On-line Load Balancing of Temporary Tasks *

Yossi Azar' Bala Kalyanasundaram* Serge Plotkin®
Tel-Aviv Univ. Univ. of Pittsburgh Stanford Univ.

Kirk R. Pruhs" Orli Waartsll
Univ. of Pittsburgh U.C. Berkeley

Abstract

This paper considers the non-preemptive on-line load balancing problem where tasks
have limited duration in time. Upon arrival, each task has to be immediately assigned
to one of the machines, increasing the load on this machine for the duration of the task
by an amount that depends on both the machine and the task. The goal is to minimize
the maximum load.

Azar, Broder and Karlin studied the unknown duration case where the duration of
a task is not known upon its arrival [4]. They focused on the special case in which for
each task there is a subset of machines capable of executing it, and the increase in load
due to assigning the task to one of these machines depends only on the task and not
on the machine. For this case, they showed an O(nz/?’)—competitive algorithm, and an
Q2(v/n) lower bound on the competitive ratio, where n is the number of the machines.
This paper closes the gap by giving an O(y/n)-competitive algorithm.

In addition, trying to overcome the §2(y/n) lower bound for the case of unknown
task duration, this paper initiates a study of the load balancing problem for tasks with
known duration (i.e., the duration of a task becomes known upon its arrival). For this
case we show an O(log nT)-competitive algorithm, where 7' is the ratio of the maximum
possible duration of a task to the minimum possible duration of a task.

*Preliminary version of this paper was presented at the 1993 Workshop on Algorithms and Data Struc-
tures. This paper merges the results of a paper by the first, third and fifth authors and a paper by the
second and the forth authors.

"Dept. of Computer Science, Tel-Aviv University. Supported by Alon Fellowship and by the Israel
Science Foundation, administered by the Israel Academy of Sciences. E-Mail: azar@math.tau.ac.il

{Dept. of Computer Science, University of Pittsburgh. Supported in part by NSF under grants CCR-
9009318 and CCR-9202158. E-Mail: kalyan@cs.pitt.edu

SDept. of Computer Science, Stanford University. Research supported by Terman Fellowship, NSF Res.
Initiation Award CCR-900-8226, NSF Grant CCR-9304971, by U.S. Army Research Office Grant DAAHO04-
95-1-0121, and by a grant from Mitsubishi Electric Laboratories. E-Mail: plotkin@cs.stanford.edu

Dept. of Computer Science, University of Pittsburgh. Supported in part by NSF under grant CCR-
9209283. E-Mail: kirk@cs.pitt.edu

”Dept. of Computer Science Division, U.C. Berkeley. Supported in part by an NSF postdoctoral fellow-
ship. During part of this research this author was at IBM Almaden. E-Mail: waarts@cs.berkeley.edu

The paper explores an alternative way to overcome the €(y/n) bound; it considers
the related machines case with unknown task duration. In the related machines case, a
task can be executed by any machine and the increase in load depends on the speed of
the machine and the weight of the task. For this case the paper gives a 20-competitive
algorithm and show a lower bound of 3 — o(1) on the competitive ratio.

1 Introduction

This paper considers the load balancing problem defined as the problem of online assignment
of tasks to » machines; assignment has to be done immediately upon arrival of the task,
increasing the load on the machine the task is assigned to for the duration of the task. We
consider non-preemptive load balancing, i.e., reassignment of tasks is not allowed. The goal
is to minimize the maximum load.

The online load balancing problem naturally arises in many applications involving al-
location of resources. In particular, many cases that are usually cited as applications for
bin packing become load balancing problems when one removes the assumption that the
items, once “stored”, remain in the storage forever (e.g., storing food in warehouses). As a
simple concrete example, consider the case where each “machine” represents a communica-
tion channel with bounded bandwidth. The problem is to assign each incoming request for
bandwidth to one of the channels. Assigning a request to a certain communication channel
increases the load on this channel, i.e., increases the percentage of the used bandwidth.
The load is increased for the duration associated with the request.

Formally, each arriving task j has an associated load vector, p; = (p1j,P2j- -+ Pnj)s
where p;; defines the increase in the load of machine ¢ if we were to assign task j to it.
This increase in load occurs for the duration d(j) of the task. Since the arriving tasks
have to be assigned without knowledge of the future tasks, it is natural to evaluate the
performance in terms of the competitive ratio (this concept was introduced in [17] and
further developed in [11, 7, 13]). In our case, the competitive ratio is the supremum, over
all possible input sequences, of the maximum (over time and over machines) load achieved
by the on-line algorithm to the maximum load achieved by the optimal off-line algorithm.
The competitive ratio may depend, in general, on the number of machines n, which is
usually fixed, and should not depend on the number of tasks that may be arbitrary large.

Similar to the way it is done for scheduling problems, it is natural to categorize load
balancing problems according to the properties of the load vectors. The simplest case is
where the coordinates of each load vector are equal to some value that depends only on the
task. It is easy to observe that the algorithm due to Graham [8], applied to this kind of
load-balancing problem, leads to a (2 — %)—competitive solution.

