
LOWER BOUNDS FOR THRESHOLD AND SYMMETRIC FUNCTIONSIN PARALLEL COMPUTATIONYossi Azar�Computer Science DepartmentStanford UniversityStanford, CA 94305-2140AbstractWe consider the family of decision problems of the threshold languages Lg. A thresholdlanguage Lg is the set of n bit vectors having at least g(n) \1"s. Using a new technique forcontrolling the size and structure of a hypergraph by a potential function, we prove lower bounds forthese decision problems on a PRIORITY PRAM with m shared memory cells and any polynomialnumber of processors. The lower bounds are almost tight for the admissible range (m � n�). Bycombining our results with the results of Vishkin and Wigderson and the results of Li and Yesha weare able to show a complexity gap between an m cell PRIORITY PRAM having an exponential (orunlimited) number of processors and one having only a polynomial number. A consequence of ourresults is that PRIORITY PRAM and ARBITRARY PRAM with m shared memory cells and anygiven polynomial number of processors have the same power (up to a small factor) for computingsymmetric functions.
� Supported by a Weizmann Fellowship and by contract ONR N00014-88-K-0166.

1. IntroductionThis paper considers the PRAM model with limited shared memory. A PRAM consists ofprocessors P (i); i = 1; :::; p; and shared memory cells C(i); i = 1; :::; m; through which theprocessors communicate. Since we assume that the number of shared memory cells (m) is smallerthan the input size (n), there are also n read only input cells (ROM) X(1); :::;X(n). There is ahierarchy among the di�erent PRAMmodels in accordance with the way they resolve write conicts.The strongest model is the PRIORITY model, where the minimal index processor (among thoseattempting to write to the same cell) succeeds. We prove lower bounds for the PRIORITY modelwith m shared memory cells, denoted by PRIORITY(m). In order to get more powerful lowerbounds we assume that each cell in the shared memory can accommodate strings of arbitrarylength.For a given function g = g(n), the threshold language Lg (see [LY2]) is de�ned byLg = f(x1; ::; xn)jxi 2 f0; 1g (1 � i � n) and nXi=1 xi � g(n)gBy symmetry we can always assume that g(n) � n=2. The language Lg, where g(n) = n=2, is calledthe MAJORITY language. The complexity of the family of threshold languages has immediateimplications on the complexity of symmetric functions.1.1 Background and Previous Work.The �rst to consider this model were Vishkin and Wigderson [VW]. They proved an
(pn=m)lower bound for computing MAJORITY (g = n=2) on PRIORITY(m). Their lower bound doesnot depend on the number of processors and is tight for all m � n= log2 n. The upper bound canbe easily obtained using pnm processors. For general g(n) their method produces an
(pg(n)=m)lower bound. They argue that the case of a single shared memory cell (m = 1), or of a constantnumber, is not only interesting from the theoretical point of view, but is also well founded inpractice. For example, the \Ethernet" can be considered as a PRAM with a single shared memorycell. They also point out that in [GGKMRS],[K] and [V] it is implied that the size of the sharedmemory may determine the hardware feasibility of the parallel machine. More lower bounds forPRAM with small shared memory appear in [B],[FMW],[FRW] and others.Li and Yesha made more progress on analyzing the complexity of threshold languages in thismodel. In [LY2], they considered the threshold languages Lg for g = o(n). They noticed thatthe
(pg) lower bound (m = 1) can be matched using � ng0:5� processors. Since this number isexponential in n, they suggested that it is of interest to �nd more accurate bounds for smallernumber of processors. They present a better lower bound only for the special case where the1

number of processors is linear and g = o(n1=4). Speci�cally, they showed that for g = o(n1=4),a PRIORITY(m) with O(n) processors requires depth
