Exercise sheet – Entropy and Ergodic Theory.
Tel Aviv University, Fall 2017

Conventions. In this exercise sheet some expressions are undefined (e.g. involve division by 0 or log 0) and they should be interpreted following a convention 0 · undefined = 0.

Definitions. A p.p.s. \((X, \mathcal{B}, \mu, T)\) is ergodic if \(A \in \mathcal{B}, T^{-1}(A) = A \implies \mu(A) \in \{0, 1\}\).

For sub-\(\sigma\)-algebras \(\mathcal{A}_1, \mathcal{A}_2\) of \(\mathcal{B}\) as above we say that \(\mathcal{A}_1\) is contained mod \(\mu\) in \(\mathcal{A}_2\) (notation: \(\mathcal{A}_1 \subset_\mu \mathcal{A}_2\)) if for all \(\mathcal{A}_1 \in \mathcal{A}_1\) there is \(\mathcal{A}_2 \in \mathcal{A}_2\) such that \(\mu(A_1 \Delta A_2) = 0\). We say that \(\mathcal{A}_1\) is equivalent mod \(\mu\) to \(\mathcal{A}_2\) (notation: \(\mathcal{A}_1 \equiv_\mu \mathcal{A}_2\)) if \(\mathcal{A}_1 \subset_\mu \mathcal{A}_2\) and \(\mathcal{A}_2 \subset_\mu \mathcal{A}_1\).

1. Let \(n \in \mathbb{N}\) and \(\Delta_n = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : \sum x_i = 1, x_i \geq 0\}, \Delta = \bigcup_n \Delta_n\). Prove that the function \(H : \Delta \to \mathbb{R}\) defined by \(H(\vec{x}) = -\sum_i x_i \log x_i\) for \(\vec{x} = (x_i) \in \Delta_n\), is the only function with the following properties.

 - \(H(\vec{x}) \geq 0\) for all \(\vec{x} \in \Delta\) and \(H(\vec{x}) = 0 \iff \exists i\) such that \(x_i = 1\).
 - \(H\) is continuous and invariant under permutations of the coordinates.
 - The maximum of \(H\) on \(\Delta\) is \(\log n\) and it is achieved only on the point \(x_1 = \cdots = x_n = 1/n\).
 - For all \(n \in \mathbb{N}\) and all \(\vec{x} \in \Delta_n\), \(H(x_1, \ldots, x_n) = H(x_1, \ldots, x_n, 0)\).
 - If \((X, \mathcal{B}, \mu)\) is a probability space, \(\xi, \eta\) are finite partitions of \(X\), and \(H_\mu(\xi) = H((\mu(A_i))_{A_i \in \xi})\), \(H_\mu(\xi|\eta) = \sum B_j \mu(B_j) H_\mu(\xi|\eta)\), where \(\mu|\mathcal{B}(A) = \frac{\mu(B \cap A)}{\mu(B)}\), then we have \(H_\mu(\xi \vee \eta) = H_\mu(\eta) + H_\mu(\xi|\eta)\).

2. Find a sequence \(x_1, x_2, \ldots\) of positive numbers such that \(\sum x_i = 1\) and \(-\sum_i x_i \log x_i = \infty\). Construct an ergodic p.p.s. \((X, \mathcal{B}, \mu, T)\) with \(h_\mu(T) = \infty\).

3. Two countable partitions \(\xi, \eta\) of a probability space \((X, \mathcal{B}, \mu)\) are called independent if

 \[A \in \xi, B \in \eta \implies \mu(A \cap B) = \mu(A)\mu(B)\].

Suppose \(H_\mu(\xi)\) and \(H_\mu(\eta)\) are finite. Show that \(\xi\) and \(\eta\) are independent if and only if \(H_\mu(\xi|\eta) = H_\mu(\xi)\).