Azar, Broder, and Karlin [4] proposed to study a less restricted case, motivated by the
problem of on-line assignment of network nodes to gateways (see also [5]). In this case,
a task can represent a request of a network node to be assigned to a gateway; machines
represent gateways. Since, in general, each node can be served by only a subset of gateways,

this leads to a situation where each coordinate of a load vector is either oo or equal to a
given value that depends only on the task. For this case, which we will refer to as identical
speed with assignment restriction case, [4] shows an Q(y/n) lower bound on the competitive
ratio of any load balancing algorithm that deals with the unknown duration case, i.e. the
case where the duration of a task becomes known only upon its termination. They also
present an O(n?/3)-competitive algorithm.

The work in [4] opens several new research avenues. The first is the question of whether
there exists an O(y/n)-competitive algorithm for the identical speed with assignment restric-
tion case when the duration of a task becomes known only upon its termination. Secondly,
the Q(y/n) lower bound for the competitive ratio in [4] suggests considering natural vari-
ations of the problem for which this lower bound does not apply. One such candidate,
considered in this paper, is the known duration case, where the duration of each task is
known upon its arrival. Another important candidate is the related machines case. Here,
the ith coordinate of each load vector is equal to w;/s;, where the “weight” w; depends
only on the task j and the “speed” s; depends only on the machine 1.

This work addresses the above three issues. The main results presented in this paper
are as follows:

o A (2y/n+ 1)-competitive algorithm, RoBin-Hoon, for the identical-speed with assign-
ment restriction case studied by [4]. Their lower bound implies that this algorithm is
optimal to within a v/2 multiplicative factor.

o An O(lognT’)-competitive algorithm for the known-duration case with unrestricted
load vectors, where T is the ratio of the maximum to minimum duration. We assume
that the minimum possible task duration is known in advance.

¢ A 20-competitive algorithm, Stow-F1T, for the related machines case with unknown
task duration. We also show that any algorithm for this case can’t be better than
(3 — o(1))-competitive, even if the optimal load is known in advance.

More specifically, algorithm RoBiN-Hoob is simple, deterministic, and runs in O(n) time
per task assignment. Interestingly, its decision where to assign a new task depends not only
on the current load on each machine but also on the history of the previous assignments.

Our algorithm for the known duration case is an application of the virtual circuit routing
algorithm of [1] (see [15] for a survey on online virtual circuit routing). Roughly speaking,
we show how to use multiple concurrent instances of the permanent virtual circuit routing
algorithm in order to solve a single instance of the load balancing problem with temporal
tasks. Our approach, together with the results in [1], can be used to show an O(lognT)-
competitive algorithm for virtual circuit routing with known duration.

Algorithm Srow-F1T is essentially identical to the algorithm of Aspnes, Azar, Fiat,
Plotkin and Waarts for assigning permanent tasks [1]. Roughly speaking, the idea (which
originated in the paper by Shmoys, Wein, and Williamson [16]) is to assign the task to the
least capable machine while maintaining that the load does not exceed the currently set goal.

However, the analysis in [1] does not apply for the case where tasks have limited duration.
Our analysis is different and shows that SLow-F1T is 5-competitive if the maximum load is
known.! Similarly to algorithm RoBiN-Hoob, also algorithm SLow-FiT is deterministic and
runs in O(n) time per task assignment.

The (3—0(1)) lower bound for the related machines case applies even if the optimal max-
imum load is known in advance. This lower bound stands in contrast to the 2-competitive
algorithm in [1] for the case where tasks are permanent and the optimal off-line maximal
load is known in advance, and the 2-competitive algorithm for the unknown-duration case
where the machines are identical [8].

Other related work On-line load balancing of permanent tasks (i.e., tasks never termi-
nate) was studied extensively [8, 12, 5, 6, 1]. For the case where the machines are identical,
Graham showed a (2 — 1) competitive solution [8]. This solution has been improved in [6]
by Bartal, Fiat, Karloff and Vohra to 2 — € for a small constant ¢, and the value of ¢ was
further improved in [10]. The identical speed with assignment restriction case was intro-
duced by Azar, Naor, and Rom [5], who described an O(logn)-competitive algorithm and
a matching lower bound. The case of unrestricted load vectors (known also as the wunre-
lated machines case), was considered by Aspnes, Azar, Fiat, Plotkin and Waarts [1], who
showed an O(logn)-competitive algorithm. They also showed an 8-competitive algorithm
for the related machines case. Their algorithm is 2-competitive in the case that the optimal
off-line maximum load is known. As the competitive ratios show, the fact that tasks have
finite duration can make the task of the on-line load balancing algorithm significantly more
difficult, especially when this duration is unknown upon the arrival of the task.

Both the idea introduced here of considering the case where the duration of the task is
known upon its arrival, as well as the method used here to solve this case (i.e., concurrently
working with multiple copies of the graph, one copy for each time instance), can be adapted
for the context of virtual circuit routing to provide an O(log nT")-competitive algorithm for
virtual circuit routing with known duration. Recently our approach was employed in the
context of throughput-competitive on-line routing as well [2].

