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trivial O(m) upper bound. For randomized algo-rithms we show an 
(m=(logm)2) lower bound.� For on-line restrited assignment of temporarytasks with known durations, we present a lowerbound of 
(pm) and of 
(q log Tlog log T ) on the om-petitive ratio of any on-line algorithm (determinis-ti or randomized). These lower bounds also holdfor assignment on unrelated mahines.� For o�ine assignment of temporary tasks on un-related mahines, we present a PTAS for the asewhere the number of mahines is �xed. For thease where the number of mahines is not �xed,we present a lower bound of 2 (provided that P 6=NP ).We also provide two additional results for inter-esting speial ases of temporary tasks assignment inthe unrelated mahines model with unknown durations.Spei�ally, we show tight results for ertain ases of therelated-restrited model and of the restrited mahinesmodel.De�nitions and previous results: We onsiderthe problem of non-preemptive load balaning of tem-porary tasks on m unrelated mahines. Eah job (task)has an arrival time and a departure time, and shouldbe assigned to one mahine immediately upon its ar-rival. Eah job j is assoiated with a loads vetor(wj(1); :::; wj(m)). If job j is assigned to mahine i,it inreases the load of mahine i by its weight on thatmahine, wj(i), for the duration of the job. The loadon a mahine at a ertain time is the sum of the loadsaused by the jobs assigned to it at that time. The goalis to minimize the maximum load over mahines andtime. Note that the load and the time are two separateaxes of the problem. In the known durations setting weassume that when a job arrives its duration is given tothe on-line algorithm and in the unknown durations set-ting we assume that the departure time is known onlywhen the job atually departs.An important speial ase of the unrelated mahinesmodel is the speial ase alled the restrited assignmentmodel. In this ase, a job j an only be assigned to asubset of the mahines that depends on the job. On eahof these mahines it auses the same load wj . This is



equivalent to a loads vetor that ontains only the valueswj or 1. The results in [4℄ (and later in [21℄) show alower bound of 
(pm) on the ompetitive ratio thatany on-line algorithm (deterministi or randomized)may have for restrited assignment of temporary taskswith unknown durations. An on-line algorithm for thisproblem with a ompetitive ratio of O(pm), was laterpresented in [6℄ (the \Robin-Hood" algorithm) therebyproving that the lower bound of 
(pm) is tight.Unknown durations: Apart from a trivial upperbound, no on-line algorithm for the unrelated assign-ment model exists. The 
(pm) lower bound for re-strited assignment mentioned above ([4℄) dates bak to1992 but was still the best lower bound for unrelatedassignment. Our results show that a trivial O(m) om-petitive algorithm is almost optimal hene proving theunapproximability of this model. Spei�ally, by usinga yli load transfer method we ahieve an 
(m= logm)lower bound. The open problem mentioned in [12℄ re-garding the existene of a better approximation algo-rithm is thus answered negatively. We extend the unap-proximability result to randomized algorithms as well.Known durations: The ompetitive ratio of�(pm) for the restrited assignment model is usuallyregarded as a high ompetitive ratio, so in [6℄ it was sug-gested to onsider this problem in the known-durationsase, hoping to beat the 
(pm) bound, and get a poly-logarithmi ompetitive ratio. This seemed plausiblesine the best known lower bound for the known du-rations ase was only 
(logm) [7℄ (proven for the spe-ial ase of permanent tasks). Indeed, the work of [6℄made a step in this diretion by showing an O(logmT )- ompetitive algorithm, where T is the duration ofthe longest job (in disrete time units). The ompet-itive ratio of this algorithm is lower than �(pm) for alarge range of T . The obvious intriguing question, alsopresented in the survey of [3℄, was whether we an in-deed improve on the 
(pm) lower bound and ahieve aO(polylog(m))-ompetitive algorithm. Surprisingly, weanswer this question negatively, by extending the lowerbound of [21℄ to a lower bound of 
(pm) that holdsfor the known durations ase. This bound is tight bythe upper bound for unknown durations. Our 
