Exercise sheet – Entropy and Ergodic Theory.
Tel Aviv University, Fall 2017

Conventions. In this exercise sheet some expressions are undefined (e.g. involve division by 0 or log 0) and they should be interpreted following a convention 0 · undefined = 0.

Definitions. A p.p.s. \((X, \mathcal{B}, \mu, T)\) is *ergodic* if \(A \in \mathcal{B}, T^{-1}(A) = A \implies \mu(A) \in \{0, 1\}.

For sub-\(\sigma\)-algebras \(A_1, A_2\) of \(\mathcal{B}\) as above we say that \(A_1\) is *contained mod \(\mu\) in \(A_2\) (notation: \(A_1 \subset_{\mu} A_2\)) if for all \(A_1 \in A_1\) there is \(A_2 \in A_2\) such that \(\mu(A_1 \Delta A_2) = 0\). We say that \(A_1\) is *equivalent mod \(\mu\) to \(A_2\) (notation: \(A_1 \equiv_{\mu} A_2\)) if \(A_1 \subset_{\mu} A_2\) and \(A_2 \subset_{\mu} A_1\).

1. Let \(n \in \mathbb{N}\) and \(\Delta_n = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : \sum x_i = 1, x_i \geq 0\}\), \(\Delta = \bigcup_n \Delta_n\). Prove that the function \(H : \Delta \to \mathbb{R}\) defined by \(H(\vec{x}) = -\sum_i x_i \log x_i\) for \(\vec{x} = (x_i) \in \Delta_n\), is the only function with the following properties.
 - \(H(\vec{x}) \geq 0\) for all \(\vec{x} \in \Delta\) and \(H(\vec{x}) = 0 \iff \exists i\) such that \(x_i = 1\).
 - \(H\) is continuous and invariant under permutations of the coordinates.
 - The maximum of \(H\) on \(\Delta\) is \(\log n\) and it is achieved only on the point \(x_1 = \cdots = x_n = 1/n\).
 - For all \(n \in \mathbb{N}\), and all \(\vec{x} \in \Delta_n\), \(H(x_1, \ldots, x_n) = H(x_1, \ldots, x_n, 0)\).
 - If \((X, \mathcal{B}, \mu)\) is a probability space, \(\xi, \eta\) are finite partitions of \(X\), and \(H_\mu(\xi) = H((\mu(A_i))_{A_i \in \xi})\), \(H_\mu(\xi | \eta) = \sum_{B_i \in \eta} \mu(B_i)H_{\mu|B_i}(\xi)\), where \(\mu|_B(A) = \frac{\mu(B \cap A)}{\mu(B)}\), then we have \(H_\mu(\xi \lor \eta) = H_\mu(\eta) + H_\mu(\xi | \eta)\).

2. Find a sequence \(x_1, x_2, \ldots\) of positive numbers such that \(\sum_i x_i = 1\) and \(-\sum_i x_i \log x_i = \infty\). Construct an ergodic p.p.s. \((X, \mathcal{B}, \mu, T)\) with \(h_\mu(T) = \infty\).

3. Two countable partitions \(\xi, \eta\) of a probability space \((X, \mathcal{B}, \mu)\) are called *independent* if \(A \in \xi, B \in \eta \implies \mu(A \cap B) = \mu(A)\mu(B)\).

Suppose \(H_\mu(\xi)\) and \(H_\mu(\eta)\) are finite. Show that \(\xi\) and \(\eta\) are independent if and only if \(H_\mu(\xi | \eta) = H_\mu(\xi)\).

For a countable sub-\(\sigma\)-algebra \(\mathcal{C} \subset \mathcal{B}\), we say that \(\xi\) and \(\mathcal{C}\) are independent if \(A \in \mathcal{C}(\xi), C \in \mathcal{C} \implies \mu(A \cap C) = \mu(A)\mu(C)\).
Suppose $H_\mu(\xi) < \infty$ and show that ξ and C are independent if and only if $H_\mu(\xi|C) = H_\mu(\xi)$.

