
Temporary Tasks Assignment ResolvedAmitai Armon � Yossi Azar y Leah Epstein z Oded Regev xAbstra
tAmong all basi
 on-line load balan
ing problems, theonly unresolved problem was load balan
ing of tempo-rary tasks on unrelated ma
hines. This open problemexists for almost a de
ade, see [Borodin El-Yaniv℄. Weresolve this problem by providing an unapproximabilityresult. In addition, a newer open question is to identifythe dependen
y of the
ompetitive ratio on the dura-tions of jobs in the
ase where durations are known. Weresolve this problem by
hara
terizing this dependen
y.Finally, we provide a PTAS for the o�-line problemwith a �xed number of ma
hines and show a 2 unap-proximability for the general
ase.1 Introdu
tionOn-line load balan
ing was extensively studied in thelast de
ade (e.g., [1, 2, 3, 5, 10, 11, 13, 16, 18, 20,23℄). The basi
 problem
ontains the identi
al, related,restri
ted and unrelated models for permanent andtemporary tasks. Tight bounds were given to all theseproblems ex
ept one: the assignment of temporary tasksto unrelated ma
hines remained open. We present anunapproximability result by employing a
y
li
 loadtransfer method. Another more re
ent open questionposed in [12℄ is whether the
ase where job durationsare known at their arrival is provably harder than thatof permanent jobs. We answer this question in theaÆrmative. We �rst summarize the results presentedin this paper. Let m denote the number of ma
hinesand T the duration of the longest job.� For on-line unrelated assignment of temporarytasks with unknown durations, we show an
(m= logm) lower bound whi
h almost mat
hes a�Department of Computer S
ien
e, Tel Aviv University, Tel-Aviv, 69978, Israel. E-Mail: armon�tau.a
.il.yDepartment of Computer S
ien
e, Tel Aviv University, Tel-Aviv, 69978, Israel. E-Mail: azar�tau.a
.il. Resear
h supportedin part by the Israel S
ien
e Foundation and by a grant of theEuropean Commission.zS
hool of Computer and Media S
ien
es, The Interdis
i-plinary Center, Herzliya, Israel. E-Mail: epstein.leah�id
.a
.il.xInstitute for Advan
ed Study, Prin
eton, NJ. E-Mail:odedr�ias.edu. Resear
h supported in part by NSF grant CCR-9987845

trivial O(m) upper bound. For randomized algo-rithms we show an
(m=(logm)2) lower bound.� For on-line restri
ted assignment of temporarytasks with known durations, we present a lowerbound of
(pm) and of
(q log Tlog log T) on the
om-petitive ratio of any on-line algorithm (determinis-ti
 or randomized). These lower bounds also holdfor assignment on unrelated ma
hines.� For o�ine assignment of temporary tasks on un-related ma
hines, we present a PTAS for the
asewhere the number of ma
hines is �xed. For the
ase where the number of ma
hines is not �xed,we present a lower bound of 2 (provided that P 6=NP).We also provide two additional results for inter-esting spe
ial
ases of temporary tasks assignment inthe unrelated ma
hines model with unknown durations.Spe
i�
ally, we show tight results for
ertain
ases of therelated-restri
ted model and of the restri
ted ma
hinesmodel.De�nitions and previous results: We
onsiderthe problem of non-preemptive load balan
ing of tem-porary tasks on m unrelated ma
hines. Ea
h job (task)has an arrival time and a departure time, and shouldbe assigned to one ma
hine immediately upon its ar-rival. Ea
h job j is asso
iated with a loads ve
tor(wj(1); :::; wj(m)). If job j is assigned to ma
hine i,it in
reases the load of ma
hine i by its weight on thatma
hine, wj(i), for the duration of the job. The loadon a ma
hine at a
ertain time is the sum of the loads
aused by the jobs assigned to it at that time. The goalis to minimize the maximum load over ma
hines andtime. Note that the load and the time are two separateaxes of the problem. In the known durations setting weassume that when a job arrives its duration is given tothe on-line algorithm and in the unknown durations set-ting we assume that the departure time is known onlywhen the job a
tually departs.An important spe
ial
ase of the unrelated ma
hinesmodel is the spe
ial
ase
alled the restri
ted assignmentmodel. In this
ase, a job j
an only be assigned to asubset of the ma
hines that depends on the job. On ea
hof these ma
hines it
auses the same load wj . This is

equivalent to a loads ve
tor that
ontains only the valueswj or 1. The results in [4℄ (and later in [21℄) show alower bound of
(pm) on the
ompetitive ratio thatany on-line algorithm (deterministi
 or randomized)may have for restri
ted assignment of temporary taskswith unknown durations. An on-line algorithm for thisproblem with a
ompetitive ratio of O(pm), was laterpresented in [6℄ (the \Robin-Hood" algorithm) therebyproving that the lower bound of
(pm) is tight.Unknown durations: Apart from a trivial upperbound, no on-line algorithm for the unrelated assign-ment model exists. The
(pm) lower bound for re-stri
ted assignment mentioned above ([4℄) dates ba
k to1992 but was still the best lower bound for unrelatedassignment. Our results show that a trivial O(m)
om-petitive algorithm is almost optimal hen
e proving theunapproximability of this model. Spe
i�
ally, by usinga
y
li
 load transfer method we a
hieve an
(m= logm)lower bound. The open problem mentioned in [12℄ re-garding the existen
e of a better approximation algo-rithm is thus answered negatively. We extend the unap-proximability result to randomized algorithms as well.Known durations: The
ompetitive ratio of�(pm) for the restri
ted assignment model is usuallyregarded as a high
ompetitive ratio, so in [6℄ it was sug-gested to
onsider this problem in the known-durations
ase, hoping to beat the
(pm) bound, and get a poly-logarithmi

