
Fair versus Unrestricted Bin PackingYossi Azar1?, Joan Boyar2??, Lene M. Favrholdt2,Kim S. Larsen2??, and Morten N. Nielsen21 Department of Computer Science, Tel-Aviv University, azar@math.tau.ac.il2 Department of Mathematics and Computer Science, University of SouthernDenmark, Odense, fjoan,lenem,kslarsen,nyhaveg@imada.sdu.dk.Abstract. We consider the Unrestricted Bin Packing problem where wehave bins of equal size and a sequence of items. The goal is to maximizethe number of items that are packed in the bins by an on-line algorithm.We investigate the power of performing admission control on the items,i.e., rejecting items while there is enough space to pack them, versusbehaving fairly, i.e., rejecting an item only when there is not enoughspace to pack it. We show that by performing admission control on theitems, we get better performance for various measures compared withthe performance achieved on the fair version of the problem. Our mainresult shows that we can pack 2=3 of the items for sequences in whichthe optimal can pack all the items.1 Introduction1.1 GeneralIn this paper, we are investigating the competitive ratio for a bin packing prob-lem. However, in addition to considering unrestricted request sequences, wealso consider some restricted sequences which we refer to as accommodatingsequences. Informally, these are sequences where an optimal algorithm can sat-isfy all requests. Clearly, the competitive ratio on accommodating sequences1is no worse than the competitive ratio on unrestricted sequences for any givenproblem and sometimes can be much better. For problems where the compet-itive ratio is a bad measure, it may be useful to compare algorithms by theircompetitive ratio on accommodating sequences. Speci�cally, it was shown in [4,5] that there are (bene�t) problems where the competitive ratio tends to zerowhile the competitive ratio on accommodating sequences is a constant, i.e., in-dependent of the parameters of the problem. Moreover, when we are trying todistinguish between two algorithms, the competitive ratio on accommodatingsequences may prefer one algorithm while the competitive ratio measure (on allsequences) prefers the other [5].? Supported in part by the Israel Science Foundation, and by a USA-Israel BSF grant.?? Supported in part by the Danish Natural Science Research Council (SNF).1 In earlier papers [4{6], this competitive ratio on accommodating sequences was calledthe accommodating ratio. The change is made here for consistency with commonpractice in the �eld.



II In the Bin Packing problem we are given some bins and the goal is to pack aset of items into these bins. We concentrate on the bene�t variant of the problem,where there are n bins and the objective is to maximize the total number of itemsin these bins. This problem has been studied in the o�-line setting, starting in [8],and its applicability to processor and storage allocation is discussed in [9]. (Forsurveys on bin packing, see [10, 7].)In the on-line version of the problem the items arrive in some sequence andthe assignment of an item should be done before the next item arrives. We as-sume that the items are integer-sized and the bins all have size k. One can discussthe Fair Bin Packing problem2 where it is required that the packing be fair , thatis, an item can only be rejected if it cannot �t in any bin at the time when it isgiven. Note that the optimal algorithm is also required to be fair. It is shown in[5] that for this problem, Worst-Fit has a strictly better competitive ratio thanFirst-Fit, while First-Fit has a strictly better competitive ratio than Worst-Fiton accommodating sequences. In this case, the competitive ratio on accommo-dating sequences seems the more appropriate measure, since it is constant whilethe competitive ratio (on all sequences) is close to zero, for large values of k, ba-sically due to some sequences which seem very contrived. This demonstrated theusefulness of the more general accommodating function [6] which comprises thecompetitive ratio as well as the competitive ratio on accommodating sequences(it is a function of the restriction on the request sequences).Here, we consider what happens when the fairness restriction is removed.Thus, for the on-line problem Unrestricted Bin Packing (UBP), there are againn bins, all of size k, the items are integer-sized, and the goal is to maximize thetotal number of items placed in the bins, but there is no fairness restriction.We note that on accommodating sequences, the competitive ratio of UBPis no worse than the competitive ratio of the fair problem, since the optimalalgorithm serves all the requests and hence is fair. In general, however, thecompetitive ratio of UBP is not necessarily better than the competitive ratioof the fair problem since the optimal algorithms may be di�erent. In fact, inmany cases, considering unfair algorithms, i.e., performing admission control onthe requests, is the more challenging problem; see for example the results forthroughput routing in [1{3]. In particular, with the Unrestricted Bin Packingproblem, it is easier to di�erentiate between algorithms since both their com-petitive ratio and their competitive ratio on accommodating sequences can varyover a large range. This is in contrast to on-line algorithms for Fair Bin Packingwhere all of them must have both within a constant factor of each other.1.2 Accommodating Sequences and the Accommodating FunctionFor completeness, we de�ne the competitive ratio and the accommodating func-tion for Unrestricted Bin Packing. Note that Unrestricted Bin Packing is a max-imization problem, and all ratios are less than or equal to 1.2 In [6] where some of the results from [5] were �rst presented in a preliminary form,this problem was called Unit Price Bin Packing.