All the results in this paper, as well as in the papers mentioned above, concentrate on
non-preemptive load balancing, i.e., re-assignment of tasks is not allowed. Another, very
different model is when re-assignment of existing tasks is allowed. After the time of this
work, for the case where the coordinates of the load vector are restricted to be 1 or oo,
and a task duration is not known upon its arrival, Phillips and Westbrook [14] proposed
an algorithm that achieves O(logn) competitive ratio with respect to load while making
O(1) amortized reassignments per job. The general case was later considered in [3], who
designed an O(logn)-competitive algorithm with respect to load that reroutes each circuit
at most O(logn) times.

Finally, we note that the load balancing problem is different from the classical scheduling

It is interesting to note that the natural greedy algorithm, which tries to minimize the maximal load on
any machine, is ©(log n)-competitive [1]. (Their analysis for permanent tasks applies also for the case where
tasks have limited duration .)

problem of minimizing the makespan of an on-line sequence of tasks with known running
times (see [9, 16] for survey). Intuitively, in the load balancing context, the notion of
makespan corresponds to maximum load, and there is a new, orthogonal, notion of time.
(See [1] for further discussion of the differences.)

2 Identical Speed with Assignment Restriction

In this section we describe a (2/n + 1)-competitive algorithm for the identical speed with
assignment restriction case, where the task duration is unknown upon its arrival. Task j
must be assigned to one of the machines in a set M(j); assigning this task to a machine ¢
raises the load on machine ¢ by w;. This result complements the Q(y/n) lower bound of [4].

The input sequence consists of task arrival and task departure events. Since the state
of the system changes only as a result of one of these events, the event numbers can serve
as time units, i.e. we can view time as being discrete. We say that time ¢t corresponds to
the tth event. Initially the time is 0, and time 1 is the time at which the first task arrives.
Whenever we speak about the “state of the system at time ¢” we mean the state of the
system after the tth event was already handled. In other words, the response to the tth
event takes the system from the “state at t — 17 to the “state at ¢”.

Let OPT(o) denote the load achievable by an optimum offline algorithm, where o =
(01,02,...) is a particular sequence of jobs. Since we can assume that we are considering a
fixed input sequence, we will use OPT for OPT(o). Let {,(t) denote the load on machine
g at time t, i.e., after the tth event.

At any time ¢ we maintain an estimate L(¢) for OPT satisfying L(t) < OPT. A machine
¢ is said to be rich at some point in time ¢ if {,(¢) > /n L(t), and is said to be poor
otherwise. A machine may alternate between being rich and poor over time. If g is rich at
t, its windfall time at t is the last moment in time it became rich. More precisely, ¢ has
windfall time ¢y at ¢ if ¢ is poor at time g — 1, and is rich for all times ¢’ o < ¢ <t. Let ¢
be a rich machine with windfall time .

Algorithm RoBiN-Hoop: Assign the first task to an arbitrary machine, and set L(1) to
the weight of the first task. When a new task j arrives at time ¢, set:

L(t) = max{L(t 1), wj, (w0, + Y 6(t = 1))}

The last quantity is the aggregate weight of the tasks currently active in the system divided
by the number of machines. Note that the recomputation of L(¢) may cause some rich
machines to be reclassified as poor machines. If possible, assign j to some poor machine g,
i.e., machine with load (,(t — 1) < y/n L(t). Otherwise, j is assigned to the rich machine g
with the most recent windfall time.

Lemma 2.1 At all times ¢, the algorithm guarantees that L(t) < OPT.

Proof: The proof is by induction on the number of the assigned tasks. After the first task
L(t) < OPT. For the inductive part, it suffices to consider only the cases where L(t) is
increased. The claim follows from the facts that w; < OPT and *(w;+3,{,(t—1)) < OPT.
|

The following lemma is immediate from the fact that nL(¢) is an upper bound on the
aggregate load of the currently active tasks.

Lemma 2.2 At most y/n machines can be rich at any point in time.
Theorem 2.1 The competitive ratio of Algorithm RoBIN-HooD is at most 2\/n + 1.

Proof: We will show that the algorithm guarantees that at any point in time ¢, {,(¢) <
vn (L(t) + OPT) 4+ OPT for any machine g. The claim is immediate if ¢ is poor at ¢.
Otherwise, let S be the set of tasks that were assigned to g since g’s windfall time g and
are still active at time ¢. Let j be some task in 5. Since g is rich throughout the time
interval [tg,?], all the machines M (j), that could have been used by the offline algorithm
for j, must be rich when j arrives. Moreover, each machine in M(j) — {¢} must have been
rich already before time ¢y since otherwise RoBiIN-HooD would have assigned j to it. Let &
be the number of machines to which any of the tasks in 5 could have been assigned, i.e.,
k=|Ujes M(j)|. Lemma 2.2 implies that k& < \/n.

