Exercise sheet - Introduction to Ergodic Theory. Tel Aviv University, Fall 2023

Definitions and notations.

- For $x \in \mathbb{R}$, we write $\lfloor x\rfloor=\max \{k \in \mathbb{Z}: k \leqslant x\}$.
- Given a set X, a collection $\mathcal{B} \subset 2^{X}$ is called an algebra of sets if it contains the empty set, and is closed under finite unions, intersections and complements. A function $\mu: \mathcal{B}$ to $[0, \infty]$ is called a finitely additive probability if $\mu(X)=1$ and μ is additive on finite disjoint unions.

1.

(i) Let X be a set, $\mathcal{B} \subset 2^{X}$ an algebra of sets, μ a finitely additive probability on \mathcal{B}. Let $\left(A_{n}\right)_{n=0}^{\infty}$ be a sequence of sets in \mathcal{B} such that for any $n \geqslant m \geqslant 0$,

$$
\begin{equation*}
\mu\left(A_{n} \cap A_{m}\right)=\mu\left(A_{0} \cap A_{n-m}\right) \tag{1}
\end{equation*}
$$

and suppose $a=\mu\left(A_{0}\right)>0$. Prove that there is an integer

$$
\begin{equation*}
k \leqslant\left\lfloor\frac{1}{a}\right\rfloor \tag{2}
\end{equation*}
$$

such that $\mu\left(A_{0} \cap A_{k}\right)>0$. Prove that (2) is sharp, that is, the conclusion need not hold for smaller k.
(ii) Prove that for any $j \geqslant 1$ and any $a>0$, there is $k=k(j, a) \geqslant 1$, such that for any $X, \mathcal{B}, \mu,\left(A_{n}\right)$ with $\mu\left(A_{0}\right)=a$ and satisfying

$$
\begin{gathered}
0 \leqslant i_{1} \leqslant \cdots \leqslant i_{j} \leqslant k \\
\Longrightarrow \quad \mu\left(A_{i_{1}} \cap \cdots \cap A_{i_{j}}\right)=\mu\left(A_{0} \cap A_{i_{2}-i_{1}} \cap \cdots \cap A_{i_{j}-i_{1}}\right),
\end{gathered}
$$

there are $1 \leqslant i_{1}<i_{2}<\cdots<i_{j} \leqslant k$ with $\mu\left(A_{0} \cap A_{i_{1}} \cap \cdots \cap A_{i_{j}}\right)>$ 0 . Find the sharp value of $k(j, a)$.
(iii) Prove or disprove: for any $j \geqslant 1$ and any $a>0$, there is $k=k(j, a) \geqslant 1$, such that for any $X, \mathcal{B}, \mu,\left(A_{n}\right)$ with $\mu\left(A_{0}\right)=a$ and satisfying (1), there are $i_{1}<\cdots<i_{j} \leqslant k$ with $\mu\left(A_{0} \cap A_{i_{1}} \cap\right.$ $\left.\cdots \cap A_{i_{j}}\right)>0$.
(iv) Show that for any $a, \lambda \in(0,1)$ there is $c=c(\lambda, a)>0$ such that for any $X, \mathcal{B}, \mu,\left(A_{n}\right)$ as in (i), with $a=\mu\left(A_{0}\right)>0$, there is $k \in \mathbb{N} \cap(0, c)$ such that $\mu\left(A_{0} \cap A_{k}\right) \geqslant \lambda a^{2}$. Show that this cannot be improved to $\lambda=1$.
2. Let X be a compact metric space, let $T: X \rightarrow X$ a homeomorphism, and let $x_{0} \in X$. The α-limit set (respectively, the ω-limit set) of x_{0} is defined to be the set of all accumulation points of the sequence $\left\{T^{n} x_{0}: n=-1,-2, \ldots\right\}$ (resp., of the sequence $\left\{T^{n} x_{0}: n=1,2, \ldots\right\}$).

The wandering set is the set of all $x \in X$ for which there is a neighborhood U such that the sets $\left\{T^{-n}(U): n \in \mathbb{N}\right\}$ are disjoint, and the non-wandering set is the complement of the wandering set.
(i) Find an example of (T, X) and x_{0} as above for which the α limit set and the ω limit set are distinct.
(ii) Find an example as in (i) for which the wandering set is empty.
(iii) Find an example of (T, X) and x_{0} for which the wandering set is empty and for which the α-limit set is properly contained in the ω-limit set.
(iv) Show that the non-wandering set of (T, X) is nonempty, T invariant and compact. Show the same properties for the α limit set and ω-limit set of any x_{0}.
(v) Let A_{0} be the non-wandering set of (T, X), and inductively define A_{n+1} to be the non-wandering set of the restriction of T to A_{n}. Give an example showing that $A_{1} \neq A_{0}$. Show that any T-invariant Borel probability measure on K gives measure 1 to A_{n} for any n.
3. Let $\mathbf{a} \in\{0,1\}^{\mathbb{N}}$ be the Thue-Morse sequence, defined as the limit of the following sequence of finite sequences:

$$
0,01,0110,01101001,0110100110010110, \ldots
$$

(at each stage, every appearance of 0 is replaced with 01 and every appearance of 1 is replaced with 10).