4. Let $\xi = (A_1, A_2, \ldots)$ be a countable infinite partition of a probability space (X, B, μ) and let $\{0, 1\}^*$ denote all finite length sequences of 0’s and 1’s. A map $S : \mathbb{N} \to \{0, 1\}^*$ is called a prefix-free code if it is injective and if for any i, if $S(i) = x_1 \cdots x_\ell$ where $\ell \in \mathbb{N}$ and $x_i \in \{0, 1\}$, for any $k < \ell$ the prefix $x_1 \cdots x_k$ is not in the image of S. The length of $w \in \{0, 1\}^*$ is denoted by $|w|$. Set $L(S) = \sum_i \mu(A_i)|S(i)|$. Prove:

- For any prefix-free code S, $L(S) \geq \frac{1}{\log 2} H_\mu(\xi)$.
- There exists a prefix-free code S with $L(S) \leq \frac{1}{\log 2} (H_\mu(\xi) + 1)$.

These results are due to Shannon and form part of information theory.

5. Let $X = \{0, 1\}^\mathbb{Z}$ and let $\sigma : X \to X$ be the left shift. Prove that there is an ergodic σ-invariant measure μ on X such that $\text{supp } \mu = X$ and $h_\mu(\sigma) = 0$.

6. Give an example of a probability space (X, B, μ) and of $S : X \to X$, $T : X \to X$, two B-measurable maps that preserve μ, for which $h_\mu(S \circ T, \xi) > h_\mu(S, \xi) + h_\mu(T, \xi)$. Find such an example which also satisfies $S \circ T = T \circ S$.

7. (Construction of Markov partitions) Let $T = \mathbb{R}^2/\mathbb{Z}^2$ and let $\pi : \mathbb{R}^2 \to T$ be the natural projection. A parallelogram in T is the image under π of a parallelogram in \mathbb{R}^2. A hyperbolic automorphism of T is a map $T_A : T \to T$ given by $T_A(\pi(\vec{x})) = \pi(A\vec{x})$ where A is a matrix with integer coefficients, determinant ± 1, and $|\text{tr}(A)| > 2$. A parallelogram is called A-adapted if its sides are parallel to eigenvectors of A. Prove that for any hyperbolic automorphism T_A of T there is a partition ξ of T into finitely many A-adapted parallelograms, and there is $c > 0$ such that for each $n \in \mathbb{N}$, each element of $\xi \vee \cdots \vee T_{A}^{-1}(n-1)(\xi)$ is an A-adapted parallelogram whose sides in one direction have length in $\left[\frac{1}{\lambda}c, c\right]$ and in the other direction have length in $\left[\frac{1}{\lambda|\lambda|}, \frac{c}{|\lambda|}\right]$, where λ is the larger eigenvalue of A (in absolute value). Conclude that for the Haar measure m on T, $h_m(T_A) = \log |\lambda|$.

8. (Entropy of a pseudo-Anosov map via Markov partitions.) Let M' be the compact subset of \mathbb{R}^2 bounded by the polygon with 14 sides shown in Figure 1, and let M be the topological space obtained by identifying pairs of parallel edges in $\partial M'$ by translations, where each side marked with a stairclimber is identified with the side with identical marking, and unmarked sides are identified with the sides on the opposite side of the polygon (M is an example of a translation surface of genus 3 and is known as the Escher staircase). The points
marked • and ○ on M are called singular points. Let $M_0 \subset M$ denote the nonsingular points. Let $\varphi : M \to M$ be a homeomorphism. Using the inclusion $M' \subset \mathbb{R}^2$, if both x and $\varphi(x)$ are in the interior of M', in a neighborhood of x we can think of φ as a map on \mathbb{R}^2 and use this to define the derivative $d\varphi_x$ as a 2×2 real matrix. This extends to the case when $x, \varphi(x) \in M_0$ (but may be in $\partial M'$). Similarly we can define derivatives of maps $U \to M_0$, where $U \subset \mathbb{R}^2$ is open, and use this in order to define derivatives of maps $M_0 \to M_0$. We say that φ is an affine automorphism if $\varphi(M_0) = M_0$, $d\varphi_x$ exists for all $x \in M_0$ and is an invertible matrix $D\varphi$ independent of x. A parallelogram in M_0 is the image in M_0 of a parallelogram P in \mathbb{R}^2 under a map $P \to M_0$ whose derivative is the identity. It is φ-adapted if its sides are parallel to eigenvectors of $D\varphi$.