ompetitive ratio. This seemed plausiblesin
e the best known lower bound for the known du-rations
ase was only
(logm) [7℄ (proven for the spe-
ial
ase of permanent tasks). Indeed, the work of [6℄made a step in this dire
tion by showing an O(logmT)-
ompetitive algorithm, where T is the duration ofthe longest job (in dis
rete time units). The
ompet-itive ratio of this algorithm is lower than �(pm) for alarge range of T . The obvious intriguing question, alsopresented in the survey of [3℄, was whether we
an in-deed improve on the
(pm) lower bound and a
hieve aO(polylog(m))-
ompetitive algorithm. Surprisingly, weanswer this question negatively, by extending the lowerbound of [21℄ to a lower bound of
(pm) that holdsfor the known durations
ase. This bound is tight bythe upper bound for unknown durations. Our
(pm)lower bound holds for unrelated ma
hines as well (sin
erestri
ted assignment is a spe
ial
ase). This result alsoanswers an open question presented by Borodin and El-Yaniv in [12℄. They asked whether there is any ma
hinemodel in whi
h one
an prove a lower bound for tem-porary tasks assignment with known durations whi
h ishigher than the
ompetitive ratio of permanent tasksassignment in that model. Our
(pm) lower bound forrestri
ted assignment of temporary tasks with knowndurations is stri
tly higher than the O(logm)
ompet-

itive ratio for the
ase of permanent tasks. We notethat as a fun
tion of T our lower bound is
(q log Tlog log T)whi
h
an be
ompared to the O(log T) upper bound of[6℄ (assuming T � m�).O�ine results: Next we
onsider the assignmentof temporary tasks on unrelated ma
hines in the o�inesetting. In the spe
ial
ase of permanent tasks, thetasks do not depart (all the departure times equal1). Horowitz and Sahni presented an FPTAS forpermanent tasks assignment on a �xed number ofunrelated ma
hines (i.e., the number of ma
hines is nota part of the input) [17℄. A PTAS for this problem wasalso presented by Lenstra et al. [19℄. For permanenttasks assignment on an arbitrary number of unrelatedma
hines, Lenstra et al. [19℄ and Shmoys and Tardos[22℄ presented algorithms with an approximation ratio of2. In addition, Lenstra et al. proved that no algorithm
an rea
h an approximation-ratio better than 32 for thearbitrary number of ma
hines
ase, unless P = NP [19℄.Unlike the permanent
ase, solving the problem oftemporary tasks assignment on unrelated ma
hines
an-not be done by standard rounding te
hniques. Theproblem arises from the two separate axes of the prob-lem and this extra dimension is known to turn prob-lems into intra
table ones or very hard to approxi-mate [15, 14, 9℄. In order to obtain a PTAS after all,we had to use a two-dimensional rounding te
hnique.While the above applies to the
ase of �xed numberof ma
hines, we also prove that when the number ofma
hines is not �xed (i.e. is part of the input), no algo-rithm
an a
hieve an approximation ratio lower than 2unless P = NP . This lower bound is higher than the 32lower bound for permanent tasks and almost separatesthe two settings.The problem of temporary tasks assignment onidenti
al ma
hines is another spe
ial
ase of our problemwhi
h was
onsidered in [8℄ and provides the foundationfor our algorithm. In this spe
ial
ase, the load that ajob
auses depends only on the job and it is identi
alfor all the ma
hines (i.e. wj(i) = wj for 1 � i � m). APTAS for this problem in the
ase where the number ofma
hines is �xed was presented in [8℄. They also proveda lower bound of 32 for the
ase of an arbitrary numberof ma
hines, provided that P 6= NP . Again, the lowerbound that we present for our problem is higher thanthe lower bound for this spe
ial
ase.2 Tasks of Unknown Duration2.1 Unapproximability of the Unrelated ModelIn this se
tion we present the unapproximabilityresult for online load balan
ing of temporary tasks onunrelated ma
hines. Namely, we show a lower bound of

(m= logm) almost mat
hing an upper bound of O(m).It
an be seen that the simple algorithm assigningea
h job to its fastest ma
hine is an O(m)
ompetitivealgorithm.We pro
eed with the unapproximability result:Theorem 2.1. Any online algorithm for the load bal-an
ing of temporary tasks on unrelated ma
hines is
(m= logm)
ompetitive.Proof. Let k be the largest integer power of 2 su
h thatk � m=logm. Assume by
ontradi
tion that there is anonline algorithm whose
ompetitive ratio is below k=2.We des
ribe a sequen
e of jobs given by an adversarysu
h that there exists an optimal assignment whosemaximum load is at most 1. The sequen
e ends assoon as there is a ma
hine whose load in the onlineassignment is at least k=2.The lower bound is
omposed of l = log k sets of kma
hines ea
h. The sets are denoted by M1;M2; :::;Ml.In addition, a ma
hine denoted by m10 is used. Also,denote by mji the j'th ma
hine in the set Mi, 1 � i � l,1 � j � k. Note that the total number of ma
hinesused, l � k + 1, does not ex
eed m (when m > 2).The adversary pro
eeds in phases. Before the startof phase t, we de�ne a set of l + 1 ma
hines whi
h we
all a
tive. One ma
hine in ea
h Mi is a
tive and wedenote its index by ai(t). The ma
hine m10 is alwaysa
tive and we use the notation a0(t) = 1. The load ofmai(t)i , i = 0; :::; l, in the online assignment is denotedby bi(t). We begin with setting ai(0) = 1 for i = 1; :::; l.A phase is
omposed of an arrival of one job andthe departure of a set of jobs. The job presented by theadversary has in�nite weight on non-a
tive ma
hines.Its weight on mai(t)i is 2i=k for i = 0; :::; l. Assume theonline algorithm assigns it to ma
hine mai(t)i . In
asethe new load, bi(t + 1), is k=2 or more the sequen
estops. Otherwise, the phase is
ompleted with thedeparture of the jobs assigned by the online algorithmto mai+1i+1 ; :::;mall (no jobs leave when i = l). The setof a
tive ma
hines for the next phase is set as follows:aj(t+1) = 1 for any i+2 � j � l and unless i = l we alsoset ai+1(t+1) = 1+ b2bi(t)
. All other a
tive ma
hinesstay the same. Note that sin
e bi(t) < k=2 the abovede�nition of ai(t + 1) is valid, that is, ai(t + 1) � k.Also note that by the above
onstru
tion, non-a
tivema
hines are always empty.If we
onsider the ve
tor of loads of the online as-signment, (b0(t); b1(t); :::; bl(t)) we note that the ve
torin
reases lexi
ographi
ally after ea
h phase. That is,at least one of the
oordinates in
reases while all pre-vious
oordinates do not
hange. The in
rease is by atleast 1=k. Sin
e the adversary sequen
e is
ompleted

