Exercise Sheet, Diophantine Approximation, Fall 2021

Notations and assumptions. Vol (and sometimes Vol_n) denotes the Lebesgue measure on \mathbb{R}^n . Write $\mathbb{R}_+ = (0, \infty)$, and for $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$, denote by φ -approx the set of $\theta \in \mathbb{R}$ for which there are infinitely many $p \in \mathbb{Z}$, $q \in \mathbb{N}$ such that $\left| \theta - \frac{p}{q} \right| < \varphi(q)$. The distance from $x \in \mathbb{R}$ to the nearest integer is denoted by $\langle x \rangle$ or by dist (x, \mathbb{Z}) . Write $x = \lfloor x \rfloor + \{x\}$ for the decomposition of $x \in \mathbb{R}$ to its fractional part and integer part, that is $\lfloor x \rfloor \in \mathbb{Z}$ and $\{x\} \in [0, 1)$. The Hausdorff dimension of a set A is denoted by dim(A). The standard inner product of two vector $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ is denoted by $\langle \mathbf{x}, \mathbf{y} \rangle$.

1. Let $\|\cdot\|$ and $\|\cdot\|'$ denote norms on \mathbb{R}^m and \mathbb{R}^n respectively. Let

$$V = \operatorname{Vol}_{m} \left(\{ x \in \mathbb{R}^{m} : ||x|| \le 1/2 \} \right) \cdot \operatorname{Vol}_{n} \left(\{ y \in \mathbb{R}^{n} : ||y||' \le 1/2 \} \right).$$

Show that there is $Q_0 > 0$ such that for all $X \in M_{m,n}(\mathbb{R})$ and any $Q > Q_0$, there are $\mathbf{q} \in \mathbb{Z}^n \setminus \{0\}$, $\mathbf{p} \in \mathbb{Z}^m$ such that $\|\mathbf{q}\|' \leq Q$ and $\|X\mathbf{q} - \mathbf{p}\| < V^{-1/m}Q^{-n/m}$. Give an explicit formula for Q_0 , and prove your formula is optimal.

2. Let $\operatorname{GL}_2(\mathbb{Z})$ and $\operatorname{SL}_2(\mathbb{Z})$ denote respectively the group of integer 2×2 matrices with integer coefficients and determinant ± 1 (resp., determinant ± 1). Let

$$\alpha = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \beta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \gamma = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Prove that $\{\alpha^{\pm 1}, \beta^{\pm 1}\}$ generate $\operatorname{GL}_2(\mathbb{Z})$, and that $\{\alpha^{\pm 1}, \gamma^{\pm 1}\}$ generate $\operatorname{SL}_2(\mathbb{Z})$.

3. Let $d \in \mathbb{N}$, $d \geq 2$. Fix a norm $\|\cdot\|$ in \mathbb{R}^d . For $\theta \in \mathbb{R}^d$ we say that $(\mathbf{p}, q) \in \mathbb{Z}^d \times \mathbb{N}$ is a *best approximation* if for all $\mathbf{p}' \in \mathbb{Z}^d, q' \in \mathbb{N}$, with $q' \leq q$ and $(\mathbf{p}', q') \neq (\mathbf{p}, q)$, we have $\|q\theta - \mathbf{p}\| < \|q'\theta - \mathbf{p}'\|$. Let (\mathbf{p}_j, q_j) denote the sequence of best approximations for θ , ordered so that $q_1 \leq q_2 \leq \cdots$.

- Characterize the set of θ for which the sequence of best approximations is finite.
- Show that there is C > 0 (depending on d and the norm, but not on θ), such that for all j, q_j^{1/d} ||q_jθ − **p**_j|| < C.
 Show that for any j, any θ, and any norm, the vectors **u**_j =
- Show that for any j, any θ , and any norm, the vectors $\mathbf{u}_j = (\mathbf{p}_j, q_j), \mathbf{u}_{j+1} = (\mathbf{p}_{j+1}, q_{j+1})$ are a *primitive pair*; that is, they are linearly independent and any vector in $\mathbb{Z}^{d+1} \cap \operatorname{span}(\mathbf{u}_j, \mathbf{u}_{j+1})$ can be written as a linear combination of $\mathbf{u}_j, \mathbf{u}_{j+1}$ with integer coefficients.