(i) Exhibit affine automorphisms φ_1, φ_2 of M with $D\varphi_1 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, $D\varphi_1 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$, and conclude that $\varphi = \varphi_1 \circ \varphi_2$ is an affine automorphism where $D\varphi$ satisfies $|\text{tr}(D\varphi)| > 2$.

(ii) Construct a partition ξ of M_0 into finitely many φ-adapted parallelograms, and show there is $c > 0$ such that for each $n \in \mathbb{N}$, each element of $\xi \varnothing \cdots \varnothing \varphi^{-(n-1)}(\xi)$ is an A-adapted parallelogram whose sides in one direction have length in $\left[\frac{1}{c\lambda}, c\right]$ and in the other direction have length in $\left[\frac{1}{c\lambda}, \frac{c}{\lambda}\right]$, where λ is the larger eigenvalue of $D\varphi$.

Figure 1. The Escher double staircase.
(iii) Show that \(\varphi \) preserves the Lebesgue measure \(\mu \) on \(M \) and compute \(h_\mu(\varphi) \).

9. Find a probability space \((X, \mathcal{B}, \mu)\) and countably generated sub-\(\sigma\)-algebras \(\mathcal{C}, \mathcal{A}, \mathcal{A}_1, \mathcal{A}_2, \ldots\) of \(\mathcal{B}\) such that \(\mathcal{A}_n \not
\mathcal{A}\) but the sequence \(H_\mu(\mathcal{C}|\mathcal{A}_n)\) does not converge to \(H_\mu(\mathcal{C}|\mathcal{A})\).

10. Let \((X, \mathcal{B}, \mu)\) be a Borel probability space, \(\mathcal{C}, \mathcal{A}\) countably generated sub-\(\sigma\)-algebras of \(\mathcal{B}\), \(\{\mu^A_x : x \in X'\}\) the conditional measures, where \(X' \subset X\) is conull. Set \(H_{\mu^A_x}(\mathcal{C}) = \infty\) unless \(\mathcal{C}\) is equivalent mod \(\mu^A_x\) with the \(\sigma\)-algebra generated by a finite entropy partition w.r.t. \(\mu^A_x\). Prove that

\[
H_\mu(\mathcal{C}|\mathcal{A}) = \int_X H_{\mu^A_x}(\mathcal{C})d\mu(x).
\]

11. Let \((X, \mathcal{B}, \mu, T)\) be an invertible ergodic p.p.s. on a Borel probability space, such that \(\mu(\{x\}) = 0\) for every \(x \in X\). Let \(\mathcal{E} = \{A \in \mathcal{B} : T^{-1}(A) = A\}\). Prove that \(\mathcal{E}\) is not countably generated.

12. Let \(X\) be a compact metric space, let \(T : X \to X\) be a homeomorphism, and let \(\text{Prob}(X)^T\) denote the \(T\)-invariant Borel probability measures on \(X\). Show that for every \(f \in C(X)\) there is a decreasing sequence \(\varepsilon_k \searrow 0\) such that for every \(x \in X\), every \(k \in \mathbb{N}\), and every \(N > k\) we have

\[
\inf_{\mu \in \text{Prob}(X)^T} \int_X fd\mu - \varepsilon_k \leq \frac{1}{N} \sum_{n=0}^{N-1} f(T^n x) \leq \sup_{\mu \in \text{Prob}(X)^T} \int_X fd\mu + \varepsilon_k.
\]

Conclude that if \(\text{Prob}(X)^T\) contains only one measure \(\mu\), then for every \(x \in X\) and every \(f \in C(X)\) we have

\[
\frac{1}{N} \sum_{n=0}^{N-1} f(T^n x) \to_{N \to \infty} \int_X fd\mu,
\]

this convergence is uniform in \(x\), and \(\mu\) is ergodic. (When \(\text{Prob}(X)^T\) is a singleton we say the system is \textit{uniquely ergodic}.)