on
e one of the
oordinates ex
eeds k=2, the sequen
eis
ompleted after a �nite number of phases, or spe
i�-
ally, at most O(k2l) = O(m2 logm) phases.In what follows we
omplete the proof by showingan optimal assignment where the maximum load doesnot ex
eed 1 during the whole sequen
e. In
ase the jobarriving at phase t is assigned by the online algorithmto mai(t)i , i = 0; :::; l � 1, then the optimal algorithmassigns it to ma
hine mai+1(t)i+1 . Otherwise, the onlinealgorithm assigns the job to mal(t)l in whi
h
ase theoptimal algorithm assigns the job to ma
hine m10.First, jobs assigned by the optimal assignment tom10 are assigned by the online algorithm to an a
tivema
hine in Ml. Sin
e that ma
hine's load is not morethan k=2 and all other ma
hines in Ml are empty, thein
urred load on m10 is at most 1=2. Now
onsiderjobs assigned to mji+1, i = 0; :::; l � 1, by the optimalassignment. These are assigned by the online algorithmto the a
tive ma
hine in Mi. Moreover, when they wereassigned, the load on the a
tive ma
hine in Mi was atleast (j � 1)=2 and less than j=2. Therefore their totalload on a ma
hine in Mi is at most 1=2 and their totalload on a ma
hine in Mi+1 is at most 1.Con
luding, the above sequen
e was shown to havean optimal assignment of maximum load 1. Moreover,as long as the online maximum load is below k=2 theonline load ve
tor was shown to in
rease lexi
ographi-
ally. This
ontradi
ts our assumption that an onlinealgorithm with
ompetitive ratio below k=2 exists and
ompletes the proof.The following lemma demonstrates a general te
h-nique for
onverting deterministi
 lower bounds intorandomized ones.Lemma 2.1. Let
 be a lower bound on the
ompetitiveratio of any deterministi
 algorithm for unrelated as-signment of temporary tasks. If

an be proven with anadversarial strategy of jobs in whi
h ea
h job has an ad-missible set of at most k ma
hines, then there is a lowerbound of
k on the
ompetitive ratio of any randomizedon-line algorithm for the same problem.Proof. Omitted.Theorem 2.2. Any online randomized algorithm forthe load balan
ing of temporary tasks on unrelated ma-
hines is
(m=(logm)2)
ompetitive.Proof. The
onstru
tion in Theorem 2.1 uses admissiblesets of at most logm ma
hines. The theorem thenfollows as a
orollary of Lemma 2.1.

2.2 Tight Results for the Related-Restri
tedModelThe result in the previous se
tion shows that ap-proximating the unrelated ma
hines model is almost in-feasible. As an alternative to the unrelated ma
hinesmodel we
onsider the so
alled related-restri
ted model.Here, ea
h ma
hine has its own speed and ea
h job hasa weight and a set of admissible ma
hines. However,note that the lower bound presented in the last se
tionstill applies here so approximating is still infeasible. Weshow that by limiting the number of di�erent ma
hinespeeds to a
onstant number, we
an approximate theproblem better. Spe
i�
ally, in the
ase where only twodi�erent ma
hine speeds are involved we obtain the fol-lowing tight result. More details will appear in the �nalversion of the paper.Theorem 2.3. Any online algorithm for the load bal-an
ing of temporary tasks in the related-restri
ted modelwith speeds f1; sg is
(minfmaxfm=s;pmg;pmsg)
ompetitive. In addition, there exists anO(minfmaxfm=s;pmg;pmsg)-
ompetitive algo-rithm. The same holds for randomized algorithms aswell.Proof. Omitted.2.3 Tight Results for Restri
ted AssignmentIn this se
tion we show that the greedy algorithmwhi
h assigns a task to the least loaded admissible ma-
hine (breaking ties arbitrarily) is optimal for restri
tedassignment of temporary tasks with unknown durationswhen we have a small number of ma
hines. This is in
ontrast to its non-optimal performan
e for a generalm.We �rst perform an analysis of the greedy algorithm,whi
h gives better upper bounds for small m. It
an beseen that greedy is optimal for the
ase of two ma
hinesand a
hieves a
ompetitive ratio of 2. We show thatit is also optimal for three, four and �ve ma
hines byproving mat
hing lower bounds.Theorem 2.4. The greedy algorithm is optimal forthe assignment of temporary tasks in the restri
tedassignment model for instan
es where m � 5.Proof. Omitted.3 Tasks of Known DurationTheorem 3.1. Any deterministi
 on-line algorithm forload-balan
ing of temporary tasks with known durationsin the restri
ted assignment model has a
ompetitiveratio of at least pm.Proof. Let ON be an on-line algorithm for the problem,and let OFF be an optimal o�ine algorithm for solving