Let ¢ be the task assigned to g at time 7y that caused g to become rich. Since w, < OPT,
Yjesw; < kOPT and k < /n we conclude that

() <V L(t) + wy +) wj < v/m L(t) + OPT +/nOPT.
JjES

3 Tasks with Known Duration

This section considers the case where the duration of a task is known upon its arrival, i.e.,
d(7) is revealed to the online algorithm when task j arrives. We provide an algorithm whose
competitive ratiois O(log n1") even for the unrelated machine case (i.e with unrestricted load
vectors), where T is the ratio of the maximum to minimum duration (the minimum possible
task duration is known in advance). This result is in contrast to the Q(y/n) lower bound
on the competitive ratio for the identical speed with restriction case when the duration of
a task is not known upon its arrival [4].

Our algorithm is based on the on-line algorithm of [1], which solves the following “route
allocation” problem: We are given a directed graph G = (V, ') with |V| = N. Request ¢ is
specified as a tuple (s;,%;,{pi.le € E}), where s;,¢; € V and for all e € E, p; . > 0. Upon

arrival of request ¢, the route allocation algorithm has to assign it to a path (route) P; from
s; to t; in G; the route assignments are permanent. Let P = { Py, P,,..., P;} be the routes
assigned to requests 1 through k by the on-line algorithm, and let P* = { Py, P5,..., P}
be the routes assigned by the off-line algorithm. Given a set of routes P, the load on edge
e after the first j requests are satisfied is defined by:

Ke(j) = Z Pie (1)

1<j:e€P;

Denote the maximum load by A(j) = max.eg (c(j). Similarly, define €Z(5) and A*(j) to
be the corresponding quantities for the routes produced by the off-line algorithm. For
simplicity we will abbreviate A(k) as A and A*(k) as A*. The goal of the online algorithm is
to produce a set of routes P that minimizes A/A*.

The online route allocation algorithm of [1] is O(log N)-competitive, where N is the
number of vertices in the given graph. Roughly speaking, we will reduce our problem
of online load balancing of temporary tasks with known duration to several concurrent
instances of the online route allocation for permanent routes problem, where N = nT.
Then we will apply the algorithm of [1] to achieve O(log N) = O(log nT’) competitive ratio.

We assume that the minimum task duration is known in advance and measure time in
terms of this minimum duration interval. Let a(j) denote the arrival time of task j, and
assume a(1) = 0. Let 7" = (maxy<j<|o| a(j) + d(j)) be the total duration of all the tasks.
First we make several simplifying assumptions and then show how to eliminate them:

1. 7" is known in advance to the online algorithm.
2. T is known in advance to the online algorithm.

3. Arrival times and task durations are integers, i.e., time is discrete.

We now describe an O(logn1”)-competitive algorithm AssiaN1, which we later use as a
subroutine in our final algorithm.

Algorithm Assignl: The idea is to translate each task into a request for allocating a
route. We construct a directed graph G consisting of T’ layers, each of which consists of
n+2 vertices, numbered 1,...,n+2. We denote vertex ¢ in layer k by v(¢, k). For each layer
1 <k <T'and for 1 <i < n, we refer to vertices v(7, k) as common vertices. Similarly,
for each layer k, v(n + 1, k) is referred to as the source vertex and v(n + 2, k) is referred to
as the sink vertex. For each layer, there is an arc from the source v(n + 1, k) to each of the
n common vertices v(¢, k). In addition, there is an arc from each common vertex v(i, k) to
the sink v(n 4 2, k) in each layer. Finally, there is an arc from each common vertex v(i, k)
to the corresponding common vertex v(i,k+ 1) in the next layer. The arc from v(¢, k) to
v(?,k + 1) will represent machine ¢ during the time interval [k, %k + 1), and the load on the
arc will correspond to the load on machine ¢ during this interval.

We convert each new task j arriving at a(j) into a request for allocating a route in GG
from the source of layer a(j) to the sink of layer a(j) + d(j). The loads p;. are defined as
follows: for arcs v(¢, k) to v(i,k+ 1) for a(j) < k < a(j)+d(j)— 1, we set p; . = pi(j); we
set p; . to 0 for the arcs out of the source of layer a(j) and for the arcs into the sink of layer
a(7)+d(j), and to oo for all other arcs. Clearly the only possible way to route the task j is
through the arcs v(¢, k) to v(i,k+ 1) for a(j) < k < a(j)+ d(j)— 1 for some i. This route
raises the load on the participating arcs by precisely p;(j) which corresponds to assigning
the task to machine ¢. Thus, minimizing the maximum load on an arc in the online route
allocation on the directed graph G corresponds to minimizing the maximum machine load
in the load balancing problem.

We now show how to construct an O(log n1’)-competitive algorithm. Partition the tasks
into groups according to their arrival times. Group m contains all tasks that arrive in
the time interval [(m — 1)T,mT). Clearly each task in group m must depart by time
(m + 1)T', and the overall duration of tasks in any group is at most 27". For each group
invoke a separate copy of Assianl with 77 = 27T. That is, assign tasks belonging to a
certain group independently of the assignments of tasks in other groups. Using the route
allocation algorithm of [1], we get that for each group, the ratio between maximal online
load to the maximal off-line load is at most O(logn1"). Moreover, at each instance of time
active tasks can belong to at most 2 groups. Thus, the maximal online load at any given
time is at most twice the maximal online load of a single group. The off-line load is at least
the largest load of the off-line algorithms over all groups, and hence the resulting algorithm
is O(log nT")-competitive.

