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The paper explores an alternative way to overcome the 
(pn) bound; it considersthe related machines case with unknown task duration. In the related machines case, atask can be executed by any machine and the increase in load depends on the speed ofthe machine and the weight of the task. For this case the paper gives a 20-competitivealgorithm and show a lower bound of 3� o(1) on the competitive ratio.1 IntroductionThis paper considers the load balancing problem de�ned as the problem of online assignmentof tasks to n machines; assignment has to be done immediately upon arrival of the task,increasing the load on the machine the task is assigned to for the duration of the task. Weconsider non-preemptive load balancing, i.e., reassignment of tasks is not allowed. The goalis to minimize the maximum load.The online load balancing problem naturally arises in many applications involving al-location of resources. In particular, many cases that are usually cited as applications forbin packing become load balancing problems when one removes the assumption that theitems, once \stored", remain in the storage forever (e.g., storing food in warehouses). As asimple concrete example, consider the case where each \machine" represents a communica-tion channel with bounded bandwidth. The problem is to assign each incoming request forbandwidth to one of the channels. Assigning a request to a certain communication channelincreases the load on this channel, i.e., increases the percentage of the used bandwidth.The load is increased for the duration associated with the request.Formally, each arriving task j has an associated load vector, ~pj = (p1j; p2j; : : : ; pnj),where pij de�nes the increase in the load of machine i if we were to assign task j to it.This increase in load occurs for the duration d(j) of the task. Since the arriving taskshave to be assigned without knowledge of the future tasks, it is natural to evaluate theperformance in terms of the competitive ratio (this concept was introduced in [17] andfurther developed in [11, 7, 13]). In our case, the competitive ratio is the supremum, overall possible input sequences, of the maximum (over time and over machines) load achievedby the on-line algorithm to the maximum load achieved by the optimal o�-line algorithm.The competitive ratio may depend, in general, on the number of machines n, which isusually �xed, and should not depend on the number of tasks that may be arbitrary large.Similar to the way it is done for scheduling problems, it is natural to categorize loadbalancing problems according to the properties of the load vectors. The simplest case iswhere the coordinates of each load vector are equal to some value that depends only on thetask. It is easy to observe that the algorithm due to Graham [8], applied to this kind ofload-balancing problem, leads to a (2� 1n)-competitive solution.Azar, Broder, and Karlin [4] proposed to study a less restricted case, motivated by theproblem of on-line assignment of network nodes to gateways (see also [5]). In this case,a task can represent a request of a network node to be assigned to a gateway; machinesrepresent gateways. Since, in general, each node can be served by only a subset of gateways,1



this leads to a situation where each coordinate of a load vector is either 1 or equal to agiven value that depends only on the task. For this case, which we will refer to as identicalspeed with assignment restriction case, [4] shows an 
(pn) lower bound on the competitiveratio of any load balancing algorithm that deals with the unknown duration case, i.e. thecase where the duration of a task becomes known only upon its termination. They alsopresent an O(n2=3)-competitive algorithm.The work in [4] opens several new research avenues. The �rst is the question of whetherthere exists an O(pn)-competitive algorithm for the identical speed with assignment restric-tion case when the duration of a task becomes known only upon its termination. Secondly,the 