it. We will show a sequen
e of jobs for whi
h ON wouldrea
h a load of at least pm, where OFF maintains aload of one. First we des
ribe the sequen
e, and thenwe prove the lower bound.We denote the set of the �rst pm ma
hines by A,and the set of the remaining ma
hines by B. The i'thma
hine in A (respe
tively B) will be denoted by Ai(respe
tively, Bi), for 1 � i � pm (respe
tively, for1 � i � m�pm).We for
e ON to assign pm jobs to a single ma
hinein B, or to assign m jobs to A (whi
h
onsists of onlypm ma
hines).Our input sequen
e only in
ludes unit jobs and
onsists of at most m � pm phases. Ea
h phase p(p � 1)
onsists of at most pm jobs. The j'th jobin phase p (j � 1) is admissible to two ma
hines: Ajand Bp. The exa
t arrival and departure time of ea
hjob will be des
ribed later. The number of jobs arrivingin ea
h phase is determined by the behavior of ON . Aslong as ON assigns the jobs in phase p to Bp, jobs keeparriving at that phase (up to the maximum ofpm jobs).When ON assigns a job to a ma
hine in A, the phaseends (i.e. no more jobs arrive in this phase). Let Npbe the number of jobs whi
h arrived in phase p. Byde�nition, 1 � Np � pm. The number of phases isalso determined by the behavior of ON . If Np = pmfor a
ertain phase p (i.e., ON assigns all the jobs ofthat phase to Bp), then the sequen
e stops. If phasem � pm had less than pm jobs, then we bring onemore unit job (\extra job"), whi
h will be restri
ted tothe most loaded ma
hine that ON has in A.We now des
ribe the arrival and departure times ofthe jobs in ea
h phase. We �rst des
ribe these timesfor the �rst phase, and then we indu
tively de�ne themfor the other phases. The length of the time intervalthat our sequen
e will use is T = pm(m�pm+1). LetS1 = 0 and let T1 = T . The �rst phase starts at timeS1 = 0. The jth job of phase 1 arrives at time j � 1(1 � j � N1). Its departure time is j�T1pm .For ea
h phase p > 1, we indu
tively de�ne thearrival and departure times of the jobs to be betweenthe departure times of the last two jobs of the previousphase. For p � 1, we de�ne Tp+1 as the departuretime of the last (i.e. Np'th) job of phase p. We alsode�ne Sp+1 as the departure time of the Np � 1'st jobof phase p. If Np = 1 then Sp+1 is equal to Sp. Ea
hphase p starts at time Sp, and only uses the time interval[Sp; Tp℄. The arrival time of the j'th job in phase p isSp+j�1, and its departure time is Sp+ j�(Tp�Sp)pm . Re
allthat in
ase Nm�pm < pm we add one more unit job,restri
ted to the most loaded ma
hine that ON has inA. This \extra job" lasts just one time unit and arrives

at time Sm�pm+1. This
ompletes the des
ription ofour sequen
e.We �rst prove that ON a
hieves a load of at leastpm for the above sequen
e. We noti
e that the �rstdeparture of a job in a
ertain phase in our sequen
eo

urs only after the arrival of the last job in thatphase. We will brie
y explain this. The minimalduration of a job in a phase (i.e. the duration of the�rst job) is divided by pm in ea
h phase. Sin
e theminimal duration in the �rst phase is pm(m�pm), theminimal duration in the last phase (whi
h is the minimalduration of any job during all our phases) is pm. Sin
eall the jobs of a
ertain phase arrive until the (pm� 1)moment of that phase, the �rst departure always o

ursafter the last arrival.Therefore, when a job arrives all the previous jobsof its phase are still a
tive. This means that if ONassigns all the jobs in phase p to ma
hine Bp, then itrea
hes a load of at least pm (all these jobs are a
tivetogether at time Sp +pm� 1), and we are done.In order to avoid this, ON must assign a job to A ata
ertain stage of ea
h phase. By de�nition, the phaseends as soon as this happens. Re
all that phase p + 1starts when the Np�1'st job of phase p leaves, and endsbefore the departure of the Np'th job of phase p. So thelast job whi
h arrived in phase p is the only a
tive jobfrom phase p at the beginning of phase p + 1, and itremains a
tive throughout that phase (i.e. Tp � Tp+1and Sp+1 � Sp). Indu
tively, Tp�1 � Tp and Sp � Sp�1.Thus, the last job of ea
h of the phases 1; :::; p is stilla
tive throughout phase p+1, and these last jobs are theonly jobs from phases 1; :::; p whi
h are a
tive at phasep+ 1. Re
all that the last job in ea
h phase is the jobthat ON assigned to A. So at the beginning of phase p(time Sp), the a
tive jobs are exa
tly all the jobs thatON assigned to A in phases 1:::(p� 1). Summing overall the phases, on time Sm�pm+1, ON has m�pm jobsin A. There are only pm ma
hines in this set, so themost loaded ma
hine in A, ma
hine Ai, has a load of atleast pm� 1. As we explained before, the \extra job"now arrives, and
an only be assigned to ma
hine Ai.This makes the load of ON on that ma
hine at leastpm.Now we will des
ribe the assignment of algorithmOFF . The strategy of OFF is simple. When the j'thjob of phase p arrives, it
an be assigned either to ama
hine from A, Aj , or to a ma
hine from B, Bp. IfON assigns the job to the ma
hine in B, then OFFassigns it to the ma
hine in A. If ON assigns it to thema
hine in A, then OFF assigns it to the ma
hine inB. If the \extra job" arrives, then OFF assigns it toits admissible ma
hine.Let us
onsider now the load of OFF . At the