We now show how to remove the remaining simplifying assumptions. To remove the
restriction that 7" is known in advance, let 7" = d(1) when the first task arrives. If we are
currently considering the mth group of tasks, and task j arrives with d(j) > T, we set
T = d(j) and T = 2d(j). Observe that this does not violate the invariant that at any
point in time the active tasks belong to at most two groups. We use the fact that the route
allocation algorithm of [1] is scalable in the sense that the current assignment of tasks in
group m is consistent with the assignment if AssiaN1 had used the new value of T” instead
of the old one. Thus the argument of O(log nT")-competitiveness goes through as before.

Finally, to eliminate the assumption that events coincide with the clock (that is for all j,
a(7)’s and d(j)’s are integral multiples of time unit), AssiaN 1 approximates a(j) by [a(j)]
and d(j) by [a(j)+d(5)] — [a(j)]. Since for all 7, d(j) > 1, this approximation increases the
maximal off-line load by at most a factor of 2. Thus, we have proved the following claim:

Theorem 3.1 The above online load balancing algorithm for unrelated machines with known
tasks duration is O(log n1")-competitive.

4 Related Machines

In this section we consider the related machines case when the duration of a task is not
known upon its arrival. In the related machines case, there exists a notion of machine
speed and each task can be assigned to any machine. In other words, we assume that each
task j has weight w;, and that Vi, p;(j) = w;/s;, where s; is the speed of machine i.
For convenience, we assume that s; < s; for + < j. If (G is a set of machines we define
S(G) = Ygeqsk- If T is a set of tasks then w(T') = 3~ ;crw;. The definitions of time,
OPT, and (,(t) are as described in the beginning of Section 2.

We first give an algorithm Srow-Fit that is 5-competitive for this problem if OPT is
known in advance and 20-competitive otherwise. This should be contrasted with the Q(y/n)
lower bound on the competitive ratio for the identical speed with restriction case when the
duration of a task is not known upon its arrival.

Next we give a 3 — o(1) lower bound on the competitive ratio achievable by any on-line
algorithm. Note that since our upper bounds apply for the case of tasks with unknown
duration, they apply therefore also for the case of tasks with known duration.

4.1 Algorithm Scow-Fir

We first describe a simplified version of SLow-F1T that assumes that the value of OPT is
known in advance. Let ¢ be an integer constant (we will later choose ¢ = 5 to minimize the
resulting competitive ratio). Assume that a task j arrives at time ¢t. We say j is assignable
to machine ¢ if and only if w;/s, < OPT and {,(t — 1)+ w;/s, < c- OPT.

Algorithm Svow-FiT (simplified version): Assign the new task to the slowest assignable
machine. Break ties by assigning to the machine with the smallest index.

Theorem 4.1 Provided ¢ > 5, the simplified version of SLow-F1T guarantees that every task is
assignable, which implies that the simplified SLow-FiT algorithm is ¢-competitive.

Proof: Suppose that at some point in time 1y, a task ¢ arrives that is not assignable. We
then reach a contradiction to the supposed value of OPT by showing that at some time
in the past the aggregate weight of the tasks in the system was more than ;" ; s; - OPT.
Starting from the current time tg, we construct a sequence of times g > #1 > ... > t;. At
time ¢; — 1 we observe the load on set &; of machines. We define J(G;) to be the collection
of tasks that are active at time ¢; — 1 and that were assigned to machines in G; by the
on-line algorithm.

Initially, Gy = {n}. We prove by induction on i that there is a set of times ¢; < ... <
t1 < tp and sequence of subsets of machines G; such that the following invariants hold:

1. The G’s, 0 < j <4, are disjoint sets of consecutive machines, i.e.,
G; = {m]‘,m]‘ +1,...m;_ — 1}

for some m;’s. (Note that since Gy = {n}, we define mg = n and m_; = n+ 1. Also,
(; could be empty.)

2. At time t; — 1, each machine in (; has a load that exceeds (¢ — 1) OPT.

3. For 0 < j <, S(G;) > (e —3)5(G-1).

Initially, g is the time at which task ¢ arrived. Since task ¢ can not be assigned to the
fastest machine n, and OPT > w(q)/s,, we have {,(tc — 1) > (¢ — 1) OPT, which means
that the cumulative weight of the tasks assigned to machine n that are active at to — 1
exceeds (¢ — 1) s, OPT = (¢ —1) S(Gp) OPT. Hence, the second invariant initially holds.
The remaining invariants hold trivially.

Now assume that the above invariants hold at the end of the ith iteration. We will
show how to construct ¢;11 and G411 so that the invariants hold for ¢ + 1 as well. Using
the second invariant, we know that the load on each machine in G; exceeds (¢ —1) OPT at
time ¢; — 1. Hence, the cumulative weight of tasks in J(G;) is at least (¢ — 1)5(G;)OPT.