(pm)lower bound holds for unrelated mahines as well (sinerestrited assignment is a speial ase). This result alsoanswers an open question presented by Borodin and El-Yaniv in [12℄. They asked whether there is any mahinemodel in whih one an prove a lower bound for tem-porary tasks assignment with known durations whih ishigher than the ompetitive ratio of permanent tasksassignment in that model. Our 
(pm) lower bound forrestrited assignment of temporary tasks with knowndurations is stritly higher than the O(logm) ompet-

itive ratio for the ase of permanent tasks. We notethat as a funtion of T our lower bound is 
(q log Tlog log T )whih an be ompared to the O(log T ) upper bound of[6℄ (assuming T � m�).O�ine results: Next we onsider the assignmentof temporary tasks on unrelated mahines in the o�inesetting. In the speial ase of permanent tasks, thetasks do not depart (all the departure times equal1). Horowitz and Sahni presented an FPTAS forpermanent tasks assignment on a �xed number ofunrelated mahines (i.e., the number of mahines is nota part of the input) [17℄. A PTAS for this problem wasalso presented by Lenstra et al. [19℄. For permanenttasks assignment on an arbitrary number of unrelatedmahines, Lenstra et al. [19℄ and Shmoys and Tardos[22℄ presented algorithms with an approximation ratio of2. In addition, Lenstra et al. proved that no algorithman reah an approximation-ratio better than 32 for thearbitrary number of mahines ase, unless P = NP [19℄.Unlike the permanent ase, solving the problem oftemporary tasks assignment on unrelated mahines an-not be done by standard rounding tehniques. Theproblem arises from the two separate axes of the prob-lem and this extra dimension is known to turn prob-lems into intratable ones or very hard to approxi-mate [15, 14, 9℄. In order to obtain a PTAS after all,we had to use a two-dimensional rounding tehnique.While the above applies to the ase of �xed numberof mahines, we also prove that when the number ofmahines is not �xed (i.e. is part of the input), no algo-rithm an ahieve an approximation ratio lower than 2unless P = NP . This lower bound is higher than the 32lower bound for permanent tasks and almost separatesthe two settings.The problem of temporary tasks assignment onidential mahines is another speial ase of our problemwhih was onsidered in [8℄ and provides the foundationfor our algorithm. In this speial ase, the load that ajob auses depends only on the job and it is identialfor all the mahines (i.e. wj(i) = wj for 1 � i � m). APTAS for this problem in the ase where the number ofmahines is �xed was presented in [8℄. They also proveda lower bound of 32 for the ase of an arbitrary numberof mahines, provided that P 6= NP . Again, the lowerbound that we present for our problem is higher thanthe lower bound for this speial ase.2 Tasks of Unknown Duration2.1 Unapproximability of the Unrelated ModelIn this setion we present the unapproximabilityresult for online load balaning of temporary tasks onunrelated mahines. Namely, we show a lower bound of




(m= logm) almost mathing an upper bound of O(m).It an be seen that the simple algorithm assigningeah job to its fastest mahine is an O(m) ompetitivealgorithm.We proeed with the unapproximability result:Theorem 2.1. Any online algorithm for the load bal-aning of temporary tasks on unrelated mahines is
(m= logm) ompetitive.Proof. Let k be the largest integer power of 2 suh thatk � m=logm. Assume by ontradition that there is anonline algorithm whose ompetitive ratio is below k=2.We desribe a sequene of jobs given by an adversarysuh that there exists an optimal assignment whosemaximum load is at most 1. The sequene ends assoon as there is a mahine whose load in the onlineassignment is at least k=2.The lower bound is omposed of l = log k sets of kmahines eah. The sets are denoted by M1;M2; :::;Ml.In addition, a mahine denoted by m10 is used. Also,denote by mji the j'th mahine in the set Mi, 1 � i � l,1 � j � k. Note that the total number of mahinesused, l � k + 1, does not exeed m (when m > 2).The adversary proeeds in phases. Before the startof phase t, we de�ne a set of l + 1 mahines whih weall ative. One mahine in eah Mi is ative and wedenote its index by ai(t). The mahine m10 is alwaysative and we use the notation a0(t) = 1. The load