13. Let \((X, \mathcal{B}, \mu, T)\) be a p.p.s. on a Borel probability space, let \(\mathcal{E} = \{A \in \mathcal{B} : T^{-1}(A) = A\}\) and \(\mathcal{E}' = \{A \in \mathcal{B} : \mu(A \Delta T^{-1}(A)) = 0\}\). Show that \(\mathcal{E} = \mu\mathcal{E}'\).

Now let \((X, \mathcal{B}, \mu)\) be a standard Borel space, let \(G\) be a locally compact second countable group, acting on \(X\) by measure preserving transformations. This means that there is a continuous map \(G \times X \to X\), denoted by \((g, x) \mapsto gx\), satisfying the \textit{group action laws} \(ex = x\), \(g_1(g_2 x) = (g_1g_2)x\) for all \(g_1, g_2 \in G\) and \(x \in X\), and \textit{preserving the measure}, i.e.
for any \(A \in B \) and \(g \in G \), \(\mu(gA) = \mu(A) \). Define \(\mathcal{E} = \{ A \in B : \forall g \in G, g(A) = A \} \) and \(\mathcal{E}' = \{ A \in B : \forall g \in G, \mu(A \triangle g(A)) = 0 \} \).

Prove or disprove: \(\mathcal{E} = \mu \mathcal{E}' \).

14. Let \((X, d) \) be a compact metric space and let \(\text{Prob}(X) \) be the set of regular Borel probability measures on \(X \). Define

\[
\text{Lip} = \{ f : X \to \mathbb{R} : \forall x_1, x_2 \in X, |f(x_1) - f(x_2)| \leq d(x_1, x_2) \}
\]

and for \(\mu, \nu \in \text{Prob}(X) \),

\[
D(\mu, \nu) = \sup_{f \in \text{Lip}} \left| \int f \, d\mu - \int f \, d\nu \right|.
\]

Prove that \(D \) is a metric on \(\text{Prob}(X) \), and **prove or disprove:**

- (\(\text{Prob}(X), D \)) is a complete metric space.
- If \(D(\mu_n, \mu) \to_{n \to \infty} 0 \) then \(\mu_n \to \mu \) in the weak-* topology.
- If \(\mu_n \to \mu \) in the weak-* topology then \(D(\mu_n, \mu) \to_{n \to \infty} 0 \).

15. Suppose \(X \) is a compact metric space and \(\mu, \mu_1, \mu_2, \ldots \) are regular Borel probability measures on \(X \) such that \(\mu_n \to \mu \) in the weak-* topology. Suppose that \(A \subset X \) has \(\mu(\partial A) = 0 \). Show that \(\mu_n(A) \to \mu(A) \). Provide examples of open and closed sets \(A \), and sequences of measures, for which the conclusion fails when we do not assume \(\mu(\partial A) = 0 \). Does the property ‘for any Borel set \(A \) with \(\mu(\partial A) = 0, \mu_n(A) \to \mu(A) \)’ imply that \(\mu_n \to \mu \) in the weak-* topology?

16. Let \(X, T, \text{Prob}(X)^T \) be as in question 12 and assume \(h_{\text{top}}(T) < \infty \). We say that \(\mu \in \text{Prob}(X)^T \) is **maximal for** \(T \) if \(h_{\mu}(T) = h_{\text{top}}(T) \).

- Show that if \(T : X \to X \) is expansive then there is a maximal measure for \(T \).
- Show that if \(\mu \in \text{Prob}(X)^T \) is the unique maximal measure for \(T \), then the p.p.s. \((X, \mathcal{B}, \mu, T)\) is ergodic (\(\mathcal{B} \) is the Borel \(\sigma \)-algebra).
- Show that if there is a unique ergodic maximal measure, then there is a unique maximal measure.