(g=m) to recognize Lg. For m = 1, amatching upper bound can be easily obtained.However, the general problem remained open, i.e. to �nd the complexity of the family of thethreshold languages for any polynomial number of processors. Moreover, the lower bound in [LY2]holds only for the subfamily where g = o(n1=4). Thus, it is desirable to determine the complexityover the entire range of g. From the fact that the threshold can be found for any g in O(pn) steps,even for m = 1 and using only pn processors, (see [VW]), it follows that the lower bound of
(g)cannot be obtained for every g = o(n). Hence, it is of interest to know for which range the
(g)lower bound holds and how it changes for bigger g.1.2 Our Results.We address all these problems and prove a lower bound for the general case. We assumewithout loss of generality that g � n=2, since the complexity of g and n� g is the same because ofsymmetry. We prove that
(g=m) rounds are necessary for solving the Lg decision problem for anypolynomial number of processors and for the admissible range of g. More precisely, we show thatfor any � > 0, and for any constant c > 0, a PRIORITY(m) with O(nc) processors requires depth
(min(gm ; n1=2��m)). This bound is tight for m = 1 and g � n1=2��, since it can easily be obtainedby using n=g processors. It is almost tight (up to a factor of n2�) for the remaining range of g andfor all m � n�. This follows from the existence of a simple algorithm that runs using one sharedmemory cell in O(n1=2) rounds and n1=2 processors, and due to the fact that the lower bound isreduced by a factor of at most m for m cell PRAMs, compared to a single shared memory cell.Our results thus determine the complexity of the family of the threshold problems when apolynomial number of processors is available. Moreover, we conclude that the running time of analgorithm that uses a polynomial number of processors will not be better than the running time ofone that uses only a linear number of processors. Our results also show that the complexity of theproblem with a polynomial number of processors is di�erent from the complexity in the exponentialcase. Thus, there is a quadratic gap between the cases. For example, for m = 1 and exponentialnumber of processors the complexity is �(pg); however, for the polynomial range, we prove thatit behaves in the following curious way. It is g for g � n1=2, and it becomes n1=2 for the remainingdomain up to a factor of less than n�.By combining our results with those of [LY2], we show that for any polynomial number ofprocessors and m � n�, PRIORITY(m) and ARBITRARY(m) require the same time complexity(up to a factor of at most n2�) for computing any symmetric function. For m = 1 we prove thatthe two models are equivalent, for a large family of symmetric functions. These results are basedon the strong connection between computing symmetric functions and threshold decision problems(see [LY2]). 2

Let us briey elaborate on the techniques that are used to prove our main lower bound. Themain new tool is the use of a potential function on a dynamic hypergraph which changes at everystep according to the actions of the processors. The set of vertices of the hypergraph correspondsto the ROM cells. The hyperedges reect, at each step, the main set of constraints de�ning thelegal inputs at that step. We perform several types of transformations on the hypergraph so as tomaintain the following invariant: all the legal inputs have the same history. The construction alsoguarantees that the set of legal inputs contains at least one input in Lg and at least one whichis not. Interestingly, the structure and the size of the hypergraph are controlled by the potentialfunction. These structures also serve to control the information that each processor can deducefrom the ROM and the shared memory.2. The Main Lower boundEach step of the PRAM computation consists of four phases: each processor P (i) reads fromsome shared memory cell C(j), reads from some ROM cell X(k), performs a computation and maytry to write into some shared memory cell C(l). The actions and the next state of each processordepend on the current state, the values read from the ROM and the shared memory. See [VW] and[LY] for formal de�nitions.The strongest model, the PRIORITY model, is considered. Thus, the minimal index processorsucceeds in writing when write conicts occur. Recall that PRIORITY(m) denotes the model withm shared memory cells (width m). Since each round of PRIORITY(m) can be simulated by 2mrounds of PRIORITY(1), all the lower bounds of m = 1 hold for PRIORITY(m) when divided by2m. Thus, we can concentrate in the case where m = 1.We state our main theorem.The Main Theorem. Let k be any positive integer. PRIORITY(1) requires
