Exercise sheet – Entropy and Ergodic Theory. Tel Aviv University, Fall 2017

Conventions. In this exercise sheet some expressions are undefined (e.g. involve division by 0 or $\log 0$) and they should be interpreted following a convention $0 \cdot$ undefined = 0.

Definitions. A p.p.s. (X, \mathcal{B}, μ, T) is *ergodic* if $A \in \mathcal{B}, T^{-1}(A) = A \implies \mu(A) \in \{0, 1\}.$

For sub- σ -algebras $\mathcal{A}_1, \mathcal{A}_2$ of \mathcal{B} as above we say that \mathcal{A}_1 is contained mod μ in \mathcal{A}_2 (notation: $\mathcal{A}_1 \subset_{\mu} \mathcal{A}_2$) if for all $\mathcal{A}_1 \in \mathcal{A}_1$ there is $\mathcal{A}_2 \in \mathcal{A}_2$ such that $\mu(\mathcal{A}_1 \bigtriangleup \mathcal{A}_2) = 0$. We say that \mathcal{A}_1 is equivalent mod μ to \mathcal{A}_2 (notation: $\mathcal{A}_1 =_{\mu} \mathcal{A}_2$) if $\mathcal{A}_1 \subset_{\mu} \mathcal{A}_2$ and $\mathcal{A}_2 \subset_{\mu} \mathcal{A}_1$.

1. Let $n \in \mathbb{N}$ and $\Delta_n = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : \sum x_i = 1, x_i \ge 0\}, \Delta = \bigcup_n \Delta_n$. Prove that the function $H : \Delta \to \mathbb{R}$ defined by $H(\vec{x}) = -\sum_i x_i \log x_i$ for $\vec{x} = (x_i) \in \Delta_n$, is the only function with the following properties.

• $H(\vec{x}) \ge 0$ for all $\vec{x} \in \Delta$ and

 $H(\vec{x}) = 0 \iff \exists i \text{ such that } x_i = 1.$

- *H* is continuous and invariant under permutations of the coordinates.
- The maximum of H on Δ is $\log n$ and it is achieved only on the point $x_1 = \cdots = x_n = 1/n$.
- For all $n \in \mathbb{N}$, and all $\vec{x} \in \Delta_n$, $H(x_1, \ldots, x_n) = H(x_1, \ldots, x_n, 0)$.
- If (X, \mathcal{B}, μ) is a probability space, ξ, η are finite partitions of X, and $H_{\mu}(\xi) = H((\mu(A_i))_{A_i \in \xi}), \ H_{\mu}(\xi|\eta) = \sum_{B_j \in \eta} \mu(B_j) H_{\mu|_{B_j}}(\xi),$ where $\mu|_B(A) = \frac{\mu(B \cap A)}{\mu(B)}$, then we have $H_{\mu}(\xi \vee \eta) = H_{\mu}(\eta) + H_{\mu}(\xi|\eta)$.

2. Find a sequence x_1, x_2, \ldots of positive numbers such that $\sum_i x_i = 1$ and $-\sum_i x_i \log x_i = \infty$. Construct an ergodic p.p.s. (X, \mathcal{B}, μ, T) with $h_{\mu}(T) = \infty$.

3. Two countable partitions ξ, η of a probability space (X, \mathcal{B}, μ) are called *independent* if

$$A \in \xi, B \in \eta \implies \mu(A \cap B) = \mu(A)\mu(B).$$

Suppose $H_{\mu}(\xi)$ and $H_{\mu}(\eta)$ are finite. Show that ξ and η are independent if and only if $H_{\mu}(\xi|\eta) = H_{\mu}(\xi)$.

For a countable sub- σ -algebra $\mathcal{C} \subset \mathcal{B}$, we say that ξ and \mathcal{C} are independent if

$$A \in \sigma(\xi), \ C \in \mathcal{C} \implies \mu(A \cap C) = \mu(A)\mu(C).$$

Suppose $H_{\mu}(\xi) < \infty$ and show that ξ and C are independent if and only if $H_{\mu}(\xi|C) = H_{\mu}(\xi)$.