ofmai(t)i , i = 0; :::; l, in the online assignment is denotedby bi(t). We begin with setting ai(0) = 1 for i = 1; :::; l.A phase is omposed of an arrival of one job andthe departure of a set of jobs. The job presented by theadversary has in�nite weight on non-ative mahines.Its weight on mai(t)i is 2i=k for i = 0; :::; l. Assume theonline algorithm assigns it to mahine mai(t)i . In asethe new load, bi(t + 1), is k=2 or more the sequenestops. Otherwise, the phase is ompleted with thedeparture of the jobs assigned by the online algorithmto mai+1i+1 ; :::;mall (no jobs leave when i = l). The setof ative mahines for the next phase is set as follows:aj(t+1) = 1 for any i+2 � j � l and unless i = l we alsoset ai+1(t+1) = 1+ b2bi(t). All other ative mahinesstay the same. Note that sine bi(t) < k=2 the abovede�nition of ai(t + 1) is valid, that is, ai(t + 1) � k.Also note that by the above onstrution, non-ativemahines are always empty.If we onsider the vetor of loads of the online as-signment, (b0(t); b1(t); :::; bl(t)) we note that the vetorinreases lexiographially after eah phase. That is,at least one of the oordinates inreases while all pre-vious oordinates do not hange. The inrease is by atleast 1=k. Sine the adversary sequene is ompleted

one one of the oordinates exeeds k=2, the sequeneis ompleted after a �nite number of phases, or spei�-ally, at most O(k2l) = O(m2 logm) phases.In what follows we omplete the proof by showingan optimal assignment where the maximum load doesnot exeed 1 during the whole sequene. In ase the jobarriving at phase t is assigned by the online algorithmto mai(t)i , i = 0; :::; l � 1, then the optimal algorithmassigns it to mahine mai+1(t)i+1 . Otherwise, the onlinealgorithm assigns the job to mal(t)l in whih ase theoptimal algorithm assigns the job to mahine m10.First, jobs assigned by the optimal assignment tom10 are assigned by the online algorithm to an ativemahine in Ml. Sine that mahine's load is not morethan k=2 and all other mahines in Ml are empty, theinurred load on m10 is at most 1=2. Now onsiderjobs assigned to mji+1, i = 0; :::; l � 1, by the optimalassignment. These are assigned by the online algorithmto the ative mahine in Mi. Moreover, when they wereassigned, the load on the ative mahine in Mi was atleast (j � 1)=2 and less than j=2. Therefore their totalload on a mahine in Mi is at most 1=2 and their totalload on a mahine in Mi+1 is at most 1.Conluding, the above sequene was shown to havean optimal assignment of maximum load 1. Moreover,as long as the online maximum load is below k=2 theonline load vetor was shown to inrease lexiographi-ally. This ontradits our assumption that an onlinealgorithm with ompetitive ratio below k=2 exists andompletes the proof.The following lemma demonstrates a general teh-nique for onverting deterministi lower bounds intorandomized ones.Lemma 2.1. Let  be a lower bound on the ompetitiveratio of any deterministi algorithm for unrelated as-signment of temporary tasks. If  an be proven with anadversarial strategy of jobs in whih eah job has an ad-missible set of at most k mahines, then there is a lowerbound of k on the ompetitive ratio of any randomizedon-line algorithm for the same problem.Proof. Omitted.Theorem 2.2. Any online randomized algorithm forthe load balaning of temporary tasks on unrelated ma-hines is 
(m=(logm)2) ompetitive.Proof. The onstrution in Theorem 2.1 uses admissiblesets of at most logm mahines. The theorem thenfollows as a orollary of Lemma 2.1.



2.2 Tight Results for the Related-RestritedModelThe result in the previous setion shows that ap-proximating the unrelated mahines model is almost in-feasible. As an alternative to the unrelated mahinesmodel we onsider the so alled related-restrited model.Here, eah mahine has its own speed and eah job hasa weight and a set of admissible mahines. However,note that the lower bound presented in the last setionstill applies here so approximating is still infeasible. Weshow that by limiting the number of di�erent mahinespeeds to a onstant number, we an approximate theproblem better. Spei�ally, in the ase where only twodi�erent mahine speeds are involved we obtain the fol-lowing tight result. More details will appear in the �nalversion of the paper.Theorem 2.3. Any online algorithm for the load bal-aning of temporary tasks in the related-restrited modelwith speeds f1; sg is 