(g=k) rounds torecognize Lg using p processors when the following inequality holds:(2:1) p[2k+4g]2k+1 � nk+1Corollary 1. Let � > 0 and d = o(logn). Then
(g=d) rounds are needed in order to recognizeLg using p = O(nd) processors for g � n1=2��.Proof: For g � n1=2�� we can choose k = Cd where C is large enough constant such that (2.1)holds for large enough n.An important special case of Corollary 1 is when d is constant.Corollary 2. For any polynomial number of processors
(g) rounds are needed to recognize Lgfor g � n1=2��.A matching upper bound can be easily obtained using a linear number of processors as follows.Associate a processor with each ROM cell. At each step each processor whose input bit is 1 tries3

to write its identity into the shared memory cell. Then it reads from this cell and checks if itsucceeded in writing. If it did succeed, then it halts. An input is in Lg if and only if the algorithmis alive for at least g steps.Thus, we cannot improve the asymptotic running time using any polynomial number of pro-cessors compared to the case of using only a linear number of them. The results also separate, aswe already mentioned, between the power of a polynomial number of processors and the power ofan exponential number, since the complexity in the latter case is �(pg).Note that the complexity is monotonic (up to a constant factor) in g for g � n=2 since we canpad the input vector by 1's. we conclude a lower bound for the remaining range of g.Corollary 3. For any polynomial number of processors
(n1=2��) rounds are needed to recognizeLg for g � n1=2�� .This bound is almost tight as it is easy to �nd the exact threshold (to sum up the bits) inO(n1=2) rounds using n1=2 processors as follows. Partition the input into n1=2 blocks, each of sizen1=2, and associate a processor with each block. In the �rst n1=2 rounds each processor sums upthe bits in its block. In the next n1=2 rounds each processor in turn adds its result to the sharedmemory cell. This results in the bit sum.In fact, we can further decrease the n� gap between the upper and lower bound for g � n1=2��.By choosing k = �(plogn) we can obtain from our main theorem an
(g=k) lower bound forg = n1=2=2�(plogn). This yields a gap of O(plogn) for n1=2�� � g � n1=2=2�(plog n) and forg > n1=2=2�(plogn) the gap is reduced to at most 2�(plog n).Corollary 1 combined with the result of [VW] yields the following lower bound.Corollary 4. For g � n1=2�� and d = o(logn),
(g=d+ pg) rounds are needed to recognize Lgusing O(nd) processors.This result matches up to a constant factor the [LY2] upper bound of O(g=d + pg) using�nd� = O(nd) processors.Recall that PRIORITY(1) can simulate each step of PRIORITY(m) in at most 2m steps. Thisyields the following corollary.Corollary 5. All the above lower bounds divided by 2m apply to PRIORITY(m). Thus, form � n� the bounds are tight up to a factor of at most n2� (in fact up to at most n� for any � > �).3. The proof of the Main TheoremIn this section we prove the main theorem. In the �rst part the main inductive hypothesis ispresented and proved. In the second part the proof of the main theorem is completed using themain inductive hypothesis and some of the transformations de�ned in the �rst part.4