(pn) lower bound for the competitive ratio in [4] suggests considering natural vari-ations of the problem for which this lower bound does not apply. One such candidate,considered in this paper, is the known duration case, where the duration of each task isknown upon its arrival. Another important candidate is the related machines case. Here,the ith coordinate of each load vector is equal to wj=si, where the \weight" wj dependsonly on the task j and the \speed" si depends only on the machine i.This work addresses the above three issues. The main results presented in this paperare as follows:� A (2pn+1)-competitive algorithm, Robin-Hood, for the identical-speed with assign-ment restriction case studied by [4]. Their lower bound implies that this algorithm isoptimal to within a p2 multiplicative factor.� An O(lognT )-competitive algorithm for the known-duration case with unrestrictedload vectors, where T is the ratio of the maximum to minimum duration. We assumethat the minimum possible task duration is known in advance.� A 20-competitive algorithm, Slow-Fit, for the related machines case with unknowntask duration. We also show that any algorithm for this case can't be better than(3� o(1))-competitive, even if the optimal load is known in advance.More speci�cally, algorithm Robin-Hood is simple, deterministic, and runs in O(n) timeper task assignment. Interestingly, its decision where to assign a new task depends not onlyon the current load on each machine but also on the history of the previous assignments.Our algorithm for the known duration case is an application of the virtual circuit routingalgorithm of [1] (see [15] for a survey on online virtual circuit routing). Roughly speaking,we show how to use multiple concurrent instances of the permanent virtual circuit routingalgorithm in order to solve a single instance of the load balancing problem with temporaltasks. Our approach, together with the results in [1], can be used to show an O(lognT )-competitive algorithm for virtual circuit routing with known duration.Algorithm Slow-Fit is essentially identical to the algorithm of Aspnes, Azar, Fiat,Plotkin and Waarts for assigning permanent tasks [1]. Roughly speaking, the idea (whichoriginated in the paper by Shmoys, Wein, and Williamson [16]) is to assign the task to theleast capable machine while maintaining that the load does not exceed the currently set goal.2



However, the analysis in [1] does not apply for the case where tasks have limited duration.Our analysis is di�erent and shows that Slow-Fit is 5-competitive if the maximum load isknown.1 Similarly to algorithm Robin-Hood, also algorithm Slow-Fit is deterministic andruns in O(n) time per task assignment.The (3�o(1)) lower bound for the related machines case applies even if the optimal max-imum load is known in advance. This lower bound stands in contrast to the 2-competitivealgorithm in [1] for the case where tasks are permanent and the optimal o�-line maximalload is known in advance, and the 2-competitive algorithm for the unknown-duration casewhere the machines are identical [8].Other related work On-line load balancing of permanent tasks (i.e., tasks never termi-nate) was studied extensively [8, 12, 5, 6, 1]. For the case where the machines are identical,Graham showed a (2� 1n ) competitive solution [8]. This solution has been improved in [6]by Bartal, Fiat, Karlo� and Vohra to 2 � � for a small constant �, and the value of � wasfurther improved in [10]. The identical speed with assignment restriction case was intro-duced by Azar, Naor, and Rom [5], who described an O(logn)-competitive algorithm anda matching lower bound. The case of unrestricted load vectors (known also as the unre-lated machines case), was considered by Aspnes, Azar, Fiat, Plotkin and Waarts [1], whoshowed an O(logn)-competitive algorithm. They also showed an 8-competitive algorithmfor the related machines case. Their algorithm is 2-competitive in the case that the optimalo�-line maximum load is known. As the competitive ratios show, the fact that tasks have�nite duration can make the task of the on-line load balancing algorithm signi�cantly moredi�cult, especially when this duration is unknown upon the arrival of the task.Both the idea introduced here of considering the case where the duration of the task isknown upon its arrival, as well as the method used here to solve this case (i.e., concurrentlyworking with multiple copies of the graph, one copy for each time instance), can be adaptedfor the context of virtual circuit routing to provide an O(lognT )-competitive algorithm forvirtual circuit routing with known duration. Recently our approach was employed in thecontext of throughput-competitive on-line routing as well [2].All the results in this paper, as well as in the papers mentioned above, concentrate onnon-preemptive load balancing, i.e., re-assignment of tasks is not allowed. Another, verydi�erent model is when re-assignment of existing tasks is allowed. After