(minfmaxfm=s;pmg;pmsg)ompetitive. In addition, there exists anO(minfmaxfm=s;pmg;pmsg)-ompetitive algo-rithm. The same holds for randomized algorithms aswell.Proof. Omitted.2.3 Tight Results for Restrited AssignmentIn this setion we show that the greedy algorithmwhih assigns a task to the least loaded admissible ma-hine (breaking ties arbitrarily) is optimal for restritedassignment of temporary tasks with unknown durationswhen we have a small number of mahines. This is inontrast to its non-optimal performane for a generalm.We �rst perform an analysis of the greedy algorithm,whih gives better upper bounds for small m. It an beseen that greedy is optimal for the ase of two mahinesand ahieves a ompetitive ratio of 2. We show thatit is also optimal for three, four and �ve mahines byproving mathing lower bounds.Theorem 2.4. The greedy algorithm is optimal forthe assignment of temporary tasks in the restritedassignment model for instanes where m � 5.Proof. Omitted.3 Tasks of Known DurationTheorem 3.1. Any deterministi on-line algorithm forload-balaning of temporary tasks with known durationsin the restrited assignment model has a ompetitiveratio of at least pm.Proof. Let ON be an on-line algorithm for the problem,and let OFF be an optimal o�ine algorithm for solving

it. We will show a sequene of jobs for whih ON wouldreah a load of at least pm, where OFF maintains aload of one. First we desribe the sequene, and thenwe prove the lower bound.We denote the set of the �rst pm mahines by A,and the set of the remaining mahines by B. The i'thmahine in A (respetively B) will be denoted by Ai(respetively, Bi), for 1 � i � pm (respetively, for1 � i � m�pm).We fore ON to assign pm jobs to a single mahinein B, or to assign m jobs to A (whih onsists of onlypm mahines).Our input sequene only inludes unit jobs andonsists of at most m � pm phases. Eah phase p(p � 1) onsists of at most pm jobs. The j'th jobin phase p (j � 1) is admissible to two mahines: Ajand Bp. The exat arrival and departure time of eahjob will be desribed later. The number of jobs arrivingin eah phase is determined by the behavior of ON . Aslong as ON assigns the jobs in phase p to Bp, jobs keeparriving at that phase (up to the maximum ofpm jobs).When ON assigns a job to a mahine in A, the phaseends (i.e. no more jobs arrive in this phase). Let Npbe the number of jobs whih arrived in phase p. Byde�nition, 1 � Np � pm. The number of phases isalso determined by the behavior of ON . If Np = pmfor a ertain phase p (i.e., ON assigns all the jobs ofthat phase to Bp), then the sequene stops. If phasem � pm had less than pm jobs, then we bring onemore unit job (\extra job"), whih will be restrited tothe most loaded mahine that ON has in A.We now desribe the arrival and departure times ofthe jobs in eah phase. We �rst desribe these timesfor the �rst phase, and then we indutively de�ne themfor the other phases. The length of the time intervalthat our sequene will use is T = pm(m�pm+1). LetS1 = 0 and let T1 = T . The �rst phase starts at timeS1 = 0. The jth job of phase 1 arrives at time j � 1(1 � j � N1). Its departure time is j�T1pm .For eah phase p > 1, we indutively de�ne thearrival and departure times of the jobs to be betweenthe departure times of the last two jobs of the previousphase. For p � 1, we de�ne Tp+1 as the departuretime of the last (i.e. Np'th) job of phase p. We alsode�ne Sp+1 as the departure time of the Np � 1'st jobof phase p. If Np = 1 then Sp+1 is equal to Sp. Eahphase p starts at time Sp, and only uses the time interval[Sp; Tp℄. The arrival time of the j'th job in phase p isSp+j�1, and its departure time is Sp+ j�(Tp�Sp)pm . Reallthat in ase Nm�pm < pm we add one more unit job,restrited to the most loaded mahine that ON has inA. This \extra job" lasts just one time unit and arrives