IIILet A (I) denote the number of items algorithm A accepts when given requestsequence I and let OPT(I) denote the number an optimal o�-line algorithm,OPT, accepts. An on-line algorithm, A , is c-competitive if there exists a constantb, such that A (I) � c � OPT(I) � b for all sequences I . The competitive ratioCR = supfc j A is c-competitiveg.Next, we introduce the restricted request sequences. We say that I is an �-sequence, if I could be packed in �n bins. We investigate the competitive ratio onsuch restricted sequences. To be precise, an on-line algorithm A is c-competitiveon �-sequences if c � 1 and there exists a constant b, such that for every �-sequence I , A (I) � c �OPT (I)� b. The accommodating function A is de�ned asA(�) = supfc j A is c-competitive on �-sequencesg.Thus, the accommodating function for an algorithm is the competitive ratioof that algorithm on �-sequences as a function of �. We refer to 1-squencesas accommodating sequences, since the optimal algorithm can accommodate allrequests in such a sequence. We use AR to denote the competitive ratio onaccommodating sequences.1.3 ResultsWe prove results on the Unrestricted Bin Packing problem for the usual com-petitive ratio, the competitive ratio on accommodating sequences and the ac-commodating function. We start with the competitive ratio.For the usual competitive ratio we prove the following:{ The algorithm Log (Section 2.2) has a competitive ratio of �( 1log k ).{ No on-line algorithm can have a competitive ratio which is better thanO( 1log k ), even when considering randomized algorithms.{ We observe that the competitive ratios of First-Fit and Worst-Fit are 1k .These results should be compared with the competitive ratio of any on-linealgorithm for the fair problem: they are all �( 1k ) [5].For the competitive ratio on accommodating sequences we prove:{ The competitive ratio of Log on accommodating sequences is �( 1log k ).{ We conclude from [5] that the competitive ratio of First-Fit on accommo-dating sequences is between 58 and 711 , since the fairness restriction on OPTis irrelevant when all of the items can be packed.{ We design an unrestricted algorithm, Unfair-First-Fit, whose competitiveratio on accommodating sequences is 23 , which is strictly higher than thecompetitive ratio of First-Fit on accommodating sequences.{ The competitive ratio of any on-line algorithm on accommodating sequencesis no better than 67 , even when considering randomized algorithms.Thus, according to the usual competitive ratio, Log is the better algorithm, andaccording to the competitive ratio on accommodating sequences, First-Fit is thebetter algorithm (the same is true for Log and Unfair-First-Fit).For the accommodating function we prove the following:



IV{ We design randomized and deterministic algorithms for which the accommo-dating function evaluated at any constant � is a constant, if the algorithmis given the value �.{ In contrast, we observe that First-Fit's (and Unfair-First-Fit's) accommo-dating function drops down to �( 1k ) for � � 1 + c, for any constant c > 0.The main technical e�ort is to prove the competitive ratio of the algorithmUnfair-First-Fit on accommodating sequences. The other results are easier toprove. Algorithm Log uses derandomization of the standard classify and selecttechnique. The proof of the lower bound for Log is similar to the lower boundproof in [2], and the proof of the general upper bound for the competitive ratiois analogous to the proof of the corresponding lemma in [1].Remark: In this paper, we assume that all items are integer-sized and thebins have size k. All of the results hold with the weaker assumption that thebins are unit-sized and the smallest item has size at least 1k . However, some ofthe results in [5] do not appear to hold with this