• Give an example showing that three successive best approximations need not be linearly independent.

4. With the notation of Question 3, let n = d + 1, and let $\mathcal{L}_n =$ $\operatorname{SL}_n(\mathbb{R})/\operatorname{SL}_n(\mathbb{Z})$ denote the space of *n*-dimensional lattices of covolume one. Let $a_t = \text{diag}(e^t, \ldots, e^t, e^{-dt})$ and let \mathcal{S} denote the set of $\Lambda \in \mathcal{L}_n$ such that Λ contains a vector $\mathbf{x} = (x_1, \ldots, x_d, 1)$ which is primitive, and the set

$$\{(y_1, \dots, y_n) : ||(x_1, \dots, x_d)|| \le ||(y_1, \dots, y_d)||, |y_n| \le 1\}$$

does not intersect $\Lambda \smallsetminus \{0, \pm \mathbf{x}\}$. For $\theta = (\theta_1, \dots, \theta_d) \in \mathbb{R}^d$, let

$$\Lambda_{\theta} \stackrel{\text{def}}{=} \{ (p_1 - q\theta_1, \dots, p_d - q\theta_d, q) : p_1, \dots, p_d, q \in \mathbb{Z} \}.$$

Show that for each θ , the best approximations (\mathbf{p}_j, q_j) and the numbers $t_j \stackrel{\text{def}}{=} \frac{1}{d} \log q_j$ satisfy $\{t_j\} = \{t > 0 : a_t \Lambda_\theta \in \mathcal{S}\}$, and that $a_{t_j} \Lambda_\theta$ contains a primitive vector $\left(q_j^{1/d}(q_j\theta_1-p_1),\ldots,q_j^{1/d}(q_j\theta_d-p_d),1\right)$, where $\mathbf{p}_j =$ $(p_1,\ldots,p_d).$

5. Let

$$\mathcal{F}_n \stackrel{\text{def}}{=} \left\{ \frac{p}{q} : q \in \mathbb{N}, \ p \in \{0, \dots, q\}, \ \gcd(p, q) = 1, \ q \le n \right\}$$

denote the Farey set of level n.

- Prove that lim_{n→∞} #*F_n*/_{n²} = 3/π².
 Suppose that ^p/_q ∈ *F_n* ∖ *F_{n-1}*, and let ^{p'}/_{q'} < ^p/_q < ^{p''}/_{q''} be the neighbors of ^p/_q in *F_n*, when the elements of *F_n* are given in increasing order. Suppose that $\frac{p}{q} = [a_1, \ldots, a_N]$ (as a finite continued fraction). What are the continued fraction expansions of $\frac{p'}{q'}, \frac{p''}{q''}$?
- Suppose $\frac{p'}{q'} < \frac{p}{q}$ are two neighbors in \mathcal{F}_n . Prove that $\frac{p'+p}{q'+q} \in \mathcal{F}_{n_1}$ for some $n_1 > n$.

6. Let $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ be a function such that $x \mapsto x^2 \varphi(x)$ is nonincreasing, and $\lim_{x\to\infty} x^2 \varphi(x) = 0$. For c > 0, denote $\varphi_c(x) = c\varphi(x)$. Show that there are uncountably many $\theta \in \mathbb{R}$ such that $\theta \in \varphi$ -approx, but for any $c \in (0, 1)$, $\theta \notin \varphi_c$ -approx.

