
ADVANCES IN MATHEMATICS 7, 219--230 (1971) 

On Poincard's Theorem for Fundamenta ! Polygons 

BERNARD M A S K I T *  

Department of Mathematics, Massachusetts Institute of Technology, 

Cambridge, Massachusetts 02139 

Poincar6's classical theorem on fundamental polygons [2] gives 
sufficient conditions for a polygon to be a fundamental domain for a 
Fuchsian group. There are several published proofs of this theorem, 
but there is some question as to their validity; Siegel [4, p. 115] has 
commented on this and given an apparently valid proof under fairly 
restrictive conditions. None of the published proofs are as general 
as they might be, and they all have a convexity condition that is never 
really used. 

This note is an attempt to clarify the situation. The problem and 
the solution presented below arose during the course of several informal 
conversations. Present at one or more of these conversations were 
L. V. Ahlfors, L. Bers, W. Magnus, J. E. McMillan, and B. Maskit. 

Poincard [3] also published a generalization of this theorem. The 
generalization is to polyhedra in 3-dimensional hyperbolic space, where 
the discontinuous group is Kleinian rather than Fuchsian. The recent 
work of Albert Marden [1] shows the importance of these polyhedra 
for the study of Kleinian groups, and so I have appended a statement 
and proof of Poincar6's polyhedron theorem. 

1. In what follows, unless specifically stated otherwise, all sets 
are subsets of the unit disc U. The topology is always the relative 
topology, so that for a set S, S is the relative closure of S in U and 
aS is the relative boundary of S in U. Likewise the geometry is always 
the classical non-Euclidean geometry, where the geodesics, which we 
call lines, are arcs of circles orthogonal to the boundary of U. We recall 
that in this geometry, U is a complete unbounded metric space; we 
denote the distance between z and z' by [(z, z'). 

Let G be a group of isometries of U (the elements of G are not 
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necessarily orientation preserving). Two points z and z '  are equivalent 
under  G if there is a g c G so that g(z) =- z'. G is called discontinuous 
if there is a nonempty  open set V so that no two distinct points of V 
are equivalent under  G. 

I t  is well known that G is discontinuous if and only if G is a discrete 
subgroup of the group of all isometrics of U. In  fact, if G is discon- 
tinuous, then except for a discrete set of points, every point  has a 
neighborhood V satisfying the above condition. 

A set D is called a fundamental domain for the discontinuous group G if 

(1) D is a domain, i.e., a non-empty  connected open set, 

(2) No two distinct points of D are equivalent under  G, and 

(3) Every point is equivalent under  G to some point  o f / ? .  

If  the boundary  of the fundamental  domain D is sufficiently nice, 
then we can fold together equivalent pieces of the boundary  to get a 
representat ion of U/G, the space of equivalence classes modulo G. 
T h e  nicest possibility is for aD to be piecewise linear, in which case 
we would call D a polygon. We now give the formal definition. 

Le t  C be a straight line. A closed connected subset C' of C is degenerate 
if C'  = > or C' contains only one point. 

A domain D is called a polygon if aD is a countable union of sides s i , 
where each s¢ is a nondegenerate connected closed subset of some line, 
and only finitely many sides meet any compact set. We require 
fur ther  that if s i • sj ~- ~ ,  i ~ j ,  then s i n sj is a single point z, called 
a vertex, and z is an endpoint  of both s i and sj .  Finally, if any side s i 
has a finite endpoint  z, then there is exactly one other side s j ,  where 
z is also an endpoint  of sj .  

I f  D is a fundamental  domain for G, and D is also a polygon, then 
D is called a fundamental polygon for G. 

It  is well known that every discontinuous group has a fundamental  
polygon. T h e  simplest construction is to take some point 0 and let 
D be the set of all points which are closer to 0 than to any point of 
the form g(0), g ~ G. I t  is not hard to prove that D so constructed is 
a fundamental  polygon for G. One also easily sees that the sides of D 
are pairwise identified by elements of G; these identifying elements in 
fact generate G. 