For a countable sub-\(\sigma\)-algebra \(\mathcal{C} \subset \mathcal{B}\), we say that \(\xi\) and \(\mathcal{C}\) are independent if

\[A \in \sigma(\xi), C \in \mathcal{C} \implies \mu(A \cap C) = \mu(A)\mu(C)\].
Suppose $H_\mu(\xi) < \infty$ and show that ξ and C are independent if and only if $H_\mu(\xi|C) = H_\mu(\xi)$.

4. Let $\xi = (A_1, A_2, \ldots)$ be a countable infinite partition of a probability space (X, B, μ) and let $\{0, 1\}^*$ denote all finite length sequences of 0’s and 1’s. A map $S : \mathbb{N} \to \{0, 1\}^*$ is called a prefix-free code if it is injective and if for any i, if $S(i) = x_1 \cdots x_\ell$ where $\ell \in \mathbb{N}$ and $x_i \in \{0, 1\}$, for any $k < \ell$ the prefix $x_1 \cdots x_k$ is not in the image of S. The length of $w \in \{0, 1\}^*$ is denoted by $|w|$. Set $L(S) = \sum_i \mu(A_i)|S(i)|$. Prove:

- For any prefix-free code S, $L(S) \geq \frac{1}{\log 2} H_\mu(\xi)$.
- There exists a prefix-free code S with $L(S) \leq \frac{1}{\log 2}(H_\mu(\xi) + 1)$.

These results are due to Shannon and form part of information theory.

5. Let $X = \{0, 1\}^\mathbb{Z}$ and let $\sigma : X \to X$ be the left shift. Prove that there is an ergodic σ-invariant measure μ on X such that $\mu(A) = 0$.

6. Let (X, B, μ) be a probability space and let $S : X \to X$, $T : X \to X$ be two B-measurable maps that preserve μ.

- Show that if $S \circ T = T \circ S$ then for any partition ξ, $h_\mu(S \circ T, \xi) \leq h_\mu(S, \xi) + h_\mu(T, \xi)$.
- Give an example of X, B, μ, S, T as above such that $S \circ T \neq T \circ S$ and $h_\mu(S \circ T, \xi) > h_\mu(S, \xi) + h_\mu(T, \xi)$.

7. (Construction of Markov partitions) Let $T = \mathbb{R}^2/\mathbb{Z}^2$ and let $\pi : \mathbb{R}^2 \to T$ be the natural projection. A parallelogram in T is the image under π of a parallelogram in \mathbb{R}^2. A hyperbolic automorphism of T is a map $T_A : T \to T$ given by $T_A(\pi(x)) = \pi(Ax)$ where A is a matrix with integer coefficients, determinant ± 1, and $|\text{tr}(A)| > 2$. A parallelogram is called A-adapted if its sides are parallel to eigenvectors of A. Prove that for any hyperbolic automorphism T_A of T there is a partition ξ of T into finitely many A-adapted parallelograms, and there is $c > 0$ such that for each $n \in \mathbb{N}$, each element of $\xi \vee \cdots \vee T_A^{(n-1)}(\xi)$ is an A-adapted parallelogram whose sides in one direction have length in $[\frac{1}{c}, c]$ and in the other direction have length in $[\frac{1}{c^2}, c^2]$, where λ is the larger eigenvalue of A. Conclude that for the Haar measure m on T, $h_m(T_A) = \log \lambda$.