assumption, so we use thestronger assumption for consistency.2 The Competitive Ratio2.1 First-Fit and Worst-FitIt is easy to see that the competitive ratio of First-Fit or Worst-Fit for Unre-stricted Bin Packing is 1k . For the upper bound, consider the sequence consistingof n items of size k followed by n � k items of size 1. For the lower bound, notethat if First-Fit (or Worst-Fit) rejects anything, it accepts at least n items, andno algorithm can accept more than n � k items. From that it follows that First-Fit's (and Worst-Fit's) accommodating function drops down to 1k for � � 2.Moreover, it is �( 1k ) for � � 1 + c, for any constant c > 0, by using (�� 1)n � k(instead of n � k) items of size 1.2.2 Algorithm LogIn the description of the algorithm Log, we assume that n > c dlog2 ke, for someconstant c > 1. If n is smaller, we can use simple randomization to achieve thesame results.Log divides the n bins into dlog2 ke groups G1; G2; : : : ; Gdlog2 ke. Let p =b ndlog2 kec and let s = n � p � dlog2 ke. Groups G1; G2; : : : ; Gs consist of p + 1bins and the rest of the groups consist of p bins. Let S1 = fx j k2 � x � kg, andSi = fx j k2i � x < k2i�1 g , for 2 � i � dlog2 ke. When Log receives an item oof size so 2 Si, it decides which group Gj of bins to pack it in by calculatingj = maxfj � i j there is a bin in Gj that has room for og. If j exists, o is packedin Gj according to the First-Fit packing rule. If not, the item o is rejected.Theorem 1. The competitive ratio of Log is �( 1log k ), even on accommodatingsequences.



VProof. Consider �rst the lower bound. For i 2 f1; 2; : : : ; dlog2 keg, let ni(I)denote the number of items of size s 2 Si accepted by OPT when given thesequence I of items. Since group Gi is reserved for items of size k2i�1 or smaller,the bins in group Gi will receive at least minf2i�1p; ni(I)g items. OPT canaccept at most 2in items with sizes in Si, i.e. ni(I) � 2in. Thus, 2i�1p >2i�1( ndlog2 ke � 1) � ni(I)( 12dlog2 ke � 12n ). Given the same sequence, Log packs atleast ni(I)( 12dlog2 ke � 12n ) items in Gi, for i 2 f1; 2; : : : ; dlog2 keg. So, for any I ,Log(I)OPT(I) > Xi2f1;2;::: ;dlog2 kegni(I)( 12dlog2 ke � 12n )Xi2f1;2;::: ;dlog2 kegni(I) = 12dlog2 ke � 12n;so CRLog > 12dlog2 ke � 12n .For the upper bound, consider the sequence I with n items of size k. Then,Log(I)OPT(I) = d ndlog2 keen < 1dlog2 ke + 1n;so ARLog < 1dlog2 ke + 1n . Since all sequences are considered for the competitiveratio, CRLog � ARLog, and the result follows. ut2.3 An Upper Bound on the Competitive RatioIn this section, we consider an arbitrary on-line algorithm A for UnrestrictedBin Packing and prove general bounds on how well it can do. First, note thatthe only possible lower bound on the competitive ratio, even on accommodatingsequences, is zero, since for the algorithm which simply rejects everything, theratio is equal to zero.Clearly, the algorithm Log does not have the best possible competitive ratioon accommodating sequences, but its competitive ratio is quite close to optimal.Theorem 2. Any deterministic or randomized algorithm for Unrestricted BinPacking has a competitive ratio of less than 2log2 k .Proof. Assume that k is a power of 2. The items are given in phases numbered0; 1; : : : ; r, r � log2 k. In phase i, n2i items of size k=2i are given. Clearly, anyoptimal o�-line algorithm will accept all n2r items in phase r.Let xi be the expected number of items that the on-line algorithm accepts inphase i, 0 � i � r, and xi = 0, r < i � log2 k. By the linearity of expectations,the expected total number of items accepted by the on-line algorithm isPlog2 ki=0 xiand the expected total volume of the items accepted is Plog2 ki=0 k2�ixi. Sincethere are only nk units of capacity overall, we get: Plog2 ki=0 k2�ixi � nk, orPlog2 ki=0 2�ixi � n.