beginning of phase p, OFF has no a
tive jobs in A, sin
ewe saw that ON has no a
tive jobs in B. OFF has onea
tive job on ea
h of the ma
hines B1; :::; Bp�1, sin
eON has one a
tive job from ea
h phase in A. Duringphase p, as long as ON assigns jobs to Bp, OFF assignsea
h of them to a di�erent ma
hine in A (whi
h wasempty at the beginning of the phase). When ON assignsa job to A, OFF assigns it to Bp (whi
h is empty), andthe phase ends (so no other job will be assigned to Bp).Therefore, OFF maintains a load of 1 throughout thephases. At time Sm�pm+1, OFF has one a
tive jobon ea
h ma
hine in B (one job from ea
h phase), andno jobs in A. So it
an assign the \extra job" to Aiwithout ex
eeding the maximum load of 1. Thus wehave rea
hed the required
ompetitive ratio.Let us denote the total length of the time intervalused by the input sequen
e by T . The result above alsoapplies when we limit the length T of the sequen
e andwhen we allow randomization to be used. The resultsare summarized in the next two theorems:Theorem 3.2. Any deterministi
 on-line algorithm forload-balan
ing of temporary tasks with known durationsin the restri
ted assignment model has a
ompetitive ra-tio of at least
(q log Tlog log T), for any T < pm(m�pm+1).Note that this lower bound is at most pm for thisrange of T .Proof. For any T = pxx�px+1 where x � m, we
an
learly apply the exa
t steps of the previous proof,limiting ourselves to the �rst xma
hines instead of usingall the ma
hines. We will have a sequen
e with at mostx � px phases, ea
h of them having at most px jobs,and we will obtain a lower bound of px. We
an easilysee that in this
ase: px =
(q log Tlog log T). This meansthat for any T < pm(m�pm+1)), we have a lower boundof
(q log Tlog log T), as required.Theorem 3.3. A randomized on-line algorithm forsolving the problem of restri
ted assignment of tempo-rary tasks with known durations
annot a
hieve a
om-petitive ratio smaller than 12pm. Moreover, for anyT < pm(m�pm+1) no algorithm
an be better than
(q log Tlog log T)-
ompetitive.Proof. Note that in Theorems 3.1 and 3.2 admissiblesets
ontain at most two ma
hines. The results followby using Lemma 2.1.

4 O�-line Temporary Assignment4.1 Fixed Number of Ma
hinesWe brie
y des
ribe the polynomial-time approxi-mation s
heme and leave the details to the appendix.We begin with s
aling the weights of the jobs, in or-der to limit the possible range of the optimal maximumload. It is well-known that we
an a
hieve an approx-imation ratio of m simply by assigning ea
h job to itsfastest ma
hine. We will refer to this simple algorithmas \Fastest-Assign". We apply this algorithm to our in-put, and denote the maximum load rea
hed by l. Nowwe multiply ea
h of our jobs' weights by ml . This as-sures us that the optimal maximum load is in the range[1;m℄. Note that this s
aling requires only linear time.The algorithm then follows with �ve phases: theweight-rounding and grouping phase, the time- round-ing phase, the
ombining phase, the solving phase andthe
onverting phase. In the �rst phase, the weightsof the jobs are rounded upwards, and then they aredivided into a large number of subsets based on theirrounded weights, as will be explained later. Next thetime-rounding phase is applied to ea
h of these subsets.This phase a
tually
onsists of two subphases. In the�rst subphase the jobs' a
tive time is extended: somejobs will arrive earlier, others will depart later. In these
ond subphase, the a
tive time is again extended butea
h job is extended in the opposite dire
tion to whi
hit was extended in the �rst subphase. The
ombin-ing phase is also applied to ea
h subset separately. Inthis phase the algorithm
ombines several jobs from thesame subset into jobs with higher load ve
tor
oordi-nates. In the solving phase, we �nd an optimal solutionfor the modi�ed problem (the solving is performed forall the jobs together). The solution we found
an be
onverted into a solution for the original problem in the
onverting phase, whi
h is again applied separately toea
h subset.Theorem 4.1. The algorithm des
ribed inAppendix A.1 is a PTAS running in timeO(n1+��6m7(dlog1+�(m=�)e+1)m logm).Proof. Omitted.4.2 Non-Fixed Number of Ma
hinesIn this se
tion we
onsider o�ine load-balan
ing oftemporary tasks on a non-�xed number of unrelatedma
hines. We show that no polynomial approximationalgorithm
an a
hieve an approximation ratio smallerthan 2, unless P = NP . We prove this lower bound forthe spe
ial
ase of restri
ted assignment (so it obviouslyholds for the general
ase of any unrelated ma
hines aswell).