8. (Entropy of a pseudo-Anosov map via Markov partitions.) Let M' be the compact subset of \mathbb{R}^2 bounded by the polygon with 14 sides shown in Figure 1, and let M be the topological space obtained by identifying pairs of parallel edges in $\partial M'$ by translations, where each side marked with a stairclimber is identified with the side with identical marking, and unmarked sides are identified with the sides on
the opposite side of the polygon (M is an example of a translation surface of genus 3 and is known as the Escher staircase). The points marked \bullet and \circ on M are called singular points. Let $M_0 \subset M$ denote the nonsingular points. Let $\varphi : M \to M$ be a homeomorphism. Using the inclusion $M' \subset \mathbb{R}^2$, if both x and $\varphi(x)$ are in the interior of M', in a neighborhood of x we can think of φ as a map on \mathbb{R}^2 and use this to define the derivative $d\varphi_x$ as a 2×2 real matrix. This extends to the case when $x, \varphi(x) \in M_0$ (but may be in $\partial M'$). Similarly we can define derivatives of maps $\mathbb{R}^2 \to M_0$. We say that φ is an affine automorphism if $\varphi(M_0) = M_0$, $d\varphi_x$ exists for all $x \in M_0$ and is an invertible matrix $D\varphi$ independent of x. A parallelogram in M_0 is the image in M_0 of a parallelogram in \mathbb{R}^2 under a map $\mathbb{R}^2 \to M_0$ whose derivative is the identity. It is φ-adapted if its sides are parallel to eigenvectors of $D\varphi$.

(i) Exhibit affine automorphisms φ_1, φ_2 of M with $D\varphi_1 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, $D\varphi_1 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$, and conclude that $\varphi = \varphi_1 \circ \varphi_2$ is an affine automorphism where $D\varphi$ satisfies $|\text{tr}(D\varphi)| > 2$.

(ii) Construct a partition ξ of M_0 into finitely many φ-adapted parallelograms, and show there is $c > 0$ such that for each $n \in \mathbb{N}$, each element of $\xi \vee \cdots \vee \varphi^{-n}(\xi)$ is an A-adapted parallelogram whose sides in one direction have length in $[\frac{1}{c}, c]$ and in the other direction have length in $[\frac{1}{c\lambda}, \frac{c}{\lambda}]$, where λ is the larger eigenvalue of $D\varphi$.
(iii) Show that \(\varphi \) preserves the Lebesgue measure \(\mu \) on \(M \) and compute \(h_\mu(\varphi) \).

9. Find a probability space \((X, \mathcal{B}, \mu) \) and countably generated sub-\(\sigma \)-algebras \(\mathcal{C}, \mathcal{A}, \mathcal{A}_1, \mathcal{A}_2, \ldots \) of \(\mathcal{B} \) such that \(\mathcal{A}_n \not\subset \mathcal{A} \) but the sequence \(H_\mu(\mathcal{C}|\mathcal{A}_n) \) does not converge to \(H_\mu(\mathcal{C}|\mathcal{A}) \).

10. Let \((X, \mathcal{B}, \mu) \) be a Borel probability space, \(\mathcal{C}, \mathcal{A} \) countably generated sub-\(\sigma \)-algebras of \(\mathcal{B}, \{\mu^A_x : x \in X'\} \) the conditional measures, where \(X' \subset X \) is conull. Set \(H_\mu(\mathcal{C}) = \infty \) unless \(\mathcal{C} \) is equivalent mod \(\mu^A_x \) with the \(\sigma \)-algebra generated by a finite entropy partition w.r.t. \(\mu^A_x \). Prove that

\[
H_\mu(\mathcal{C}|\mathcal{A}) = \int_{X'} H_\mu(\mathcal{C}) d\mu(x).
\]

11. Let \((X, \mathcal{B}, \mu, T) \) be an ergodic p.p.s. on a Borel probability space, such that \(\mu(\{x\}) = 0 \) for every \(x \in X \). Let \(\mathcal{E} = \{A \in \mathcal{B} : T^{-1}(A) = A\} \). Prove that \(\mathcal{E} \) is not countably generated.