VI We now show that r can be chosen such that Pri=0 xi < 2�n2rlog2 k , mean-ing that OPT will pack more than 12 log2 k times as many items as the on-linealgorithm. De�ning Sj = 2�jPji=0 xi, this statement can be reformulated as9r 2 f0; 1; : : : ; log2 kg : Sr < 2nlog2 k , which is proven by the following inequality.log2 kXj=0 Sj = X0�i�j�log2 k 2�jxi < log2 kXi=0 2 � 2�ixi � 2n. ut3 The Competitive Ratio on Accommodating Sequences3.1 An Upper BoundNow we turn to the competitive ratio on accommodating sequences. In [5], itwas shown that for k � 7, any deterministic Fair Bin Packing algorithm has acompetitive ratio on accommodating sequences of at most 67 . The same resultand essentially the same proof hold when the fairness restriction is removed,even for randomized algorithms.Theorem 3. For k � 7, any deterministic or randomized Unrestricted BinPacking algorithm has a competitive ratio of at most 67 , even on accommodatingsequences.Proof. Assume n is even. Consider an arbitrary on-line algorithm A . An adver-sary can proceed as follows: Give n items of size dk2 e � 1, and let q denote thenumber of bins which contain two items after this. In the case where E[q] < 2n7 ,the adversary gives n2 long requests of size k. The o�-line algorithm can packthe �rst n requests in the �rst n2 bins and thus accept all 3n2 items. On average,the on-line algorithm places two items in E[q] bins and has at most one item inevery other bin. The performance ratio is thus at most E[n+q]n+n2 = 2n+2q3n < 67 .In the case where E[q] � 2n7 , the adversary gives n requests of size bk2 c+ 1.The o�-line algorithm can pack the �rst n items one per bin and thus accept all2n items. The on-line algorithm must reject at least E[q] items on average. Theperformance ratio is thus at most E[2n�q]2n � 67 . ut3.2 Unfair-First-FitThe Algorithm. In Section 2.2, it was shown that there is an algorithm for Un-restricted Bin Packing which has a better competitive ratio than any algorithmfor Fair Bin Packing. It would be di�cult to do the same for the competitive ratioon accommodating sequences, since the best upper bound known is 67 for bothproblems. First-Fit's competitive ratio on accommodating sequences is knownto lie between 58 and 711 [6], and no algorithm for Fair Bin Packing is knownto have a better competitive ratio on accommodating sequences. The algorithmUnfair-First-Fit (UFF), presented below, is shown to have a competitive ratio onaccommodating sequences which is better than that of First-Fit as long as the



VIInumber of bins is at least 22; the ratio approaches 23 as n increases. What makesUnfair-First-Fit di�erent from First-Fit is that items larger than k2 are rejectedif enough items have been accepted already to maintain the desired ratio of 23 .Input: S = ho1; o2; : : : ; oniOutput: A, R, and a packing for those items in AA:= fo1g; R:= fg; S:= tail(S)while S 6= hio:= hd(S);S:= tail(S)if size(o) > k2 and jAjjAj+jRj+1 � 23R:=R [ fogelse if there is space for o in some binplace o according to the First-Fit ruleA:=A [ fogelse R:=R [ fogThe Competitive Ratio on Accommodating Sequences.Theorem 4. For n � 9, the competitive ratio of Unfair-First-Fit on accommo-dating sequences is more than 23 � 46n+ 3 . Thus, for n � 22, ARUFF > ARFF.Proof. The term \large" is used for items strictly larger than k2 , since they areconsidered in a special way by the algorithm. Let B denote the set of large itemsthat are alone in a bin in UFF's packing. Let s denote the size of the smallestitem in R. We divide the proof into two cases depending on the size of s. The�rst case is easy.Case 1: s > k2 : Since the smallest item in R is larger than k2 , the itemsin R [ B are all larger than k2 . Thus, since all items can be packed in n bins,jRj + jBj � n, or jRj � n � jBj. Furthermore, at most one small item can bealone in a bin: jAj � 2n� jBj � 1. Thus, the performance ratio isjAjjAj+ jRj � 2n� jBj � 12n� jBj � 1 + n� jBj � 2n� 13n� 1 = 23 � 19n� 3 :Case 2: s � k2 : Since we consider the competitive ratio on accommodatingsequences, an optimal o�-line algorithm, OPT, can pack all items in S. It maybe instructive to view the optimal packing as being done in 3 phases:1. UFF is run on S.2. The packed items are rearranged, creating room for the rejected items.3. The rejected items are packed.