Theorem 4.2. For every � < 2, there does not exista polynomial �-approximation algorithm for restri
tedassignment of temporary tasks unless P = NP .Proof. We use a redu
tion from the 3-dimensional-mat
hing problem (3DM), whi
h is known to be NP-
omplete. In that problem, we are given three sets ofelements, B, G, and H, ea
h of them of size n (B =b1; :::; bn, G = g1; :::; gn, H = h1; :::; hn). We are alsogiven a set S = T1; :::; Tm of m triplets, S � B �G �H .These are the possible mat
hings of 3 elements fromB,G, and H. The goal is to de
ide whether there exists amat
hing for all the elements of B,G, and H, i.e. a subsetof S, S0, su
h that jS0j = n and STi2S0 Ti = B [G[H .Given an instan
e to the 3DM problem we
onstru
t aninstan
e for our problem. For ea
h triplet Ti, we have ama
hine mi. All our jobs are of weight 1, and our totaltime interval will be of length 3 (from time 0 until time3). Our �rst type of jobs will be \element jobs" (onejob for ea
h element), as des
ribed hereafter. For ea
helement bi 2 B, we will have a job whi
h arrives at time0, departs at time 1, and is admissible to a ma
hinemk if and only if bi 2 Tk. For ea
h element gi 2 G,we will have a job whi
h arrives at time 1, departs attime 2, and is admissible to a ma
hine mk if and only ifgi 2 Tk. Finally, for ea
h element hi 2 H , we will havea job whi
h arrives at time 2, departs at time 3, and isadmissible to a ma
hine mk if and only if hi 2 Tk. Ourse
ond type of jobs will
onstitute of m � n \dummyjobs", whi
h arrive at time 0, depart at time 3, and areadmissible to all the ma
hines.We prove that there is an assignment with a max-imum load of 1, if and only if there is a solution tothe 3DM problem. Suppose there is a 3DM , S0 =fTi1 ; :::; Ting. Then for ea
h Tik 2 S0, we assign to thema
hine mik the 3 \element jobs" whi
h
orrespond tothe 3 elements of Tik . They are admissible to mik , be-
ause this is how we de�ned our assignment restri
tions.Also noti
e that they are a
tive in di�erent times, so thema
hine maintains a load of 1. This way we assign the3n \element jobs" to n of the ma
hines. We assign them � n \dummy jobs" to the other m � n ma
hines,one job on ea
h ma
hine. They are admissible on anyma
hine, and have a weight of 1 ea
h. Therefore, thisassignment maintains a maximum load of 1 as required.Now, assume that there is an assignment having amaximum load of 1. The m � n \dummy jobs" musthave been assigned to m�n di�erent ma
hines (if thereis more than one \dummy job" on a ma
hine, thenits load is bigger than 1). A \dummy job" is a
tiveduring our entire time interval, so a ma
hine whi
h hasa \dummy job" on it
annot have any other job assignedto it. Therefore, the 3n \element jobs" must have beenassigned to the remaining n ma
hines. Ea
h of these

ma
hines mi1 ; :::;min must have one a
tive \elementjob" on it at ea
h moment (sin
e the total volume ofthe \element jobs" is 3n). This means that ea
h ofthese ma
hines, mik , has a job whi
h
orresponds to anelement of B assigned to it, a job whi
h
orrespondsto an element of G assigned to it, and a job whi
h
orresponds to an element ofH assigned to it (this is theonly possibility to have an a
tive \element job" at ea
hmoment). A

ording to our assignment restri
tions,these 3 elements from B,G, and H must be in
luded inthe triplet Tik . All of the \element jobs" were assigned,so STik Ti = B [G [H , and therefore Ti1 ; :::; Tin is a3DM .The above redu
tion shows that any approximationalgorithm for our problem with an approximation ratiostri
tly less than 2 solves the 3DM problem. Hen
e, wehave proven the theorem.Referen
es[1℄ S. Albers. Better bounds for on-line s
heduling. InPro
. 29th ACM Symp. on Theory of Computing, pages130{139, 1997.[2℄ Jim Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, andOrli Waarts. On-line load balan
ing with appli
ationsto ma
hine s
heduling and virtual
ir
uit routing. InPro
. 25th ACM Symp. on Theory of Computing, pages623{631, May 1993.[3℄ Y. Azar. On-line load balan
ing. In A. Fiat andG. Woeginger, editors, Online Algorithms - The Stateof the Art,
hapter 8, pages 178{195. Springer, 1998.[4℄ Y. Azar, A. Z. Broder, and A. R. Karlin. On-line loadbalan
ing. Theoreti
al Computer S
ien
e, 130(1):73{84, 1994. Also in Pro
. 33rd IEEE FOCS, 1992, pp.218-225.[5℄ Y. Azar and L. Epstein. On-line load balan
ing oftemporary tasks on identi
al ma
hines. In 5th IsraeliSymp. on Theory of Computing and Systems, pages119{125, 1997.[6℄ Y. Azar, B. Kalyanasundaram, S. Plotkin, Kirk R.Pruhs, and Orli Waarts. On-line load balan
ing oftemporary tasks. Journal of Algorithms, 22(1):93{110,1997. Also in Pro
. WADS'93, pp. 119-130.[7℄ Y. Azar, J. Naor, and R. Rom. The
ompetitiveness ofon-line assignments. Journal of Algorithms, 18(2):221{237, 1995. Also in Pro
. 3rd ACM-SIAM SODA, 1992,pp. 203-210.[8℄ Y. Azar, O. Regev, J. Sgall, and G. Woeginger. O�-linetemporary tasks assignment. Theoreti
al ComputerS
ien
e. To appear. Also in Pro
. 7th Annual EuropeanSymposium on Algorithms 1999, pp. 163-171.[9℄ B. S. Baker, D. J. Brown, and H. P. Katse�. A 5/4algorithm for two-dimensional pa
king. J. Algorithms,2:348{368, 1981.