2. Our problem here goes the other way. We have to start 
with a polygon D, satisfying certain conditions, and prove that it is 
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a fundamenta l  polygon for some group G. I t  is fairly obvious that the 
sides of D will have to be pairwise identified by elements of G, and 
these elements will generate G. We formalize this as follows. 

An identification on the polygon D is a map which assigns, to each 
side s, a side s' and an isometry A(s, s') so that  

(a) A(s, s') maps s onto s', 

(b) (s')' = s and A(s', s) = (A(s, s')) -1, 

(c) if s = s', then _d(s, s') is the identi ty on s, and 

(d) for each side s, there is a neighborhood V of s so that, setting 
A(s, s') : A,  A ( V  n D) n D =  ~.  

T h e  isometrics A(s, s') which identify the sides of the polygon D 
are called generators, and the group generated by these generators is 
denoted by G. 

I f  for some side s we have s = s', then the above conditions imply  
that  the corresponding generator A = A(s, s') is of order two; in fact, 
d is then a reflection in the side s. These  relations of the form 2/~ = 1 
are called the reflection relations. 

We have to impose conditions on D so that  it is a fundamenta l  
polygon for G. The re  are basically two conditions. T h e  vertex condition 
makes note of the fact that  we are dealing with conformal maps;  i.e., 
the projection map f rom U to U/G should be conformal or integrally 
branched.  Hence  when we fdld together / )  to get U/G we have to 
know that  near each vertex the sum of the angles is a submult iple  of 27r. 
T h e  completeness  condition makes note of the fact that  if G were 
discontinuous, then we could project the Riemannian metric  f rom U 
to U/G, so that  U/G would become a complete metric  space. 

Let  D be a polygon with an identification. T h e n  there is a natural  
identified polygon D* obtained by  identifying the sides of D; i.e., there 
is a surjection w : D --+ D* where ~(x) = ~r(x') if there is a generator d 
with A(x) = x'. For  x, x' c D*, we set 

p*(x, x') = inf ~ p(z, , zi'), 
i = l  

where the inf imum is taken over all n and over all 2n-tuples of points 
of O where ,B-(~'I) = X, 7r(Zi t) = 7r(~'i+l) , and rr(zn' ) = x'. 

Our  polygon D is called complete if 
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(e) for each x e D*,  7r l (x)  is a finite set, in wh ich  case p* is a 
met r ic  on D*,  and 

(f) D *  is comple te  in this metric.  

T h e  basic p rope r ty  of  the metr ic  p* is tha t  

p*(~(z), ~(z')) < p(z, ~') 

so that  ~r : D ~ D*  is cont inuous .  
W e  now assume tha t  D is a comple te  po lygon  with an identification. 

Le t  z 1 be some ver tex of  D. T h e r e  are precisely two sides of  D which  
mee t  at z 1 ; we choose  one of  these and call it s 1 . T h e r e  is then  a 
co r r e spond ing  side S 1' and  a genera tor  A 1 = d(s  1 , 31' ), Set zz = d l (Zl )  
and observe  that  there  is a un ique  other  side s 2 which  has z 2 as an end 
point .  T h e r e  is a co r r e spond ing  side s 2' and a genera tor  A s = A(s 2 , s2' ). 
Set z a = A2(z2) and let s a be the un ique  other  side which  has z a as 
an endpoin t ,  and  so on. I n  this m a n n e r  we get a sequence  {z~} of 
vertices, a sequence  {(s~, s()} of  pairs of  sides, and a sequence  {A~} of 
generators .  

All of these vertices are of  course m a p p e d  into the same poin t  of D*, 
and so by  condi t ion  (e), the sequence  of vert ices is periodic.  Since each 
ver tex lies on the b o u n d a r y  of  precisely two sides, the sequence  of  
pairs of  sides is periodic,  and so is the sequence  of  generators.  