the time of thiswork, for the case where the coordinates of the load vector are restricted to be 1 or 1,and a task duration is not known upon its arrival, Phillips and Westbrook [14] proposedan algorithm that achieves O(logn) competitive ratio with respect to load while makingO(1) amortized reassignments per job. The general case was later considered in [3], whodesigned an O(logn)-competitive algorithm with respect to load that reroutes each circuitat most O(logn) times.Finally, we note that the load balancing problem is di�erent from the classical scheduling1It is interesting to note that the natural greedy algorithm, which tries to minimize the maximal load onany machine, is �(log n)-competitive [1]. (Their analysis for permanent tasks applies also for the case wheretasks have limited duration .) 3



problem of minimizing the makespan of an on-line sequence of tasks with known runningtimes (see [9, 16] for survey). Intuitively, in the load balancing context, the notion ofmakespan corresponds to maximum load, and there is a new, orthogonal, notion of time.(See [1] for further discussion of the di�erences.)2 Identical Speed with Assignment RestrictionIn this section we describe a (2pn+ 1)-competitive algorithm for the identical speed withassignment restriction case, where the task duration is unknown upon its arrival. Task jmust be assigned to one of the machines in a set M(j); assigning this task to a machine iraises the load on machine i by wj . This result complements the 
(pn) lower bound of [4].The input sequence consists of task arrival and task departure events. Since the stateof the system changes only as a result of one of these events, the event numbers can serveas time units, i.e. we can view time as being discrete. We say that time t corresponds tothe tth event. Initially the time is 0, and time 1 is the time at which the �rst task arrives.Whenever we speak about the \state of the system at time t" we mean the state of thesystem after the tth event was already handled. In other words, the response to the tthevent takes the system from the \state at t� 1" to the \state at t".Let OPT(�) denote the load achievable by an optimum o�ine algorithm, where � =(�1; �2; : : :) is a particular sequence of jobs. Since we can assume that we are considering a�xed input sequence, we will use OPT for OPT(�). Let `g(t) denote the load on machineg at time t, i.e., after the tth event.At any time t we maintain an estimate L(t) for OPT satisfying L(t) � OPT. A machineg is said to be rich at some point in time t if `g(t) � pn L(t), and is said to be poorotherwise. A machine may alternate between being rich and poor over time. If g is rich att, its windfall time at t is the last moment in time it became rich. More precisely, g haswindfall time t0 at t if g is poor at time t0 � 1, and is rich for all times t0 t0 � t0 � t. Let gbe a rich machine with windfall time t0.Algorithm Robin-Hood: Assign the �rst task to an arbitrary machine, and set L(1) tothe weight of the �rst task. When a new task j arrives at time t, set:L(t) = maxfL(t� 1); wj; 1n (wj +Xg `g(t� 1))gThe last quantity is the aggregate weight of the tasks currently active in the system dividedby the number of machines. Note that the recomputation of L(t) may cause some richmachines to be reclassi�ed as poor machines. If possible, assign j to some poor machine g,i.e., machine with load `g(t� 1) < pn L(t). Otherwise, j is assigned to the rich machine gwith the most recent windfall time.Lemma 2.1 At all times t, the algorithm guarantees that L(t) � OPT.4



Proof: The proof is by induction on the number of the assigned tasks. After the �rst taskL(t) � OPT. For the inductive part, it su�ces to consider only the cases where L(t) isincreased. The claim follows from the facts that wj � OPT and 1n(wj+Pg `g(t�1)) � OPT.The following lemma is immediate from the fact that nL(t) is an upper bound on theaggregate load of the currently active tasks.Lemma 2.2 At most pn machines can be rich at any point in time.Theorem 2.1 The competitive ratio of Algorithm Robin-Hood is at most 2pn+ 1.Proof: We will show that the algorithm guarantees that at any point in time t, `g(t) �pn (L(t) + OPT) + OPT for any machine g. The claim is immediate if g is poor at t.Otherwise, let S be the set of tasks that were assigned to g since g's windfall time t0 andare still active at time t. Let j be some task in S. Since g is rich throughout the timeinterval [t0; t], all the machines M(j), that could have been used by the