- Prove that using the above rule, every finite word is a prefix of every subsequent word, and thus the infinite sequence a is well-defined.
- Let $\mathbf{b} \in\{0,1\}^{\mathbb{Z}}$ denote the bi-infinite word whose entries on \mathbb{N} coincide with the entries of \mathbf{a}, and whose entries on $\{\ldots,-2,-1,0\}$ are all 0 . Let $T:\{0,1\}^{\mathbb{Z}} \rightarrow\{0,1\}^{\mathbb{Z}}$ denote the shift and let Ω denote the set of accumulation points of the sequence $\left\{T^{n} \mathbf{b}: n=1,2, \ldots\right\}$. Prove that Ω is a minimal subset of $\left(T,\{0,1\}^{\mathbb{Z}}\right)$.

4. Let $(G,+)$ be an abelian lesc group and X a compact metric G-space. We say that a subset Y of G is syndetic if there is a compact subset $K \subset G$ such that $G=Y+K$. We say that the system (G, X) is pointwise minimal if for every $x \in X, \overline{G x}$ is a minimal subset of X. Prove that (G, X) is pointwise minimal if and only if for any $x_{0} \in X$ and any neighborhood V of x_{0}, the set $\left\{g \in G: g x_{0} \in V\right\}$ is syndetic.
5. Let G be an lcsc group and let X be an lcsc space such that G acts on X continuously.
(1) Suppose there is $x_{0} \in X$ such that the orbit $G x_{0}$ is dense. Prove that the collection of points in X whose orbit is dense contains a dense G_{δ} subset of X.
(2) Let μ be an ergodic quasi-invariant Borel measure, where quasiinvariant means that

$$
A \text { Borel, } \mu(A)=0 \Longrightarrow \forall g \in G, \mu(g(A))=0
$$

and ergodic means
A Borel and G-invariant $\Longrightarrow \mu(A)=0$ or $\mu(G \backslash A)=0$.

- Suppose $\mu(U)>0$ for every non-empty open U. Prove that the orbit of a.e. $x_{0} \in X$ is dense.
- Suppose Y is lcsc and $f: X \rightarrow Y$ is a G-invariant Borel map. Prove that f is constant a.e.

6. Let (X, \mathcal{B}, μ, T) be a p.p.s. on a Borel probability space.

- Prove that for any $B \in \mathcal{B}$ and any $\varepsilon>0$, the set

$$
\left\{n \in \mathbb{N}: \mu\left(T^{-n}(B) \cap B\right) \geqslant \mu(B)^{2}-\varepsilon\right\}
$$

has bounded gaps.

- Show that the p.p.s. is ergodic if and only if for any $A, B \in \mathcal{B}$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} \mu\left(T^{-n}(A) \cap B\right)=\mu(A) \mu(B) .
$$

- Give an example of an ergodic p.p.s. for which there are A, B in \mathcal{B} such that the sequence $\left(\frac{1}{N} \sum_{n=0}^{N-1}\left|\mu\left(T^{-n}(A) \cap B\right)-\mu(A) \mu(B)\right|\right)_{N \in \mathbb{N}}$ does not converge to 0 as $N \rightarrow \infty$.

7. Let $H \subset \mathbb{R}^{n}$ be a closed subgroup (with respect to vector addition), and let $H^{(0)}$ be the connected component of $\{0\}$ in H. Prove that $H^{(0)}$ is a vector subspace, and that there are linearly independent $v_{1}, \ldots, v_{k} \in H$, with $k \leqslant n-\operatorname{dim} H^{(0)}$, such that the group Λ generated by v_{1}, \ldots, v_{k} is discrete and $H=H^{(0)} \times \Lambda$. Let $\mathbb{T}^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$, let m be the Haar measure on \mathbb{T}^{n}, let $v=\left(v_{1}, \ldots, v_{n}\right)$, and define

$$
T: \mathbb{T}^{n} \rightarrow \mathbb{T}^{n}, \quad T(x)=x+v
$$

Prove that T preserves m, and that the following are equivalent.

- The p.p.s. $\left(\mathbb{T}^{n}, m, T\right)$ is ergodic.
- The action of T on \mathbb{T}^{n} is minimal.
- m is the unique T-invariant Borel probability measure on \mathbb{T}^{n}.
- The numbers $1, v_{1}, \ldots, v_{n}$ are linearly independent over \mathbb{Q}.