at time Sm�pm+1. This ompletes the desription ofour sequene.We �rst prove that ON ahieves a load of at leastpm for the above sequene. We notie that the �rstdeparture of a job in a ertain phase in our sequeneours only after the arrival of the last job in thatphase. We will briey explain this. The minimalduration of a job in a phase (i.e. the duration of the�rst job) is divided by pm in eah phase. Sine theminimal duration in the �rst phase is pm(m�pm), theminimal duration in the last phase (whih is the minimalduration of any job during all our phases) is pm. Sineall the jobs of a ertain phase arrive until the (pm� 1)moment of that phase, the �rst departure always oursafter the last arrival.Therefore, when a job arrives all the previous jobsof its phase are still ative. This means that if ONassigns all the jobs in phase p to mahine Bp, then itreahes a load of at least pm (all these jobs are ativetogether at time Sp +pm� 1), and we are done.In order to avoid this, ON must assign a job to A ata ertain stage of eah phase. By de�nition, the phaseends as soon as this happens. Reall that phase p + 1starts when the Np�1'st job of phase p leaves, and endsbefore the departure of the Np'th job of phase p. So thelast job whih arrived in phase p is the only ative jobfrom phase p at the beginning of phase p + 1, and itremains ative throughout that phase (i.e. Tp � Tp+1and Sp+1 � Sp). Indutively, Tp�1 � Tp and Sp � Sp�1.Thus, the last job of eah of the phases 1; :::; p is stillative throughout phase p+1, and these last jobs are theonly jobs from phases 1; :::; p whih are ative at phasep+ 1. Reall that the last job in eah phase is the jobthat ON assigned to A. So at the beginning of phase p(time Sp), the ative jobs are exatly all the jobs thatON assigned to A in phases 1:::(p� 1). Summing overall the phases, on time Sm�pm+1, ON has m�pm jobsin A. There are only pm mahines in this set, so themost loaded mahine in A, mahine Ai, has a load of atleast pm� 1. As we explained before, the \extra job"now arrives, and an only be assigned to mahine Ai.This makes the load of ON on that mahine at leastpm.Now we will desribe the assignment of algorithmOFF . The strategy of OFF is simple. When the j'thjob of phase p arrives, it an be assigned either to amahine from A, Aj , or to a mahine from B, Bp. IfON assigns the job to the mahine in B, then OFFassigns it to the mahine in A. If ON assigns it to themahine in A, then OFF assigns it to the mahine inB. If the \extra job" arrives, then OFF assigns it toits admissible mahine.Let us onsider now the load of OFF . At the

beginning of phase p, OFF has no ative jobs in A, sinewe saw that ON has no ative jobs in B. OFF has oneative job on eah of the mahines B1; :::; Bp�1, sineON has one ative job from eah phase in A. Duringphase p, as long as ON assigns jobs to Bp, OFF assignseah of them to a di�erent mahine in A (whih wasempty at the beginning of the phase). When ON assignsa job to A, OFF assigns it to Bp (whih is empty), andthe phase ends (so no other job will be assigned to Bp).Therefore, OFF maintains a load of 1 throughout thephases. At time Sm�pm+1, OFF has one ative jobon eah mahine in B (one job from eah phase), andno jobs in A. So it an assign the \extra job" to Aiwithout exeeding the maximum load of 1. Thus wehave reahed the required ompetitive ratio.Let us denote the total length of the time intervalused by the input sequene by T . The result above alsoapplies when we limit the length T of the sequene andwhen we allow randomization to be used. The resultsare summarized in the next two theorems:Theorem 3.2. Any deterministi on-line algorithm forload-balaning of temporary tasks with known durationsin the restrited assignment model has a ompetitive ra-tio of at least 
(q log Tlog log T ), for any T < pm(m�pm+1).Note that this lower bound is at most pm for thisrange of T .Proof. For any T = pxx�px+1 where x � m, we anlearly apply the exat steps of the previous proof,limiting ourselves to the �rst xmahines instead of usingall the mahines. We will have a sequene with at mostx � px phases, eah of them having at most px jobs,and we will obtain a lower bound of px. We an easilysee that in this ase: px = 
(q log Tlog log T ). This meansthat for any T < pm(m�pm+1)), we have a lower boundof 
(q log Tlog log T ), as required.Theorem 3.3. A randomized on-line algorithm forsolving the problem of restrited assignment of tempo-rary tasks with known durations annot ahieve a om-petitive ratio smaller than 12pm. Moreover, for anyT < pm(m�pm+1) no algorithm an be better than
(q log Tlog log T )-ompetitive.Proof. Note that in Theorems 3.1 and 3.2 admissiblesets ontain at most two mahines. The results followby using Lemma 2.1.