o�ine algorithmfor j, must be rich when j arrives. Moreover, each machine in M(j)� fgg must have beenrich already before time t0 since otherwise Robin-Hood would have assigned j to it. Let kbe the number of machines to which any of the tasks in S could have been assigned, i.e.,k = j [j2S M(j)j. Lemma 2.2 implies that k � pn.Let q be the task assigned to g at time t0 that caused g to become rich. Since wq � OPT,Pj2S wj � kOPT and k � pn we conclude that`g(t) � pn L(t) + wq +Xj2S wj � pn L(t) + OPT+pnOPT:3 Tasks with Known DurationThis section considers the case where the duration of a task is known upon its arrival, i.e.,d(j) is revealed to the online algorithm when task j arrives. We provide an algorithm whosecompetitive ratio is O(lognT ) even for the unrelated machine case (i.e with unrestricted loadvectors), where T is the ratio of the maximum to minimum duration (the minimum possibletask duration is known in advance). This result is in contrast to the 
(pn) lower boundon the competitive ratio for the identical speed with restriction case when the duration ofa task is not known upon its arrival [4].Our algorithm is based on the on-line algorithm of [1], which solves the following \routeallocation" problem: We are given a directed graph G = (V;E) with jV j = N . Request i isspeci�ed as a tuple (si; ti; fpi;eje 2 Eg), where si; ti 2 V and for all e 2 E, pi;e � 0. Upon5



arrival of request i, the route allocation algorithm has to assign it to a path (route) Pi fromsi to ti in G; the route assignments are permanent. Let P = fP1; P2; : : : ; Pkg be the routesassigned to requests 1 through k by the on-line algorithm, and let P� = fP �1 ; P �2 ; : : : ; P �k gbe the routes assigned by the o�-line algorithm. Given a set of routes P , the load on edgee after the �rst j requests are satis�ed is de�ned by:`e(j) = Xi�j:e2Pi pi;e (1)Denote the maximum load by �(j) = maxe2E `e(j). Similarly, de�ne `�e(j) and ��(j) tobe the corresponding quantities for the routes produced by the o�-line algorithm. Forsimplicity we will abbreviate �(k) as � and ��(k) as ��. The goal of the online algorithm isto produce a set of routes P that minimizes �=��.The online route allocation algorithm of [1] is O(logN)-competitive, where N is thenumber of vertices in the given graph. Roughly speaking, we will reduce our problemof online load balancing of temporary tasks with known duration to several concurrentinstances of the online route allocation for permanent routes problem, where N = nT .Then we will apply the algorithm of [1] to achieve O(logN) = O(lognT ) competitive ratio.We assume that the minimum task duration is known in advance and measure time interms of this minimum duration interval. Let a(j) denote the arrival time of task j, andassume a(1) = 0. Let T 0 = (max1�j�j�j a(j) + d(j)) be the total duration of all the tasks.First we make several simplifying assumptions and then show how to eliminate them:1. T 0 is known in advance to the online algorithm.2. T is known in advance to the online algorithm.3. Arrival times and task durations are integers, i.e., time is discrete.We now describe an O(lognT 0)-competitive algorithm Assign1, which we later use as asubroutine in our �nal algorithm.Algorithm Assign1: The idea is to translate each task into a request for allocating aroute. We construct a directed graph G consisting of T 0 layers, each of which consists ofn+2 vertices, numbered 1; : : : ; n+2. We denote vertex i in layer k by v(i; k). For each layer1 � k � T 0, and for 1 � i � n, we refer to vertices v(i; k) as common vertices. Similarly,for each layer k, v(n+ 1; k) is referred to as the source vertex and v(n+ 2; k) is referred toas the sink vertex. For each layer, there is an arc from the source v(n+ 1; k) to each of then common vertices v(i; k). In addition, there is an arc from each common vertex v(i; k) tothe sink v(n+ 2; k) in each layer. Finally, there is an arc from each common vertex v(i; k)to the corresponding common vertex v(i; k+ 1) in the next layer. The arc from v(i; k) tov(i; k+ 1) will represent machine i during the time interval [k; k+ 1), and the load on thearc will correspond to the load on machine i during this interval.6