T h e s e  sequences  need  not  all be per iodic  wi th  the same per iod;  
there  is a trivial example  of  this. Le t  x, be a poin t  on the line L. Le t  
D be one of  the  half  planes b o u n d e d  by  L, let A denote  reflection in L, 
and let s 1 and s 2 be the  closed half-lines, lying on L with end poin t  x. 
T h e n ,  s tar t ing at the ver tex x, the  sequence  of  vert ices {x, x, x,...} has 
per iod one, the sequence  of genera tors  {A, A,  A,. . .} has per iod  one, b u t  
the  sequence  of  pairs of  sides {(sl, Sl) , (s2, s2) , (Sl ,  Sl) , ' "}  has pe r iod  two. 

W e  define the period to  be the least positive integer  m so that  all 
three sequences  are per iodic  with per iod m. T h e  set of vert ices (z 1 ,..., zm) 
is called a cycle of vertices. 

W e  have already observed  that  the vertices in a cycle need no t  be 
distinct;  in fact one easily sees tha t  there  can be repet i t ions only if 
two out  of  the  set of  genera tors  {ZI 1 ,..., A~}  are reflections, and then  
each ver tex appears  precisely twice in the cycle. 

W e  are main ly  in teres ted in the i somet ry  B = A m . . . .  o A 1 which  
is called the cycle transformation at z I . One  sees at once that  B(zl)  = ~1 , 
and tha t  the  cycle t r ans fo rmat ion  at z i is a conjugate  of  the  cycle 
t r ans fo rma t ion  at z 1 . 
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For each vertex z i in a cycle, the sides s~_ 1 and s i make an angle 
~(zi) at z i ,  where ~(zi) is the angle measured from inside D. 

The  polygon D is said to satisfy the cycle condition if 

(g) for each cycle {z 1,..., zm}, there is an integer v, so that 
m 

u Ei=l a(zi) = 2rr. 

Looking near z l ,  we can see D and its transforms in the order: 

D, A7I(D), A~*o ATI(D),..., B-I(D), A~lo B-I(D), A71o A2*o B-*(D),..., B-~(D). 

Condition (g) thus has the following consequences. The cycle trans- 
formation B is orientation preserving, and B ~ = 1. 

We get a relation of the form B ~ = 1 for each cycle, and we call 
these relations the cycle relations. 

I f  D is a complete polygon with an identification, and D satisfies 
the cycle condition, then D is called a Poincard polygon. 

THEOREM (Poincar6). Let D be a Poincard polygon. Let G be the 
group generated by the identifying generators. Then G is discontinuous, 
D is a fundamental polygon for G, and the cycle relations together with 
the reflection relations form a complete set of relations for G. 

3. T h e  basic idea of the proof  is as follows. We look at / )  
together with all of its translates under  G. There  is a natural notion 
of continuation from / )  to A(/)),  if A is a generator. Hence we can 
look at D, together with all its translates, as a possibly branched,  
possibly bounded covering of U. The  only possible ramification occurs 
at the vertices and their translates, the cycle condition takes care of 
that possibility. We next use the completeness condition to show that 
we can lift paths f rom U to this covering. T h e n  since U is simply- 
connected, we get that there is actually no overlap between D and 
any of its translates under  G. 

4. Before we go on to the formal proof, there are two remarks 
which should be made. We need to relate this formulation of the 
theorem with the classical formulation, and we need to generalize the 
theorem to three-dimensional hyperbolic space. We take up the classical 
relation here, the generalization will be taken up after the formal proof. 