VIIIThe packing after Phase 1 is denoted by PUFF, and the packing after Phase3 is denoted by POPT. Similarly, EUFF and EOPT are used to denote the totalempty space after Phase 1 and Phase 3 respectively. We assume without loss ofgenerality that no large item is moved during Phase 2.We divide the rejected items into two disjoint sets: Rb which contains largeitems, and Rs which contains small items. We use the following equation tobound the number of small items rejected.jRsj � 1s ��EUFF �EOPT � k2 jRbj�It is easy to see that jRj < n, since the empty space in any bin in PUFF isless than s and all rejected items have size at least s. Thus, if all bins containat least two items each, jAjjAj+jRj > 2n2n+n = 23 and we are through. Therefore,assume that some bins contain only one item. Since the empty space in any binis less than k2 , such items must be large. Thus, the items that are alone in a binare exactly the items in B.It is now clear that jAj � 2n � jBj. However, if some bins contain morethan two items, this lower bound is too pessimistic. Therefore, we try to \spreadout" the items a little more. Assume that the items in PUFF are labeled withconsecutive numbers in each bin according to their arrival time, i.e., the �rstitem in a bin is labeled 1, the next one is labeled 2, and so on. We split Phase 2into two Subphases, 2A and 2B, such that in Subphase 2A only items with labelshigher than 2 are moved and in Subphase 2B the remaining moves are performed.Note that the packing produced during Subphase 2A is only technical and usedfor counting purposes; it might be illegal in that some bins might contain a totalvolume larger than k.If some of the items moved during Subphase 2A are moved to bins containingitems from B, a better lower bound on jAj can now be obtained (Lemma 1). Theset of items that are still alone after Subphase 2A is divided into two sets: X ,containing the items that are still alone after Subphase 2B, and L, containingthose that are not. Any item that is alone after Subphase 2A was alone in PUFFas well. Since no such item can be combined with an item belonging to R, eachitem in X is also alone in POPT. Therefore, the bins containing an item from Xdo not contribute to EUFF �EOPT.Lemma 1. jAj � 2n� jLj � jX j.Proof. L [X is the set of objects that are alone after Subphase 2A. utThe following easy lemma is used to prove Lemma 3 below which, looselyspeaking, shows that if we cannot guarantee that most of the bins contain atleast two items after Subphase 2A, then much of the empty space in PUFF isused by large rejected items.Let t denote the time just after the last large item was accepted by UFF andlet At denote the set of items accepted at time t.Lemma 2. jRbj � 12 jAtj � 1.



IXProof. Since a large item was accepted just before time t, all items previouslyrejected are large items and therefore contained in Rb. Since the item was ac-cepted, jAtj�1jAtj�1+jRbj+1 < 23 . Solving for jRbj, we get jRbj > 12 jAtj � 32 , and sincejRbj must be integer, we get jRbj � 12 jAtj � 1. utAssume that at time t all small items accepted by UFF are marked.Lemma 3. jRbj � jLj+ 12 jX j � 1.Proof. It is shown that jAtj � 2jLj+ jX j, which will complete the proof, since,by Lemma 2, jRbj � 12 jAtj � 1. To each item o 2 L, a marked item is assignedin the following way. Since no item in L is alone after Phase 2, we can assumethat the bin bo containing o will receive at least one item, o0, labeled 1 or 2during Phase 2. If o0 is marked, it is assigned to o. Otherwise, it must be labeled2, since all items labeled 1 in bins before bo are marked. The item which waspacked below o0 in PUFF was alone at time t. Therefore, this item is not movedto any item in L. This item (labeled 1) can be assigned to o. In this way, everyitem in L has an item assigned which arrived before time t and which is not inL [X . Since L [X � At, jAtj � 2jLj+ jX j. utSubcase 2a: s � k3 . Since the smallest item in R has size s, the empty space ineach bin in PUFF is smaller than s. Thus, we can use s(n � jX j) as an upperbound on EUFF �EOPT:jRsj � 1s ��EUFF �EOPT � k2 jRbj� < 1s �s(n� jX j)� k2 jRbj�= n� jX j � k2s jRbj � n� jX j � 32 jRbj:Now, using Lemma 3, we getjRj = jRsj+ jRbj � n� jX j � 12 jRbj � n� jX j � 12 �jLj+ 12 jX j � 1�= n� 54 jX j � 12 jLj+ 12 :Thus, jAjjAj+ jRj � 2n� jLj � jX j2n� jLj � jX j+ (n� 54 jX j � 12 jLj+ 12 )� 2n� (jLj+ jX j) + 133n� 32 (jLj+ jX j) + 12 � 133n� 32 (jLj+ jX j) + 12� 23 � 212n� 3 ;since jLj+ jX j � 23 (n+1), which follows from the fact that the number of largeitems is at most n: n � jRbj + jLj + jX j � (jLj + 12 jX j � 1) + jLj + jX j �32 (jLj+ jX j)� 1.