We convert each new task j arriving at a(j) into a request for allocating a route in Gfrom the source of layer a(j) to the sink of layer a(j) + d(j). The loads pj;e are de�ned asfollows: for arcs v(i; k) to v(i; k+ 1) for a(j) � k � a(j) + d(j)� 1, we set pj;e = pi(j); weset pj;e to 0 for the arcs out of the source of layer a(j) and for the arcs into the sink of layera(j)+d(j), and to1 for all other arcs. Clearly the only possible way to route the task j isthrough the arcs v(i; k) to v(i; k+ 1) for a(j) � k � a(j) + d(j)� 1 for some i. This routeraises the load on the participating arcs by precisely pi(j) which corresponds to assigningthe task to machine i. Thus, minimizing the maximum load on an arc in the online routeallocation on the directed graph G corresponds to minimizing the maximum machine loadin the load balancing problem.We now show how to construct an O(lognT )-competitive algorithm. Partition the tasksinto groups according to their arrival times. Group m contains all tasks that arrive inthe time interval [(m � 1)T;mT ). Clearly each task in group m must depart by time(m + 1)T , and the overall duration of tasks in any group is at most 2T . For each groupinvoke a separate copy of Assign1 with T 0 = 2T . That is, assign tasks belonging to acertain group independently of the assignments of tasks in other groups. Using the routeallocation algorithm of [1], we get that for each group, the ratio between maximal onlineload to the maximal o�-line load is at most O(lognT ). Moreover, at each instance of timeactive tasks can belong to at most 2 groups. Thus, the maximal online load at any giventime is at most twice the maximal online load of a single group. The o�-line load is at leastthe largest load of the o�-line algorithms over all groups, and hence the resulting algorithmis O(lognT )-competitive.We now show how to remove the remaining simplifying assumptions. To remove therestriction that T is known in advance, let T = d(1) when the �rst task arrives. If we arecurrently considering the mth group of tasks, and task j arrives with d(j) > T , we setT = d(j) and T 0 = 2d(j). Observe that this does not violate the invariant that at anypoint in time the active tasks belong to at most two groups. We use the fact that the routeallocation algorithm of [1] is scalable in the sense that the current assignment of tasks ingroup m is consistent with the assignment if Assign1 had used the new value of T 0 insteadof the old one. Thus the argument of O(lognT )-competitiveness goes through as before.Finally, to eliminate the assumption that events coincide with the clock (that is for all j,a(j)'s and d(j)'s are integral multiples of time unit), Assign 1 approximates a(j) by ba(j)cand d(j) by da(j)+d(j)e�ba(j)c. Since for all j, d(j) � 1, this approximation increases themaximal o�-line load by at most a factor of 2. Thus, we have proved the following claim:Theorem 3.1 The above online load balancing algorithm for unrelated machines with knowntasks duration is O(lognT )-competitive. 7



4 Related MachinesIn this section we consider the related machines case when the duration of a task is notknown upon its arrival. In the related machines case, there exists a notion of machinespeed and each task can be assigned to any machine. In other words, we assume that eachtask j has weight wj , and that 8i; pi(j) = wj=si, where si is the speed of machine i.For convenience, we assume that si � sj for i < j. If G is a set of machines we de�neS(G) = Pk2G sk . If T is a set of tasks then w(T ) = Pj2T wj. The de�nitions of time,OPT, and `g(t) are as described in the beginning of Section 2.We �rst give an algorithm Slow-Fit that is 5-competitive for this problem if OPT isknown in advance and 20-competitive otherwise. This should be contrasted with the 
(pn)lower bound on the competitive ratio for the identical speed with restriction case when theduration of a task is not known upon its arrival.Next we give a 3� o(1) lower bound on the competitive ratio achievable by any on-linealgorithm. Note that since our upper bounds apply for the case of tasks with unknownduration, they apply therefore also for the case of tasks with known duration.4.1 Algorithm Slow-FitWe �rst describe a simpli�ed version of Slow-Fit that assumes that the value of OPT isknown in advance. Let c be an integer constant (we will later choose c = 5 to minimize theresulting competitive ratio). Assume that a task j arrives at time t. We say j is assignableto machine g if and only if wj=sg � OPT and `g(t� 1) + wj=sg � c �OPT.Algorithm Slow-Fit (simpli�ed version): Assign the new task to the slowest assignablemachine. Break ties by assigning to the machine with the smallest index.Theorem 4.1 Provided c � 5, the simpli�ed version of Slow-Fit guarantees that every task isassignable, which implies that the