First let us assume that p � n1=2, as for the easy case p � n1=2 the complexity for every gis clearly �(n=p) which is more than what the theorem claims in this case. Let k be an arbitrarypositive integer.We start with some de�nitions. De�ne the history of a computation through t steps as a vectorH1; :::; Ht, where Hi is the contents of the shared memory at step i. For t = 0; 1; ::: the adversaryde�nes collection of inputs It on which M has the same history through step t (It � It�1 for t � 1).Whenever t < g=k then It contains one input in Lg and one not in Lg. Thus the algorithm cannotrecognize Lg in depth t.Let I0 = f0; 1gn. We will de�ne sets Bt � f1; :::; ng,Bt�1 � Bt. The hypergraph is de�ned onthe vertices f1; :::; ng. At stage t the edges of the hypergraph will be Ft = [k+1i=1 F it , where F it is aset of subsets (hyperedges), each of size i, of the vertices. Let B0 = � and F0 = �.Intuitively Bt is the set of indices of cells whose input bits are �xed to be 1 at the end of step t.A hyperedge (sometimes referred to as edge) in the hypergraph corresponds to a constraint on theinput. The cells, whose indices are the vertices of the hyperedge, cannot all contain 1. In particular,F 1t is the set of indices (edges of size 1) of the cells whose bits are �xed to be 0. Furthermore,we do not let any processor see more than k 1's from the input cells (in addition to the 1's in theset Bt which are known to all the processors). This is done by constructing the hypergraph edges(constraints). Let q = ng2k+4 :De�ne a potential function W on the hypergraph F ,W (F) = k+1Xi=1 q�(i�1) jF ij :The main inductive hypothesis for the end of step t� 1 is the following:(I1) All the inputs in It�1 have the same history through step t� 1.(I2) On all the inputs in It�1 and for any processor P (j) the set fiji 62 Bt�1 and P (j) reada value 1 from X(i) during steps 1 to t� 1g has a cardinality of at most k.(I3) jBt�1j � k(t � 1).(I4) W (Ft�1) � q�k pk! (t� 1)k+1 + 2kq(t� 1) + (t� 1)2.(I5) For any s < r � k + 1 and all ji, 1 � i � r, if [fj1; :::; jrg 2 F rt�1 and for 1 � i � sji 2 Bt�1] then fjs+1; :::; jrg 2 F r�st�1 .(I6) It�1 = f(x1; :::; xn) 2 I0j xj = 1 for all j in Bt�1, and xj1xj2 � � �xji = 0 for any1 � i � k + 1 and all fj1; :::; jig 2 F it�1g.Clearly the main inductive hypothesis holds for t�1 = 0. We have to prove it for t assuming itis true for t� 1. We start step t by a constraint-adding stage. The goal of this stage is to satisfy(I2) for the end of step t. For that we add to F k+1t�1 a set At of hyperedges, each of size k + 1. Let5

At = ffj1; :::; jk+1gj for i = 1; :::; k+ 1, ji is not in Bt�1 and on some input in It�1 some processorread 1 from all the X(ji) during steps 1 through tg.We would like to estimate the size of At in order to evaluate the change in W . Let Rt(l) be allthe sets fj1; :::; jk+1g such that the ji's are not in Bt�1 and on some input in It�1 processor P (l)read a value 1 from X(ji) for all 1 � i � k + 1 during steps 1 to t.For 1 � t1 < t2 < ::: < tk � t � 1 let I lt�1(t1; :::; tk) be all the inputs x 2 It�1 such that oninput x processor P (l) read at step ti, for all 1 � i � k, a value 1 from some ROM location X(ji),ji is not in Bt�1 and all the ji's are di�erent.Claim 1. All the inputs in I lt�1(t1; :::; tk) contribute at most one set to Rt(l).Proof: The basic idea of the proof is to prove by inductive on j, j � t that during steps 1 to jon all the inputs in I lt�1(t1; :::; tk), the sequence of ROM locations which P (l) has read is the same,and unless j = t their values are also the same. The claim follows easily from this assertion andfrom (I2).The assertion is clearly true for j = 0. Assume that the assertion holds up to step j�1. Thus,all the inputs in I lt�1(t1; :::; tk) have the same history and on all these inputs the same sequence ofvalues was read by P (l) from the ROM. Thus, at step j on these inputs, P (l) will read from thesame location (denoted by j�) from the ROM. It is left to show that P (l) will also read the samevalue when j < t.We consider four cases. If j = ti for some i = 1; ::; k then by de�nition the value is always 1.If j� 2 Bt�1 then by (I6) the value is also necessarily 1. If j� = t�i for some i = 1; ::; k where t�i isthe common (by induction) location in the ROM that P (l) read from at step ti on all the inputsI lt�1(t1; :::; tk), then clearly the value is 1 for all these inputs. Otherwise, the value has to be 0 asa value 1 would contradict (I2) since t�1; :::; t�k; j� would be a sequence of k + 1 di�erent places notin Bt�1 that P (l) read a value 1 from.Since At � [pl=1Rt(l) then Claim 1 implies thatjAtj � p�t � 1k � � pk! (t� 1)k :Let G0t be the hypergraph after this stage. HenceW (G0t) � W (Ft�1) + q�k pk! (t� 1)k :We need to remark that at almost any point in the proof the hypergraph might have redundantedges, i.e., edges which correspond to redundant constraints. Speci�cally, if for some hyperedges Xand Y , X � Y then we may omit Y . This does not change the legal inputs and does not increasethe potential function as well. However, assumption (I5) should be interpreted in the following6