Poinear6's classical theorem deals with a finite sided polygon D, 
with an identification where the identifying generators are all orientation 
preserving. Condit ion (e) is automatically satisfied, and we assume that 
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the cycle condition (g) is satisfied. We want  to find another  formulat ion 
for the completeness  condition, 

For  this section we depart  f rom our convention and regard U as 
embedded  in the plane; let C be the boundary  of U. T h e  sides of D 
which are lines or half-lines have closures which intersect C; these 
points of intersection are called i n f i n i t e  ver t ices .  We separate the infinite 
vertices into ideal boundary  points of D, so that  each infinite vertex 
is an end point  of either one or two sides of D. For  each infinite vertex 
x 1 , we can form a c h a i n  of vertices as follows, x 1 is an end point  of the 
side s 1 ; there is a generator  A 1 ~ A ( s  1 , Sl'); set x 2 = A l ( x l ) .  I f  x 2 is 
an end point  of two sides s 1' and s~ ,  then we set A s  = A(s2, s2'), set 
x 3 = A 2 ( x 2 )  , and continue in this manner .  

T h e  above process either stops at an infinite vertex which is the 
endpoint  of only one side, or returns to the original vertex x 1 , in which 
case we have a cycle  of infinite vertices. Notice that  if we have a cycle, 
then each infinite vertex in the cycle is the end point  of two sides o f  D. 
I f  x 1 is an infinite vertex in a cycle, then, as in the case of ordinary 
vertices, we can fo rm a produc t  of generators B called the i n f i n i t e  

cyc le  t r a n s f o r m a t i o n ,  so that  B ( x l )  = x 1 . 

T h e  classical parabolic cusp condition is 

(f ')  For  each cycle of infinite vertices, the infinite cycle trans-  
format ion B is parabolic. 

In  the special case that  we are considering, conditions (f) and (f ')  
are equivalent. I t  is easy to prove that  D is complete  if there are no 
infinite cycles. One also easily sees that  it suffices to consider the case 
of a cycle with exactly one infinite vertex; we change normalizat ion 
so that  U is the upper  half plane, and place the infinite vertex at 
infinity. We  normalize fur ther  and assume that  for some a, b > 0, the 
region E = {1 < Re(z) < a, Im(z)  > b} is contained in D. One easily 
verifies that  if the t ransformat ion  z --+ z + a is the generator identifying 
the infinite sides of/~,  then every Cauchy sequence in 7r(E') is bounded,  
hence convergent.  

On the other hand, if the infinite sides o f /~  are identified by  z - +  a z ,  

then we construct  the following sequence. Le t  z l  = a 4 - i a b ,  let 
w i = z~ - -  a, and let z~+ 1 = a w  i . T h e n  ~r(zi+l) = ~r(w 0. Let  ~i be the 
Euclidean straight line joining z i to wi ,  and observe that  the non-  
Euclidean length of ~¢ is b-aa  1-~. Hence  

p*(~r(zi), 7r(Zi+x)) ~ b-~a 1 ~, 

and so {Tr(zi) } is a nonconvergent  Cauchy sequence. 
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5, We now come to the formal  proof  of the theorem. Let  G* 
be the abstract  group generated by the identifying generators, and 
having the cycle and reflection relations as a complete set of relations. 
Le t  cr - G* ~ G be the natural  homomorph i sm.  

For  (z, g) and (z', g ' )  i n / 9  × a * ,  we define (z, g) ~-~ (z' ,  g') if z e aD 
and there is an identifying generator  A so that  A z  = a' and g '  o A ---- g. 
This  relation need not be transitive, but  it generates an equivalence 
relation. Let  X be D X G* factored by this equivalence relation. 
We endow X with a topology in the usual manner ;  i.e., a subset  of X 
is open if and only if its inverse image in D × G* is open, where G* 
has the discrete topology. One easily observes that  X is connected and 
Hausdorff.  

The re  is a natural  map p :  X - - +  U given by p ( z , g ) =  ~(g)(z ) .  
There  is also a natural  map s" X - - ~  D* obtained by projecting onto 
the first factor followed by the map rr. 