simpli�ed Slow-Fit algorithm is c-competitive.Proof: Suppose that at some point in time t0, a task q arrives that is not assignable. Wethen reach a contradiction to the supposed value of OPT by showing that at some timein the past the aggregate weight of the tasks in the system was more than Pni=1 si �OPT.Starting from the current time t0, we construct a sequence of times t0 > t1 > : : : > tk . Attime ti� 1 we observe the load on set Gi of machines. We de�ne J(Gi) to be the collectionof tasks that are active at time ti � 1 and that were assigned to machines in Gi by theon-line algorithm.Initially, G0 = fng. We prove by induction on i that there is a set of times ti < : : : <t1 < t0 and sequence of subsets of machines Gi such that the following invariants hold:8



1. The Gj 's, 0 � j � i, are disjoint sets of consecutive machines, i.e.,Gj = fmj ; mj + 1; : : :mj�1 � 1gfor some mj 's. (Note that since G0 = fng, we de�ne m0 = n and m�1 = n+ 1. Also,Gj could be empty.)2. At time ti � 1, each machine in Gi has a load that exceeds (c� 1) OPT.3. For 0 < j � i, S(Gj) � (c� 3)S(Gj�1).Initially, t0 is the time at which task q arrived. Since task q can not be assigned to thefastest machine n, and OPT � w(q)=sn, we have `n(t0 � 1) > (c� 1) OPT, which meansthat the cumulative weight of the tasks assigned to machine n that are active at t0 � 1exceeds (c� 1) sn OPT = (c� 1) S(G0) OPT. Hence, the second invariant initially holds.The remaining invariants hold trivially.Now assume that the above invariants hold at the end of the ith iteration. We willshow how to construct ti+1 and Gi+1 so that the invariants hold for i + 1 as well. Usingthe second invariant, we know that the load on each machine in Gi exceeds (c� 1) OPT attime ti � 1. Hence, the cumulative weight of tasks in J(Gi) is at least (c� 1)S(Gi)OPT.Consider the machines to which the optimal o�ine algorithm assigns the tasks in J(Gi),and let mi+1 be the slowest machine that gets a task in J(Gi). We letGi+1 = fmi+1; mi+1 + 1; : : : ; mi � 1g:(Notice that Gi+1 is empty if mi+1 � mi.) Since all the tasks in J(Gi) are active at timeti � 1, the cumulative weight of the tasks from J(Gi) assigned to machines in S0�j�iGjby the o�ine algorithm is bounded by P0�j�i S(Gj) OPT. If i = 0, then this sum isat most S(G0)OPT. Otherwise (i > 0), the third invariant guarantees that it is at most2 S(Gi) OPT. Thus the rest of the tasks in J(Gi) have to be assigned by the o�inealgorithm to machines in Gi+1, and their cumulative weight is at least (c� 3) S(Gi) OPT.Since the load on any machine never exceeds OPT in the o�ine assignment, it must be thecase that S(Gi+1) OPT � (c� 3) S(Gi) OPT. As a consequence we getS(Gi+1) � (c� 3) S(Gi):Now consider the task qi with the smallest weight in J(Gi). De�ne time ti+1 to bethe time at which qi arrived. Since qi was not assigned to any machine in Gi+1, all thesemachines were unassignable at ti+1. Since w(qi)=sg � OPT for any machine g 2 Gi+1,8g 2 Gi+1 : `g(ti+1 � 1) > (c� 1) OPT:This proves that the invariants now hold for i+ 1.Consider the last iteration, say k, where the set Gk includes machine 1. We know thatthe cumulative weight of tasks in J(Gk) is at least (c� 1)S(Gk)OPT at time tk � 1. Recall9



that P0�i�k S(Gi) � 2S(Gk). The contradiction follows from the fact that at any point intime, the maximum task weight that can be handled by the system is at mostX0�i�k S(Gi) OPT � 2S(Gk)OPT < (c� 1)S(Gk)OPT:We now show how to modify Slow-Fit so that it will not require advance knowledge ofOPT.Algorithm Slow-Fit: After the arrival of the �rst task q set L = w(q)=sn. Note that Lis our estimate of OPT. We then repeat the following: (1) Apply the simpli�ed version ofSlow-Fit, which uses L as the value of OPT, until it encounters an unassignable task q.(2) Set L = 2L, and return to step 1, ignoring any tasks encountered up to this point. Inother words, when the simpli�ed version of Slow-Fit tries to assign q, it behaves as if theload on every machine is zero.Theorem 4.2 The competitive ratio of Slow-Fit is at most 4c, provided c � 5.Proof: Notice that at any point in time OPT � L=2. During the last iteration of thesimpli�ed version of Slow-Fit the maximum load on any machine is at most cL, and henceat most 2c OPT. Since L was doubled on each iteration, the cumulative load on any machinefor all of the prior iterations is at most cL, or at most 2c OPT. Therefore, the load on anymachine is at most 4c OPT.4.2 Lower BoundIn this section we show that any on-line algorithm has competitive