Consider the machines to which the optimal offline algorithm assigns the tasks in J(G;),
and let m; 41 be the slowest machine that gets a task in J(G;). We let

Gipr = {miy1,mipn +1,...,mg — 1},

(Notice that G4q is empty if m;41 > m;.) Since all the tasks in J(G;) are active at time
t; — 1, the cumulative weight of the tasks from J(G;) assigned to machines in o ;<; G;
by the offline algorithm is bounded by 3 <;<; S(G;) OPT. If i = 0, then this sum is
at most S(Go)OPT. Otherwise (¢ > 0), the third invariant guarantees that it is at most
2 S(G;) OPT. Thus the rest of the tasks in J(G;) have to be assigned by the offline
algorithm to machines in G;4q, and their cumulative weight is at least (¢ —3) S(G;) OPT.
Since the load on any machine never exceeds OPT in the offline assignment, it must be the
case that S(Gi41) OPT > (¢ —3) S(G;) OPT. As a consequence we get

S(Gig1) > (e —3) S(GY).
Now consider the task ¢; with the smallest weight in J(G);). Define time #;41 to be

the time at which ¢; arrived. Since ¢; was not assigned to any machine in (;41, all these
machines were unassignable at ¢;41. Since w(¢;)/s, < OPT for any machine g € G414,

Vg € Gi—l—l : Kg(ti—l—l — 1) > (C — 1) OPT.
This proves that the invariants now hold for 7 + 1.

Consider the last iteration, say k, where the set), includes machine 1. We know that
the cumulative weight of tasks in J(Gy) is at least (¢ — 1)S5(Gy)OPT at time 5 — 1. Recall

that Y g<icr S(G;) < 25(Gy). The contradiction follows from the fact that at any point in
time, the maximum task weight that can be handled by the system is at most

> S(G5) OPT < 25(G)OPT < (¢ — 1)5(G) OPT.
0<i<k

We now show how to modify Srow-FiT so that it will not require advance knowledge of

OPT.

Algorithm Svtow-Fir: After the arrival of the first task ¢ set L = w(q)/s,. Note that L
is our estimate of OPT. We then repeat the following: (1) Apply the simplified version of
St.ow-Fi1T, which uses L as the value of OPT, until it encounters an unassignable task ¢.
(2) Set L = 2L, and return to step 1, ignoring any tasks encountered up to this point. In
other words, when the simplified version of SLow-FIT tries to assign ¢, it behaves as if the
load on every machine is zero.

Theorem 4.2 The competitive ratio of SLow-FiT is at most 4¢, provided ¢ > 5.

Proof: Notice that at any point in time OPT > L/2. During the last iteration of the
simplified version of SLow-F1T the maximum load on any machine is at most ¢, and hence
at most 2¢ OPT. Since I was doubled on each iteration, the cumulative load on any machine
for all of the prior iterations is at most ¢l or at most 2¢ OPT. Therefore, the load on any
machine is at most 4¢ OPT. [|

4.2 Lower Bound

In this section we show that any on-line algorithm has competitive ratio of at least 3 —o(1)
for the related machine case even if the value of O PT is known in advance. This lower
bound stands in contrast to the 2-competitive algorithm in [1] for the case where tasks are
permanent and the optimal off-line maximal load is known in advance, as well as to the
2-competitive algorithm for the unknown-duration case where the machines are identical [8].

Theorem 4.3 The competitive factor ¢ of any on-line algorithm for the related machines case
satisfies ¢ > 3 — o(1).

Proof: Assume that there exists an on-line algorithm whose competitive ratio is at most
¢ < 3. We define a sequence z; based on which we define a set of machines and a sequence
of task arrivals and departures that will contradict the claim that the competitive ratio is
bounded by ¢. Let 2o =0, 21 = 1/(1 4 ¢) and

-2z
Zipl =t

10

Lemma 4.1 For ¢ < 3 there exists a positive k such that z; > 1.

Proof: Let 2y =1— 2. Thus,zg =1, 21 =1—-1/(14¢) and 2441 = 2 — 241 /(1 + ¢). We
need to show that there exists a positive k such that z; < 0. Notice that since ¢ < 3 the
roots of the quadratic equation 2% = 2 — 1/(c + 1) are complex and have values ¢; and ¢,
equal to

1/2£/1/4 = 1/(1 4 ¢) = pet™¢
where p > 0 and 0 < ¢ < 7/2. Thus, it follows (formally by induction) that

T = a10] + azdh

where oy, ay satisfy a; +ag = 1 and a1¢; + asgy = 1 — 1/(1 + ¢). Hence ay,ay = poetic
where pg > 0 and —7/2 < £ < 7/2. That implies that

and hence 2, <0 for k = [(7/2—-¢)/9]. |

Notice that for 0 < ¢ < k the sequence z; is a strictly monotonic increasing sequence,
and hence the differences z;41 — z; for 0 < ¢ < k — 1 are strictly greater than 0.

Let M be the set of machines and G be any subset of M. Recall that, by definition,
S(G) = Yiegsi and S(M) = 1. For 0 < a < 1, we define f(a) = j, where j > 1
is the smallest integer such that S({1,...,7}) > a. Correspondingly, we define F(a) =
{1,..., f(a)}. Denote by OFF(G) the set of the current tasks that the offline algorithm
assigns to machines in G.