These  maps p and s have certain special properties.  For  each point  
x e X, there is a neighborhood V, so that  p [ V is a homeomorph i sm.  
This  neighborhood V also has the proper ty  that  s o p-1 is a contraction 
on p ( V ) .  We will prove these statements below, and using these two 
properties,  the completeness of D*, and the s imple-connect ivi ty  of U, 
we will show that p is a homeomorph i sm.  

We need to construct  a special system of neighborhoods for points 
of D*.  I f  z E D, let 8 be some n u m b e r  less than half the distance f rom z 
to aD, let V o be the open disc of radius 8 about  z, and let V~ = ~r(V0). 

I f  z e D lies on a side s, but  z is not a vertex, there is a generator  A, 
and a side s', with d(s )  = s'. We set z '  = A(z ) ,  and recall condition (c) 
which asserts that  z = z '  if and only if s = s'. Le t  8 0 be the distance 
f rom z to aD - -  s, and let 8 o' be the distance f rom z '  to aD - -  s'. Let  
8 ~< 1/4 rain(8 0, 8o'), let Vo(Vo' ) be the open disc of radius 3 about  
z(z ' ) ,  and let V~ = rr(V o c~ D) U ~(V 0' ~ D). 

I f  z 1 is a vertex, then let gl , "~g , ' " ,  Z,/~ be the cycle of vertices con- 
! 

raining z 1 . For  each vertex z i , let s,:, si_ 1 be the sides which intersect 
at z i . Le t  8~ be the distance f rom z i to a D -  {s~ u S~_l}. We choose 

~< I /4 min(31,... ,  8,~); let Vi be the disc about  z~ of radius 8, and 
let Va --~ Oin__l ~(/)r3 Vi). 

T h e  point  of these special neighborhoods is the following. For  each 
point z ~ D*,  and special neighborhood Ve of z, Vo is a metric  ball 
of radius 8 about  z. Fur ther  ~-a(V~) is a finite union of disjoint sets 
~'-a(Ve) = Va t j  ... w V~ with the proper ty  that  the distance between 
gny two of these sets is not less than 8. 
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If we now let l~ be some connected component of s-i(V~), then 
the identification and cycle conditions imply that p I I7~ is a homeomor- 
phism. Furthermore,  the inequalities for 8 have been chosen so that 
if x, x' e [7~, then 

o*(,(x), ,(x,)) ~< p(p(~), p(x')). (1) 

This inequality is of course an equality except near the vertices 
where the integer v in condition (g) is greater than one. 

Using this inequality, we observe that we can lift rectifiable paths. 
Let  us assume that the origin 0 is in D, and that w(t), 0 ~< t ~ 1, 
is a rectifiable path in U, starting at 0. Since p : X--> U is a local 
homeomorphism, we can assume that there is a path ~(t), 0 <~ t < 1, 
in X,  covering w(t) and starting at (0, 1). Let  t~ be some sequence 
of points of the unit  interval with t~ --+ 1, and assume that the t~ are 
sufficiently close together so that for every n there is a special neighbor- 
hood V with s o ~(t,~) and s o z?(t~+l) both lying in V. 

Now for any n and m 

n- -1  

p*(,o ~(t~,),, o ~(t~)) ~< ~ p(~(t~), ~(t~+~)), (2) 
i='rn, 

where we have used (1) and the fact that w(ti) = p o @(t¢). 
We now use the fact that w is rectifiable together with the com- 

pleteness of D*, to conclude that s o @(t~) has a limit x. We let Va 
be a special neighborhood about x, and observe that there is a connected 
component Va of s-l(Va) so that ~(t~)~ ~Ts for n sufficiently large. 
Since P[  17~ is a homeomorphism, we can complete the lifting of w. 
We have shown that every rectifiable path in U, starting at 0, can be 
lifted to X. In particular, p is surjective. 

I t  is important  for the generalization to stop at this point and observe 
that the proof above uses only inequality (1), the completeness of D*, 
and the fact that p is a local homeomorphism. 

For each positive t, let Bt be the open ball of radius t about 0. Let  

sup{t ]p-1 is well defined on B~}. 