17. Let \(A \) be an \(k \times k \) integer matrix which is diagonalizable over \(\mathbb{R} \), with eigenvectors \(v_1, \ldots, v_k \). Define a toral automorphism by \(X = \mathbb{R}^k/\mathbb{Z}^k \), \(\pi : \mathbb{R}^k \to X \) the projection and \(T(\pi(x)) = \pi(Ax) \). Let \(d' \) be the metric on \(\mathbb{R}^k \) given by the sup norm with respect to the basis \(v_1, \ldots, v_k \) and define a metric \(d \) on \(X \) by \(d(x, y) = \min\{d'(x', y') : \pi(x') = x, \pi(y') = y \} \). Let \(d_n \) be the corresponding Bowen metric. What is the Bowen ball \(\{ x \in X : d_n(x, x_0) < r \} \) (for \(x_0 \in X \) and \(r \) smaller than the diameter of \(X \))? Compute \(h_{\text{top}}(T) \). Find a measure of maximal entropy. Is it unique?
18. Given a word w with symbols in $\{0, 1\}$, define $\sigma(w)$ by replacing each digit x with the other digit $1-x$. Let $w_0 = 1$ and define a sequence of words w_n of length 2^n by letting w_{n+1} be the concatenation of w_n and $\sigma(w_n)$. Thus $w_1 = 10$, $w_2 = 1001$, $w_3 = 10010110$, etc. Note that for all $k < 2^n$, the k-th digit of w_n does not depend on n, and let w_∞ be the infinite word whose k-th digit is the k-th digit of each w_n with n large enough. Let $X = \{0, 1\}^\mathbb{N}$, equipped with the Tychonov topology, let $T : X \to X$ be the one-sided shift, and let X' be the closure of the T-orbit of w_∞. Show that X' is T-invariant and let T' be the restriction of T to X'. Compute $h_{\text{top}}(T')$.

19. Let (X, d) be a compact metric space and let $T : X \to X$ be an isometry, i.e. for all $x, y \in X$, $d(x, y) = d(Tx, Ty)$. Prove that $h_{\text{top}}(T) = 0$.

20. Recall the notation of Host’s theorem and its proof: let $X = \mathbb{R}/\mathbb{Z}$ be the torus, $p \geq 2$ an integer, $T_p : X \to X$ be the $\times p$ map $T_p(x) = px \mod \mathbb{Z}$, $D_n = \{0, 1/p^n, \ldots, 1 - 1/p^n\}$ the additive subgroup of order p^n, $S_x(y) = x + y \mod \mathbb{Z}$, $\mu \in \text{Prob}(X)^{T_p}$, $\omega_n = \sum_{\alpha \in D_n} \mu_{\alpha \ast \mu}$, $\phi_n(x) = \frac{d\mu}{d\omega_n}(x)$. Assume that for μ-a.e. x we have $\phi_n(x)^{1/n} \to_{n \to \infty} \frac{1}{p}$. Prove that μ is Haar (Lebesgue) measure.

21. Let (X, B, μ) be a Borel probability space and let $(t, x) \mapsto t.x$ be an action of \mathbb{R} on X. We say that the action is conservative w.r.t. μ if for any $B \in B$ with $\mu(B) > 0$ and any $t_0 > 0$ there is $t > t_0$ such that $\mu(t.B \cap B) > 0$. Suppose $X = \mathbb{T}$, $A \in M_2(\mathbb{Z})$ is a hyperbolic matrix, T_A is the corresponding hyperbolic automorphism as in Problem 7, T_A preserves μ, and $v^- \in \mathbb{R}^2$ is a contracting eigenvector of A. Define an action of \mathbb{R} on X by $t.x = x + tv^-$ (addition mod \mathbb{Z}^2 on X). Show that $h_{\mu}(T_A) > 0$ if and only if the \mathbb{R}-action defined above is conservative w.r.t. μ.