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Abstract

We show that the random insertion method for the traveling salesman prob-
lem (TSP) may produce a tour (loglogn/logloglogn) times longer than the
optimal tour. The lower bound holds even in the Euclidean Plane. This is
in contrast to the fact that the random insertion method performs extremely
well in practice. In passing we show that other insertion methods may produce
tours (logn/loglogn) times longer than the optimal one. No non-constant

lower bounds were previously known.
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1 Introduction

The traveling salesman problem (TSP) is one of the most notorious NP-hard prob-
lems [GJ]. For the special case that distances satisfy the triangle inequality, many
approximation algorithms have been developed and analyzed. The approzimation
factor of such an algorithm is the ratio between the length of the tour obtained by
the algorithm and the optimal tour. The relative performance of different heuris-
tics is measured by comparing their approximation factors and their running times.
Rosenkrantz et al [RSL] defined and analyzed several heuristics. Insertion methods
are a particularly important class of (tour-construction) heuristics. They work as
follows: Vertices are inserted into the tour one at a time. A vertex is inserted be-
tween two consecutive vertices in the current tour where it fits best. More formally,
after the 2th insertion, the algorithm has a subtour T; on a subset of ¢ vertices 5;.
Suppose that v ¢ 5; is the (¢ 4+ 1)st vertex inserted, and that (x,y) is an edge of T;
that minimizes d(x,v) 4+ d(v,y) — d(x,y). The new tour T;1; ( on vertices S; U v)
is obtained from 7; by deleting edge (x,y) and adding edges (z,v) and (v,y). (The

initial tour is an edge of length zero between some vertex to itself.)

The algorithms in this family differ in the order in which vertices are inserted and
thus may provide different tours. Clearly, there are n! possible orders in which to
insert the vertices. Arbitrary insertion, the generic algorithm in the family, inserts
the vertices in an arbitrary order. Rosenkrantz et al [RSL] showed a [logn|+1 upper
bound on the approximation factor of arbitrary insertion. They also showed that two
specific schemes, Nearest insertion and Cheapest insertion, achieve an approximation
ratio of 2. The question of whether the logarithmic growth permitted by their upper
bound for the arbitrary insertion method can be achieved remained open. In fact,
they knew of no example that achieved an approximation ratio of more than 4 and

suggested that a constant upper bound may be possible. In contrast we prove:

Theorem 1.1 There exist some insertion methods whose worst case approximation

factor is Qlogn/loglogn). The lower bound holds even in the Fuclidean Plane.

Another interesting insertion method is random insertion: the order in which the
vertices are inserted is chosen uniformly at random. This method is of special interest
since it performs better than nearest insertion and cheapest insertion in practice (see
[Be],[GBDS],[LLRS]). Moreover, it is easier to implement and has lower running

time. However, no better bounds on the performance of random insertion were known



([RSL], [LLRS]). It was tempting to think that random insertion may have a constant
approximation factor. Surprisingly, we prove a non-constant lower bound for random

insertion.

Theorem 1.2 The worst case approximation factor of the random insertion method
is Q(log logn/logloglogn) even with probability 1 —o(1). The lower bound holds even
in the Fuclidean Plane.

It would be interesting to know if these techniques may also yield a non-constant
lower bound for Farthest insertion method, when the farthest point is inserted at
each step. This method performs better in practice than the other methods. The
best known lower bound for this method is constant [Hul: there is a metric space for
which it 1s 6.5, and it is 2.43 for the plane.

Theorem 1.1 was proved independently and at the same time by Bafna, Kalyana-
sundaram and Pruhs [BKP]. The basic approach in this paper resembles the one of
Bentley and Saxe in [BS] for the nearest neighbor algorithm and of Alon and Azar

[AA] for on-line Steiner trees, but some different ideas are required.

2 The lower bound proofs

We first prove Theorem 1.1. The metric space considered is the Euclidean plane. All
the points are in the unit square. Let = be an integer, + > 5. We construct a set of n
points, 2% < n < 223", such that the length of the optimal TSP tour on these points
is O(1) whereas the length of some insertion method tour is Q(x) = Q(log n/loglogn).
This yields a lower bound of Q(logn/loglogn), as needed.