7. Suppose $\psi : \mathbb{N} \to \mathbb{R}_+$ is a non-increasing function satisfying $\sum_{q=1}^{\infty} \psi(q) = \infty$. Show that there is non-increasing function $\bar{\psi} : \mathbb{N} \to \mathbb{N}$ \mathbb{R}_+ such that $\sum_{q=1}^{\infty} \bar{\psi}(q) = \infty$ and for all $b \in \mathbb{N}$, $\lim_{q \to \infty} \frac{\psi(q)}{\psi(bq)} = 0$. 8. Let

$$\beta_n \stackrel{\text{def}}{=} \begin{cases} \frac{1}{n} & \text{if } n \text{ is prime} \\ 0 & \text{otherwise} \end{cases}$$

 $\mathbf{2}$

and let

$$\gamma_{\ell} \stackrel{\text{def}}{=} \begin{cases} \frac{1}{k} & \text{if } \ell = 10^k, \text{ where } k \in \mathbb{N} \\ 0 & \text{otherwise.} \end{cases}$$

Show that for a.e. $x \in \mathbb{R}$ (with respect to Lebesgue measure), there are infinitely many n for which $\langle nx \rangle < \beta_n$ and infinitely many ℓ for which $\langle \ell x \rangle < \gamma_{\ell}$.

9. Let m, n be positive integers with $n \ge 2$. Suppose $\varphi : \mathbb{N} \to [0, \infty)$ is non-increasing and $\sum_{r=1}^{\infty} r^{n-1}\varphi(r)^m = \infty$. Let $\widehat{\mathbb{Z}^n}$ denote the set of $\mathbf{q} = (q_1, \ldots, q_n) \in \mathbb{Z}^n$ which are primitive and satisfy $q_1 \ge 1$. Prove that $\sum_{\mathbf{q} \in \widehat{\mathbb{Z}^n}} \varphi(\|\mathbf{q}\|)^m = \infty$.

10. A number $x \in \mathbb{R}$ is called a *Liouville number* if for any N > 0there are infinitely many distinct rationals $\frac{p}{q}$ such that $\left|x - \frac{p}{q}\right| < \frac{1}{q^N}$. A continuous bijection $h : \mathbb{R} \to \mathbb{R}$ with continuous inverse is called a *homeomorphism of* \mathbb{R} . Show that for any collection h_1, h_2, \ldots of homeomorphisms of \mathbb{R} , there is $x \in \mathbb{R}$, such that the numbers $h_1(x), h_2(x), \ldots$ are all Liouville numbers. Show that there is $x \in \mathbb{R}$ such that x^k is a Lioville number for any $k \in \mathbb{N}$.

11. For c > 0, let

$$\operatorname{BA}_{c} \stackrel{\mathrm{def}}{=} \left\{ x \in \mathbb{R} : \forall (q, p) \in \mathbb{N} \times \mathbb{Z}, \left| x - \frac{p}{q} \right| \geq \frac{c}{q^{2}} \right\}.$$

Prove that for every c > 0, dim(BA_c) < 1.

12. Let $BA = \bigcup_{c>0} BA_c$. Say that a finite compactly supported measure μ on \mathbb{R} is α -decaying if there is C > 0 such that for all $x \in \mathbb{R}$ and all $\varepsilon, r \in (0, 1)$,

$$\mu(B(x,\varepsilon r)) \le C\varepsilon^{\alpha}\mu(B(x,r)).$$

Prove that there is an α -decaying probability measure μ on \mathbb{R} , such that $\mu(BA) = 1$.

13. Recall that a measure μ on \mathbb{R}^d is α -absolutely decaying if there are positive C, D such that for all $x \in \operatorname{supp} \mu$ and all $r \in (0, 1)$,

$$\mu(B(x,r)) \ge D\mu(B(x,3r))$$

and for any $x \in \operatorname{supp} \mu$, any $0 < \varepsilon \le r \le 1$, and any affine hyperplane L,

$$\mu(L^{(\varepsilon)} \cap B(x,r)) \le C\left(\frac{\varepsilon}{r}\right)^{\alpha} \mu(B(x,r)), \quad \text{where } L^{(\varepsilon)} \stackrel{\text{def}}{=} \bigcup_{x \in L} B(x,\varepsilon).$$

For i = 1, 2, let $d_i \in \mathbb{N}$ and let μ_i be a finite compactly supported measure on \mathbb{R}^{d_i} which is α_i -absolutely decaying. Prove that $\mu_1 \times \mu_2$ is min (α_1, α_2) -absolutely decaying on $\mathbb{R}^{d_1+d_2}$.