4 O�-line Temporary Assignment4.1 Fixed Number of MahinesWe briey desribe the polynomial-time approxi-mation sheme and leave the details to the appendix.We begin with saling the weights of the jobs, in or-der to limit the possible range of the optimal maximumload. It is well-known that we an ahieve an approx-imation ratio of m simply by assigning eah job to itsfastest mahine. We will refer to this simple algorithmas \Fastest-Assign". We apply this algorithm to our in-put, and denote the maximum load reahed by l. Nowwe multiply eah of our jobs' weights by ml . This as-sures us that the optimal maximum load is in the range[1;m℄. Note that this saling requires only linear time.The algorithm then follows with �ve phases: theweight-rounding and grouping phase, the time- round-ing phase, the ombining phase, the solving phase andthe onverting phase. In the �rst phase, the weightsof the jobs are rounded upwards, and then they aredivided into a large number of subsets based on theirrounded weights, as will be explained later. Next thetime-rounding phase is applied to eah of these subsets.This phase atually onsists of two subphases. In the�rst subphase the jobs' ative time is extended: somejobs will arrive earlier, others will depart later. In theseond subphase, the ative time is again extended buteah job is extended in the opposite diretion to whihit was extended in the �rst subphase. The ombin-ing phase is also applied to eah subset separately. Inthis phase the algorithm ombines several jobs from thesame subset into jobs with higher load vetor oordi-nates. In the solving phase, we �nd an optimal solutionfor the modi�ed problem (the solving is performed forall the jobs together). The solution we found an beonverted into a solution for the original problem in theonverting phase, whih is again applied separately toeah subset.Theorem 4.1. The algorithm desribed inAppendix A.1 is a PTAS running in timeO(n1+��6m7(dlog1+�(m=�)e+1)m logm).Proof. Omitted.4.2 Non-Fixed Number of MahinesIn this setion we onsider o�ine load-balaning oftemporary tasks on a non-�xed number of unrelatedmahines. We show that no polynomial approximationalgorithm an ahieve an approximation ratio smallerthan 2, unless P = NP . We prove this lower bound forthe speial ase of restrited assignment (so it obviouslyholds for the general ase of any unrelated mahines aswell).

Theorem 4.2. For every � < 2, there does not exista polynomial �-approximation algorithm for restritedassignment of temporary tasks unless P = NP .Proof. We use a redution from the 3-dimensional-mathing problem (3DM), whih is known to be NP-omplete. In that problem, we are given three sets ofelements, B, G, and H, eah of them of size n (B =b1; :::; bn, G = g1; :::; gn, H = h1; :::; hn). We are alsogiven a set S = T1; :::; Tm of m triplets, S � B �G �H .These are the possible mathings of 3 elements fromB,G, and H. The goal is to deide whether there exists amathing for all the elements of B,G, and H, i.e. a subsetof S, S0, suh that jS0j = n and STi2S0 Ti = B [G[H .Given an instane to the 3DM problem we onstrut aninstane for our problem. For eah triplet Ti, we have amahine mi. All our jobs are of weight 1, and our totaltime interval will be of length 3 (from time 0 until time3). Our �rst type of jobs will be \element jobs" (onejob for eah element), as desribed hereafter. For eahelement bi 2 B, we will have a job whih arrives at time0, departs at time 1, and is admissible to a mahinemk if and only if bi 2 Tk. For eah element gi 2 G,we will have a job whih arrives at time 1, departs attime 2, and is admissible to a mahine mk if and only ifgi 2 Tk. Finally, for eah element hi 2 H , we will havea job whih arrives at time 2, departs at time 3, and isadmissible to a mahine mk if and only if hi 2 Tk. Ourseond type of jobs will onstitute of m � n \dummyjobs", whih arrive at time 0, depart at time 3, and areadmissible to all the mahines.We prove that there is an assignment with a max-imum load of 1, if and only if there is a solution tothe 3DM problem. Suppose there is a 3DM , S0 =fTi1 ; :::; Ting. Then for eah Tik 2 S0, we assign to themahine mik the 3 \element jobs" whih orrespond tothe 3 elements of Tik . They are admissible to mik , be-ause this is how we de�ned our assignment restritions.Also notie that they are ative in di�erent times, so themahine maintains a load of 1. This way we assign the3n \element jobs" to n of the mahines. We assign them � n \dummy jobs" to the other m � n mahines,one job on eah mahine. They are admissible on anymahine, and have a weight of 1 eah. Therefore, thisassignment maintains a maximum load of 1 as required.Now, assume that there is an assignment having amaximum load of 1. The m � n \dummy jobs" musthave been assigned to m�n di�erent mahines (if thereis more than one \dummy job" on a mahine, thenits load is bigger than 1). A \dummy job" is ativeduring our entire time interval, so a mahine whih hasa \dummy job" on it annot have any other job assignedto it. Therefore, the 3n \element jobs" must have beenassigned to the remaining n mahines. Eah of these