way. The subset fjs+1; :::; jrg (in (I5)) is not required to be an edge in the hypergraph, but rathersome subset of it is required to be an edge.We de�ne on the hypergraph F the weighted sunower transformation as follows. Fora current hypergraph denote by drsfj1; :::; jsg the number of hyperedges of size r that containfj1; :::; jsg as a subset (s < r). If for some s, some set fj1; :::; jsg which is not an edge in thecurrent F satis�es k+1Xr=s+1 q�(r�1)drsfj1; :::; jsg > q�(s�1)then we add a new edge fj1; :::; jsg to the current F and omit all the edges that contain this setas a subset. By that we create a current F . We repeat the above transformation on the currenthypergraph as much as possible in any arbitrary order. Clearly, the number of hyperedges decreasesat each transformation and therefore the process is �nal. The potential function W on F does notincrease during this process, since the potential of a new edge is at most the sum of the potentialsof the edges that it has replaced. Let Gt denote the hypergraph at the end of this process. Thus,W (Gt) � W (G0t) � W (Ft�1) + q�k pk! (t � 1)k :Let I 0t = f(x1; :::; xn) 2 I0j xj = 1 for all j in Bt�1, and xj1xj2 :::xji = 0 for any 1 � i � k andall fj1; :::; jig 2 Gitg.Clearly I 0t � It�1 since the constraint-adding stage as well as the weighted sunower transfor-mations could just restrict the legal inputs. Now there are 2 possible cases; The �rst is that noprocessor writes at step t on any input in I 0t. In this easy case we let Bt = Bt�1. The generalcase is when there exists a processor that writes at step t on some input in I 0t. Consider the set ofprocessors which write at step t for some input in I 0t. Let P (l) be the minimum index processor inthis set. Suppose that P (l) writes at step t on x 2 I 0t. Let Ut, Vt respectively, be the set of ROMlocations from which P (l) has read a value 0, 1 respectively, on input x by step t. Clearly jUtj � t.In order to force P (l) to write on all legal inputs (and by that (I1) will hold at the end of step t)we need to �x the bits of Vt to be 1 and of Ut to be 0. We let Bt = Bt�1 [Vt; later in the proof(after the spreading transformation) we will force the bits of Ut to be 0 by adding each bit as anedge to the hypergraph. By the de�nition of Bt and I 0t and by (I2),(I5) (both for t � 1), we caneasily conclude that jBt � Bt�1j � kand thus (I3) will hold at the end of step t.Now the edges (constraints) in Git should be changed in accordance with the new information inorder to satisfy (I5). This is called the spreading transformation. For any s let Z = fj1; :::; jsgbe a set of any s elements in Bt � Bt�1. If it is a subset of any edge in Grt (r > s) then we must7

create a new edge of the r � s remaining elements, and add it to the hypergraph. Moreover, sincek+1Xr=s+1 q�(r�1)drsfj1; :::; jsg � q�(s�1)(otherwise, it would contradict the weighted sunower transformations) thenk+1Xr=s+1 q�((r�s)�1)drsfj1; :::; jsg � q�(s�1)qs = q :Hence, the total potential of the edges that were created by the set Z is at most q. We perform thespreading transformation simultaneously for all the subsets of Bt �Bt�1 (at most 2k subsets), andconclude that the potential function is increased by at most 2kq. De�ne Ft to be the hypergraphafter the spreading transformation union with jUtj � t sets, each of size one, of all the individualelements of Ut. Clearly Ft satis�es (I5). Moreover, each of these one element sets adds at most oneto the potential function and thusW (Ft) � W (Gt�1) + 2kq + t :Therefore W (Ft) � W (Ft�1) + q�k pk! (t � 1)k + 2kq + t ;which yields (I4) for the end of step