XSubcase 2b: k3 < s � k2 . In this case, s(n� jX j) is not a good bound on EUFF �EOPT, but we will show that even in this case, EUFF�EOPT is \almost" boundedby k3 (n�jX j), if n � 9 and jAjjAj+jRj < 23 . Lemma 4 below is used for this purpose.Lemma 4. Let m be the number of bins containing at least c items in a First-Fit packing. If c � 1 and m � c+ 1, then the volume V of the items in these mbins is more than cc+1mk.Proof. Let C denote the set of bins containing at least c items, and, for any binb, let V (b) denote the sum of the sizes of the items in b.Suppose, for the sake of contradiction, that V � cc+1mk. Then there is a binb 2 C such that V (b) = cc+1k � ", " � 0. The size of any item placed in a bin tothe right of b must be greater than 1c+1k + ", since otherwise it would �t in b.Therefore any bin b0 2 C to the right of b has V (b0) > cc+1k + c" � cc+1k. Thismeans that there is only one bin b 2 C with V (b) � cc+1k, and if b is not therightmost nonempty bin in C, then V > (m�2) cc+1k+( cc+1k�")+( cc+1k+c") �m cc+1k. Thus, b must be the rightmost nonempty bin in C.One of the items in b must have size at most 1c+1k� "c . Since this item was notplaced in one of them�1 bins to the left of b, these must all be �lled to more thancc+1k+ "c . Thus, V > (m� 1)( cc+1k+ "c )+ ( cc+1k� ") = m cc+1k+(m� 1) "c � " �m cc+1k + c "c � " = m cc+1k, which is a contradiction. utAssuming n � 9, Lemma 4 combined with Lemma 5 below says that theaverage empty space in bins containing more than one item can be assumed tobe at most k3 .Lemma 5. Assume that n � 9 and s � k2 . Then, in PUFF, at least three binscontain two or more items.Proof. Assume for the sake of contradiction that fewer than three bins containat least two items. Since s � k2 , no bin contains a single item of size at mostk2 . Therefore, at least n � 2 bins contain large items, which all arrived beforetime t, i.e., At � n� 2. By Lemma 2, at least 12At � 1 large items are rejected.Adding these up and noting that there can be at most n large items, we getn� 2 + n�22 � 1 � n. Solving for n yields n � 8, which is a contradiction. utOur goal is now, roughly speaking, to show that the average empty space inall n bins is bounded by approximately k3 . Number the bins from left to right,and let l be the number of the bin in which the last large item was placed.Let e denote the largest empty space in bins containing an item from B. Inthe proof of Lemma 7 we will show a lower bound on the number of bins tothe right of l of approximately jBj2 . Each of these bins contains at least twoitems of size larger than e. Thus, even if e > k3 , the average empty space in theB-bins and the bins to the right of l will be bounded above by approximately�jBj e+ (k � 2e) jBj2 �/ 3jBj2 = kjBj2 � 23jBj = k3 . Lemma 4 combined with Lemma 6below says that we can assume that the rest of the bins have an average emptyspace of at most k3 .