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� as a sequene of times, the time �i is the moment afterthe i'th event happened. In addition, �0 denotes themoment at the beginning, before the arrival of the �rstjob. We assume without loss of generality that m � 2(otherwise the approximation ratio is always 1).Let �0 > 0 be the preision required by the PTAS.We assume that �0 < 1. We hoose � = �0=7, and �x thefollowing 3 onstants:� = �2mdlogne � (dlog1+�(m� )e+ 1)m� = ��2m2 = �4m3dlogne � (dlog1+�(m� )e+ 1)m = ��2m2 = �6m5dlogne � (dlog1+�(m� )e+ 1)mPhase 1: The weight-rounding and groupingphase. We start by desribing the weight-roundingand grouping phase. For eah job j, we denote by Wjthe load that j auses on its fastest mahine: Wj =mini( �wj(i)). We will refer to Wj as the \min-weight"of the job j. We de�ne the \relative speed" vetor of jobj, �vj by: �vj(i) = �wj(i)=Wj , for 1 � i � m. Note that�vj(i) � 1. We now perform a rounding of the vetor�vj and obtain the rounded \relative speed" vetor �v0j .For eah 1 � i � m, if �vj(i) � m=�, then �v0j(i) = 1,and we will refer to mahine i as an \illegal mahine"for job j. Otherwise, we obtain �v0j(i) by rounding �vj(i)upwards to the nearest power of 1+�, and we will refer tomahine i as a \legal mahine" for job j. Note that eahoordinate of the vetor �v0j may have dlog(1+�)(m� )e+ 1possible values, sine its value is either 1 or a powerof (1 + �) between 1 and m=�. Now we de�ne a newloads vetor for the job j, �w0j , by: �w0j(i) =Wj � �v0j(i), for1 � i � m. In this we ompleted the rounding of theweights.Next we divide the jobs into subsets aording totheir �v0 vetor. This division splits the jobs into atmost (dlog1+�(m� )e + 1)m subsets, sine eah of the moordinates of that vetor may have (dlog1+�(m� )e + 1)possible values, as we noted before. This ompletes thedesription of the �rst phase.Phase 2: The time-rounding phase. Thisphase is similar to the time-rounding phase desribedby [8℄. We will apply this phase separately to eahsubset of jobs J�v0 (having the same \relative speeds"vetor �v0).In order to desribe the time-rounding phase withits two subphases, we start with de�ning partitions ofeah subset J�v0 , based on whih the rounding will beperformed. The set R�v0 ontains all jobs with Wj � out of the jobs in J�v0 .From now on, we �x �v0 in the desription of this

phase, and refer to J�v0 as J and to R�v0 as R. All thefollowing de�nitions are made for these �xed J and R.We begin by de�ning a partition fJig of the set ofjobs J � R. We set M1 = J � R and de�ne sets Jiand Mi iteratively as follows. Let Mi be a set of jobsand onsider the sequene of times in � in whih jobsof Mi arrive and depart. The number of suh times is2r for some r, let i be any time between the r'th andthe r + 1-st elements in that set. The set Ji ontainsthe jobs in Mi that are ative at time i. The set M2iontains the jobs in Mi that depart before or at i andthe set M2i+1 ontains the jobs in Mi that arrive afteri. We stop when all unproessed Mi's are empty. Theimportant property of that partition is that the set ofjobs from J � R that are ative at a ertain time ispartitioned into at most dlogne di�erent sets Ji.We ontinue by further partitioning the set Ji. Weorder the jobs aording to their arrival time. Wedenote the smallest pre�x of the jobs whose total min-weight is at least � by S1i . We order the same jobsaording to their departure time. We take the smallestsuÆx whose min-weight is at least � and denote thatset by T 1i . Note that there might be jobs that areboth in S1i and T 1i . We remove the jobs in S1i [ T 1ifrom Ji, repeat the proess with the jobs left in Ji andsimilarly de�ne S2i , T 2i , . . . , Skii ; T kii . Eah set Si andTi has total min-weight between � and � + , exeptfor the last pair whih may have smaller min-weightthan �. However, if the last pair has smaller min-weight than �, then it satis�es Skii = T kii . We denoteby sji the arrival time of the �rst job in Sji and by tjithe departure time of the last job in T ji . Note thats1i � s2i � ::: � skii � i � tkii � ::: � t2i � t1i .The �rst subphase of the time-rounding phase re-ates a new set of jobs J 0 whih ontains the same jobsas in J with slightly longer ative times. We hange thearrival time of all the jobs in Sji for j = 1; :::; ki to sji .Also, we hange the departure time of all the jobs in T jito tji . The jobs in R are left unhanged. We denote thesets resulting from the �rst subphase by J 0, J 0i , S0ji , T 0ji .The seond subphase of the time-rounding phasefurther extends the ative time of the jobs resulting fromthe �rst subphase. We take one of the sets J 0i and thepartition we de�ned earlier to S01i [ T 01i , S02i [ T 02i , . . . ,S0kii [ T 0kii . For every j � ki, we order the jobs in S0jiaording to an inreasing order of departure times. Wetake the smallest pre�x of this ordering whose total min-weight is at least �. We extend the departure time of allthe jobs in that pre�x to the departure time of the lastjob in that pre�x. The proess is repeated until thereare no more jobs in S0ji . The last pre�x may have a min-weight of less than �. Similarly, we extend the arrival