t. Finally, we de�ne It according to (I6) with t instead of t�1.This completes step t. One can easily verify that the main inductive hypothesis holds for tsince each assumption was satis�ed at some point in the proof and remained satis�ed henceforth.Proving the lower bound using the main inductive hypothesis. We will prove thatthe algorithm cannot stop in t steps for t < g=k. Fix some T < g=k. We �rst look at the followinginput; x0i = 1 for i 2 BT and x0i = 0 otherwise. Clearly this input belongs to IT . By (I3), jBT j < gand therefore it is not in Lg. Constructing an input in IT which is also in Lg is more complicated.We start with x00i = 1 for i 2 BT , x00i = 0 for i 2 F 1T . We need to �nd g � jBT j � g other locationswith value 1 that will be consistent with all the constraints of FT . More precisely, we have to �ndan independent set of size g in the hypergraph, which is a set of vertices of size g such that eachedge of the hypergraph contains at least one vertex not in this set. If such an independent setexists we will set the input bits that correspond to those vertices to be 1 (in addition to the inputbits of the set Bt), and the remaining vertices to 0. This will de�ne an input in IT which is in Lgand will complete the proof.First one can easily check that inequality (2.1) yields (as p � n1=2) thatg � n1=2=328

and by de�nition of q (q = ng2k+4) and inequality (2.1)q�k pk!gk+1 � n=16 :Hence, easy computation shows that for t � g,W (Ft) � n=4 :Constructing an independent set consists of g steps. These steps are independent of the actions ofthe processors after step T . However, for simplicity of notation these pseudo-steps are referred to assteps t = T +1; :::; T+g. At each such step t = T +1; :::; T+g we perform the following operations.First the weighted sunower transformations are performed on the current hypergraph Ft�1 andthis results in an hypergraph Gt. Then a vertex j (not in Bt�1 or G1t) is chosen as will be describedlater. Let Bt = Bt�1 [fjg and set the corresponding input bit to 1. Finally we perform thespreading transformation for this vertex, i.e. the vertex is omitted from each hyperedge containingit, and thus the size of each such hyperedge is decreased by 1.It is left to show that at every pseudo-step t it is possible to choose a new vertex fjg to addto Bt�1. That means that for any T + 1 � t � T + g we need to show that there is a vertexwhose bit can be set to 1 consistently. Note that (I5) holds for the hypergraph Gt also for thesepseudo-steps and therefore the constraints (edges) that contain vertices in Bt�1 are redundant.Moreover, the edges in [i>1Git that contain vertices from G1t are redundant as well. Thus, eachvertex j which is not in Bt�1 [G1t can be added to Bt�1 to continue the process since the inputfxi = 1, i 2 Bt�1 [fjg and xi = 0 otherwiseg is legal in the current hypergraph. Nevertheless, westill have to show that such a vertex j always exists, i.e, jBt�1j + jG1t j < n. To this end we �rstobserve that jBt�1j = jBT j+ (t� 1� T) < g + g � 2n1=2=32 � n=16 :Moreover, the potential function increases by at most q at each of these g pseudo-steps due to thespreading transformation. Since gq � n=16 and the potential function was at most n=4 at the endof step T we conclude that during the g pseudo-steps W (Ft) � n=4+n=16. However, the potentialof each edge in F 1t � Ft is 1, and each edge in Ft has a non-negative potential. Hence,jG1t j � jF 1t j � W (Ft) � n=4 + n=16for the current hypergraph. ThereforejBt�1j+ jG1t j � n=16 + n=4 + n=16 < nand such a j exists. Hence, for any T < g=k we found two inputs with the same history throughthe T steps, one of which is in Lg and the other is not. Thus, we cannot recognize Lg in less thang=k steps which completes the proof of the main theorem.9