XILemma 6. Assume that n � 9, s � k2 , e � k3 , and jAjjAj+jRj < 23 . Then, in PUFFat least three of the �rst l bins contain two or more items.Proof. We count the total number of items of size larger than e. Since jAj �2n � jBj, more than n � jBj2 items are rejected, because otherwise we have aperformance ratio of 23 , which is a contradiction. After bin l, there are n� l binscontaining at least two items each. All of the rejected items and those in the lastn�l bins are larger than e and there are more than n� jBj2 +2(n�l) of them. Binscontaining items from B cannot accept any of these items, and only two can beput together since e � k3 . Thus, n� jBj2 +2(n� l) � 2(n�jBj). Solving for l, weget l � n2 + 34 jBj. This shows that at least n2 � jBj4 bins to the left of l contain twoor more items. By Lemma 5, jBj � n� 3. Thus, n2 � jBj4 � n2 � n�34 = n+34 � 3,since n � 9. utLemma 7. Assume that n � 9, s � k2 , and jAjjAj+jRj < 23 . Then, EUFF�EOPT <(n� jX j)k3 + k2 .Proof. In the case where e � k3 , we have an upper bound of k3 on the averageempty space in bins with one item as well as bins with more items. Thus, EUFF�EOPT � (n�jX j)k3 . Now, assume that e > k3 . First we show an upper bound on l.At time t no two bins can contain only one small item each. Therefore, jAtj � 2l�jBj�1. The total number of large items is jRbj+jBj � 12 jAtj�1+jBj � l+ jBj2 � 32 .Since OPT must pack all these items in separate bins, we have l+ jBj2 � 32 � n.De�ne z � 0 such that n�l = z+ jBj2 � 32 . Since every bin after bin l has two itemsof size greater than e, we have the following upper bound on the empty space inthese n�l bins and the bins with an item fromBnX : e(jBj�jX j)+(k�2e)(n�l) =ejBj�ejX j+(k�2e)(z+ jBj2 � 32 ) < ejBj� k3 jX j+(k�2e) jBj2 +(k�2e)(z� 32 ) =kjBj2 � k3 jX j + (k � 2e)(z � 32 ) � kjBj2 � k3 jX j + (k � 2e)z < kjBj2 � k3 jX j + k3 z.Among the remaining bins, l � jBj = n � z � 3jBj2 + 32 bins do not containan item from X . All of these bins have at least two items, and according toLemma 6, enough of these bins exist for us to conclude, by Lemma 4, that theempty space is at most k3 (n� z � 3jBj2 + 32 ). The total empty space is then lessthan kjBj2 � k3 jX j+ k3z + k3 (n� z � 3jBj2 + 32 ) = (n� jX j+ 32 )k3 . utThen, by Lemma 7, if n � 9,jRsj � 1s ��EUFF �EOPT � k2 jRbj� < 1s �k3 (n� jX j) + k2 � k2 jRbj�� n� jX j+ 32 � 32 jRbj:Using Lemma 3 as in Subcase 2a, we getjRj < n� jX j+ 32 � 12(jLj+ 12 jX j � 1) = n� 54 jX j � 12 jLj+ 2; for n � 9:



XIIThus, jAjjAj+ jRj � 2n� jLj � jX j2n� jLj � 54 jX j � 12 + 2� 2n� (jLj+ jX j) + 433n� 32 (jLj+ jX j) + 2 � 433n� 32 (jLj+ jX j) + 2= 23 � 46n+ 3 ; for n � 9:This bound is lower than the lower bounds obtained in Case 1 and Subcase 2afor all n. It is shown in [5] that 711 is an upper bound on FF's competitive ratioon accommodating sequences. For n � 22, 23 � 46n+3 > 711 . Thus, for n � 22,UFF has a better competitive ratio than FF on accommodating sequences. utRemark: It is easy to see that UFF's competitive ratio is 1k . If it is less than23 , then R is nonempty, so at least n items are accepted. OPT can accept atmost nk items, so the competitive ratio is at least 1k . For the upper bound, if32n items of size k followed by nk items of size 1 are given, UFF will accept nitems of size k, while OPT will accept all of the small ones, giving a ratio of 1k .Note that this means that AUFF(�) = 1k , for � � 52 . Furthermore, if 2n items ofsize k2 are given, followed by (�� 1)nk items of size 1, UFF will accept 2n itemsof size k2 , while OPT can accept 2n + (� � 1)n(k � 2) items, giving a ratio of22+(��1)(k�2) . Thus, for any constant c > 0, AUFF(�) 2 �( 1k ), if � � 1 + c.4 The Accommodating FunctionSuppose that, for each sequence I of items, the on-line algorithm knows, before-hand, the number �n of bins needed to pack the items in I (or a good upperbound on �). Then an