We choose the speeds of the machines as follows. Without loss of generality assume that
¢ is a rational number. Since ¢ is rational, the z;’s and the difference between any two of
them are rational.

Choose s; as the largest rational such that for any = € {1} U {z/3" "0 <i < k — 1},
the ratio 2 /s is an integer. Next if j = f(z;) for some 7, 1 < i < k—1, then s;41 = 3s;, else
s;j41 = s;. We will take (1 — 2p-1)/(3%1s1) < (2x — 21-1)/(3""'s1) machines with speed
sp = 3F71s;. (These are the fastest machines.) Observe that the aggregate speed of all the
machines is:

Zn:& = (21/s1)s1+ (22 = 21)/(351))Bs1) + -+ (1 = 21-1)/(3*1s1))(3* 1sy) = 1.

=1

Notice that S({1,..., f(2)}) = # for each ¢ < k. We remark that k grows as ¢ ap-
proaches 3, and hence the number of machines required for the above construction increases.
This is the reason that our lower bound is 3 — o(1) instead of 3.

We now construct, in phases, a sequence of tasks that satisfy the following properties:

11

o At the end of phase ¢ the offline load on each machine is precisely OPT = 1. At any
time the offline load on any machine is at most 1.

o Let R; be the subset of OFF(F(z;)) of tasks which are assigned by the online algorithm
to machines in the complement of F(z;) at the end of any phase 7. Then w(R;) >
z; — z;—1. Intuitively, R; is the set of tasks that must be assigned to “faster” machines
by the online algorithm in order to maintain a load of at most ¢ on each machine.

At the beginning of the first phase, 1/s; tasks of weight s; arrive. (Note that by choice of
s1, 1/s1 is an integer.) The online algorithm assigns them while maintaining maximum load
< ¢. Label these tasks in increasing order starting with the tasks on the slowest machine.
The offline algorithm assigns the s, /s; lowest labeled tasks to the fastest machine n, the
next s,_1/s1 lowest labeled tasks to machine n — 1 and so on. (Note that all these numbers
are integers.) Thus, at the end of phase 1 the offline load is precisely 1, and hence the first
property holds.

For the second property, observe that (i) the aggregate weight of jobs assigned by the
online algorithm to machines in F(z1) is at most ¢z, since it maintains maximum load
< ¢; (ii) the online algorithm assigns tasks in OFF(F(z1)) to higher numbered machines
than it assigns the tasks in the complement of OFF(F(z)); (iil) the aggregate weight of
tasks in the complement of OFF(F(z1)) is 1 — 21. Therefore, the aggregate weight of tasks
of OFF(F(#)) that are assigned by the online algorithm to machines in F'(z1) is at most
cz1 — (1 — z1) = 0. Hence all tasks in OFF(F(21)) are assigned by the online algorithm to
machines in the complement of F(z), and thus w(Ry) = 21 = 21 — 2.

Assume that the above two properties hold at the end of phase 7 where 1 <1 < k — 2.
In phase ¢ + 1, all the tasks in the complement of OFF(F(z;)) depart. Using the first
property, the cumulative weight of tasks removed is 1 — z;. Next, (1 — z;)/s tasks of weight
$ = Sf(z)41 arrive. Note that s = 3sy(.,). Hence, the online algorithm must assign the new
arriving tasks to machines whose speed is at least s, otherwise by the choice of speeds the
load would be at least 3. Again label these new tasks in increasing order starting with the
tasks on the slowest machine. The offline algorithm assigns the tasks with the s, /s lowest
labels to machine n, the tasks with the next s,_1/s lowest labels to machine n — 1 and so
on satisfying the first property.

It is left to prove the second property. Define H; = F(zi41) — F(z). Let T; be the
subset of R; of tasks assigned by the online algorithm to machines in H;. (Observe that
these tasks have not departed in the beginning of the phase.) Similarly to the above,
observe that (i) since the online algorithm keeps the load of any machine at most ¢, the
cumulative weight of the new tasks it assigns in this phase to machines in H; is at most
c(zip1 — 2zi) —w(1y); (ii) tasks in OFF(H;) (i.e., tasks assigned in this phase by the offline to
machines in H;) are assigned by the online to higher numbered machines than the other tasks
arriving in this phase (i.e., tasks in the complement of OFF(F(z;41)); (iii) the aggregate
weight of tasks in the complement of OFF(F(2;11)) is 1 — #z;41. Therefore, the cumulative
weight of the tasks of OFF(H;) that the online algorithm could assign to machines in H;
is at most max{0, (¢(zi41 — 2) — w(1;)) — (1 — z;41)}. The last expression simplifies to

12

max{0,z; — z_1 — w(T})}, since by the definition of z; it follows that for all 1 <7 <k —1,
zi = zi-1 = (zip1 — 2i) — (1 = 2i41) (2)

Since the total weight of tasks of OFF(H;) is z;41 — i, it follows from the above that
the aggregate weight of tasks of OFF(H;) that are assigned by the online to machines in
the complement of F(z;11) is at least (z;41 — 2;) — max{0, z; — ;1 — w(71})}. On the other
hand, the cumulative weight of tasks of OFF(F(z;)) which are assigned to machines in the
complement of F(z;41)is clearly w(R;)—w(T;) which by the inductive hypothesis is at least
max{0,z; — z_1 — w(T;)}. Thus,

w(Riy1) > max{0, 2z, — 21 — w(T})} + (241 — z:) —max{0, z; — z;_1 — w(T})})) = 241 — 21,
which completes the proof of the inductive assumption.