4. The Complexity of Computing Symmetric FunctionsComparing the relative power of models is known to be an important question. It is knownthat PRIORITY is strictly stronger than ARBITRARY (see [FMW],[FRW] for models without aROM and [LY],[LY1],[FLRY] for models with a ROM).The question is whether this is true for symmetric functions. Note that there is a strong con-nection between the threshold decision problem and computing symmetric functions. In [LY1] it isshown that PRIORITY(1) and ARBITRARY(1), both without ROM, are equivalent for computingsymmetric functions of boolean inputs.Using the results from the previous section with results from [LY2], we extend their resultsand prove that for any polynomial number of processors, (in fact up to no(log n)), PRIORITY(m)and ARBITRARY(m), where m � n�, both with ROM and the same number of processors, havethe same power, up to a factor of at most n2�, for computing any symmetric function. For m = 1we show that the two models are equivalent, up to a constant factor, for a large family of thesymmetric functions. In [LY2] it is proved only for linear number of processors and smaller classof symmetric functions or for a large enough number of processors.For any symmetric function f on n bits we associate a function f such that f(i) = j wheneverf(x) = j for jxj = i (jxj =Pni=1 xi). The threshold of f was de�ned in [LY2] byjf j = minfh+ ljf is a constant on the closed interval [h; n� l]g :They showed that a lower bound for Lg is also a lower bound for computing a symmetric functionf with threshold jf j = g. Thus using the result from the previous section we conclude the followingtheorem.Theorem 4.1. Let f be any symmetric function. For any � > 0 PRIORITY(m) with ROM andpolynomial number of processors requires
(min(jf jm ; n1=2��m)) to compute f .It is quite easy to design (see [LY2]) an algorithm in ARBITRARY(1) that matches the boundup to a constant factor for m = 1 and jf j � n1=2��. Thus for any f and m � n� the bounds aretight up to at most n2�, (in fact up to n� for any � > �). Moreover, we conclude the followingtheorem.Theorem 4.2. Let � > 0 be any number and m � n�. For any polynomial number of processors,PRIORITY(m) and ARBITRARY(m), both with ROM and the same number of processors, havethe same power for computing all symmetric functions on n bits, up to a factor of at most n� forany � > �. For m = 1 and jf j � n1=2�� the two models are equivalent up to a constant factor.Theorems 4.1 and 4.2 can be extended in the obvious way to the range of superpolynomialnumber of processors, i.e. when the number of processors is O(nd) where d = o(logn).10

AcknowledgementI would like to thank N. Alon for helpful discussions and suggestions, that encouraged me toimprove the original results. I would also like to thank D. Koller for helpful remarks.References[Be] P. Beame, Lower bounds in parallel machine computation, Ph.D. Thesis, Universityof Toronto 1986.[FLRY] F. Fich, M. Li, R. Ragde, and Y. Yesha, On the power of concurrent-write PRAMswith Read-Only Memory, Information and Control, 83:2 (1989) pp. 234-244.[FMW] F. Fich, F. Meyer auf der Heide, and A. Wigderson, Lower bounds for parallel randomaccess machines with unbounded shared memory, Advances in Computing Research,1987 pp. 1-15.[FRW] F. Fich, P. Ragde, and A. Wigderson, Relation between concurrent write models ofparallel computation, SIAM J. Comput. 17:3 (1988) pp. 606-627.[GGKMRS] A. Gottlieb, R. Grishman, C. Kruskal, K. Mcauli�e, L. Rudolf and M. Snir, The NYUUltracomputer Designing a MIND shared memory parallel machine, IEEE Trans.Comput. C-32 (1983) pp. 175-189.[K] D.Kuck, A survey of parallel machine organization and programming, ComputingSurveys 9 (1977) pp. 29-52.[LY] M. Li and Y. Yesha, Separation and lower bounds for ROM and nondeterministicmodels of parallel computation, Information and Control, 73:2 (1987) pp. 102-128.[LY1] M. Li and Y. Yesha, New lower bounds for parallel computation, 18th ACM AnnSymp. on Theory of Computing, Berkeley, 1986 pp. 177-187.[LY2] M. Li and Y. Yesha, Resource bounds for parallel computation of threshold andsymmetric functions. J. of Comp. and System Science, to appear.[V] U. Vishkin, Parallel design space distributed implementation space (PDDI) generalpurpose computer. RC 9541, IBM T.J. Watson Research Center, Yorktown HeightsNY.[VW] U. Vishkin and A. Wigderson, Trade-o�s between depth and width in parallel com-putation, SIAM J. Computing, Vol. 14. No 2 (1985), pp. 303-314.11

