pro. 33rd ACM Symp. on Theory of Computing,pages 520{529, 2001.[12℄ A. Kesselman and Y. Mansour. Loss-bounded analysis for di�erentiated servies. In Pro.12th ACM-SIAM Symp. on Disrete Algorithms, pages 591{600, 2001.[13℄ A. Kesselman and A. Ros�en. Sheduling poliies for CIOQ swithes. In Proeedings of the15th Annual ACM Symposium on Parallel Algorithms and Arhitetures, pages 353{362, 2003.[14℄ Alex Kesselman, Zvi Lotker, Yishay Mansour, and Boaz Patt-Shamir. Bu�er overows ofmerging streams. In Pro. 11th Annual European Symposium on Algorithms, pages 349{360,2003.[15℄ Donald E. Knuth. The Art of Computer Programming, Sorting and Searhing, volume 3.Addison-Wesley, Reading, MA, 1973. 12



[16℄ Z. Lotker and B. Patt-Shamir. Nearly optimal �fo bu�er management for di�serv. In Pro.21st ACM Symp. on Priniples of Distrib. Computing, pages 134{143, 2002.[17℄ M. May, J. C. Bolot, A. Jean-Marie, and C. Diot. Simple performane models of di�erentiatedservies for the internet. In Proeedings of the IEEE INFOCOM 1999, pages 1385{1394.A Lower boundsIn this setion we prove the lower bounds presented in the paper.Proof: [Lemma 4.5℄ We onstrut the following sequene �:1. At t = 0, Bi pakets with value " arrive to queue i (i = 1; : : : ;m).2. For 1 � i � m�1, during time stepsPi�1j=1Bj ; : : : ; (Pij=1Bj)�1, Bi pakets with value 1+ Æarrive to queue i, one paket at a time. Then, during the next Bm time steps, Bm paketswith value 1 arrive to queue m, one paket at a time. Denote by P the set of pakets arrivingat this phase.3. When phase 2 is ompleted, a set of pakets P arrives (idential to the set of pakets fromphase 2, only they all arrive together).4. During the nextPm�1i=1 Bi time steps, a paket with value 1 arrives at eah time step to queuem.5. No more pakets arrive.We now analyze the ompetitive ratio of TLH while we assume w.l.o.g Bm = min1�i�mBi andwe take "; Æ ! 0, thereby onsidering � to onsist of 0's and 1's. Algorithm TLH aepts all thepakets that arrive at step 1. During phase 2 these "-pakets are transmitted while the queues are�lled with 1-pakets. All the pakets that arrive in step 3 are thus disarded. During phase 4 TLHempties queues [1;m� 1℄ �rst, therefore disarding all the pakets that arrive during this phase toqueue m. In ontrast, Opt disards all the "-pakets that arrive at the beginning, and an thereforetransmit all subsequent pakets. Hene:Opt(�)TLH(�) = 3 �Pmi=1Bi �BmPmi=1Bi � 3� 1m:Proof: [Lemma 5.5℄ Consider the following paket sequene � arriving to a network with uniformqueues sizes:1. At time t = 0, 2B pakets are injeted at node i (i = 1; : : : ; k), the �rst B pakets have value1+" and are destined to node k+1, the last B pakets have value 1 and are destined to nodei+ 1.2. Pakets with value 1 and destination i + 1 are injeted at node i (i = 2; : : : ; k) during timesteps 1; : : : ; i �B � 1. 13



Algorithm PF aepts the B more valuables pakets injeted at step 1 at eah node and rejetsall other pakets in the sequene. In ontrast, Opt rejets the valuable pakets injeted at step 1,and an therefore deliver all other pakets. Taking "! 0 we obtain:Opt(�)PF(�) = Pk�1i=1 i �B(k � 1)B = k2 :
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