times of jobs in T 0ji . Note that if the total min-weightof either S0kii or T 0kii is smaller than � then S0kii = T 0kiiand these jobs are left unhanged sine they alreadyhave idential arrival and departure times from the �rstphase. We denote the sets resulting from the seondsubphase by J 00, J 00i , S00ji , T 00ji .Phase 3: The ombining phase. This phaseinvolves the load vetors of the jobs. It is also appliedto eah subset J 00�v0 separately, so we again �x �v0 in thedesription of this phase and refer to J 00�v0 as J 00. Let J 00stbe the set of jobs in J 00 that arrive at s and departat t. Assume the total min-weight of jobs in J 00st isx. The ombining phase replaes these jobs by dx=ejobs, whih have a load-vetor of  � �v0. Note that themaximum �nite weight in their loads vetor may bem� � . We denote the resulting sets by J 000st . The set J 000is reated by replaing every J 00st with its orrespondingJ 000st , that is, J 000 = Ss;t J 000st .Phase 4: The solving phase. This phase solvesthe modi�ed deision problem, i.e. it solves the problemafter eah subset J�v0 has been replaed by a modi�edsubset J 000�v0 . The solving phase is performed one for allthe jobs together (not for eah J 000�v0 subset separately).We solve the modi�ed deision problem by building alayered graph. Every time �i, i = 0; : : : ; 2n, in whihjobs arrive or depart (inluding the initial state withno job) has its own set of verties alled a layer. Eahlayer holds a vertex for every possible assignment ofthe urrent ative jobs to mahines (exept assignmentsof weight 1); furthermore, we label eah node by themaximum load of a mahine in that on�guration.Two verties of adjaent layers �i�1 and �i, i =1; : : : ; 2n, are onneted by an edge if the transitionfrom one assignment of the ative jobs to the other isonsistent with the arrival and departure of jobs at time�i. More preisely, the verties are onneted if and onlyif every job ative both before and after �i is assigned tothe same mahine in the assignments of both verties.At eah event, jobs either arrive or depart but not both(due to the assumption at the beginning that all theoriginal events are distint; during rounding we do notmix arrival and departure events). If �i is an arrival, theindegree of all verties in the layer �i is 1, sine the newon�guration determines the old one. Similarly if �i is adeparture, the outdegree of all verties in the layer �i�1is 1. In both ases, the number of edges between twolayers is linear in the number of verties on these layers.It follows that the total number of edges is linear in thenumber of verties.We de�ne a value of a path as the maximal valueof its nodes. Now we an simply �nd a path withsmallest value from the �rst layer to the last one byany shortest path algorithm in linear time (sine the

graph is layered).Phase 5: The onverting phase. In this phasethe algorithm onverts the assignment found for themodi�ed problem into an assignment for the originalproblem. This phase is performed separately for thejobs in eah of the subsets J 000�v0 . Eah assignment ofthe jobs of a modi�ed subset J 000�v0 is onverted into anassignment for the jobs of subset J�v0 , whih is also anassignment for the original problem. Again we �x �v0throughout the desription of this phase, and refer toJ 000�v0 as J 000. Assume the number of jobs having Wj = in J 000st that are assigned to a ertain mahine i is ri.Remove these jobs and assign all the jobs havingWj � in J 00st to the mahines suh that a total weight of at most(ri + 1) � �v0(i) is assigned to mahine i.Note that all the jobs will be assigned that way. Thereplaement involves jobs whose min-weight is at most. We know that the total min-weight of these jobs isat most  �Pmi=1 ri.If they made a load of (ri + 1)�v0(i) on eah ofthe mahines, then it would mean that their total min-weight was at least  � (m +Pmi=1 ri). So it is possibleto assign all these jobs so that they will make a load ofat most (ri + 1) � �v0(i) on eah mahine i.The assignment for J 00 is also an assignment for J 0and J . An assignment for J is also an assignment forthe original problem.