14. Define the Sierpinski carpet S as follows. Let $K_0 \stackrel{\text{def}}{=} [0,1]^2$ and for $(i,j) \in \mathcal{I} \stackrel{\text{def}}{=} \{0,1,2\}^2 \smallsetminus \{(1,1)\}$, let

$$T_{(i,j)}: K_0 \to K_0, \ T_{(i,j)}(x) = \frac{x}{3} + \left(\frac{i}{3}, \frac{j}{3}\right).$$

Define K_n inductively as follows. Each K_n is a union of 8^n closed squares of sidelengths 3^{-n} . If $S_i^{(n)}$ is one of the squares comprising K_n , and $S_i^{(n)} = T(K_0)$ for an affine map $T : \mathbb{R}^2 \to \mathbb{R}^2$ of the form $T(x) = 3^{-n}(x) + y$, then the squares $T \circ T_{(i,j)}(K_0)$, where $(i, j) \in \mathcal{I}$, are 8 of the squares comprising K_{n+1} . Here is a picture of K_3 .

Finally let $\mathcal{S} = \bigcap_{n=0}^{\infty} K_n$.

• Show that \mathcal{S} is compact, satisfies

$$S = \bigcup_{(i,j)\in\mathcal{I}} T_{(i,j)}(S), \qquad (0.1)$$

and is the unique non-empty compact subset of \mathbb{R}^2 satisfying (0.1).

- Show that there are uncountably many $x = (x_1, x_2) \in S$ such that x_1, x_2 are both Liouville numbers.
- Show that $\dim(\mathcal{S}) = \frac{\log 8}{\log 3}$
- Let $\mu_{\mathcal{S}}$ be the restriction to \mathcal{S} , of the dim(\mathcal{S})-dimensional Hausdorff measure. Show that $\mu_{\mathcal{S}}$ is a finite and positive measure.
- Show that $\mu_{\mathcal{S}}$ satisfies $\mu_{\mathcal{S}} = \frac{1}{8} \sum_{(i,j) \in \mathcal{I}} (T_{(i,j)})_* \mu_{\mathcal{S}}$.
- Show that VWA has measure zero with respect to this measure.

4

15. Let $d \geq 2$, let I = [0,1], and let Vol denote the restriction of Lebesgue measure on \mathbb{R} to I. Let $T : I \to I$ be the map $T(x) = \{dx\}$ and let $J_n \subset I$, $n \in \mathbb{N}$ be a sequence of intervals such that $\Phi(N) \stackrel{\text{def}}{=} \sum_{n=1}^N \operatorname{Vol}(J_n) \to_{N \to \infty} \infty$. Assume $\Phi(N) \to_{N \to \infty} \infty$. Show that for Vol-a.e. $x \in I$, and for any $\varepsilon > 0$,

$$\{1 \le n \le N : T^n(x) \in J_n\} = \Phi(N) + O\left(\Phi(N)^{1/2+\varepsilon}\right),\$$

as $N \to \infty$.

16. Suppose M, ε are positive real numbers and $d \in \mathbb{N}$, with $M \geq \frac{2^d}{\varepsilon^d}$. Let $\mathbb{T}^d \stackrel{\text{def}}{=} \mathbb{R}^d / \mathbb{Z}^d$, equipped with the metric

$$d(\pi(x), \pi(y)) \stackrel{\text{def}}{=} \min_{p \in \mathbb{Z}^d} \|x - (y + p)\|_{\infty},$$

where $x, y \in \mathbb{R}^d$ and $\pi : \mathbb{R}^d \to \mathbb{T}^d$ is the projection. Let

$$C_d(\varepsilon, M) \stackrel{\text{def}}{=} \left\{ \theta \in \mathbb{T}^d : (m\theta)_{0 \le m \le M} \text{ is not } \varepsilon \text{-dense in } \mathbb{T}^d \right\}.$$

Show that

$$C_d(\varepsilon, M) \subset \bigcup_{\mathbf{p}/q \in S} B\left(\frac{\mathbf{p}}{q}, \frac{1}{qM^{1/d}}\right)$$

where S is the set of all rational vectors $\mathbf{p}/q \in \mathbb{T}^d$ such that

$$1 \le q \le M$$
 and $\frac{\mathbf{p}}{q} \in C_d\left(\frac{\varepsilon}{2}, q\right)$.

