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1 IntroductionThe traveling salesman problem (TSP) is one of the most notorious NP-hard prob-lems [GJ]. For the special case that distances satisfy the triangle inequality, manyapproximation algorithms have been developed and analyzed. The approximationfactor of such an algorithm is the ratio between the length of the tour obtained bythe algorithm and the optimal tour. The relative performance of di�erent heuris-tics is measured by comparing their approximation factors and their running times.Rosenkrantz et al [RSL] de�ned and analyzed several heuristics. Insertion methodsare a particularly important class of (tour-construction) heuristics. They work asfollows: Vertices are inserted into the tour one at a time. A vertex is inserted be-tween two consecutive vertices in the current tour where it �ts best. More formally,after the ith insertion, the algorithm has a subtour Ti on a subset of i vertices Si.Suppose that v 62 Si is the (i + 1)st vertex inserted, and that (x; y) is an edge of Tithat minimizes d(x; v) + d(v; y) � d(x; y). The new tour Ti+1 ( on vertices Si [ v)is obtained from Ti by deleting edge (x; y) and adding edges (x; v) and (v; y). (Theinitial tour is an edge of length zero between some vertex to itself.)The algorithms in this family di�er in the order in which vertices are inserted andthus may provide di�erent tours. Clearly, there are n! possible orders in which toinsert the vertices. Arbitrary insertion, the generic algorithm in the family, insertsthe vertices in an arbitrary order. Rosenkrantz et al [RSL] showed a dlog ne+1 upperbound on the approximation factor of arbitrary insertion. They also showed that twospeci�c schemes, Nearest insertion and Cheapest insertion, achieve an approximationratio of 2. The question of whether the logarithmic growth permitted by their upperbound for the arbitrary insertion method can be achieved remained open. In fact,they knew of no example that achieved an approximation ratio of more than 4 andsuggested that a constant upper bound may be possible. In contrast we prove:Theorem 1.1 There exist some insertion methods whose worst case approximationfactor is 
(log n= log log n). The lower bound holds even in the Euclidean Plane.Another interesting insertion method is random insertion: the order in which thevertices are inserted is chosen uniformly at random. This method is of special interestsince it performs better than nearest insertion and cheapest insertion in practice (see[Be],[GBDS],[LLRS]). Moreover, it is easier to implement and has lower runningtime. However, no better bounds on the performance of random insertion were known1



([RSL], [LLRS]). It was tempting to think that random insertion may have a constantapproximation factor. Surprisingly, we prove a non-constant lower bound for randominsertion.Theorem 1.2 The worst case approximation factor of the random insertion methodis 
(log log n= log log log n) even with probability 1�o(1). The lower bound holds evenin the Euclidean Plane.It would be interesting to know if these techniques may also yield a non-constantlower bound for Farthest insertion method, when the farthest point is inserted ateach step. This method performs better in practice than the other methods. Thebest known lower bound for this method is constant [Hu]: there is a metric space forwhich it is 6:5, and it is 2:43 for the plane.Theorem 1.1 was proved independently and at the same time by Bafna, Kalyana-sundaram and Pruhs [BKP]. The basic approach in this paper resembles the one ofBentley and Saxe in [BS] for the nearest neighbor algorithm and of Alon and Azar[AA] for on-line Steiner trees, but some di�erent ideas are required.2 The lower bound proofsWe �rst prove Theorem 1.1. The metric space considered is the Euclidean plane. Allthe points are in the unit square. Let x be an integer, x � 5. We construct a set of npoints, x3x < n � 2x3x, such that the length of the optimal TSP tour on these pointsis �(1) whereas the length of some insertion method tour is 
(x) = 
(log n= log log n).This yields a lower bound of 
(log n= log log n), as needed.The points consist of x + 1 major layers and x minor layers, where each layer isa set of equally spaced points on a horizontal line of length 1. Let ai = x�3i andli = 1=ai for 0 � i � x. Thus a0 = 1, a1 = x�3 and ax = x�3x. The coordinates ofthe j'th points in major layer number i, denoted by vi;j, is (jai; bi) for 0 � i � x and0 � j � li. Hence in major layer 0 there are only two points, in major layer 1 thereare x3 + 1 and so on up to major layer number x which contains x3x + 1 points. Letb0 = 0. The vertical distance between major layer number i and major layer numberi+ 1 is ci = bi+1 � bi, where for all 0 � i � x � 1, ci = ai=x. For 0 � i � x � 1 theminor layer i is precisely in the middle between major layer i to major layer i+1 andit is a copy of major layer i without the left most points. Thus, the coordinates of2