12. Let \(X \) be a compact metric space, let \(T : X \to X \) be a homeomorphism, and let \(\text{Prob}(X)^T \) denote the \(T \)-invariant Borel probability measures on \(X \). Show that for every \(f \in C(X) \) there is a decreasing sequence \(\varepsilon_k \downarrow 0 \) such that for every \(x \in X \) and every \(N > k \) we have

\[
\inf_{\mu \in \text{Prob}(X)^T} \int_X f d\mu - \varepsilon_k \leq \frac{1}{N} \sum_{n=0}^{N-1} f(T^n x) \leq \sup_{\mu \in \text{Prob}(X)^T} \int_X f d\mu + \varepsilon_k.
\]

Conclude that if \(\text{Prob}(X)^T \) contains only one measure \(\mu \), then for every \(x \in X \) and every \(f \in C(X) \) we have

\[
\sum_{n=0}^{N-1} f(T^n x) \to_{N \to \infty} \int_X f d\mu,
\]

this convergence is uniform in \(x \), and \(\mu \) is ergodic. (When \(\text{Prob}(X)^T \) is a singleton we say the system is uniquely ergodic.)

13. Let \((X, \mathcal{B}, \mu, T) \) be a p.p.s. on a Borel probability space, let \(\mathcal{E} = \{A \in \mathcal{B} : T^{-1}(A) = A\} \) and \(\mathcal{E}' = \{A \in \mathcal{B} : \mu(A \triangle T^{-1}(A)) = 0\} \). Show that \(\mathcal{E} = \mu, \mathcal{E}' \).

Now let \((X, \mathcal{B}, \mu) \) be a standard Borel space, let \(G \) be a locally compact second countable group, acting on \(X \) by measure preserving transformations. This means that there is a map \(G \times X \to X \), denoted by \((g, x) \mapsto gx \), satisfying the group action laws \(ex = x, g_1(g_2 x) = (g_1 g_2)x \) for all \(g_1, g_2 \in G \) and \(x \in X \), and preserving the measure, i.e. for any \(A \in \mathcal{B} \) and \(g \in G, \mu(gA) = \mu(A) \). Define \(\mathcal{E} = \{A \in \mathcal{B} : \forall g \in G, g(A) = A\} \) and \(\mathcal{E}' = \{A \in \mathcal{B} : \forall g \in G, \mu(A \triangle g(A)) = 0\} \).
Prove or disprove: $\mathcal{E} = \mu \mathcal{E}'$.

14. Let (X, d) be a compact metric space and let $\text{Prob}(X)$ be the set of regular Borel probability measures on X. Define

$$\text{Lip} = \{ f : X \to \mathbb{R} : \forall x_1, x_2 \in X, |f(x_1) - f(x_2)| \leq d(x_1, x_2) \}$$

and for $\mu, \nu \in \text{Prob}(X)$,

$$D(\mu, \nu) = \sup_{f \in \text{Lip}} \left| \int f \, d\mu - \int f \, d\nu \right| .$$

Prove that D is a metric on $\text{Prob}(X)$, and prove or disprove:

- $(\text{Prob}(X), D)$ is a complete metric space.
- If $D(\mu_n, \mu) \to n \to \infty 0$ then $\mu_n \to \mu$ in the weak-* topology.
- If $\mu_n \to \mu$ in the weak-* topology then $D(\mu_n, \mu) \to n \to \infty 0$.

15. Suppose X is a compact metric space and $\mu, \mu_1, \mu_2, \ldots$ are regular Borel probability measures on X such that $\mu_n \to \mu$ in the weak-* topology. Suppose that $A \subset X$ has $\mu(\partial A) = 0$. Provide examples of open and closed sets A, and sequences of measures, for which the conclusion fails when we do not assume $\mu(\partial A) = 0$. Does the property ‘for any Borel set A with $\mu(\partial A) = 0$, $\mu_n(A) \to \mu(A)$’ imply that $\mu_n \to \mu$ in the weak-* topology?

16. Let $X, T, \text{Prob}(X)^T$ be as in question 12. We say that $\mu \in \text{Prob}(X)^T$ is maximal for T if $h_\mu(T) = h_{\text{top}}(T)$.

- Show that if $T : X \to X$ is expansive then there is a maximal measure for T.
- Show that if $\mu \in \text{Prob}(X)^T$ is the unique maximal measure for T, then the p.p.s. (X, \mathcal{B}, μ, T) is ergodic (\mathcal{B} is the Borel σ-algebra).