4. Let $\xi = (A_1, A_2, ...)$ be a countable infinite partition of a probability space (X, \mathcal{B}, μ) and let $\{0, 1\}^*$ denote all finite length sequences of 0's and 1's. A map $\mathbf{S} : \mathbb{N} \to \{0, 1\}^*$ is called a *prefix-free code* if it is injective and if for any i, if $\mathbf{S}(i) = x_1 \cdots x_\ell$ where $\ell \in \mathbb{N}$ and $x_i \in \{0, 1\}$, for any $k < \ell$ the prefix $x_1 \cdots x_k$ is not in the image of \mathbf{S} . The length of $w \in \{0, 1\}^*$ is denoted by |w|. Set $L(\mathbf{S}) = \sum_i \mu(A_i) |\mathbf{S}(i)|$. Prove:

- For any prefix-free code **S**, $L(\mathbf{S}) \ge \frac{1}{\log 2} H_{\mu}(\xi)$.
- There exists a prefix-free code **S** with $L(\mathbf{S}) \leq \frac{1}{\log 2}(H_{\mu}(\xi) + 1)$.

These results are due to Shannon and form part of information theory.

5. Let $X = \{0, 1\}^{\mathbb{Z}}$ and let $\sigma : X \to X$ be the left shift. Prove that there is an ergodic σ -invariant measure μ on X such that $\operatorname{supp} \mu = X$ and $h_{\mu}(\sigma) = 0$.

6. Give an example of a probability space (X, \mathcal{B}, μ) and of $S : X \to X$, $T : X \to X$, two \mathcal{B} -measurable maps that preserve μ , for which $h_{\mu}(S \circ T, \xi) > h_{\mu}(S, \xi) + h_{\mu}(T, \xi)$. Find such an example which also satisfies $S \circ T = T \circ S$.

7. (Construction of Markov partitions) Let $\mathbb{T} = \mathbb{R}^2/\mathbb{Z}^2$ and let $\pi : \mathbb{R}^2 \to \mathbb{T}$ be the natural projection. A parallelogram in \mathbb{T} is the image under π of a parallelogram in \mathbb{R}^2 . A hyperbolic automorphism of \mathbb{T} is a map $T_A : \mathbb{T} \to \mathbb{T}$ given by $T_A(\pi(\vec{x})) = \pi(A\vec{x})$ where A is a matrix with integer coefficients, determinant ± 1 , and $|\operatorname{tr}(A)| > 2$. A parallelogram is called A-adapted if its sides are parallel to eigenvectors of A. Prove that for any hyperbolic automorphism T_A of \mathbb{T} there is a partition ξ of \mathbb{T} into finitely many A-adapted parallelograms, and there is c > 0 such that for each $n \in \mathbb{N}$, each element of $\xi \lor \cdots \lor T_A^{-(n-1)}(\xi)$ is an A-adapted parallelogram whose sides in one direction have length in $\left[\frac{1}{c}, c\right]$ and in the other direction have length in $\left[\frac{1}{c|\lambda|^n}, \frac{c}{|\lambda|^n}\right]$, where λ is the larger eigenvalue of A (in absolute value). Conclude that for the Haar measure m on \mathbb{T} , $h_m(T_A) = \log |\lambda|$.

8. (Entropy of a pseudo-Anosov map via Markov partitions.) Let M' be the compact subset of \mathbb{R}^2 bounded by the polygon with 14 sides shown in Figure 1, and let M be the topological space obtained by identifying pairs of parallel edges in $\partial M'$ by translations, where each side marked with a stairclimber is identified with the side with identical marking, and unmarked sides are identified with the sides on the opposite side of the polygon (M is an example of a *translation surface* of genus 3 and is known as the *Escher staircase*). The points

FIGURE 1. The Escher double staircase.