[10℄ Y. Bartal, A. Fiat, H. Karlo�, and R. Vohra. Newalgorithms for an an
ient s
heduling problem. In Pro
.24th ACM Symposium on Theory of Algorithms, pages51{58, 1992. Also in Journal of Computer and SystemS
ien
es (1995) 359-366.[11℄ P. Berman, M. Charikar, and M. Karpinski. A noteon on-line load balan
ing for related ma
hines. In 5thannual Workshop on Algorithms and Data Stru
tures,1997.[12℄ A. Borodin and R. El-Yaniv. Online Computation andCompetitive Analysis. Cambridge University Press,1998.[13℄ B. Chen, A. van Vliet, and G. J. Woeginger. New lowerand upper bounds for on-line s
heduling. OperationsResear
h Letters, 16:221{230, 1994.[14℄ W. Fernandez de la Vega and G. S. Lueker. Binpa
king
an be solved within 1 + � in linear time.Combinatori
a, 1:349{355, 1981.[15℄ M. R. Garey, R. L. Graham, D. S. Johnson, andA. C. C. Yao. Resour
e
onstrained s
heduling asgeneralized bin pa
king. J. Comb. Th. Ser. A., 21:257{298, 1976.[16℄ R.L. Graham. Bounds for
ertain multipro
essoranomalies. Bell System Te
hni
al Journal, 45:1563{1581, 1966.[17℄ E. Horowitz and S. Sahni. Exa
t and approxi-mate algorithms for s
heduling non-identi
al pro
es-sors. Journal of the Asso
iation for Computing Ma-
hinery, 23:317{327, 1976.[18℄ D. Karger, S. Phillips, and E. Torng. A betteralgorithm for an an
ient s
heduling problem. In Pro
.5th ACM-SIAM Symp. on Dis
rete Algorithms, pages132{140, 1994.[19℄ J.K. Lenstra, D.B. Shmoys, and E. Tardos. Approx-imation algorithms for s
heduling unrelated parallelma
hines. Math. Prog., 46:259{271, 1990.[20℄ S. Phillips and J. Westbrook. On-line load balan
ingand network
ow. In Pro
. 25th ACM Symposium onTheory of Computing, pages 402{411, 1993.[21℄ S. Plotkin and Y. Ma. An improved lower boundfor load balan
ing of tasks with unknown duration.Inform. Pro
ess. Lett., 62:301{303, 1997.[22℄ D. Shmoys and E. Tardos. An approximation algo-rithm for the generalized assignment problem. Mathe-mati
al Programming A, 62:461{474, 1993. Also in thepro
eeding of the 4th Annual ACM-SIAM Symposiumon Dis
rete Algorithms, 1993.[23℄ J. Westbrook. Load balan
ing for response time. In3rd Annual European Symposium on Algorithms, 1995.A AppendixA.1 A PTAS for temporary assignment of un-related tasksWe denote the sequen
e of events by � = �1; :::; �2n,where ea
h event is an arrival or a departure of a job; weassume that at ea
h time only one job arrives or departs.Sin
e all the events are known at the beginning, we view

� as a sequen
e of times, the time �i is the moment afterthe i'th event happened. In addition, �0 denotes themoment at the beginning, before the arrival of the �rstjob. We assume without loss of generality that m � 2(otherwise the approximation ratio is always 1).Let �0 > 0 be the pre
ision required by the PTAS.We assume that �0 < 1. We
hoose � = �0=7, and �x thefollowing 3
onstants:� = �2mdlogne � (dlog1+�(m�)e+ 1)m� = ��2m2 = �4m3dlogne � (dlog1+�(m�)e+ 1)m
 = ��2m2 = �6m5dlogne � (dlog1+�(m�)e+ 1)mPhase 1: The weight-rounding and groupingphase. We start by des
ribing the weight-roundingand grouping phase. For ea
h job j, we denote by Wjthe load that j
auses on its fastest ma
hine: Wj =mini(�wj(i)). We will refer to Wj as the \min-weight"of the job j. We de�ne the \relative speed" ve
tor of jobj, �vj by: �vj(i) = �wj(i)=Wj , for 1 � i � m. Note that�vj(i) � 1. We now perform a rounding of the ve
tor�vj and obtain the rounded \relative speed" ve
tor �v0j .For ea
h 1 � i � m, if �vj(i) � m=�, then �v0j(i) = 1,and we will refer to ma
hine i as an \illegal ma
hine"for job j. Otherwise, we obtain �v0j(i) by rounding �vj(i)upwards to the nearest power of 1+�, and we will refer toma
hine i as a \legal ma
hine" for job j. Note that ea
h
oordinate of the ve
tor �v0j may have dlog(1+�)(m�)e+ 1possible values, sin
e its value is either 1 or a powerof (1 + �) between 1 and m=�. Now we de�ne a newloads ve
tor for the job j, �w0j , by: �w0j(i) =Wj � �v0j(i), for1 � i � m. In this we
ompleted the rounding of theweights.Next we divide the jobs into subsets a

ording totheir �v0 ve
tor. This division splits the jobs into atmost (dlog1+�(m�)e + 1)m subsets, sin
e ea
h of the m
oordinates of that ve
tor may have (dlog1+�(m�)e + 1)possible values, as we noted before. This
ompletes thedes
ription of the �rst phase.Phase 2: The time-rounding phase. Thisphase is similar to the time-rounding phase des
ribedby [8℄. We will apply this phase separately to ea
hsubset of jobs J�v0 (having the same \relative speeds"ve
tor �v0).In order to des
ribe the time-rounding phase withits two subphases, we start with de�ning partitions ofea
h subset J�v0 , based on whi
h the rounding will beperformed. The set R�v0
ontains all jobs with Wj �
out of the jobs in J�v0 .From now on, we �x �v0 in the des
ription of this

phase, and refer to J�v0 as J and to R�v0 as R. All thefollowing de�nitions are made for these �xed J and R.We begin by de�ning a partition fJig of the set ofjobs J � R. We set M1 = J � R and de�ne sets Jiand Mi iteratively as follows. Let Mi be a set of jobsand
onsider the sequen
e of times in � in whi
h jobsof Mi arrive and depart. The number of su
h times is2r for some r, let
i be any time between the r'th andthe r + 1-st elements in that set. The set Ji
ontainsthe jobs in Mi that are a
tive at time
i. The set M2i
ontains the jobs in Mi that depart before or at
i andthe set M2i+1
ontains the jobs in Mi that arrive after
i. We stop when all unpro
essed Mi's are empty. Theimportant property of that partition is that the set ofjobs from J � R that are a
tive at a
ertain time ispartitioned into at most dlogne di�erent sets Ji.We
ontinue by further partitioning the set Ji. Weorder the jobs a

ording to their arrival time. Wedenote the smallest pre�x of the jobs whose total min-weight is at least � by S1i . We order the same jobsa