In case the above conditions do not hold, show that the closure of $\left\{T^{k} x: k=1,2, \ldots\right\}$ is a submanifold of \mathbb{T}^{n}, and give a formula for its dimension.
8. Suppose $G=\mathbb{R}^{2}$ and $G_{0}=\{(x, y): x>0,|y| \leqslant 0.1 x\}$. Let X be a compact metric space on which G acts. Say that $X_{0} \subset X$ is G_{0}-invariant if $g_{0}\left(X_{0}\right) \subset X_{0}$ for any $g_{0} \in G_{0}$.
(i) Show that any nonempty closed G_{0}-invariant subset contains a nonempty closed G-invariant subset.
(ii) Show that if G acts minimally on X then for any $x_{0} \in X, G_{0} x_{0}$ is dense in X.
(iii) Show that (ii) may fail if G_{0} is replaced with $\{(x, 0): x>0\}$.
(iv) Give an example of X and X_{0} which is closed, G_{0}-invariant, and not G-invariant.
9. Let X be a noncompact lcsc space on which \mathbb{R} acts continuously. Denote the action by $(t, x) \mapsto \varphi^{t}(x)$. Suppose any orbit $\left\{\varphi^{t}(x): t \in \mathbb{R}\right\}$ is dense. Prove that there is $x_{0} \in X$ such that one of the two semi-orbits $\left\{\varphi^{t}\left(x_{0}\right): t \leqslant 0\right\},\left\{\varphi^{t}\left(x_{0}\right): t \geqslant 0\right\}$ is not dense.
10. Let $\Omega=\{0,1\}^{\mathbb{Z}}$ and let $T: \Omega \rightarrow \Omega$ be the shift map. If $\omega \in \Omega$ such that $T^{p} \omega=\omega$ for some $p \in \mathbb{N}$, then we define the uniform measure on ω by $\mu=\frac{1}{p} \sum_{i=0}^{p-1} \delta_{T^{i} \omega}$. Show that the uniform measure on such a periodic orbit is T-invariant and ergodic, and show that uniform measures on periodic orbits are dense in the simplex $\operatorname{Prob}(\Omega)^{T}$ of invariant measures.
11. Let $\mathbb{T}^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$, and let Erg denote the measures $\mu \in \operatorname{Prob}\left(\mathbb{T}^{n}\right)$ for which there is a subspace $V \subset \mathbb{R}^{n}$ such that μ is V-invariant and ergodic. Show that Erg is closed in $\operatorname{Prob}\left(\mathbb{T}^{n}\right)$.
12. Let X be a compact metric space, let $T: X \rightarrow X$ be a homeomorphism, and let $\mu \in \operatorname{Prob}(X)^{T}$. Show that the following are equivalent.

- $\{\mu\}=\operatorname{Prob}(X)^{T}$, i.e., the system is uniquely ergodic.
- For any $f \in C(X)$, the averages $\frac{1}{N} \sum_{n=0}^{N-1} f\left(T^{n}(x)\right)$ converge to $\int_{X} f d \mu$ uniformly in x.
- T is ergodic with respect to μ, and for every $x \in X$ there is $C \geqslant 0$ such that for any non-negative $f \in C(X)$,

$$
\limsup _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} f\left(T^{n}(x)\right) \leqslant C \int_{X} f d \mu
$$

13. Let $\left(a_{n}\right)=(1,2,4,8,1,3,6,1, \ldots)$ be the sequence of first digits of the powers of 2 . For each $k \in\{1, \ldots, 9\}$, show that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{1 \leqslant n \leqslant N: a_{n}=k\right\}=\log _{10}\left(\frac{k+1}{k}\right) .
$$

14. Let X be a compact metric space, $T: X \rightarrow X$ a homeomorphism, and \mathcal{E} the collection of T-invariant ergodic regular Borel measures on X. Let $f \in C(X)$ and define

$$
m_{f}=\inf \left\{\int_{X} f d \mu: \mu \in \mathcal{E}\right\}, \quad M_{f}=\sup \left\{\int_{X} f d \mu: \mu \in \mathcal{E}\right\}
$$

Prove that for any $x \in X$,

$$
m_{f} \leqslant \liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} f\left(T^{n} x\right), \quad \limsup _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} f\left(T^{n} x\right) \leqslant M_{f}
$$

15. Suppose X is a compact metric space, G is an lcsc group acting continuously on $X, \mu \in \operatorname{Prob}(X)^{G}$ and ν_{1}, ν_{2} are two probability measures on $\operatorname{Prob}(X)$ satisfying the following for $i=1,2$:

- $\nu_{i}\left(\left\{\theta \in \operatorname{Prob}(X)^{G}: \theta\right.\right.$ is ergodic for the action of $\left.\left.G\right\}\right)=1$.
- For all $f \in C(X), \quad \int_{X} f d \mu=\int_{\operatorname{Prob}(X)}\left[\int_{X} f d \theta\right] d \nu_{i}(\theta)$.