marked • and \circ on M are called singular points. Let $M_0 \subset M$ denote the nonsingular points. Let $\varphi : M \to M$ be a homeomorphism. Using the inclusion $M' \subset \mathbb{R}^2$, if both x and $\varphi(x)$ are in the interior of M', in a neighborhood of x we can think of φ as a map on \mathbb{R}^2 and use this to define the derivative $d\varphi_x$ as a 2×2 real matrix. This extends to the case when $x, \varphi(x) \in M_0$ (but may be in $\partial M'$). Similarly we can define derivatives of maps $U \to M_0$, where $U \subset \mathbb{R}^2$ is open, and use this in order to define derivatives of maps $M_0 \to M_0$. We say that φ is an affine automorphism if $\varphi(M_0) = M_0, d\varphi_x$ exists for all $x \in M_0$ and is an invertible matrix $D\varphi$ independent of x. A parallelogram in M_0 is the image in M_0 of a parallelogram P in \mathbb{R}^2 under a map $P \to M_0$ whose derivative is the identity. It is φ -adapted if its sides are parallel to eigenvectors of $D\varphi$.

(i) Exhibit affine automorphisms φ_1, φ_2 of M with $D\varphi_1 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, $D\varphi_1 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$, and conclude that $\varphi = \varphi_1 \circ \varphi_2$ is an affine automor-

phism where $D\varphi$ satisfies $|tr(D\varphi)| > 2$.

(ii) Construct a partition ξ of M_0 into finitely many φ -adapted parallelograms, and show there is c > 0 such that for each $n \in \mathbb{N}$, each element of $\xi \vee \cdots \vee \varphi^{-(n-1)}(\xi)$ is an A-adapted parallelogram whose sides in one direction have length in $\left[\frac{1}{c}, c\right]$ and in the other direction have length in $\left[\frac{1}{c\lambda^n}, \frac{c}{\lambda^n}\right]$, where λ is the larger eigenvalue of $D\varphi$.

3

ķ

(iii) Show that φ preserves the Lebesgue measure μ on M and compute $h_{\mu}(\varphi)$.

9. Find a probability space (X, \mathcal{B}, μ) and countably generated sub- σ -algebras $\mathcal{C}, \mathcal{A}, \mathcal{A}_1, \mathcal{A}_2, \ldots$ of \mathcal{B} such that $\mathcal{A}_n \nearrow \mathcal{A}$ but the sequence $H_{\mu}(\mathcal{C}|\mathcal{A}_n)$ does not converge to $H_{\mu}(\mathcal{C}|\mathcal{A})$.

10. Let (X, \mathcal{B}, μ) be a Borel probability space, \mathcal{C}, \mathcal{A} countably generated sub- σ -algebras of \mathcal{B} , $\{\mu_x^{\mathcal{A}} : x \in X'\}$ the conditional measures, where $X' \subset X$ is conull. Set $H_{\mu_x^{\mathcal{A}}}(\mathcal{C}) = \infty$ unless \mathcal{C} is equivalent mod $\mu_x^{\mathcal{A}}$ with the σ -algebra generated by a finite entropy partition w.r.t. $\mu_x^{\mathcal{A}}$. Prove that

$$H_{\mu}(\mathcal{C}|\mathcal{A}) = \int_{X'} H_{\mu_x^{\mathcal{A}}}(\mathcal{C}) d\mu(x).$$

11. Let (X, \mathcal{B}, μ, T) be an invertible ergodic p.p.s. on a Borel probability space, such that $\mu(\{x\}) = 0$ for every $x \in X$. Let $\mathcal{E} = \{A \in \mathcal{B} : T^{-1}(A) = A\}$. Prove that \mathcal{E} is not countably generated.