the j'th points in minor layer i, denoted by yi;j, is (jai; bi + ci=2) for 0 � i � x � 1and 1 � j � li.The order of inserting the points of the major layers is layer by layer 0 � i � x+1.In each major layer from left to right 0 � j � li. The points of minor layer i areinserted after the points of major layer i+ 1 (and before major layer i+ 2). In eachminor layer the inserting order is by decreasing indices i.e., from right to left.� � � � � � � � � � � � � � � � �� � � �� � � � ��� �-�
-�-�
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Figure 1: An example of the constructionFirst, observe thatx3x < n � x3x + 1 + 2 � x�1Xi=0(1=ai + 1) = (x3x + 1) + 2 � x�1Xi=0(x3i + 1) � 2x3x:Note also that bx = x�1Xi=0 ci = x�1Xi=0 ai=x = (1=x) x�1Xi=0 x�3i � 2=x � 1and therefore all the points lie, indeed, in the unit square.Next observe that the length of the optimal spanning tree is O(1) and thereforethe length of the optimal TSP tour is also O(1). Indeed, one can take the horizontal3



line in the last layer (major layer number x) together with vertical lines from it toany other point.The total length of this tree is1 + x�1Xi=0 ci( 1ai + 1) � (1 + x�1Xi=0 2ci=ai) = (1 + x2x) = 3:On the other hand, we should analyze the tour generated by the insertion method.It is straightforward to see that after completing the �rst two major layers (i = 0; 1)and the �rst minor layer (i = 0) the tour is v0;0; v1;0; v1;1; : : : ; v1;l1; y0;1; v0;1; v0;0.We will prove by induction (where the previous case is the base case) that afteradding the vertex vi;j where i > 1 the tour looks like that (see �g. 2)v0;0; v1;0; : : : ; vi�1;0; vi�1;0; vi;0;vi;1; vi;2; : : : ; vi;j;vi�1;1; vi�1;2; : : : ; vi�1;li�1yi�2;li�2; yi�2;li�2�1; : : : ; yi�2;1;vi�2;1; vi�2;2; : : : ; vi�2;li�2;yi�3;li�3; : : : ; yi�3;1;::v2;1; : : : ; v2;l2;y1;l2; y1;l2�1; : : : ; y1;1;v1;1; v1;2; : : : ; v1;l1;y0;1;v0;1; v0;0:After adding yi�1;j where i > 1 the tour looks like that (see �g. 3)v0;0; v1;0; : : : ; vi�1;0; vi;0;vi;1; vi;2; : : : ; vi;li;yi�1;li�1; yi�1;li�1�1; : : : ; yi�1;j;vi�1;1; vi�1;2; : : : ; vi�1;li�14
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?Figure 2: After adding v2;10yi�2;li�2; yi�2;li�2�1; : : : ; yi�2;1;vi�2;1; vi�2;2; : : : ; vi�2;li�2;yi�3;li�3; : : : ; yi�3;1;::v2;1; : : : ; v2;l2;y1;l2; y1;l2�1; : : : ; y1;1;v1;1; v1;2; : : : ; v1;l1;y0;1;v0;1; v0;0It is not di�cult to verify that after the last vertex has been added, the length ofthe tour described above lies between 2x and 2x + 2 as needed.In order to prove that the tour is as described we prove the following statements.The �rst is that vi;0 for i > 1 (i = 0; 1 are the base cases) is inserted between vi�1;05
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?Figure 3: After adding y1;2and vi�1;1. Second, vi;j (i > 1 and j > 0) is inserted between vi;j�1 and vi�1;1. Third,yi�1;li�1 is inserted between vi;li and vi�1;1. At last, yi�1;j is inserted between yi�1;j+1and vi�1;1. That would complete the proof by induction.The �rst case is straightforward, since by simple geometry the cost of insertingvi;0 is seen to be less than 2ci�1 whereas other ways of insertion lead to costs at least2ci�1. The third case is as easy since by simple geometry, the cost of inserting yi�1;li�1between vi;li and vi�1;1 is smaller than ci�1=2 where it is at least ci�1=2 for any otherchoice. Next we prove the second case. First observe that inserting vi;j betweenvi;j�1 and vi�1;1 costs less than 2ai. The other reasonable candidates are betweenconsecutive vertices of major/minor layers k such that k � i � 1 (horizontal edges)apart from minor i� 1 which is not on the tour yet. This requires a cost of at least2(pl2 + z2 � l) where l = ak=2 and z = ck=2. But2(pl2 + z2 � l) = ak(q1 + (ck=ak)2 � 1) = ak(q1 + 1=x2 � 1):Thus, by using the inequality (for t � 0 )p1 + t� 1 = tp1 + t+ 1 � t1 + t=2 + 1 = 2t4 + t6