The points consist of x + 1 major layers and @ minor layers, where each layer is

3 and

a set of equally spaced points on a horizontal line of length 1. Let a; = =~
l; =1/a; for 0 < i < . Thus ap = 1, a; = 27 and a, = x7>*. The coordinates of
the j’th points in major layer number ¢, denoted by v, ;, is (ja;, b;) for 0 < i < a and
0 < j < ;. Hence in major layer 0 there are only two points, in major layer 1 there
are x> 4+ 1 and so on up to major layer number x which contains z>* + 1 points. Let
bp = 0. The vertical distance between major layer number ¢z and major layer number
i+ 1lis ¢ =bgq — b, wherefor all 0 <i <z —1, ¢ =a;/z. For 0 <7<z —1 the
minor layer ¢ is precisely in the middle between major layer ¢ to major layer : 4+ 1 and

it is a copy of major layer 7 without the left most points. Thus, the coordinates of



the j’th points in minor layer ¢, denoted by y; j, is (jai, b; + ¢;/2) for 0 < i < a — 1
and 1 <y </,

The order of inserting the points of the major layers is layer by layer 0 < ¢ < z+1.
In each major layer from left to right 0 < j < [;. The points of minor layer ¢ are
inserted after the points of major layer ¢ + 1 (and before major layer ¢ + 2). In each

minor layer the inserting order is by decreasing indices i.e., from right to left.
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Figure 1: An example of the construction

First, observe that

r—1 r—1

x3x<n§x3$+1+2'2(1/ai—|—1) = ($3$+1)+2-Z(:1;3i+1) < 2237,
=0 =0
Note also that
z—1 z—1 z—1 '
b, = Zci = Zai/x = (1/x) Zx_?” <2/x <1
=0 =0 =0

and therefore all the points lie, indeed, in the unit square.

Next observe that the length of the optimal spanning tree is O(1) and therefore
the length of the optimal TSP tour is also O(1). Indeed, one can take the horizontal
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line in the last layer (major layer number x) together with vertical lines from it to

any other point.
The total length of this tree is

r—1 1 r—1 9
1+Zcz’(;+1) < (143 2¢/a;) = (1+25)=3.
=0 =0

K3

On the other hand, we should analyze the tour generated by the insertion method.
It is straightforward to see that after completing the first two major layers (z = 0,1)

and the first minor layer (¢ = 0) the tour is v, V1,0, V1,1, -+, V1,115 Y0.15 V0,15 V0,0-

We will prove by induction (where the previous case is the base case) that after

adding the vertex v; ; where ¢ > 1 the tour looks like that (see fig. 2)

V0,05 V1,05« - - » V5—1,05 Vi—1,0, V3,0,
1)2"1, 1)2"2, ceey vm,

Vic1,15 Vi=1,29 - - -y Vi—1,l; 4
Yi—2,li oy Yi—2,l; _5—15+ -5 Yi—21,
Ui—2,15Ui—2,25 - -+ s Ui—2.0;_5»
Yi-3,0i—35---5Yi-3,1,

1)271, Cee ,1)27[2,

Y1 Y115+ - -5 Y115

1)171, 1)172, . ,1)17[1,

Yo,1,

V0,15 Vo,0-

After adding y;—1 ; where ¢ > 1 the tour looks like that (see fig. 3)

v0,0, V1,05 - -+, Vi-1,0, Vi,0,

Vi1, V5,29« -5 Uil

Yi-1li_s Yi-1,0,0-15 -+ -5 Yi-1,55
Vic1,15 Vi=1,29 - - -y Vi—1,l; 4
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V2.0 V2,10
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Figure 2: After adding v 19

Yi2li oy Yi—2,l;_5—15-+--5Yi—21,
Vi—21,V-225 -3 Vi—2.0;_o>
Yi-30i—35---5Yi-3.1,

1)271, Cee ,1)27[2,

Y1l Y1,l—15 - - -5 Y115

1)171, 1)172, . ,1)17[1,

Yo.1,

V0,1, V0,0

It is not difficult to verify that after the last vertex has been added, the length of

the tour described above lies between 2z and 2z + 2 as needed.

In order to prove that the tour is as described we prove the following statements.