ratio of at least 3� o(1)for the related machine case even if the value of OPT is known in advance. This lowerbound stands in contrast to the 2-competitive algorithm in [1] for the case where tasks arepermanent and the optimal o�-line maximal load is known in advance, as well as to the2-competitive algorithm for the unknown-duration case where the machines are identical [8].Theorem 4.3 The competitive factor c of any on-line algorithm for the related machines casesatis�es c � 3� o(1).Proof: Assume that there exists an on-line algorithm whose competitive ratio is at mostc < 3. We de�ne a sequence zi based on which we de�ne a set of machines and a sequenceof task arrivals and departures that will contradict the claim that the competitive ratio isbounded by c. Let z0 = 0, z1 = 1=(1 + c) andzi+1 = zi + 1� zi�11 + c :10



Lemma 4.1 For c < 3 there exists a positive k such that zk � 1.Proof: Let xt = 1� zt. Thus, x0 = 1, x1 = 1� 1=(1 + c) and xt+1 = xt � xt�1=(1 + c). Weneed to show that there exists a positive k such that xk � 0. Notice that since c < 3 theroots of the quadratic equation x2 = x� 1=(c+ 1) are complex and have values �1 and �2equal to 1=2�q1=4� 1=(1 + c) = �e�i�where � > 0 and 0 < � < �=2. Thus, it follows (formally by induction) thatxt = �1�t1 + �2�t2where �1; �2 satisfy �1 + �2 = 1 and �1�1 + �2�2 = 1� 1=(1 + c). Hence �1; �2 = �0e�i�where �0 > 0 and ��=2 < � < �=2. That implies thatxt = �0�t(ei(�t+�) + e�i(�t+�))and hence xk � 0 for k = d(�=2� �)=�e.Notice that for 0 � i � k the sequence zi is a strictly monotonic increasing sequence,and hence the di�erences zi+1 � zi for 0 � i � k � 1 are strictly greater than 0.Let M be the set of machines and G be any subset of M . Recall that, by de�nition,S(G) = Pi2G si and S(M) = 1. For 0 � � � 1, we de�ne f(�) = j, where j � 1is the smallest integer such that S(f1; : : : ; jg) � �. Correspondingly, we de�ne F (�) =f1; : : : ; f(�)g. Denote by OFF (G) the set of the current tasks that the o�ine algorithmassigns to machines in G.We choose the speeds of the machines as follows. Without loss of generality assume thatc is a rational number. Since c is rational, the zi's and the di�erence between any two ofthem are rational.Choose s1 as the largest rational such that for any x 2 f1g [ fzi=3k�1j0 � i � k � 1g,the ratio x=s1 is an integer. Next if j = f(zi) for some i, 1 � i � k�1, then sj+1 = 3sj , elsesj+1 = sj . We will take (1 � zk�1)=(3k�1s1) � (zk � zk�1)=(3k�1s1) machines with speedsk = 3k�1s1. (These are the fastest machines.) Observe that the aggregate speed of all themachines is:nXi=1 si = (z1=s1)s1 + ((z2 � z1)=(3s1))(3s1) + � � �+ ((1� zk�1)=(3k�1s1))(3k�1s1) = 1:Notice that S(f1; : : : ; f(zi)g) = zi for each i < k. We remark that k grows as c ap-proaches 3, and hence the number of machines required for the above construction increases.This is the reason that our lower bound is 3� o(1) instead of 3.We now construct, in phases, a sequence of tasks that satisfy the following properties:11



� At the end of phase i the o�ine load on each machine is precisely OPT = 1. At anytime the o�ine load on any machine is at most 1.� Let Ri be the subset ofOFF(F (zi)) of tasks which are assigned by the online algorithmto machines in the complement of F (zi) at the end of any phase i. Then w(Ri) �zi�zi�1. Intuitively, Ri is the set of tasks that must be assigned to \faster" machinesby the online algorithm in order to maintain a load of at most c on each machine.At the beginning of the �rst phase, 1=s1 tasks of weight s1 arrive. (Note that by choice ofs1, 1=s1 is an integer.) The online algorithm assigns them while maintaining maximum load� c. Label these tasks in increasing order starting with the tasks on the slowest machine.The o�ine algorithm assigns the sn=s1 lowest labeled tasks to the fastest machine n, thenext sn�1=s1 lowest labeled tasks to machine n� 1 and so on. (Note that all these numbersare integers.) Thus, at the end of phase 1 the o�ine load is precisely 1, and hence the �rstproperty holds.For the second property, observe that (i) the aggregate weight of jobs assigned by theonline algorithm to machines in F (z1) is at most cz1, since it maintains maximum load� c; (ii) the online algorithm assigns tasks in OFF(F (z1)) to higher numbered machinesthan it assigns the tasks in the complement of OFF(F (z1)); (iii) the aggregate weight oftasks in the complement of OFF(F (z1)) is 1� z1. Therefore, the aggregate weight of tasksof OFF(F (z1)) that are assigned by the online algorithm