Prove that $\nu_{1}=\nu_{2}$.
This is the uniqueness statement in the version of the ergodic decomposition theorem proved in the lecture.
16. Prove that the following groups are not amenable: $\mathrm{SL}_{2}(\mathbb{R})$, with its topology as a subset of 2×2 real matrices, and F_{r}, the free group on $r \geqslant 2$ generators, with the discrete topology.
17. Let $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ be the upper half-plane, let $\Delta=\{z \in \mathbb{H}:|\operatorname{Re}(z)| \leqslant 1,|z| \geqslant 1\}$, and let

$$
\Gamma=\left\langle\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)\right\rangle .
$$

Show that:

- Γ is of finite index in $\mathrm{SL}_{2}(\mathbb{Z})$;
- Γ is isomorphic to F_{2}, the free group on two generators;
- the translates $\{\gamma(\Delta): \gamma \in \Gamma\}$ covers \mathbb{H}, where the action of Γ on \mathbb{H} is by Möbius transformations;
- these translates have disjoint interiors;
- Γ and $\mathrm{SL}_{2}(\mathbb{Z})$ are non-uniform lattices in $\mathrm{SL}_{2}(\mathbb{R})$.

18. For $x, y, z \in \mathbb{R}$, let

$$
u_{x, y, z}=\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)
$$

and let $G=\left\{u_{x, y, z}: x, y, z \in \mathbb{R}\right\}, \quad \Gamma=\left\{u_{x, y, z}: x, y, z \in \mathbb{Z}\right\}$. Show that:

- G is a group with respect to matrix multiplication, and Γ is a non-normal subgroup;
- G is unimodular;
- Γ is a cocompact lattice;
- Let $u_{0}=u_{a, b, c} \in G$, let $X=G / \Gamma$, and let $T: X \rightarrow X$ be the map $T(g \Gamma)=\left(u_{0} g\right) \Gamma$. Show that the following are equivalent:
- T is ergodic with respect to the G-invariant measure m_{X}.
$-T$ is uniquely ergodic.
$-1, a, b$ are linearly independent over \mathbb{Q}.

19. Let $\|\cdot\|$ denote the Euclidean norm \mathbb{R}^{2} and let m denote the Lebesgue measure on \mathbb{R}^{2}. Also let $\|\cdot\|^{\prime}$ denote the Euclidean norm on $M_{2}(\mathbb{R}) \cong \mathbb{R}^{4}$. Let Γ be a cocompact lattice in $\mathrm{SL}_{2}(\mathbb{R})$ and let $\Gamma_{T}=\left\{\gamma \in \Gamma:\|\gamma\|^{\prime} \leqslant T\right\}$. Show that there is a constant $C>0$ such that for any continuous compactly supported function f on $\mathbb{R}^{2} \backslash\{0\}$ and any $v \in \mathbb{R}^{2} \backslash\{0\}$ we have

$$
\frac{1}{T} \sum_{\gamma \in \Gamma_{T}} f(\gamma v) \xrightarrow{T \rightarrow \infty} \frac{C}{\|v\|} \int_{\mathbb{R}^{2}} \frac{f(x)}{\|x\|} d m(x)
$$

20. Let $X=G / \Gamma$, where $G=\mathrm{SL}_{2}(\mathbb{R}), \Gamma=\mathrm{SL}_{2}(\mathbb{Z})$. Let $\pi: G \rightarrow X$ be the projection, let let

$$
u_{s}=\left(\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right), \quad a_{t}=\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right), \quad g_{0}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G,
$$

and let $x_{0}=\pi\left(g_{0}\right)$. Prove that the following are equivalent:

- The orbit $\left\{u_{s} x_{0}: s \in \mathbb{R}\right\}$ is periodic, i.e., there is $s_{0}>0$ such that $u_{s_{0}} x_{0}=x_{0}$.
- Either $d=0$ or $\frac{c}{d} \in \mathbb{Q}$.
- The trajectory $\left\{a_{-t} x_{0}: t \geqslant 0\right\}$ is divergent, i.e., for any compact $K \subset X$ there is t_{0} such that for all $t>t_{0}, a_{-t} x_{0} \notin K$.
- The orbit of the row vector $(c, d) \in \mathbb{R}^{2}$ under right matrix multiplication by elements of Γ, is discrete.