17. Let η_1, η_2, \ldots , be a sequence of real numbers. For any $\tau \geq 2$, and any $\eta \in \mathbb{R}$, let

$$A(\tau,\eta) = \left\{ x \in \mathbb{R} : \text{ for infinitely many } (p,q) \in \mathbb{Z} \times \mathbb{N}, \left| x - \frac{p}{q} - \eta \right| < \frac{1}{q^{\tau}} \right\}.$$

Compute the Hausdorff dimension of the sets $\mathcal{A}(\tau, \eta_1), A(\tau, \eta_1) \cap A(\tau, \eta_2), \bigcap_i A(\tau, \eta_i)$.

18. For (p,q) a primitive vector in \mathbb{Z}^2 , the shortest solution of the gcd equation for (p,q) is the vector (k,ℓ) of minimal Euclidean norm, satisfying $kp + \ell q = 1$, and the signed length ratio between two nonzero vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ is

$$LR(\mathbf{x}, \mathbf{y}) \stackrel{\text{def}}{=} \pm \frac{\|\mathbf{y}\|}{\|\mathbf{x}\|},$$

where the sign is taken to be positive if and only if the angle between \mathbf{x} and \mathbf{y} is in $[0, \pi/2)$. Also let

$$\rho(\mathbf{x}, \mathbf{y}) \stackrel{\text{def}}{=} \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\|^2}.$$

- Suppose $\mathbf{x} = (p,q) \in \mathbb{Z}^2$ is primitive and (k,ℓ) is the shortest solution of the gcd equation for (p,q). Write $\mathbf{y}_{\mathbf{x}} \stackrel{\text{def}}{=} (-\ell,k)$. Show that the vectors $\mathbf{x}, \mathbf{y}_{\mathbf{x}}$ are a basis for the lattice \mathbb{Z}^2 .
- Show that as $\|\mathbf{x}\| \to \infty$, for $\mathbf{x} \in \mathbb{Z}^2$ primitive,

$$|\mathrm{LR}(\mathbf{x}, \mathbf{y}_{\mathbf{x}}) - \rho(\mathbf{x}, \mathbf{y}_{\mathbf{x}})| \to 0.$$

- Show that for any $\mathbf{x} \in \mathbb{Z}^2$ primitive, $\rho(\mathbf{x}, \mathbf{y}_{\mathbf{x}}) \in \left[-\frac{1}{2}, \frac{1}{2}\right]$.
- Prove that there is a Borel probability measure ν on $I \stackrel{\text{def}}{=} \left[-\frac{1}{2}, \frac{1}{2}\right]$, which is absolutely continuous with respect to the restriction of Lebesgue measure to I, such that for any interval $J \subset I$, and almost every $x \in \mathbb{R}$, if $\mathbf{x}_k \stackrel{\text{def}}{=} (p_k, q_k) \in \mathbb{Z}^2$ is such that $gcd(p_k, q_k) = 1, q_k \geq 1$, and $\frac{p_k}{q_k}$ are the continued fraction convergents of x, and $\mathbf{y}_k \stackrel{\text{def}}{=} \mathbf{y}_{\mathbf{x}_k}$ then

$$\frac{1}{N} \# \{ 1 \le k \le N : \rho(\mathbf{x}_k, \mathbf{y}_k) \in J \} \to_{N \to \infty} \nu(J).$$

• Write down a formula for the measure $\nu.$

 $\mathbf{6}$