to machines in F (z1) is at mostcz1 � (1� z1) = 0. Hence all tasks in OFF(F (z1)) are assigned by the online algorithm tomachines in the complement of F (z1), and thus w(R1) = z1 = z1 � z0.Assume that the above two properties hold at the end of phase i where 1 � i � k � 2.In phase i + 1, all the tasks in the complement of OFF(F (zi)) depart. Using the �rstproperty, the cumulative weight of tasks removed is 1� zi. Next, (1� zi)=s tasks of weights = sf(zi)+1 arrive. Note that s = 3sf(zi). Hence, the online algorithm must assign the newarriving tasks to machines whose speed is at least s, otherwise by the choice of speeds theload would be at least 3. Again label these new tasks in increasing order starting with thetasks on the slowest machine. The o�ine algorithm assigns the tasks with the sn=s lowestlabels to machine n, the tasks with the next sn�1=s lowest labels to machine n� 1 and soon satisfying the �rst property.It is left to prove the second property. De�ne Hi = F (zi+1) � F (zi). Let Ti be thesubset of Ri of tasks assigned by the online algorithm to machines in Hi. (Observe thatthese tasks have not departed in the beginning of the phase.) Similarly to the above,observe that (i) since the online algorithm keeps the load of any machine at most c, thecumulative weight of the new tasks it assigns in this phase to machines in Hi is at mostc(zi+1�zi)�w(Ti); (ii) tasks in OFF(Hi) (i.e., tasks assigned in this phase by the o�ine tomachines in Hi) are assigned by the online to higher numbered machines than the other tasksarriving in this phase (i.e., tasks in the complement of OFF(F (zi+1)); (iii) the aggregateweight of tasks in the complement of OFF(F (zi+1)) is 1� zi+1. Therefore, the cumulativeweight of the tasks of OFF(Hi) that the online algorithm could assign to machines in Hiis at most maxf0; (c(zi+1 � zi) � w(Ti)) � (1 � zi+1)g. The last expression simpli�es to12



maxf0; zi � zi�1 � w(Ti)g, since by the de�nition of zi it follows that for all 1 � i � k � 1,zi � zi�1 = c(zi+1 � zi)� (1� zi+1) (2)Since the total weight of tasks of OFF(Hi) is zi+1 � zi, it follows from the above thatthe aggregate weight of tasks of OFF(Hi) that are assigned by the online to machines inthe complement of F (zi+1) is at least (zi+1 � zi)�maxf0; zi� zi�1 �w(Ti)g. On the otherhand, the cumulative weight of tasks of OFF(F (zi)) which are assigned to machines in thecomplement of F (zi+1) is clearly w(Ri)�w(Ti) which by the inductive hypothesis is at leastmaxf0; zi � zi�1 � w(Ti)g. Thus,w(Ri+1) � maxf0; zi� zi�1�w(Ti)g+((zi+1� zi)�maxf0; zi� zi�1�w(Ti)g)) = zi+1� zi;which completes the proof of the inductive assumption.Now assume that zk�1 < 1 and zk � 1. Consider the end of phase k � 1. During phasek � 1, tasks with aggregate weight 1� zk�1 were assigned to machines in the complementof Fk�1 by the o�-line algorithm. Therefore, the total weight of tasks currently assigned bythe online algorithm to the complement of Fk�1 is at least zk�1 � zk�2 + (1 � zk�1). ByEquation 2 we get thatzk�1 � zk�2 + (1� zk�1) = (1 + c)(zk � zk�1) > c(1� zk�1):Thus we reach a contradiction to the competitive ratio c < 3, since 1�zk�1 is the aggregatespeed of the machines in the complement of Fk�1.5 Open ProblemsThis paper raises several open problems and we would like to mention a few of them. The�rst open problem is to get an on-line algorithm for the case of unrelated machines withtasks of unknown duration. It is clear that the competitive ratio of such an algorithm wouldbe 
(pn) but no algorithm with o(n) competitive ratio is known. Secondly, it would beinteresting to close the gap between the upper and lower bounds on the competitive ratio forthe related machines case with unknown task duration. The upper bound presented here forthe case when the value of OPT is known is 5 while the lower bound is 3. Moreover, do weneed to lose the additional factor of 4 when we do not know the value of OPT? A third andmaybe most important problem is to �nd an on-line algorithm with small competitive ratiofor the assignment restriction case or even for the unrelated machine case whose competitiveratio does not depend on T , the ratio between the maximum and the minimum duration;or alternatively, �nd a lower bound that does depend on T . This would be interesting whenT is superpolynomial in n. The result for unknown duration implies an O(pn) competitivealgorithm for this case. Is this the best when the durations are known but unbounded?13
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