The first is that v; o for ¢ > 1 (¢ = 0,1 are the base cases) is inserted between v;_1 o



V2.0

o o o o o o o o o o o o o ® ® V2,15
?
Y12
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°
Vo1

Figure 3: After adding v 2

and v;_1 1. Second, v; ; (1 > 1 and j > 0) is inserted between v; ;_y and v;_y 1. Third,
Yi—1,4,_, 1s inserted between v;;, and v;_q 1. At last, y;_q ; is inserted between y;_; ;41

and v;_q 1. That would complete the proof by induction.

The first case is straightforward, since by simple geometry the cost of inserting
v; 0 18 seen to be less than 2¢;_; whereas other ways of insertion lead to costs at least
2¢;_1. The third case is as easy since by simple geometry, the cost of inserting y;_1,_,
between v;;, and v;_1 1 is smaller than ¢;_1/2 where it is at least ¢;_1/2 for any other
choice. Next we prove the second case. First observe that inserting v; ; between
v; j—1 and v;_q11 costs less than 2a;. The other reasonable candidates are between
consecutive vertices of major/minor layers k such that & <7 — 1 (horizontal edges)

apart from minor ¢ — 1 which is not on the tour yet. This requires a cost of at least

2(V 1?2+ 22 — 1) where | = a;/2 and z = ¢;/2. But

20V + 22 =) = ap(\/1 + (ex/ap)? — 1) = ap(y/1 + 1 /22 = 1).

Thus, by using the inequality (for ¢ >0 )

Vi+t—1=

t t 2t
> =
VIFt+1 7 14+t241 4414
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we get that the insertion cost is bounded below by

2/x? 2 22

a1 T Mapr g T Mg T =

for > 5, which completes the proof of case 2. For case 4 note that inserting y;_; ;
between consecutive vertices in major layer ¢ — 1 or ¢ costs at least ¢;_1 /2. Moreover,
as in the previous case inserting it between consecutive vertices of major/minor layers
k such that & < ¢ — 2 costs at least 2ax11 > 2a;,_1 > ¢;_1/2. On the other hand we
will show that inserting it between y;_1 ;41 and v;_11 costs at most ¢;_1/2. The last
statement is obvious for y = 1. For 5 > 1 draw a vertical line from A = y;_q;
until it hits (at point D) the line connecting B = y;_1 j41 and C' = v;_11. Clearly
|AD| < ¢;_1/4. But,

|AB|+|AC| —|BC| < |AD|+ |DB|+|AD|+|DC| —(|BD|+|DC|) = 2|AD| < ¢i_1 /2

which completes the proof of case 4 and therefore the proof of Theorem 1.1.

Next we prove Theorem 1.2. Recall that in the proof of Theorem 1.1, we con-
structed a set T of m vertices and an order 7, for which the length of the tour
constructed by the insertion method for the set T" using order 7 is larger by a fac-
tor of Q(logm/loglogm) from the optimal tour. Denote the vertices in order 7 by

2(m~1) 2(m=i=1) yertices

Upy.eny Uy For 1 <o < m replace u; by a set S; of n; = m —-m
in the same location. Let S,, be the set of the one vertex u,,, and thus n,, = 1. Let
S = U;S;. Clearly |S| = Y;ns = m2m=1, It is immediate that the optimal tour for
the set S has the same length as the optimal tour for the set T' (essentially all the
non-zero length edges are the same). For 1 < ¢ < m denote by A; the event that by
chosing at random an order on the set S the first occurrence of a vertex in .S; is after

the first occurrence of a vertex in U7, S;. Clearly

Z;nzz'—l—l n; mQ(m—i—l) 1
PI’[AZ] = Z;n:l 7 — m?(m—i) = W .

Let A be the event that neither of the A; has happened. Clearly

—1 1

m m

It is straightforward to check that for all orders in the event A, the tours constructed

by the random insertion for the set S are the same, (up to the order of vertices



in each S;). Moreover, they have the same length as the tour constructed by the
insertion method for the set T" using the order =, since all positive edges are the
same. Thus we conclude that with probability 1 — o(1) the tour constructed by

2(m—1)

the random insertion method on the set S of n = m is longer by a factor of

Qlogm/loglogm) = Qloglogn/logloglogn) from the optimal tour. This com-
pletes the proof of Theorem 1.2.
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