accommodating function can be achieved for which thefunction value is constant (that is, independent of k and n) when evaluated ata constant �.4.1 A Randomized AlgorithmOne way of exploiting the extra knowledge is to use �n \virtual" bins. At thebeginning the randomized algorithm R randomly decides which n of the �nvirtual bins are going to correspond to the \real" n bins. Call the set of thesen virtual bins BA and the rest of the �n virtual bins BR. An algorithm A witha \good" competitive ratio on accommodating sequences ARA is used to decidewhere the actual items would be packed in the �n virtual bins. When A packsan item in a bin in BA, the algorithm R accepts the item and places it in thecorresponding real bin. All other items are rejected.The expected fraction of the items which R accepts is at least ARA� , since onaverage jBAjjBAj+jBRj = n�n = 1� of the items accepted by A will be packed in BA.



XIIIUsing Unfair-First-Fit, this gives A(�) � 23� (asymptotically), which is constantwhen � is.Another way of using virtual bins is to use an algorithm that is known to beable to pack any 1-sequence of items in �n bins for some constant �. In this case,��n virtual bins are used. According to [7], for the algorithm Harmonic+1, � �1:588720. Using Harmonic+1 for packing items in the virtual bins and randomlychoosing the n bins for BA gives A(�) � 11:58872� � 0:629� . According to [7], evenfor randomized algorithms, � � 1:536. Since 11:536 � 0:651, this approach cannotgive an accommodating function as good as the method described above using�n virtual bins can.Remark: Amos Fiat [11] has noted that the technique described above can beused more generally, for many maximization problems, to give good values forthe accommodating function when � is small. If an algorithm A with competitiveratio on accommodating sequences ARA is used with a quantity �n of the virtualresource, and a quantity n of these virtual resources are randomly chosen andused on the real resources, then the algorithm will achieve an accommodatingfunction of A(�) � ARA� .4.2 A Deterministic AlgorithmIt is also possible for a deterministic algorithm to have an accommodating func-tion such that the function value of the accommodating function is constant(that is, independent of k and n) when evaluated at a constant � as long asn � 5. The following algorithm D has this property.D divides the possible item sizes into dlog2 ke intervals, S1; S2; : : : ; Sdlog2 ke,de�ned by S1 = fx j k2 � x � kg, and Si = fx j k2i � x < k2i�1 g, for 2 � i �dlog2 ke. Thus, for any two items with sizes sa and sb belonging to the same sizeinterval, sa � 12sb.For each i, 1 � i � dlog2 ke, D does the following. It accepts the �rst itemwith size s 2 Si. After that it accepts every �� th item with size s 2 Si, for agiven constant �, and rejects all other items with sizes in Si. The accepted itemsare packed according to the First-Fit packing rule and the constant � will bechosen as described below, so that D has no problem doing so. Since D acceptsevery �� th item in each size interval, A(�) � �� .Let O be the set of all the items given, let OF be the set of items consistingof the �rst item in each size interval and let O0 = O n OF . Let A be the set ofitems accepted by D and let A0 = A nOF . For any set S of items, let the volumeof S, denoted by V (S), be the sum of the sizes of the items in S.It follows from Lemma 4 that the volume of the items in any First-Fit packingusing n bins is more than nk2 . Thus, if � is chosen such that V (A) � nk2 , D willbe able to pack all the accepted items.To determine an appropriate value for �, �rst notice that V (O0) � V (O) ��nk, since all the items can �t in �n bins, and V (O0) > 12 ��V (A0), since forevery item o 2 A0, �� � 1 items, each of size s � 12 size(o), have been rejected.
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