we get that the insertion cost is bounded below byak 2=x24 + 1=x2 = ak 24x2 + 1 = ak+1 2x34x2 + 1 > 2ak+1 � 2aifor x � 5, which completes the proof of case 2. For case 4 note that inserting yi�1;jbetween consecutive vertices in major layer i� 1 or i costs at least ci�1=2. Moreover,as in the previous case inserting it between consecutive vertices of major/minor layersk such that k � i � 2 costs at least 2ak+1 � 2ai�1 > ci�1=2. On the other hand wewill show that inserting it between yi�1;j+1 and vi�1;1 costs at most ci�1=2. The laststatement is obvious for j = 1. For j > 1 draw a vertical line from A = yi�1;juntil it hits (at point D) the line connecting B = yi�1;j+1 and C = vi�1;1. ClearlyjADj � ci�1=4. But,jABj+ jACj�jBCj � jADj+ jDBj+ jADj+ jDCj�(jBDj+ jDCj) = 2jADj � ci�1=2which completes the proof of case 4 and therefore the proof of Theorem 1.1.Next we prove Theorem 1.2. Recall that in the proof of Theorem 1.1, we con-structed a set T of m vertices and an order �, for which the length of the tourconstructed by the insertion method for the set T using order � is larger by a fac-tor of 
(logm= log logm) from the optimal tour. Denote the vertices in order � byu1; : : : ; um. For 1 � i < m replace ui by a set Si of ni = m2(m�i)�m2(m�i�1) verticesin the same location. Let Sm be the set of the one vertex um, and thus nm = 1. LetS = [iSi. Clearly jSj = Pi ni = m2(m�1). It is immediate that the optimal tour forthe set S has the same length as the optimal tour for the set T (essentially all thenon-zero length edges are the same). For 1 � i < m denote by Ai the event that bychosing at random an order on the set S the �rst occurrence of a vertex in Si is afterthe �rst occurrence of a vertex in [mj=i+1Sj. ClearlyPr[Ai] = Pmj=i+1 niPmj=i ni = m2(m�i�1)m2(m�i) = 1m2 :Let A be the event that neither of the Ai has happened. ClearlyPr[A] � 1� m� 1m2 > 1� 1m :It is straightforward to check that for all orders in the event A, the tours constructedby the random insertion for the set S are the same, (up to the order of vertices7



in each Si). Moreover, they have the same length as the tour constructed by theinsertion method for the set T using the order �, since all positive edges are thesame. Thus we conclude that with probability 1 � o(1) the tour constructed bythe random insertion method on the set S of n = m2(m�i) is longer by a factor of
(logm= log logm) = 
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