ording to their departure time. We take the smallestsuÆx whose min-weight is at least � and denote thatset by T 1i . Note that there might be jobs that areboth in S1i and T 1i . We remove the jobs in S1i [T 1ifrom Ji, repeat the pro
ess with the jobs left in Ji andsimilarly de�ne S2i , T 2i , . . . , Skii ; T kii . Ea
h set Si andTi has total min-weight between � and � +
, ex
eptfor the last pair whi
h may have smaller min-weightthan �. However, if the last pair has smaller min-weight than �, then it satis�es Skii = T kii . We denoteby sji the arrival time of the �rst job in Sji and by tjithe departure time of the last job in T ji . Note thats1i � s2i � ::: � skii �
i � tkii � ::: � t2i � t1i .The �rst subphase of the time-rounding phase
re-ates a new set of jobs J 0 whi
h
ontains the same jobsas in J with slightly longer a
tive times. We
hange thearrival time of all the jobs in Sji for j = 1; :::; ki to sji .Also, we
hange the departure time of all the jobs in T jito tji . The jobs in R are left un
hanged. We denote thesets resulting from the �rst subphase by J 0, J 0i , S0ji , T 0ji .The se
ond subphase of the time-rounding phasefurther extends the a
tive time of the jobs resulting fromthe �rst subphase. We take one of the sets J 0i and thepartition we de�ned earlier to S01i [T 01i , S02i [T 02i , . . . ,S0kii [T 0kii . For every j � ki, we order the jobs in S0jia

ording to an in
reasing order of departure times. Wetake the smallest pre�x of this ordering whose total min-weight is at least �. We extend the departure time of allthe jobs in that pre�x to the departure time of the lastjob in that pre�x. The pro
ess is repeated until thereare no more jobs in S0ji . The last pre�x may have a min-weight of less than �. Similarly, we extend the arrival

times of jobs in T 0ji . Note that if the total min-weightof either S0kii or T 0kii is smaller than � then S0kii = T 0kiiand these jobs are left un
hanged sin
e they alreadyhave identi
al arrival and departure times from the �rstphase. We denote the sets resulting from the se
ondsubphase by J 00, J 00i , S00ji , T 00ji .Phase 3: The
ombining phase. This phaseinvolves the load ve
tors of the jobs. It is also appliedto ea
h subset J 00�v0 separately, so we again �x �v0 in thedes
ription of this phase and refer to J 00�v0 as J 00. Let J 00stbe the set of jobs in J 00 that arrive at s and departat t. Assume the total min-weight of jobs in J 00st isx. The
ombining phase repla
es these jobs by dx=
ejobs, whi
h have a load-ve
tor of
 � �v0. Note that themaximum �nite weight in their loads ve
tor may bem� �
. We denote the resulting sets by J 000st . The set J 000is
reated by repla
ing every J 00st with its
orrespondingJ 000st , that is, J 000 = Ss;t J 000st .Phase 4: The solving phase. This phase solvesthe modi�ed de
ision problem, i.e. it solves the problemafter ea
h subset J�v0 has been repla
ed by a modi�edsubset J 000�v0 . The solving phase is performed on
e for allthe jobs together (not for ea
h J 000�v0 subset separately).We solve the modi�ed de
ision problem by building alayered graph. Every time �i, i = 0; : : : ; 2n, in whi
hjobs arrive or depart (in
luding the initial state withno job) has its own set of verti
es
alled a layer. Ea
hlayer holds a vertex for every possible assignment ofthe
urrent a
tive jobs to ma
hines (ex
ept assignmentsof weight 1); furthermore, we label ea
h node by themaximum load of a ma
hine in that
on�guration.Two verti
es of adja
ent layers �i�1 and �i, i =1; : : : ; 2n, are
onne
ted by an edge if the transitionfrom one assignment of the a
tive jobs to the other is
onsistent with the arrival and departure of jobs at time�i. More pre
isely, the verti
es are
onne
ted if and onlyif every job a
tive both before and after �i is assigned tothe same ma
hine in the assignments of both verti
es.At ea
h event, jobs either arrive or depart but not both(due to the assumption at the beginning that all theoriginal events are distin
t; during rounding we do notmix arrival and departure events). If �i is an arrival, theindegree of all verti
es in the layer �i is 1, sin
e the new
on�guration determines the old one. Similarly if �i is adeparture, the outdegree of all verti
es in the layer �i�1is 1. In both
ases, the number of edges between twolayers is linear in the number of verti
es on these layers.It follows that the total number of edges is linear in thenumber of verti
es.We de�ne a value of a path as the maximal valueof its nodes. Now we
an simply �nd a path withsmallest value from the �rst layer to the last one byany shortest path algorithm in linear time (sin
e the

graph is layered).Phase 5: The
onverting phase. In this phasethe algorithm
onverts the assignment found for themodi�ed problem into an assignment for the originalproblem. This phase is performed separately for thejobs in ea
h of the subsets J 000�v0 . Ea
h assignment ofthe jobs of a modi�ed subset J 000�v0 is
onverted into anassignment for the jobs of subset J�v0 , whi
h is also anassignment for the original problem. Again we �x �v0throughout the des
ription of this phase, and refer toJ 000�v0 as J 000. Assume the number of jobs having Wj =
in J 000st that are assigned to a
ertain ma
hine i is ri.Remove these jobs and assign all the jobs havingWj �
in J 00st to the ma
hines su
h that a total weight of at most(ri + 1)
 � �v0(i) is assigned to ma
hine i.Note that all the jobs will be assigned that way. Therepla
ement involves jobs whose min-weight is at most
. We know that the total min-weight of these jobs isat most
 �Pmi=1 ri.If they made a load of (ri + 1)�v0(i)
 on ea
h ofthe ma
hines, then it would mean that their total min-weight was at least
 � (m +Pmi=1 ri). So it is possibleto assign all these jobs so that they will make a load ofat most (ri + 1)
 � �v0(i) on ea
h ma
hine i.The assignment for J 00 is also an assignment for J 0and J . An assignment for J is also an assignment forthe original problem.