Now assume that z;_1 < 1 and z; > 1. Consider the end of phase k£ — 1. During phase
k — 1, tasks with aggregate weight 1 — z;_; were assigned to machines in the complement
of Fj,_1 by the off-line algorithm. Therefore, the total weight of tasks currently assigned by
the online algorithm to the complement of Fj_q is at least z_1 — z5—2 + (1 — zx—1). By
Equation 2 we get that

Zh—1 — Zk—2 + (1 — zp—1) = (14) (25 — zk—1) > (1 — zp_1).

Thus we reach a contradiction to the competitive ratio ¢ < 3, since 1 — z;_1 is the aggregate
speed of the machines in the complement of Fj_q. [|

5 Open Problems

This paper raises several open problems and we would like to mention a few of them. The
first open problem is to get an on-line algorithm for the case of unrelated machines with
tasks of unknown duration. It is clear that the competitive ratio of such an algorithm would
be Q(y/n) but no algorithm with o(n) competitive ratio is known. Secondly, it would be
interesting to close the gap between the upper and lower bounds on the competitive ratio for
the related machines case with unknown task duration. The upper bound presented here for
the case when the value of OPT is known is 5 while the lower bound is 3. Moreover, do we
need to lose the additional factor of 4 when we do not know the value of OPT? A third and
maybe most important problem is to find an on-line algorithm with small competitive ratio
for the assignment restriction case or even for the unrelated machine case whose competitive
ratio does not depend on T, the ratio between the maximum and the minimum duration;
or alternatively, find a lower bound that does depend on T'. This would be interesting when
T is superpolynomial in n. The result for unknown duration implies an O(y/n) competitive
algorithm for this case. Is this the best when the durations are known but unbounded?

13

References

[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line machine scheduling
with applications to load balancing and virtual circuit routing. In Proc. 25th Annual
ACM Symposium on Theory of Computing, pages 623631, May 1993.

[2] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput competitive on-line routing. In
Proc. 34th IFEE Annual Symposium on Foundations of Computer Science, pages 32—
40, November 1993.

[3] B. Awerbuch, Y. Azar, S. Plotkin, and O. Waarts. Competitive routing of virtual
circuits with unknown duration. In Proc. 5th ACM-SIAM Symposium on Discrete
Algorithms, pages 321-327, January 1994.

[4] Y. Azar, A. Broder, and A. Karlin. On-line load balancing. In Proc. 33rd IEEE Annual
Symposium on Foundations of Computer Science, pages 218-225, 1992.

[6] Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assignment. In Proc.
Srd ACM-STAM Symposium on Discrete Algorithms, pages 203-210, 1992.

[6] Y. Bartal, A. Fiat, H. Karloff, and R. Vohra. New algorithms for an ancient scheduling
problem. In Proc. 24th Annual ACM Symposium on Theory of Computing, 1992.

[7] A. Borodin, N. Linial, and M. Saks. An optimal online algorithm for metrical task
systems. J. ACM, (39):745-763, 1992.

[8] R.L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical
Journal, 45:1563-1581, 1966.

[9] R.L. Graham, E.L. Lawler, J.K Lenstra, and A.H.G. Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete
Mathematics, 5:287-326, 1979.

[10] D. Karger, S. Phillips, and E. Torng. A better algorithm for an ancient scheduling
problem. Unpublished manuscript, 1993.

[11] A.R. Karlin, M.S. Manasse, L.Rudolph, and D.D. Sleator. Competitive snoopy caching.
Algorithmica, 1(3):70-119, 1988.

[12] R. Karp, U. Vazirani, and V. Vazirani. An optimal algorithm for on-line bipartite
matching. In Proc. 22nd Annual ACM Symposium on Theory of Computing, pages
352-358, 1990.

[13] M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive algorithms for online
problems. In Proc. 20th Annual ACM Symposium on Theory of Computing, pages
322-332, 1988.

[14] S. Phillips and J. Westbrook. Online load balancing and network flow. In Proc. 25th
Annual ACM Symposium on Theory of Computing, pages 402-411, 1993.

14

[15] S. Plotkin. Competitive routing in ATM networks. IEEFE J. Selected Areas in Comm.,
pages 1128-1136, August 1995. Special issue on Advances in the Fundamentals of
Networking. (Invited paper).

[16] D. Shmoys, J. Wein, and D.P. Williamson. Scheduling parallel machines on-line. In

Proc. 32nd IEEF Annual Symposium on Foundations of Computer Science, pages 131—
140, 1991.

[17] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.
Comm. ACM, 28(2):202-208, 1985.

15