12. Let X be a compact metric space, let $T : X \to X$ be a homeomorphism, and let $\operatorname{Prob}(X)^T$ denote the T-invariant Borel probability measures on X. Show that for every $f \in C(X)$ there is a decreasing sequence $\varepsilon_k \searrow 0$ such that for every $x \in X$, every $k \in \mathbb{N}$, and every N > k we have

$$\inf_{\mu \in \operatorname{Prob}(X)^T} \int_X f d\mu - \varepsilon_k \leqslant \frac{1}{N} \sum_{n=0}^{N-1} f(T^k x) \leqslant \sup_{\mu \in \operatorname{Prob}(X)^T} \int_X f d\mu + \varepsilon_k.$$

Conclude that if $\operatorname{Prob}(X)^T$ contains only one measure μ , then for every $x \in X$ and every $f \in C(X)$ we have

$$\frac{1}{N}\sum_{n=0}^{N-1}f(T^nx)\to_{N\to\infty}\int_X fd\mu$$

this convergence is uniform in x, and μ is ergodic. (When $\operatorname{Prob}(X)^T$ is a singleton we say the system is *uniquely ergodic*.)

13. Let (X, \mathcal{B}, μ, T) be a p.p.s. on a Borel probability space, let $\mathcal{E} = \{A \in \mathcal{B} : T^{-1}(A) = A\}$ and $\mathcal{E}' = \{A \in \mathcal{B} : \mu(A \triangle T^{-1}(A)) = 0\}$. Show that $\mathcal{E} =_{\mu} \mathcal{E}'$.

Now let (X, \mathcal{B}, μ) be a standard Borel space, let G be a locally compact second countable group, acting on X by measure preserving transformations. This means that there is a continuous map $G \times X \to X$, denoted by $(g, x) \mapsto gx$, satisfying the group action laws $ex = x, g_1(g_2x) = (g_1g_2)x$ for all $g_1, g_2 \in G$ and $x \in X$, and preserving the measure, i.e. for any $A \in B$ and $g \in G$, $\mu(gA) = \mu(A)$. Define $\mathcal{E} = \{A \in \mathcal{B} : \forall g \in G, g(A) = A\}$ and $\mathcal{E}' = \{A \in \mathcal{B} : \forall g \in G, \mu(A \triangle g(A)) = 0\}$. *Prove or disprove:* $\mathcal{E} =_{\mu} \mathcal{E}'$.

14. Let (X, d) be a compact metric space and let Prob(X) be the set of regular Borel probability measures on X. Define

 $Lip = \{ f : X \to \mathbb{R} : \forall x_1, x_2 \in X, |f(x_1) - f(x_2)| \le d(x_1, x_2) \}$

and for $\mu, \nu \in \operatorname{Prob}(X)$,

$$D(\mu, \nu) = \sup_{f \in \operatorname{Lip}} \left| \int f d\mu - \int f d\nu \right|.$$

Prove that D is a metric on Prob(X), and prove or disprove:

- $(\operatorname{Prob}(X), D)$ is a complete metric space.
- If $D(\mu_n, \mu) \to_{n \to \infty} 0$ then $\mu_n \to \mu$ in the weak-* topology.
- If $\mu_n \to \mu$ in the weak-* topology then $D(\mu_n, \mu) \to_{n \to \infty} 0$.

15. Suppose X is a compact metric space and $\mu, \mu_1, \mu_2, \ldots$ are regular Borel probability measures on X such that $\mu_n \to \mu$ in the weak-* topology. Suppose that $A \subset X$ has $\mu(\partial A) = 0$. Show that $\mu_n(A) \to \mu(A)$. Provide examples of open and closed sets A, and sequences of measures, for which the conclusion fails when we do not assume $\mu(\partial A) = 0$. Does the property 'for any Borel set A with $\mu(\partial A) = 0, \mu_n(A) \to \mu(A)$ ' imply that $\mu_n \to \mu$ in the weak-* topology?

16. Let $X, T, \operatorname{Prob}(X)^T$ be as in question 12 and assume $h_{\operatorname{top}}(T) < \infty$. We say that $\mu \in \operatorname{Prob}(X)^T$ is maximal for T if $h_{\mu}(T) = h_{\operatorname{top}}(T)$.