Suppose T were finite. Then  for each z on the boundary of B , ,  we 
could lift the straight line from 0 to z, and hence p-1 would be well 
defined on/?~.  Trivially, i f p  is injective on a compact set, it is injective 
in a neighborhood of the compact set. We conclude that p-1 is well 
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defined in a neighborhood of /3 , ,  contradicting the definition of ~-. 
We remark that X is connected, and conclude that p is a homeomor-  

phism. This  completes the proof  of the theorem. 

6. The re  is also a classical generalization of Poincar6's theorem 
using a similar proof, to three-dimensional  hyperbolic space, where 
one gets a Kleinian rather than a Fuchsian group. Th e  theorem can 
be generalized further  to n-dimensional hyperbolic space, but  the 
hypotheses become difficult to check in any given case. 

We now specifically assume that U is hyperbolic 3-space. 
A p o l y h e d r o n  D is an open connected subset of U where ~D is the 

union of countably many sides {si} as follows. Each side s i is a subset 
of a plane L i , and as a subset of the hyperbolic plane L i ,  si is the closure 
of a polygon. T h e  sides of the polygon s i are called edges of D, and 
the (finite) end points of these edges are called ver t i ces  of D. We require 
that any compact  set meets only finitely many sides, edges, and vertices. 
Further ,  for each edge ej there are exactly two sides s i and sj so that 
s i n s;- = ej .  Any two sides are either disjoint, intersect in a common 
edge, or intersect in a common vertex. An edge is either a subset of 
a side, meets the side in a common vertex, or is disjoint f rom the side. 
Two  edges are disjoint or meet in a common vertex. Finally, for each 
x ~ ~D and each sufficiently small 3, the ball about x of radius 3 intersects 
D in a connected set. 

An i d e n t i f i c a t i o n  on a polyhedron is exactly the same as an identification 
on a polygon; i.e., it is a pairing of the sides via isometrics, satisfying 
conditions (a)-(d). Likewise, we define the i d e n t i f i e d  p o l y h e d r o n  D *  

with metric p*, and the projection 7r : / )  -+ D* exactly as in the two- 
dimensional case. Having done this, the completeness conditions (e) 
and (f) make sense. 

Having moved up one dimension, it is now the edges that come 
in cycles. For  each edge e l ,  exactly as before, we form the cycle of 
edges e I ,..., e m , we get the cycle transformation B, and for each edge e i 

we have the angle ~(ei) formed by the two sides that meet  at e i . Except  
for minor notation, condition (g) now makes sense for polyhedra. 

We would like to know that the cycle relation B ~ = 1 holds. Unfor-  
tunately, the two-dimensional analysis only gives us that B keeps e 1 
invariant, preserves orientation in the plane normal to ex, and B" is 
the identi ty in the normal plane. 

In order  to guarantee the validity of the cycle relations, we impose 
two additional conditions. 

607/7/3 -2 
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(h) For  each edge e I , the cycle t ransformat ion B at e 1 preserves 
orientation. 

(i) I f  the edge e 1 has no finite end point, then the cycle trans-  
format ion at e 1 is the identi ty on e 1 . 

Condit ion (h) is of course vacuous if all the generators preserve 
orientation; I do not know if condition (h) is independent  of the others. 

Condit ion (i) is necessary, as the following example demonstrates.  
Le t  D be bounded  by four sides s 1 ,..., s 4 , where $1 and s 2 are orthogonal,  
s a and s 4 are orthogonal,  and they are otherwise disjoint. Choose 
generators A1, A2,  so that  A l ( S l ) ~  sa, A a ( q ) =  s~. Observe that  
there is a one-parameter  f reedom in the choice of  both  A,  and A~. 
Hence  in general Ae o A,  is not elliptic. 

We have to show that  conditions (h) and (i) are sufficient to guarantee 
that B y =  1. Condi t ion (h) says that  B preserves orientation. We 
already know that  B preserves orientat ion in the plane normal  to e~, 
hence B preserves orientation on e 1 . I f  e I has finite length, then B is 
the identi ty on e 1 . I f  e 1 has a single finite endpoint  x, then B(x) ~- x, 
and hence e 1 lies on a fixed line for B. Using condition (i) for the last 
case, we see that  B keeps e I pointwise fixed, and since B v is the identi ty 
in the normal  plane, we conclude  that  B v - -  1. 

N o w  that  we have established the validity of the cycle relations, 
we can state the polyhedron theorem. 

THEOREM (Poincar@ Let D be a polyhedron satisfying conditions 
(a)-(i). Let G be the group generated by the identifications of the sides. 
Then G is discontinuous, D is a fundamental polyhedron for G, and the 
cycle relations together with the reflection relations form a complete set 
of relations for G. 

T h e  proof  of this theorem is essentially the same as the two 
dimensional  case. We again fo rm the group G* and the space X, where 
X is D x G* factored by  the same equivalence relation. We also have 
the maps  p : X - - ~  U, and s : X  ~ D*. 

For  each x a D*,  we construct  the family V~ of special neighborhoods,  
as in the preceding case so that  inequali ty (1) holds. 

We  have to check that  p is a h o m e o m o r p h i s m  on each connected 
componen t  17~ of s-l(V~). We write x - -  ~v(y), and observe the following. 
I f  y is an interior point  of D, then  p is trivially a h o m e o m o r p h i s m  
in a ne ighborhood of y. I f  y is an interior point of  a side, then we use 
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the identification conditions. If  y is an interior point of an edge, then 
we have set up conditions (g), (h), and (i) precisely so that p is a 
homeomorphism near s -1 o ~r(y). 

The  remaining case, which is new in this dimension, is that y is a 
vertex. We observe trivially that p is a local homeomorphism on the 
boundary of l?~, and (1) holds. Hence we can lift rectifiable paths 
from 9Va to ~I7~. The  "greatest schlicht disc" argument that we used 
before shows that every point of 9Ve has a neighborhood, homeomorphic 
to each connected component of its preimage under p. Since OV8 is a 
2-sphere, we conclude that p ]  817~ is a homeomorphism. 

The  above argument holds for every sufficiently small 5, and so 
p ] /~ is a homeomorphism. 

The  remainder of the proof of the theorem is identical with that 
given in the two-dimensional case. 

7. We conclude this discussion with a geometric criterion for 
the completeness condition in the case that the polyhedron has finitely 
many sides, and all the generators preserve orientation. 

We again let C be the boundary of U, where we regard U as the 
unit  ball in real 3-space. 

I t  is trivial that D* is complete if D is compact. There is an obvious 
extension of this to the case that D* can be compactified by adjoining 
points of C to D. 

To make the above remark explicit, we observe that any two planes 
in U have disjoint closures, intersect in a line, or have a point of 
tangency on C. Each of the sides si,  i ~ 1,..., n, lies in a plane L i ,  
and, if each pair of p lanesLi ,  Lj ,  either have disjoint closures or intersect 
in a line, then D* is complete. To see this we simply observe that 
near C, the closure of D is a finite union of finite-sided polygons crossed 
with an interval. The  collection of finite-sided polygons, when identified, 
is obviously complete. 

In the above argument we did not need L i and Lj not to be tangent; 
we only needed to know that there is no point of tangency which is 
also a boundary point of D. We call such a point a tangency vertex. 
Precisely as in the two-dimensional case we observe that the tangency 
vertices come in chains or cycles, and for each cycle starting at x l ,  
we have the tangency vertex transformation B which keeps x~ fixed. 
We repeat the two-dimensional argument and prove that D* is complete 
i f  and only if  each tangency vertex transformation is parabolic. 

We conclude by remarking that this last condition is a restatement 
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of condition (f) in the classical case only; it does not in any case replace 
condition (i). 
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