- Show that if $T: X \to X$ is expansive then there is a maximal measure for T.
- Show that if $\mu \in \operatorname{Prob}(X)^T$ is the unique maximal measure for T, then the p.p.s. (X, \mathcal{B}, μ, T) is ergodic (\mathcal{B} is the Borel σ -algebra).
- Show that if there is a unique ergodic maximal measure, then there is a unique maximal measure.

17. Let A be an $k \times k$ integer matrix which is diagonalizable over \mathbb{R} , with eigenvectors v_1, \ldots, v_k . Define a toral automorphism by $X = \mathbb{R}^k/\mathbb{Z}^k$, $\pi : \mathbb{R}^k \to X$ the projection and $T(\pi(x)) = \pi(Ax)$. Let d' be the metric on \mathbb{R}^k given by the sup norm with respect to the basis v_1, \ldots, v_k and define a metric d on X by $d(x, y) = \min\{d'(x', y') : \pi(x') = x, \pi(y') = y\}$. Let d_n be the corresponding Bowen metric. What is the Bowen ball $\{x \in X : d_n(x, x_0) < r\}$ (for $x_0 \in X$ and r smaller than the diameter of X)? Compute $h_{\text{top}}(T)$. Find a measure of maximal entropy. Is it unique?

18. Given a word w with symbols in $\{0, 1\}$, define $\sigma(w)$ by replacing each digit x with the other digit 1-x. Let $w_0 = 1$ and define a sequence of words w_n of length 2^n by letting w_{n+1} be the concatenation of w_n and $\sigma(w_n)$. Thus $w_1 = 10$, $w_2 = 1001$, $w_3 = 10010110, \ldots$ Note that for all $k < 2^n$, the k-th digit of w_n does not depend on n, and let w_∞ be the infinite word whose k-th digit is the k-th digit of each w_n with nlarge enough. Let $X = \{0, 1\}^{\mathbb{N}}$, equipped with the Tychonov topology, let $T: X \to X$ be the one-sided shift, and let X' be the closure of the T-orbit of w_∞ . Show that X' is T-invariant and let T' be the restriction of T to X'. Compute $h_{\text{top}}(T')$.

19. Let (X, d) be a compact metric space and let $T : X \to X$ be an isometry, i.e. for all $x, y \in X$, d(x, y) = d(Tx, Ty). Prove that $h_{\text{top}}(T) = 0$.

20. Recall the notation of Host's theorem and its proof: let $X = \mathbb{R}/\mathbb{Z}$ be the torus, $p \ge 2$ an integer, $T_p: X \to X$ be the $\times p$ map $T_p(x) = px$ mod \mathbb{Z} , $D_n = \{0, 1/p^n, \ldots, 1 - 1/p^n\}$ the additive subgroup of order $p^n, S_x(y) = x + y \mod \mathbb{Z}, \ \mu \in \operatorname{Prob}(X)^{T_p}, \ \omega_n = \sum_{\alpha \in D_n} S_{\alpha*}\mu, \ \phi_n(x) = \frac{d\mu}{d\omega_n}(x)$. Assume that for μ -a.e. x we have $\phi_n(x)^{1/n} \to_{n \to \infty} \frac{1}{p}$. Prove that μ is Haar (Lebesgue) measure.

21. Let (X, \mathcal{B}, μ) be a Borel probability space and let $(t, x) \mapsto t.x$ be an action of \mathbb{R} on X. We say that the action is *conservative w.r.t.* μ if for any $B \in \mathcal{B}$ with $\mu(B) > 0$ and any $t_0 > 0$ there is $t > t_0$ such that $\mu(t.B \cap B) > 0$. Suppose $X = \mathbb{T}$, $A \in M_2(\mathbb{Z})$ is a hyperbolic matrix, T_A is the corresponding hyperbolic automorphism as in Problem 7, T_A preserves μ , and $v^- \in \mathbb{R}^2$ is a contracting eigenvector of A. Define an action of \mathbb{R} on X by $t.x = x + tv^-$ (addition mod \mathbb{Z}^2 on X). Show that $h_{\mu}(T_A) > 0$ if and only if the \mathbb{R} -action defined above is conservative w.r.t. μ .